Home | History | Annotate | Download | only in Analysis
      1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines routines for folding instructions into constants.
     11 //
     12 // Also, to supplement the basic VMCore ConstantExpr simplifications,
     13 // this file defines some additional folding routines that can make use of
     14 // TargetData information. These functions cannot go in VMCore due to library
     15 // dependency issues.
     16 //
     17 //===----------------------------------------------------------------------===//
     18 
     19 #include "llvm/Analysis/ConstantFolding.h"
     20 #include "llvm/Constants.h"
     21 #include "llvm/DerivedTypes.h"
     22 #include "llvm/Function.h"
     23 #include "llvm/GlobalVariable.h"
     24 #include "llvm/Instructions.h"
     25 #include "llvm/Intrinsics.h"
     26 #include "llvm/Operator.h"
     27 #include "llvm/Analysis/ValueTracking.h"
     28 #include "llvm/Target/TargetData.h"
     29 #include "llvm/Target/TargetLibraryInfo.h"
     30 #include "llvm/ADT/SmallVector.h"
     31 #include "llvm/ADT/StringMap.h"
     32 #include "llvm/Support/ErrorHandling.h"
     33 #include "llvm/Support/GetElementPtrTypeIterator.h"
     34 #include "llvm/Support/MathExtras.h"
     35 #include "llvm/Support/FEnv.h"
     36 #include <cerrno>
     37 #include <cmath>
     38 using namespace llvm;
     39 
     40 //===----------------------------------------------------------------------===//
     41 // Constant Folding internal helper functions
     42 //===----------------------------------------------------------------------===//
     43 
     44 /// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
     45 /// TargetData.  This always returns a non-null constant, but it may be a
     46 /// ConstantExpr if unfoldable.
     47 static Constant *FoldBitCast(Constant *C, Type *DestTy,
     48                              const TargetData &TD) {
     49   // Catch the obvious splat cases.
     50   if (C->isNullValue() && !DestTy->isX86_MMXTy())
     51     return Constant::getNullValue(DestTy);
     52   if (C->isAllOnesValue() && !DestTy->isX86_MMXTy())
     53     return Constant::getAllOnesValue(DestTy);
     54 
     55   // Handle a vector->integer cast.
     56   if (IntegerType *IT = dyn_cast<IntegerType>(DestTy)) {
     57     ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
     58     if (CDV == 0)
     59       return ConstantExpr::getBitCast(C, DestTy);
     60 
     61     unsigned NumSrcElts = CDV->getType()->getNumElements();
     62 
     63     Type *SrcEltTy = CDV->getType()->getElementType();
     64 
     65     // If the vector is a vector of floating point, convert it to vector of int
     66     // to simplify things.
     67     if (SrcEltTy->isFloatingPointTy()) {
     68       unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
     69       Type *SrcIVTy =
     70         VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
     71       // Ask VMCore to do the conversion now that #elts line up.
     72       C = ConstantExpr::getBitCast(C, SrcIVTy);
     73       CDV = cast<ConstantDataVector>(C);
     74     }
     75 
     76     // Now that we know that the input value is a vector of integers, just shift
     77     // and insert them into our result.
     78     unsigned BitShift = TD.getTypeAllocSizeInBits(SrcEltTy);
     79     APInt Result(IT->getBitWidth(), 0);
     80     for (unsigned i = 0; i != NumSrcElts; ++i) {
     81       Result <<= BitShift;
     82       if (TD.isLittleEndian())
     83         Result |= CDV->getElementAsInteger(NumSrcElts-i-1);
     84       else
     85         Result |= CDV->getElementAsInteger(i);
     86     }
     87 
     88     return ConstantInt::get(IT, Result);
     89   }
     90 
     91   // The code below only handles casts to vectors currently.
     92   VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
     93   if (DestVTy == 0)
     94     return ConstantExpr::getBitCast(C, DestTy);
     95 
     96   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
     97   // vector so the code below can handle it uniformly.
     98   if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
     99     Constant *Ops = C; // don't take the address of C!
    100     return FoldBitCast(ConstantVector::get(Ops), DestTy, TD);
    101   }
    102 
    103   // If this is a bitcast from constant vector -> vector, fold it.
    104   if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
    105     return ConstantExpr::getBitCast(C, DestTy);
    106 
    107   // If the element types match, VMCore can fold it.
    108   unsigned NumDstElt = DestVTy->getNumElements();
    109   unsigned NumSrcElt = C->getType()->getVectorNumElements();
    110   if (NumDstElt == NumSrcElt)
    111     return ConstantExpr::getBitCast(C, DestTy);
    112 
    113   Type *SrcEltTy = C->getType()->getVectorElementType();
    114   Type *DstEltTy = DestVTy->getElementType();
    115 
    116   // Otherwise, we're changing the number of elements in a vector, which
    117   // requires endianness information to do the right thing.  For example,
    118   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
    119   // folds to (little endian):
    120   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
    121   // and to (big endian):
    122   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
    123 
    124   // First thing is first.  We only want to think about integer here, so if
    125   // we have something in FP form, recast it as integer.
    126   if (DstEltTy->isFloatingPointTy()) {
    127     // Fold to an vector of integers with same size as our FP type.
    128     unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
    129     Type *DestIVTy =
    130       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
    131     // Recursively handle this integer conversion, if possible.
    132     C = FoldBitCast(C, DestIVTy, TD);
    133 
    134     // Finally, VMCore can handle this now that #elts line up.
    135     return ConstantExpr::getBitCast(C, DestTy);
    136   }
    137 
    138   // Okay, we know the destination is integer, if the input is FP, convert
    139   // it to integer first.
    140   if (SrcEltTy->isFloatingPointTy()) {
    141     unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
    142     Type *SrcIVTy =
    143       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
    144     // Ask VMCore to do the conversion now that #elts line up.
    145     C = ConstantExpr::getBitCast(C, SrcIVTy);
    146     // If VMCore wasn't able to fold it, bail out.
    147     if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
    148         !isa<ConstantDataVector>(C))
    149       return C;
    150   }
    151 
    152   // Now we know that the input and output vectors are both integer vectors
    153   // of the same size, and that their #elements is not the same.  Do the
    154   // conversion here, which depends on whether the input or output has
    155   // more elements.
