Home | History | Annotate | Download | only in X86
      1 //===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the X86 specific subclass of TargetSubtargetInfo.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "subtarget"
     15 #include "X86Subtarget.h"
     16 #include "X86InstrInfo.h"
     17 #include "llvm/GlobalValue.h"
     18 #include "llvm/Support/Debug.h"
     19 #include "llvm/Support/ErrorHandling.h"
     20 #include "llvm/Support/raw_ostream.h"
     21 #include "llvm/Support/Host.h"
     22 #include "llvm/Target/TargetMachine.h"
     23 #include "llvm/Target/TargetOptions.h"
     24 
     25 #define GET_SUBTARGETINFO_TARGET_DESC
     26 #define GET_SUBTARGETINFO_CTOR
     27 #include "X86GenSubtargetInfo.inc"
     28 
     29 using namespace llvm;
     30 
     31 #if defined(_MSC_VER)
     32 #include <intrin.h>
     33 #endif
     34 
     35 /// ClassifyBlockAddressReference - Classify a blockaddress reference for the
     36 /// current subtarget according to how we should reference it in a non-pcrel
     37 /// context.
     38 unsigned char X86Subtarget::
     39 ClassifyBlockAddressReference() const {
     40   if (isPICStyleGOT())    // 32-bit ELF targets.
     41     return X86II::MO_GOTOFF;
     42 
     43   if (isPICStyleStubPIC())   // Darwin/32 in PIC mode.
     44     return X86II::MO_PIC_BASE_OFFSET;
     45 
     46   // Direct static reference to label.
     47   return X86II::MO_NO_FLAG;
     48 }
     49 
     50 /// ClassifyGlobalReference - Classify a global variable reference for the
     51 /// current subtarget according to how we should reference it in a non-pcrel
     52 /// context.
     53 unsigned char X86Subtarget::
     54 ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const {
     55   // DLLImport only exists on windows, it is implemented as a load from a
     56   // DLLIMPORT stub.
     57   if (GV->hasDLLImportLinkage())
     58     return X86II::MO_DLLIMPORT;
     59 
     60   // Determine whether this is a reference to a definition or a declaration.
     61   // Materializable GVs (in JIT lazy compilation mode) do not require an extra
     62   // load from stub.
     63   bool isDecl = GV->hasAvailableExternallyLinkage();
     64   if (GV->isDeclaration() && !GV->isMaterializable())
     65     isDecl = true;
     66 
     67   // X86-64 in PIC mode.
     68   if (isPICStyleRIPRel()) {
     69     // Large model never uses stubs.
     70     if (TM.getCodeModel() == CodeModel::Large)
     71       return X86II::MO_NO_FLAG;
     72 
     73     if (isTargetDarwin()) {
     74       // If symbol visibility is hidden, the extra load is not needed if
     75       // target is x86-64 or the symbol is definitely defined in the current
     76       // translation unit.
     77       if (GV->hasDefaultVisibility() &&
     78           (isDecl || GV->isWeakForLinker()))
     79         return X86II::MO_GOTPCREL;
     80     } else if (!isTargetWin64()) {
     81       assert(isTargetELF() && "Unknown rip-relative target");
     82 
     83       // Extra load is needed for all externally visible.
     84       if (!GV->hasLocalLinkage() && GV->hasDefaultVisibility())
     85         return X86II::MO_GOTPCREL;
     86     }
     87 
     88     return X86II::MO_NO_FLAG;
     89   }
     90 
     91   if (isPICStyleGOT()) {   // 32-bit ELF targets.
     92     // Extra load is needed for all externally visible.
     93     if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
     94       return X86II::MO_GOTOFF;
     95     return X86II::MO_GOT;
     96   }
     97 
     98   if (isPICStyleStubPIC()) {  // Darwin/32 in PIC mode.
     99     // Determine whether we have a stub reference and/or whether the reference
    100     // is relative to the PIC base or not.
    101 
    102     // If this is a strong reference to a definition, it is definitely not
    103     // through a stub.
    104     if (!isDecl && !GV->isWeakForLinker())
    105       return X86II::MO_PIC_BASE_OFFSET;
    106 
    107     // Unless we have a symbol with hidden visibility, we have to go through a
    108     // normal $non_lazy_ptr stub because this symbol might be resolved late.
    109     if (!GV->hasHiddenVisibility())  // Non-hidden $non_lazy_ptr reference.
    110       return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
    111 
    112     // If symbol visibility is hidden, we have a stub for common symbol
    113     // references and external declarations.
    114     if (isDecl || GV->hasCommonLinkage()) {
    115       // Hidden $non_lazy_ptr reference.
    116       return X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE;
    117     }
    118 
    119     // Otherwise, no stub.
    120     return X86II::MO_PIC_BASE_OFFSET;
    121   }
    122 
    123   if (isPICStyleStubNoDynamic()) {  // Darwin/32 in -mdynamic-no-pic mode.
    124     // Determine whether we have a stub reference.
    125 
    126     // If this is a strong reference to a definition, it is definitely not
    127     // through a stub.
    128     if (!isDecl && !GV->isWeakForLinker())
    129       return X86II::MO_NO_FLAG;
    130 
    131     // Unless we have a symbol with hidden visibility, we have to go through a
    132     // normal $non_lazy_ptr stub because this symbol might be resolved late.
    133     if (!GV->hasHiddenVisibility())  // Non-hidden $non_lazy_ptr reference.
    134       return X86II::MO_DARWIN_NONLAZY;
    135 
    136     // Otherwise, no stub.
    137     return X86II::MO_NO_FLAG;
    138   }
    139 
    140   // Direct static reference to global.
    141   return X86II::MO_NO_FLAG;
    142 }
    143 
    144 
    145 /// getBZeroEntry - This function returns the name of a function which has an
    146 /// interface like the non-standard bzero function, if such a function exists on
    147 /// the current subtarget and it is considered prefereable over memset with zero
    148 /// passed as the second argument. Otherwise it returns null.
    149 const char *X86Subtarget::getBZeroEntry() const {
    150   // Darwin 10 has a __bzero entry point for this purpose.
    151   if (getTargetTriple().isMacOSX() &&
    152       !getTargetTriple().isMacOSXVersionLT(10, 6))
    153     return "__bzero";
    154 
    155   return 0;
    156 }
    157 
    158 /// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls
    159 /// to immediate address.
    160 bool X86Subtarget::IsLegalToCallImmediateAddr(const TargetMachine &TM) const {
    161   if (In64BitMode)
    162     return false;
    163   return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
    164 }
    165 
    166 /// getSpecialAddressLatency - For targets where it is beneficial to
    167 /// backschedule instructions that compute addresses, return a value
    168 /// indicating the number of scheduling cycles of backscheduling that
    169 /// should be attempted.
    170 unsigned X86Subtarget::getSpecialAddressLatency() const {
    171   // For x86 out-of-order targets, back-schedule address computations so
    172   // that loads and stores aren't blocked.
    173   // This value was chosen arbitrarily.
    174   return 200;
    175 }
    176 
    177 void X86Subtarget::AutoDetectSubtargetFeatures() {
    178   unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
    179   unsigned MaxLevel;
    180   union {
    181     unsigned u[3];
    182     char     c[12];
    183   } text;
    184 
    185   if (X86_MC::GetCpuIDAndInfo(0, &MaxLevel, text.u+0, text.u+2, text.u+1) ||
    186       MaxLevel < 1)
    187     return;
    188 
    189   X86_MC::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
    190 
    191   if ((EDX >> 15) & 1) { HasCMov = true;      ToggleFeature(X86::FeatureCMOV); }
    192   if ((EDX >> 23) & 1) { X86SSELevel = MMX;   ToggleFeature(X86::FeatureMMX);  }
    193   if ((EDX >> 25) & 1) { X86SSELevel = SSE1;  ToggleFeature(X86::FeatureSSE1); }
    194   if ((EDX >> 26) & 1) { X86SSELevel = SSE2;  ToggleFeature(X86::FeatureSSE2); }
    195   if (ECX & 0x1)       { X86SSELevel = SSE3;  ToggleFeature(X86::FeatureSSE3); }
    196   if ((ECX >> 9)  & 1) { X86SSELevel = SSSE3; ToggleFeature(X86::FeatureSSSE3);}
    197   if ((ECX >> 19) & 1) { X86SSELevel = SSE41; ToggleFeature(X86::FeatureSSE41);}
    198   if ((ECX >> 20) & 1) { X86SSELevel = SSE42; ToggleFeature(X86::FeatureSSE42);}
    199   // FIXME: AVX codegen support is not ready.