    156   bool isLittleEndian = TD.isLittleEndian();
    157 
    158   SmallVector<Constant*, 32> Result;
    159   if (NumDstElt < NumSrcElt) {
    160     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
    161     Constant *Zero = Constant::getNullValue(DstEltTy);
    162     unsigned Ratio = NumSrcElt/NumDstElt;
    163     unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
    164     unsigned SrcElt = 0;
    165     for (unsigned i = 0; i != NumDstElt; ++i) {
    166       // Build each element of the result.
    167       Constant *Elt = Zero;
    168       unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
    169       for (unsigned j = 0; j != Ratio; ++j) {
    170         Constant *Src =dyn_cast<ConstantInt>(C->getAggregateElement(SrcElt++));
    171         if (!Src)  // Reject constantexpr elements.
    172           return ConstantExpr::getBitCast(C, DestTy);
    173 
    174         // Zero extend the element to the right size.
    175         Src = ConstantExpr::getZExt(Src, Elt->getType());
    176 
    177         // Shift it to the right place, depending on endianness.
    178         Src = ConstantExpr::getShl(Src,
    179                                    ConstantInt::get(Src->getType(), ShiftAmt));
    180         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
    181 
    182         // Mix it in.
    183         Elt = ConstantExpr::getOr(Elt, Src);
    184       }
    185       Result.push_back(Elt);
    186     }
    187     return ConstantVector::get(Result);
    188   }
    189 
    190   // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
    191   unsigned Ratio = NumDstElt/NumSrcElt;
    192   unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
    193 
    194   // Loop over each source value, expanding into multiple results.
    195   for (unsigned i = 0; i != NumSrcElt; ++i) {
    196     Constant *Src = dyn_cast<ConstantInt>(C->getAggregateElement(i));
    197     if (!Src)  // Reject constantexpr elements.
    198       return ConstantExpr::getBitCast(C, DestTy);
    199 
    200     unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
    201     for (unsigned j = 0; j != Ratio; ++j) {
    202       // Shift the piece of the value into the right place, depending on
    203       // endianness.
    204       Constant *Elt = ConstantExpr::getLShr(Src,
    205                                   ConstantInt::get(Src->getType(), ShiftAmt));
    206       ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
    207 
    208       // Truncate and remember this piece.
    209       Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
    210     }
    211   }
    212 
    213   return ConstantVector::get(Result);
    214 }
    215 
    216 
    217 /// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
    218 /// from a global, return the global and the constant.  Because of
    219 /// constantexprs, this function is recursive.
    220 static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
    221                                        int64_t &Offset, const TargetData &TD) {
    222   // Trivial case, constant is the global.
    223   if ((GV = dyn_cast<GlobalValue>(C))) {
    224     Offset = 0;
    225     return true;
    226   }
    227 
    228   // Otherwise, if this isn't a constant expr, bail out.
    229   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
    230   if (!CE) return false;
    231 
    232   // Look through ptr->int and ptr->ptr casts.
    233   if (CE->getOpcode() == Instruction::PtrToInt ||
    234       CE->getOpcode() == Instruction::BitCast)
    235     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
    236 
    237   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
    238   if (CE->getOpcode() == Instruction::GetElementPtr) {
    239     // Cannot compute this if the element type of the pointer is missing size
    240     // info.
    241     if (!cast<PointerType>(CE->getOperand(0)->getType())
    242                  ->getElementType()->isSized())
    243       return false;
    244 
    245     // If the base isn't a global+constant, we aren't either.
    246     if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
    247       return false;
    248 
    249     // Otherwise, add any offset that our operands provide.
    250     gep_type_iterator GTI = gep_type_begin(CE);
    251     for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
    252          i != e; ++i, ++GTI) {
    253       ConstantInt *CI = dyn_cast<ConstantInt>(*i);
    254       if (!CI) return false;  // Index isn't a simple constant?
    255       if (CI->isZero()) continue;  // Not adding anything.
    256 
    257       if (StructType *ST = dyn_cast<StructType>(*GTI)) {
    258         // N = N + Offset
    259         Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
    260       } else {
    261         SequentialType *SQT = cast<SequentialType>(*GTI);
    262         Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
    263       }
    264     }
    265     return true;
    266   }
    267 
    268   return false;
    269 }
    270 
    271 /// ReadDataFromGlobal - Recursive helper to read bits out of global.  C is the
    272 /// constant being copied out of. ByteOffset is an offset into C.  CurPtr is the
    273 /// pointer to copy results into and BytesLeft is the number of bytes left in
    274 /// the CurPtr buffer.  TD is the target data.
    275 static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
    276                                unsigned char *CurPtr, unsigned BytesLeft,
    277                                const TargetData &TD) {
    278   assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
    279          "Out of range access");
    280 
    281   // If this element is zero or undefined, we can just return since *CurPtr is
    282   // zero initialized.
    283   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
    284     return true;
    285 
    286   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
    287     if (CI->getBitWidth() > 64 ||
    288         (CI->getBitWidth() & 7) != 0)
    289       return false;
    290 
    291     uint64_t Val = CI->getZExtValue();
    292     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
    293 
    294     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
    295       CurPtr[i] = (unsigned char)(Val >> (ByteOffset * 8));
    296       ++ByteOffset;
    297     }
    298     return true;
    299   }
    300 
    301   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
    302     if (CFP->getType()->isDoubleTy()) {
    303       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
    304       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
    305     }
    306     if (CFP->getType()->isFloatTy()){
    307       C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
    308       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
    309     }
    310     return false;
    311   }
    312 
    313   if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
    314     const StructLayout *SL = TD.getStructLayout(CS->getType());
    315     unsigned Index = SL->getElementContainingOffset(ByteOffset);
    316     uint64_t CurEltOffset = SL->getElementOffset(Index);
    317     ByteOffset -= CurEltOffset;
    318 
    319     while (1) {
    320       // If the element access is to the element itself and not to tail padding,
    321       // read the bytes from the element.
    322       uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
    323 
    324       if (ByteOffset < EltSize &&
    325           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
    326                               BytesLeft, TD))
    327         return false;
    328 
    329       ++Index;
    330 
    331       // Check to see if we read from the last struct element, if so we're done.
    332       if (Index == CS->getType()->getNumElements())
    333         return true;
    334 
    335       // If we read all of the bytes we needed from this element we're done.
    336       uint64_t NextEltOffset = SL->getElementOffset(Index);
    337 
    338       if (BytesLeft <= NextEltOffset-CurEltOffset-ByteOffset)
    339         return true;
    340 
    341       // Move to the next element of the struct.
    342       CurPtr += NextEltOffset-CurEltOffset-ByteOffset;
    343       BytesLeft -= NextEltOffset-CurEltOffset-ByteOffset;
    344       ByteOffset = 0;
    345       CurEltOffset = NextEltOffset;
    346     }
    347     // not reached.