    200   //if ((ECX >> 28) & 1) { X86SSELevel = AVX;  ToggleFeature(X86::FeatureAVX); }
    201 
    202   bool IsIntel = memcmp(text.c, "GenuineIntel", 12) == 0;
    203   bool IsAMD   = !IsIntel && memcmp(text.c, "AuthenticAMD", 12) == 0;
    204 
    205   if (IsIntel && ((ECX >> 1) & 0x1)) {
    206     HasCLMUL = true;
    207     ToggleFeature(X86::FeatureCLMUL);
    208   }
    209   if (IsIntel && ((ECX >> 12) & 0x1)) {
    210     HasFMA3 = true;
    211     ToggleFeature(X86::FeatureFMA3);
    212   }
    213   if (IsIntel && ((ECX >> 22) & 0x1)) {
    214     HasMOVBE = true;
    215     ToggleFeature(X86::FeatureMOVBE);
    216   }
    217   if (IsIntel && ((ECX >> 23) & 0x1)) {
    218     HasPOPCNT = true;
    219     ToggleFeature(X86::FeaturePOPCNT);
    220   }
    221   if (IsIntel && ((ECX >> 25) & 0x1)) {
    222     HasAES = true;
    223     ToggleFeature(X86::FeatureAES);
    224   }
    225   if (IsIntel && ((ECX >> 29) & 0x1)) {
    226     HasF16C = true;
    227     ToggleFeature(X86::FeatureF16C);
    228   }
    229   if (IsIntel && ((ECX >> 30) & 0x1)) {
    230     HasRDRAND = true;
    231     ToggleFeature(X86::FeatureRDRAND);
    232   }
    233 
    234   if ((ECX >> 13) & 0x1) {
    235     HasCmpxchg16b = true;
    236     ToggleFeature(X86::FeatureCMPXCHG16B);
    237   }
    238 
    239   if (IsIntel || IsAMD) {
    240     // Determine if bit test memory instructions are slow.
    241     unsigned Family = 0;
    242     unsigned Model  = 0;
    243     X86_MC::DetectFamilyModel(EAX, Family, Model);
    244     if (IsAMD || (Family == 6 && Model >= 13)) {
    245       IsBTMemSlow = true;
    246       ToggleFeature(X86::FeatureSlowBTMem);
    247     }
    248 
    249     // If it's Nehalem, unaligned memory access is fast.
    250     // FIXME: Nehalem is family 6. Also include Westmere and later processors?
    251     if (Family == 15 && Model == 26) {
    252       IsUAMemFast = true;
    253       ToggleFeature(X86::FeatureFastUAMem);
    254     }
    255 
    256     // Set processor type. Currently only Atom is detected.
    257     if (Family == 6 && Model == 28) {
    258       X86ProcFamily = IntelAtom;
    259       ToggleFeature(X86::FeatureLeaForSP);
    260     }
    261 
    262     unsigned MaxExtLevel;
    263     X86_MC::GetCpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
    264 
    265     if (MaxExtLevel >= 0x80000001) {
    266       X86_MC::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
    267       if ((EDX >> 29) & 0x1) {
    268         HasX86_64 = true;
    269         ToggleFeature(X86::Feature64Bit);
    270       }
    271       if ((ECX >> 5) & 0x1) {
    272         HasLZCNT = true;
    273         ToggleFeature(X86::FeatureLZCNT);
    274       }
    275       if (IsAMD) {
    276         if ((ECX >> 6) & 0x1) {
    277           HasSSE4A = true;
    278           ToggleFeature(X86::FeatureSSE4A);
    279         }
    280         if ((ECX >> 11) & 0x1) {
    281           HasXOP = true;
    282           ToggleFeature(X86::FeatureXOP);
    283         }
    284         if ((ECX >> 16) & 0x1) {
    285           HasFMA4 = true;
    286           ToggleFeature(X86::FeatureFMA4);
    287         }
    288       }
    289     }
    290   }
    291 
    292   if (IsIntel && MaxLevel >= 7) {
    293     if (!X86_MC::GetCpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX)) {
    294       if (EBX & 0x1) {
    295         HasFSGSBase = true;
    296         ToggleFeature(X86::FeatureFSGSBase);
    297       }
    298       if ((EBX >> 3) & 0x1) {
    299         HasBMI = true;
    300         ToggleFeature(X86::FeatureBMI);
    301       }
    302       // FIXME: AVX2 codegen support is not ready.