    348   }
    349 
    350   if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
    351       isa<ConstantDataSequential>(C)) {
    352     Type *EltTy = cast<SequentialType>(C->getType())->getElementType();
    353     uint64_t EltSize = TD.getTypeAllocSize(EltTy);
    354     uint64_t Index = ByteOffset / EltSize;
    355     uint64_t Offset = ByteOffset - Index * EltSize;
    356     uint64_t NumElts;
    357     if (ArrayType *AT = dyn_cast<ArrayType>(C->getType()))
    358       NumElts = AT->getNumElements();
    359     else
    360       NumElts = cast<VectorType>(C->getType())->getNumElements();
    361 
    362     for (; Index != NumElts; ++Index) {
    363       if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
    364                               BytesLeft, TD))
    365         return false;
    366       if (EltSize >= BytesLeft)
    367         return true;
    368 
    369       Offset = 0;
    370       BytesLeft -= EltSize;
    371       CurPtr += EltSize;
    372     }
    373     return true;
    374   }
    375 
    376   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
    377     if (CE->getOpcode() == Instruction::IntToPtr &&
    378         CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getContext()))
    379       return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
    380                                 BytesLeft, TD);
    381   }
    382 
    383   // Otherwise, unknown initializer type.
    384   return false;
    385 }
    386 
    387 static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
    388                                                  const TargetData &TD) {
    389   Type *LoadTy = cast<PointerType>(C->getType())->getElementType();
    390   IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
    391 
    392   // If this isn't an integer load we can't fold it directly.
    393   if (!IntType) {
    394     // If this is a float/double load, we can try folding it as an int32/64 load
    395     // and then bitcast the result.  This can be useful for union cases.  Note
    396     // that address spaces don't matter here since we're not going to result in
    397     // an actual new load.
    398     Type *MapTy;
    399     if (LoadTy->isFloatTy())
    400       MapTy = Type::getInt32PtrTy(C->getContext());
    401     else if (LoadTy->isDoubleTy())
    402       MapTy = Type::getInt64PtrTy(C->getContext());
    403     else if (LoadTy->isVectorTy()) {
    404       MapTy = IntegerType::get(C->getContext(),
    405                                TD.getTypeAllocSizeInBits(LoadTy));
    406       MapTy = PointerType::getUnqual(MapTy);
    407     } else
    408       return 0;
    409 
    410     C = FoldBitCast(C, MapTy, TD);
    411     if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
    412       return FoldBitCast(Res, LoadTy, TD);
    413     return 0;
    414   }
    415 
    416   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
    417   if (BytesLoaded > 32 || BytesLoaded == 0) return 0;
    418 
    419   GlobalValue *GVal;
    420   int64_t Offset;
    421   if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
    422     return 0;
    423 
    424   GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
    425   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
    426       !GV->getInitializer()->getType()->isSized())
    427     return 0;
    428 
    429   // If we're loading off the beginning of the global, some bytes may be valid,
    430   // but we don't try to handle this.
    431   if (Offset < 0) return 0;
    432 
    433   // If we're not accessing anything in this constant, the result is undefined.
    434   if (uint64_t(Offset) >= TD.getTypeAllocSize(GV->getInitializer()->getType()))
    435     return UndefValue::get(IntType);
    436 
    437   unsigned char RawBytes[32] = {0};
    438   if (!ReadDataFromGlobal(GV->getInitializer(), Offset, RawBytes,
    439                           BytesLoaded, TD))
    440     return 0;
    441 
    442   APInt ResultVal = APInt(IntType->getBitWidth(), RawBytes[BytesLoaded-1]);
    443   for (unsigned i = 1; i != BytesLoaded; ++i) {
    444     ResultVal <<= 8;
    445     ResultVal |= RawBytes[BytesLoaded-1-i];
    446   }
    447 
    448   return ConstantInt::get(IntType->getContext(), ResultVal);
    449 }
    450 
    451 /// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
    452 /// produce if it is constant and determinable.  If this is not determinable,
    453 /// return null.
    454 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
    455                                              const TargetData *TD) {
    456   // First, try the easy cases:
    457   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
    458     if (GV->isConstant() && GV->hasDefinitiveInitializer())
    459       return GV->getInitializer();
    460 
    461   // If the loaded value isn't a constant expr, we can't handle it.
    462   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
    463   if (!CE) return 0;
    464 
    465   if (CE->getOpcode() == Instruction::GetElementPtr) {
    466     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
    467       if (GV->isConstant() && GV->hasDefinitiveInitializer())
    468         if (Constant *V =
    469              ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
    470           return V;
    471   }
    472 
    473   // Instead of loading constant c string, use corresponding integer value
    474   // directly if string length is small enough.
    475   StringRef Str;
    476   if (TD && getConstantStringInfo(CE, Str) && !Str.empty()) {
    477     unsigned StrLen = Str.size();
    478     Type *Ty = cast<PointerType>(CE->getType())->getElementType();
    479     unsigned NumBits = Ty->getPrimitiveSizeInBits();
    480     // Replace load with immediate integer if the result is an integer or fp
    481     // value.
    482     if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
    483         (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
    484       APInt StrVal(NumBits, 0);
    485       APInt SingleChar(NumBits, 0);
    486       if (TD->isLittleEndian()) {
    487         for (signed i = StrLen-1; i >= 0; i--) {
    488           SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
    489           StrVal = (StrVal << 8) | SingleChar;
    490         }
    491       } else {
    492         for (unsigned i = 0; i < StrLen; i++) {
    493           SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
    494           StrVal = (StrVal << 8) | SingleChar;
    495         }
    496         // Append NULL at the end.
    497         SingleChar = 0;
    498         StrVal = (StrVal << 8) | SingleChar;
    499       }
    500 
    501       Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
    502       if (Ty->isFloatingPointTy())
    503         Res = ConstantExpr::getBitCast(Res, Ty);
    504       return Res;
    505     }
    506   }
    507 
    508   // If this load comes from anywhere in a constant global, and if the global
    509   // is all undef or zero, we know what it loads.
    510   if (GlobalVariable *GV =
    511         dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, TD))) {
    512     if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
    513       Type *ResTy = cast<PointerType>(C->getType())->getElementType();
    514       if (GV->getInitializer()->isNullValue())
    515         return Constant::getNullValue(ResTy);
    516       if (isa<UndefValue>(GV->getInitializer()))
    517         return UndefValue::get(ResTy);
    518     }
    519   }
    520 
    521   // Try hard to fold loads from bitcasted strange and non-type-safe things.  We
    522   // currently don't do any of this for big endian systems.  It can be
    523   // generalized in the future if someone is interested.
    524   if (TD && TD->isLittleEndian())
    525     return FoldReinterpretLoadFromConstPtr(CE, *TD);
    526   return 0;
    527 }
    528 
    529 static Constant *ConstantFoldLoadInst(const LoadInst *LI, const TargetData *TD){
    530   if (LI->isVolatile()) return 0;
    531 
    532   if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
    533     return ConstantFoldLoadFromConstPtr(C, TD);
    534 
    535   return 0;
    536 }
    537 
    538 /// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
    539 /// Attempt to symbolically evaluate the result of a binary operator merging
    540 /// these together.  If target data info is available, it is provided as TD,
    541 /// otherwise TD is null.
    542 static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
    543                                            Constant *Op1, const TargetData *TD){
    544   // SROA
    545 
    546   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
    547   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
    548   // bits.
    549 
    550 
    551   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
    552   // constant.  This happens frequently when iterating over a global array.
    553   if (Opc == Instruction::Sub && TD) {
    554     GlobalValue *GV1, *GV2;
    555     int64_t Offs1, Offs2;
    556 
    557     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
    558       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
    559           GV1 == GV2) {
    560         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
    561         return ConstantInt::get(Op0->getType(), Offs1-Offs2);
    562       }
    563   }
    564 
    565   return 0;
    566 }
    567 
    568 /// CastGEPIndices - If array indices are not pointer-sized integers,
    569 /// explicitly cast them so that they aren't implicitly casted by the
    570 /// getelementptr.
    571 static Constant *CastGEPIndices(ArrayRef<Constant *> Ops,
    572                                 Type *ResultTy, const TargetData *TD,
    573                                 const TargetLibraryInfo *TLI) {
    574   if (!TD) return 0;
    575   Type *IntPtrTy = TD->getIntPtrType(ResultTy->getContext());
    576 
    577   bool Any = false;
    578   SmallVector<Constant*, 32> NewIdxs;
    579   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
    580     if ((i == 1 ||
    581          !isa<StructType>(GetElementPtrInst::getIndexedType(Ops[0]->getType(),
    582                                                         Ops.slice(1, i-1)))) &&
    583         Ops[i]->getType() != IntPtrTy) {
    584       Any = true;
    585       NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
    586                                                                       true,
    587                                                                       IntPtrTy,
    588                                                                       true),
    589                                               Ops[i], IntPtrTy));
    590     } else
    591       NewIdxs.push_back(Ops[i]);
    592   }
    593   if (!Any) return 0;
    594 
    595   Constant *C =
    596     ConstantExpr::getGetElementPtr(Ops[0], NewIdxs);
    597   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
    598     if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
    599       C = Folded;
    600   return C;
    601 }
    602 
    603 /// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
    604 /// constant expression, do so.
    605 static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
    606                                          Type *ResultTy, const TargetData *TD,
    607                                          const TargetLibraryInfo *TLI) {
    608   Constant *Ptr = Ops[0];
    609   if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized() ||
    610       !Ptr->getType()->isPointerTy())
    611     return 0;
    612 
    613   Type *IntPtrTy = TD->getIntPtrType(Ptr->getContext());
    614 
    615   // If this is a constant expr gep that is effectively computing an
    616   // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
    617   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
    618     if (!isa<ConstantInt>(Ops[i])) {
    619 
    620       // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
    621       // "inttoptr (sub (ptrtoint Ptr), V)"
    622       if (Ops.size() == 2 &&
    623           cast<PointerType>(ResultTy)->getElementType()->isIntegerTy(8)) {
    624         ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
    625         assert((CE == 0 || CE->getType() == IntPtrTy) &&
    626                "CastGEPIndices didn't canonicalize index types!");
    627         if (CE && CE->getOpcode() == Instruction::Sub &&
    628             CE->getOperand(0)->isNullValue()) {
    629           Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
    630           Res = ConstantExpr::getSub(Res, CE->getOperand(1));
    631           Res = ConstantExpr::getIntToPtr(Res, ResultTy);
    632           if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
    633             Res = ConstantFoldConstantExpression(ResCE, TD, TLI);
    634           return Res;
    635         }
    636       }
    637       return 0;
    638     }
    639 
    640   unsigned BitWidth = TD->getTypeSizeInBits(IntPtrTy);
    641   APInt Offset =
    642     APInt(BitWidth, TD->getIndexedOffset(Ptr->getType(),
    643                                          makeArrayRef((Value **)Ops.data() + 1,
    644                                                       Ops.size() - 1)));
    645   Ptr = cast<Constant>(Ptr->stripPointerCasts());
    646 
    647   // If this is a GEP of a GEP, fold it all into a single GEP.
    648   while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
    649     SmallVector<Value *, 4> NestedOps(GEP->op_begin()+1, GEP->op_end());
    650 
    651     // Do not try the incorporate the sub-GEP if some index is not a number.
    652     bool AllConstantInt = true;
    653     for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
    654       if (!isa<ConstantInt>(NestedOps[i])) {
    655         AllConstantInt = false;
    656         break;
    657       }
    658     if (!AllConstantInt)
    659       break;
    660 
    661     Ptr = cast<Constant>(GEP->getOperand(0));
    662     Offset += APInt(BitWidth,
    663                     TD->getIndexedOffset(Ptr->getType(), NestedOps));
    664     Ptr = cast<Constant>(Ptr->stripPointerCasts());
    665   }
    666 
    667   // If the base value for this address is a literal integer value, fold the
    668   // getelementptr to the resulting integer value casted to the pointer type.
    669   APInt BasePtr(BitWidth, 0);
    670   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
    671     if (CE->getOpcode() == Instruction::IntToPtr)
    672       if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
    673         BasePtr = Base->getValue().zextOrTrunc(BitWidth);
    674   if (Ptr->isNullValue() || BasePtr != 0) {
    675     Constant *C = ConstantInt::get(Ptr->getContext(), Offset+BasePtr);
    676     return ConstantExpr::getIntToPtr(C, ResultTy);
    677   }
    678 
    679   // Otherwise form a regular getelementptr. Recompute the indices so that
    680   // we eliminate over-indexing of the notional static type array bounds.
    681   // This makes it easy to determine if the getelementptr is "inbounds".