    303       //if ((EBX >> 5) & 0x1) {
    304       //  X86SSELevel = AVX2;
    305       //  ToggleFeature(X86::FeatureAVX2);
    306       //}
    307       if ((EBX >> 8) & 0x1) {
    308         HasBMI2 = true;
    309         ToggleFeature(X86::FeatureBMI2);
    310       }
    311     }
    312   }
    313 }
    314 
    315 X86Subtarget::X86Subtarget(const std::string &TT, const std::string &CPU,
    316                            const std::string &FS,
    317                            unsigned StackAlignOverride, bool is64Bit)
    318   : X86GenSubtargetInfo(TT, CPU, FS)
    319   , X86ProcFamily(Others)
    320   , PICStyle(PICStyles::None)
    321   , X86SSELevel(NoMMXSSE)
    322   , X863DNowLevel(NoThreeDNow)
    323   , HasCMov(false)
    324   , HasX86_64(false)
    325   , HasPOPCNT(false)
    326   , HasSSE4A(false)
    327   , HasAES(false)
    328   , HasCLMUL(false)
    329   , HasFMA3(false)
    330   , HasFMA4(false)
    331   , HasXOP(false)
    332   , HasMOVBE(false)
    333   , HasRDRAND(false)
    334   , HasF16C(false)
    335   , HasFSGSBase(false)
    336   , HasLZCNT(false)
    337   , HasBMI(false)
    338   , HasBMI2(false)
    339   , IsBTMemSlow(false)
    340   , IsUAMemFast(false)
    341   , HasVectorUAMem(false)
    342   , HasCmpxchg16b(false)
    343   , UseLeaForSP(false)
    344   , PostRAScheduler(false)
    345   , stackAlignment(4)
    346   // FIXME: this is a known good value for Yonah. How about others?
    347   , MaxInlineSizeThreshold(128)
    348   , TargetTriple(TT)
    349   , In64BitMode(is64Bit) {
    350   // Determine default and user specified characteristics
    351   std::string CPUName = CPU;
    352   if (!FS.empty() || !CPU.empty()) {
    353     if (CPUName.empty()) {
    354 #if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\
    355     || defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
    356       CPUName = sys::getHostCPUName();
    357 #else
    358       CPUName = "generic";
    359 #endif
    360     }
    361 
    362     // Make sure 64-bit features are available in 64-bit mode. (But make sure
    363     // SSE2 can be turned off explicitly.)
    364     std::string FullFS = FS;
    365     if (In64BitMode) {
    366       if (!FullFS.empty())
    367         FullFS = "+64bit,+sse2," + FullFS;
    368       else
    369         FullFS = "+64bit,+sse2";
    370     }
    371 
    372     // If feature string is not empty, parse features string.
    373     ParseSubtargetFeatures(CPUName, FullFS);
    374   } else {
    375     if (CPUName.empty()) {
    376 #if defined (__x86_64__) || defined(__i386__)
    377       CPUName = sys::getHostCPUName();
    378 #else
    379       CPUName = "generic";
    380 #endif
    381     }
    382     // Otherwise, use CPUID to auto-detect feature set.
    383     AutoDetectSubtargetFeatures();
    384 
    385     // Make sure 64-bit features are available in 64-bit mode.
    386     if (In64BitMode) {
    387       HasX86_64 = true; ToggleFeature(X86::Feature64Bit);
    388       HasCMov = true;   ToggleFeature(X86::FeatureCMOV);
    389 
    390       if (X86SSELevel < SSE2) {
    391         X86SSELevel = SSE2;
    392         ToggleFeature(X86::FeatureSSE1);
    393         ToggleFeature(X86::FeatureSSE2);
    394       }
    395     }
    396   }
    397 
    398   if (X86ProcFamily == IntelAtom) {
    399     PostRAScheduler = true;
    400     InstrItins = getInstrItineraryForCPU(CPUName);
    401   }
    402 
    403   // It's important to keep the MCSubtargetInfo feature bits in sync with
    404   // target data structure which is shared with MC code emitter, etc.
    405   if (In64BitMode)
    406     ToggleFeature(X86::Mode64Bit);
    407 
    408   DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
    409                << ", 3DNowLevel " << X863DNowLevel
    410                << ", 64bit " << HasX86_64 << "\n");
    411   assert((!In64BitMode || HasX86_64) &&
    412          "64-bit code requested on a subtarget that doesn't support it!");
    413 
    414   // Stack alignment is 16 bytes on Darwin, FreeBSD, Linux and Solaris (both
    415   // 32 and 64 bit) and for all 64-bit targets.
    416   if (StackAlignOverride)
    417     stackAlignment = StackAlignOverride;
    418   else if (isTargetDarwin() || isTargetFreeBSD() || isTargetLinux() ||
    419            isTargetSolaris() || In64BitMode)
    420     stackAlignment = 16;
    421 }
    422 
    423 bool X86Subtarget::enablePostRAScheduler(
    424            CodeGenOpt::Level OptLevel,
    425            TargetSubtargetInfo::AntiDepBreakMode& Mode,
    426            RegClassVector& CriticalPathRCs) const {
    427   //TODO: change back to ANTIDEP_CRITICAL when the
    428   // X86 subtarget properly sets up post RA liveness.
    429   Mode = TargetSubtargetInfo::ANTIDEP_NONE;
    430   CriticalPathRCs.clear();
    431   return PostRAScheduler && OptLevel >= CodeGenOpt::Default;
    432 }
    433