    682   // Also, this helps GlobalOpt do SROA on GlobalVariables.
    683   Type *Ty = Ptr->getType();
    684   SmallVector<Constant*, 32> NewIdxs;
    685   do {
    686     if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
    687       if (ATy->isPointerTy()) {
    688         // The only pointer indexing we'll do is on the first index of the GEP.
    689         if (!NewIdxs.empty())
    690           break;
    691 
    692         // Only handle pointers to sized types, not pointers to functions.
    693         if (!ATy->getElementType()->isSized())
    694           return 0;
    695       }
    696 
    697       // Determine which element of the array the offset points into.
    698       APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
    699       IntegerType *IntPtrTy = TD->getIntPtrType(Ty->getContext());
    700       if (ElemSize == 0)
    701         // The element size is 0. This may be [0 x Ty]*, so just use a zero
    702         // index for this level and proceed to the next level to see if it can
    703         // accommodate the offset.
    704         NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
    705       else {
    706         // The element size is non-zero divide the offset by the element
    707         // size (rounding down), to compute the index at this level.
    708         APInt NewIdx = Offset.udiv(ElemSize);
    709         Offset -= NewIdx * ElemSize;
    710         NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
    711       }
    712       Ty = ATy->getElementType();
    713     } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
    714       // Determine which field of the struct the offset points into. The
    715       // getZExtValue is at least as safe as the StructLayout API because we
    716       // know the offset is within the struct at this point.
    717       const StructLayout &SL = *TD->getStructLayout(STy);
    718       unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
    719       NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
    720                                          ElIdx));
    721       Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
    722       Ty = STy->getTypeAtIndex(ElIdx);
    723     } else {
    724       // We've reached some non-indexable type.
    725       break;
    726     }
    727   } while (Ty != cast<PointerType>(ResultTy)->getElementType());
    728 
    729   // If we haven't used up the entire offset by descending the static
    730   // type, then the offset is pointing into the middle of an indivisible
    731   // member, so we can't simplify it.
    732   if (Offset != 0)
    733     return 0;
    734 
    735   // Create a GEP.
    736   Constant *C =
    737     ConstantExpr::getGetElementPtr(Ptr, NewIdxs);
    738   assert(cast<PointerType>(C->getType())->getElementType() == Ty &&
    739          "Computed GetElementPtr has unexpected type!");
    740 
    741   // If we ended up indexing a member with a type that doesn't match
    742   // the type of what the original indices indexed, add a cast.
    743   if (Ty != cast<PointerType>(ResultTy)->getElementType())
    744     C = FoldBitCast(C, ResultTy, *TD);
    745 
    746   return C;
    747 }
    748 
    749 
    750 
    751 //===----------------------------------------------------------------------===//
    752 // Constant Folding public APIs
    753 //===----------------------------------------------------------------------===//
    754 
    755 /// ConstantFoldInstruction - Try to constant fold the specified instruction.
    756 /// If successful, the constant result is returned, if not, null is returned.
    757 /// Note that this fails if not all of the operands are constant.  Otherwise,
    758 /// this function can only fail when attempting to fold instructions like loads
    759 /// and stores, which have no constant expression form.
    760 Constant *llvm::ConstantFoldInstruction(Instruction *I,
    761                                         const TargetData *TD,
    762                                         const TargetLibraryInfo *TLI) {
    763   // Handle PHI nodes quickly here...
    764   if (PHINode *PN = dyn_cast<PHINode>(I)) {
    765     Constant *CommonValue = 0;
    766 
    767     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    768       Value *Incoming = PN->getIncomingValue(i);
    769       // If the incoming value is undef then skip it.  Note that while we could
    770       // skip the value if it is equal to the phi node itself we choose not to
    771       // because that would break the rule that constant folding only applies if
    772       // all operands are constants.
    773       if (isa<UndefValue>(Incoming))
    774         continue;
    775       // If the incoming value is not a constant, or is a different constant to
    776       // the one we saw previously, then give up.
    777       Constant *C = dyn_cast<Constant>(Incoming);
    778       if (!C || (CommonValue && C != CommonValue))
    779         return 0;
    780       CommonValue = C;
    781     }
    782 
    783     // If we reach here, all incoming values are the same constant or undef.
    784     return CommonValue ? CommonValue : UndefValue::get(PN->getType());
    785   }
    786 
    787   // Scan the operand list, checking to see if they are all constants, if so,
    788   // hand off to ConstantFoldInstOperands.
    789   SmallVector<Constant*, 8> Ops;
    790   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
    791     if (Constant *Op = dyn_cast<Constant>(*i))
    792       Ops.push_back(Op);
    793     else
    794       return 0;  // All operands not constant!
    795 
    796   if (const CmpInst *CI = dyn_cast<CmpInst>(I))
    797     return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
    798                                            TD, TLI);
    799 
    800   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
    801     return ConstantFoldLoadInst(LI, TD);
    802 
    803   if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I))
    804     return ConstantExpr::getInsertValue(
    805                                 cast<Constant>(IVI->getAggregateOperand()),
    806                                 cast<Constant>(IVI->getInsertedValueOperand()),
    807                                 IVI->getIndices());
    808 
    809   if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I))
    810     return ConstantExpr::getExtractValue(
    811                                     cast<Constant>(EVI->getAggregateOperand()),
    812                                     EVI->getIndices());
    813 
    814   return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, TD, TLI);
    815 }
    816 
    817 /// ConstantFoldConstantExpression - Attempt to fold the constant expression
    818 /// using the specified TargetData.  If successful, the constant result is
    819 /// result is returned, if not, null is returned.
    820 Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
    821                                                const TargetData *TD,
    822                                                const TargetLibraryInfo *TLI) {
    823   SmallVector<Constant*, 8> Ops;
    824   for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end();
    825        i != e; ++i) {
    826     Constant *NewC = cast<Constant>(*i);
    827     // Recursively fold the ConstantExpr's operands.
    828     if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC))
    829       NewC = ConstantFoldConstantExpression(NewCE, TD, TLI);
    830     Ops.push_back(NewC);
    831   }
    832 
    833   if (CE->isCompare())
    834     return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
    835                                            TD, TLI);
    836   return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, TD, TLI);
    837 }
    838 
    839 /// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
    840 /// specified opcode and operands.  If successful, the constant result is
    841 /// returned, if not, null is returned.  Note that this function can fail when
    842 /// attempting to fold instructions like loads and stores, which have no
    843 /// constant expression form.
    844 ///
    845 /// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
    846 /// information, due to only being passed an opcode and operands. Constant
    847 /// folding using this function strips this information.
    848 ///
    849 Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
    850                                          ArrayRef<Constant *> Ops,
    851                                          const TargetData *TD,
    852                                          const TargetLibraryInfo *TLI) {
    853   // Handle easy binops first.
    854   if (Instruction::isBinaryOp(Opcode)) {
    855     if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
    856       if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
    857         return C;
    858 
    859     return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
    860   }
    861 
    862   switch (Opcode) {
    863   default: return 0;
    864   case Instruction::ICmp:
    865   case Instruction::FCmp: llvm_unreachable("Invalid for compares");
    866   case Instruction::Call:
    867     if (Function *F = dyn_cast<Function>(Ops.back()))
    868       if (canConstantFoldCallTo(F))
    869         return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1), TLI);
    870     return 0;
    871   case Instruction::PtrToInt:
    872     // If the input is a inttoptr, eliminate the pair.  This requires knowing
    873     // the width of a pointer, so it can't be done in ConstantExpr::getCast.
    874     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
    875       if (TD && CE->getOpcode() == Instruction::IntToPtr) {
    876         Constant *Input = CE->getOperand(0);
    877         unsigned InWidth = Input->getType()->getScalarSizeInBits();
    878         if (TD->getPointerSizeInBits() < InWidth) {
    879           Constant *Mask =
    880             ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth,
    881                                                   TD->getPointerSizeInBits()));
    882           Input = ConstantExpr::getAnd(Input, Mask);
    883         }
    884         // Do a zext or trunc to get to the dest size.
    885         return ConstantExpr::getIntegerCast(Input, DestTy, false);
    886       }
    887     }
    888     return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
    889   case Instruction::IntToPtr:
    890     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
    891     // the int size is >= the ptr size.  This requires knowing the width of a
    892     // pointer, so it can't be done in ConstantExpr::getCast.
    893     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
    894       if (TD &&
    895           TD->getPointerSizeInBits() <= CE->getType()->getScalarSizeInBits() &&
    896           CE->getOpcode() == Instruction::PtrToInt)
    897         return FoldBitCast(CE->getOperand(0), DestTy, *TD);
    898 
    899     return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
    900   case Instruction::Trunc:
    901   case Instruction::ZExt:
    902   case Instruction::SExt:
    903   case Instruction::FPTrunc:
    904   case Instruction::FPExt:
    905   case Instruction::UIToFP:
    906   case Instruction::SIToFP:
    907   case Instruction::FPToUI:
    908   case Instruction::FPToSI:
    909       return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
    910   case Instruction::BitCast:
    911     if (TD)
    912       return FoldBitCast(Ops[0], DestTy, *TD);
    913     return ConstantExpr::getBitCast(Ops[0], DestTy);
    914   case Instruction::Select:
    915     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
    916   case Instruction::ExtractElement:
    917     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
    918   case Instruction::InsertElement:
    919     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
    920   case Instruction::ShuffleVector:
    921     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
    922   case Instruction::GetElementPtr:
    923     if (Constant *C = CastGEPIndices(Ops, DestTy, TD, TLI))
    924       return C;
    925     if (Constant *C = SymbolicallyEvaluateGEP(Ops, DestTy, TD, TLI))
    926       return C;
    927 
    928     return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1));
    929   }
    930 }
    931 
    932 /// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
    933 /// instruction (icmp/fcmp) with the specified operands.  If it fails, it
    934 /// returns a constant expression of the specified operands.
    935 ///
    936 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
    937                                                 Constant *Ops0, Constant *Ops1,
    938                                                 const TargetData *TD,
    939                                                 const TargetLibraryInfo *TLI) {
    940   // fold: icmp (inttoptr x), null         -> icmp x, 0
    941   // fold: icmp (ptrtoint x), 0            -> icmp x, null
    942   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
    943   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
    944   //
    945   // ConstantExpr::getCompare cannot do this, because it doesn't have TD
    946   // around to know if bit truncation is happening.
    947   if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
    948     if (TD && Ops1->isNullValue()) {
    949       Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
    950       if (CE0->getOpcode() == Instruction::IntToPtr) {
    951         // Convert the integer value to the right size to ensure we get the
    952         // proper extension or truncation.
    953         Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
    954                                                    IntPtrTy, false);
    955         Constant *Null = Constant::getNullValue(C->getType());
    956         return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
    957       }
    958 
    959       // Only do this transformation if the int is intptrty in size, otherwise
    960       // there is a truncation or extension that we aren't modeling.
    961       if (CE0->getOpcode() == Instruction::PtrToInt &&
    962           CE0->getType() == IntPtrTy) {
    963         Constant *C = CE0->getOperand(0);
    964         Constant *Null = Constant::getNullValue(C->getType());
    965         return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
    966       }
    967     }
    968 
    969     if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
    970       if (TD && CE0->getOpcode() == CE1->getOpcode()) {
    971         Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
    972 
    973         if (CE0->getOpcode() == Instruction::IntToPtr) {
    974           // Convert the integer value to the right size to ensure we get the
    975           // proper extension or truncation.
    976           Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
    977                                                       IntPtrTy, false);
    978           Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
    979                                                       IntPtrTy, false);
    980           return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD, TLI);
    981         }
    982 
    983         // Only do this transformation if the int is intptrty in size, otherwise
    984         // there is a truncation or extension that we aren't modeling.
    985         if ((CE0->getOpcode() == Instruction::PtrToInt &&
    986              CE0->getType() == IntPtrTy &&
    987              CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()))
    988           return ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0),
    989                                                  CE1->getOperand(0), TD, TLI);
    990       }
    991     }
    992 
    993     // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
    994     // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
    995     if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
    996         CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
    997       Constant *LHS =
    998         ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,
    999                                         TD, TLI);
   1000       Constant *RHS =
   1001         ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,
   1002                                         TD, TLI);
   1003       unsigned OpC =
   1004         Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
   1005       Constant *Ops[] = { LHS, RHS };
   1006       return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, TD, TLI);
   1007     }
   1008   }
   1009 
   1010   return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
   1011 }
   1012 
   1013 
   1014 /// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
   1015 /// getelementptr constantexpr, return the constant value being addressed by the
   1016 /// constant expression, or null if something is funny and we can't decide.
   1017 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
   1018                                                        ConstantExpr *CE) {
   1019   if (!CE->getOperand(1)->isNullValue())
   1020     return 0;  // Do not allow stepping over the value!
   1021 
   1022   // Loop over all of the operands, tracking down which value we are
   1023   // addressing.
   1024   for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
   1025     C = C->getAggregateElement(CE->getOperand(i));
   1026     if (C == 0) return 0;
   1027   }
   1028   return C;
   1029 }
   1030 
   1031 /// ConstantFoldLoadThroughGEPIndices - Given a constant and getelementptr
   1032 /// indices (with an *implied* zero pointer index that is not in the list),
   1033 /// return the constant value being addressed by a virtual load, or null if
   1034 /// something is funny and we can't decide.
   1035 Constant *llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
   1036                                                   ArrayRef<Constant*> Indices) {
   1037   // Loop over all of the operands, tracking down which value we are
   1038   // addressing.
   1039   for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
   1040     C = C->getAggregateElement(Indices[i]);
   1041     if (C == 0) return 0;
   1042   }
   1043   return C;
   1044 }
   1045 
   1046 
   1047 //===----------------------------------------------------------------------===//
   1048 //  Constant Folding for Calls
   1049 //
   1050 
   1051 /// canConstantFoldCallTo - Return true if its even possible to fold a call to
   1052 /// the specified function.
   1053 bool
   1054 llvm::canConstantFoldCallTo(const Function *F) {
   1055   switch (F->getIntrinsicID()) {
   1056   case Intrinsic::sqrt:
   1057   case Intrinsic::pow:
   1058   case Intrinsic::powi:
   1059   case Intrinsic::bswap:
   1060   case Intrinsic::ctpop:
   1061   case Intrinsic::ctlz:
   1062   case Intrinsic::cttz:
   1063   case Intrinsic::sadd_with_overflow:
   1064   case Intrinsic::uadd_with_overflow:
   1065   case Intrinsic::ssub_with_overflow:
   1066   case Intrinsic::usub_with_overflow:
   1067   case Intrinsic::smul_with_overflow:
   1068   case Intrinsic::umul_with_overflow:
   1069   case Intrinsic::convert_from_fp16:
   1070   case Intrinsic::convert_to_fp16:
   1071   case Intrinsic::x86_sse_cvtss2si:
   1072   case Intrinsic::x86_sse_cvtss2si64:
   1073   case Intrinsic::x86_sse_cvttss2si:
   1074   case Intrinsic::x86_sse_cvttss2si64:
   1075   case Intrinsic::x86_sse2_cvtsd2si:
   1076   case Intrinsic::x86_sse2_cvtsd2si64:
   1077   case Intrinsic::x86_sse2_cvttsd2si:
   1078   case Intrinsic::x86_sse2_cvttsd2si64:
   1079     return true;
   1080   default:
   1081     return false;
   1082   case 0: break;
   1083   }
   1084 
   1085   if (!F->hasName()) return false;
   1086   StringRef Name = F->getName();
   1087 
   1088   // In these cases, the check of the length is required.  We don't want to
   1089   // return true for a name like "cos\0blah" which strcmp would return equal to
   1090   // "cos", but has length 8.
   1091   switch (Name[0]) {
   1092   default: return false;
   1093   case 'a':
   1094     return Name == "acos" || Name == "asin" ||
   1095       Name == "atan" || Name == "atan2";
   1096   case 'c':
   1097     return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
   1098   case 'e':
   1099     return Name == "exp" || Name == "exp2";
   1100   case 'f':
   1101     return Name == "fabs" || Name == "fmod" || Name == "floor";
   1102   case 'l':
   1103     return Name == "log" || Name == "log10";
   1104   case 'p':
   1105     return Name == "pow";
   1106   case 's':
   1107     return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
   1108       Name == "sinf" || Name == "sqrtf";
   1109   case 't':
   1110     return Name == "tan" || Name == "tanh";
   1111   }
   1112 }
   1113 
   1114 static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
   1115                                 Type *Ty) {
   1116   sys::llvm_fenv_clearexcept();
   1117   V = NativeFP(V);
   1118   if (sys::llvm_fenv_testexcept()) {
   1119     sys::llvm_fenv_clearexcept();
   1120     return 0;
   1121   }
   1122 
   1123   if (Ty->isFloatTy())
   1124     return ConstantFP::get(Ty->getContext(), APFloat((float)V));
   1125   if (Ty->isDoubleTy())
   1126     return ConstantFP::get(Ty->getContext(), APFloat(V));
   1127   llvm_unreachable("Can only constant fold float/double");
   1128 }
   1129 
   1130 static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
   1131                                       double V, double W, Type *Ty) {
   1132   sys::llvm_fenv_clearexcept();
   1133   V = NativeFP(V, W);
   1134   if (sys::llvm_fenv_testexcept()) {
   1135     sys::llvm_fenv_clearexcept();
   1136     return 0;
   1137   }
   1138 
   1139   if (Ty->isFloatTy())
   1140     return ConstantFP::get(Ty->getContext(), APFloat((float)V));
   1141   if (Ty->isDoubleTy())
   1142     return ConstantFP::get(Ty->getContext(), APFloat(V));
   1143   llvm_unreachable("Can only constant fold float/double");
   1144 }
   1145 
   1146 /// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer
   1147 /// conversion of a constant floating point. If roundTowardZero is false, the
   1148 /// default IEEE rounding is used (toward nearest, ties to even). This matches
   1149 /// the behavior of the non-truncating SSE instructions in the default rounding
   1150 /// mode. The desired integer type Ty is used to select how many bits are
   1151 /// available for the result. Returns null if the conversion cannot be
   1152 /// performed, otherwise returns the Constant value resulting from the
   1153 /// conversion.
   1154 static Constant *ConstantFoldConvertToInt(const APFloat &Val,
   1155                                           bool roundTowardZero, Type *Ty) {
   1156   // All of these conversion intrinsics form an integer of at most 64bits.
   1157   unsigned ResultWidth = cast<IntegerType>(Ty)->getBitWidth();
   1158   assert(ResultWidth <= 64 &&
   1159          "Can only constant fold conversions to 64 and 32 bit ints");
   1160 
   1161   uint64_t UIntVal;
   1162   bool isExact = false;
   1163   APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
   1164                                               : APFloat::rmNearestTiesToEven;
   1165   APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
   1166                                                   /*isSigned=*/true, mode,
   1167                                                   &isExact);
   1168   if (status != APFloat::opOK && status != APFloat::opInexact)
   1169     return 0;
   1170   return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
   1171 }
   1172 
   1173 /// ConstantFoldCall - Attempt to constant fold a call to the specified function
   1174 /// with the specified arguments, returning null if unsuccessful.
   1175 Constant *
   1176 llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
   1177                        const TargetLibraryInfo *TLI) {
   1178   if (!F->hasName()) return 0;
   1179   StringRef Name = F->getName();
   1180 
   1181   Type *Ty = F->getReturnType();
   1182   if (Operands.size() == 1) {
   1183     if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
   1184       if (F->getIntrinsicID() == Intrinsic::convert_to_fp16) {
   1185         APFloat Val(Op->getValueAPF());
   1186 
   1187         bool lost = false;
   1188         Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
   1189 
   1190         return ConstantInt::get(F->getContext(), Val.bitcastToAPInt());
   1191       }
   1192       if (!TLI)
   1193         return 0;
   1194 
   1195       if (!Ty->isFloatTy() && !Ty->isDoubleTy())
   1196         return 0;
   1197 
   1198       /// We only fold functions with finite arguments. Folding NaN and inf is
   1199       /// likely to be aborted with an exception anyway, and some host libms
   1200       /// have known errors raising exceptions.
   1201       if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
   1202         return 0;
   1203 
   1204       /// Currently APFloat versions of these functions do not exist, so we use
   1205       /// the host native double versions.  Float versions are not called
   1206       /// directly but for all these it is true (float)(f((double)arg)) ==
   1207       /// f(arg).  Long double not supported yet.
   1208       double V = Ty->isFloatTy() ? (double)Op->getValueAPF().convertToFloat() :
   1209                                      Op->getValueAPF().convertToDouble();
   1210       switch (Name[0]) {
   1211       case 'a':
   1212         if (Name == "acos" && TLI->has(LibFunc::acos))
   1213           return ConstantFoldFP(acos, V, Ty);
   1214         else if (Name == "asin" && TLI->has(LibFunc::asin))
   1215           return ConstantFoldFP(asin, V, Ty);
   1216         else if (Name == "atan" && TLI->has(LibFunc::atan))
   1217           return ConstantFoldFP(atan, V, Ty);
   1218         break;
   1219       case 'c':
   1220         if (Name == "ceil" && TLI->has(LibFunc::ceil))
   1221           return ConstantFoldFP(ceil, V, Ty);
   1222         else if (Name == "cos" && TLI->has(LibFunc::cos))
   1223           return ConstantFoldFP(cos, V, Ty);
   1224         else if (Name == "cosh" && TLI->has(LibFunc::cosh))
   1225           return ConstantFoldFP(cosh, V, Ty);
   1226         else if (Name == "cosf" && TLI->has(LibFunc::cosf))
   1227           return ConstantFoldFP(cos, V, Ty);
   1228         break;
   1229       case 'e':
   1230         if (Name == "exp" && TLI->has(LibFunc::exp))
   1231           return ConstantFoldFP(exp, V, Ty);
   1232 
   1233         if (Name == "exp2" && TLI->has(LibFunc::exp2)) {
   1234           // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
   1235           // C99 library.
   1236           return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
   1237         }
   1238         break;
   1239       case 'f':
   1240         if (Name == "fabs" && TLI->has(LibFunc::fabs))
   1241           return ConstantFoldFP(fabs, V, Ty);
   1242         else if (Name == "floor" && TLI->has(LibFunc::floor))
   1243           return ConstantFoldFP(floor, V, Ty);
   1244         break;
   1245       case 'l':
   1246         if (Name == "log" && V > 0 && TLI->has(LibFunc::log))
   1247           return ConstantFoldFP(log, V, Ty);
   1248         else if (Name == "log10" && V > 0 && TLI->has(LibFunc::log10))
   1249           return ConstantFoldFP(log10, V, Ty);
   1250         else if (F->getIntrinsicID() == Intrinsic::sqrt &&
   1251                  (Ty->isFloatTy() || Ty->isDoubleTy())) {
   1252           if (V >= -0.0)
   1253             return ConstantFoldFP(sqrt, V, Ty);
   1254           else // Undefined
   1255             return Constant::getNullValue(Ty);
   1256         }
   1257         break;
   1258       case 's':
   1259         if (Name == "sin" && TLI->has(LibFunc::sin))
   1260           return ConstantFoldFP(sin, V, Ty);
   1261         else if (Name == "sinh" && TLI->has(LibFunc::sinh))
   1262           return ConstantFoldFP(sinh, V, Ty);
   1263         else if (Name == "sqrt" && V >= 0 && TLI->has(LibFunc::sqrt))
   1264           return ConstantFoldFP(sqrt, V, Ty);
   1265         else if (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc::sqrtf))
   1266           return ConstantFoldFP(sqrt, V, Ty);
   1267         else if (Name == "sinf" && TLI->has(LibFunc::sinf))
   1268           return ConstantFoldFP(sin, V, Ty);
   1269         break;
   1270       case 't':
   1271         if (Name == "tan" && TLI->has(LibFunc::tan))
   1272           return ConstantFoldFP(tan, V, Ty);
   1273         else if (Name == "tanh" && TLI->has(LibFunc::tanh))
   1274           return ConstantFoldFP(tanh, V, Ty);
   1275         break;
   1276       default:
   1277         break;
   1278       }
   1279       return 0;
   1280     }
   1281 
   1282     if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
   1283       switch (F->getIntrinsicID()) {
   1284       case Intrinsic::bswap:
   1285         return ConstantInt::get(F->getContext(), Op->getValue().byteSwap());
   1286       case Intrinsic::ctpop:
   1287         return ConstantInt::get(Ty, Op->getValue().countPopulation());
   1288       case Intrinsic::convert_from_fp16: {
   1289         APFloat Val(Op->getValue());
   1290 
   1291         bool lost = false;
   1292         APFloat::opStatus status =
   1293           Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
   1294 
   1295         // Conversion is always precise.
   1296         (void)status;
   1297         assert(status == APFloat::opOK && !lost &&
   1298                "Precision lost during fp16 constfolding");
   1299 
   1300         return ConstantFP::get(F->getContext(), Val);
   1301       }
   1302       default:
   1303         return 0;
   1304       }
   1305     }
   1306 
   1307     // Support ConstantVector in case we have an Undef in the top.
   1308     if (isa<ConstantVector>(Operands[0]) ||
   1309         isa<ConstantDataVector>(Operands[0])) {
   1310       Constant *Op = cast<Constant>(Operands[0]);
   1311       switch (F->getIntrinsicID()) {
   1312       default: break;
   1313       case Intrinsic::x86_sse_cvtss2si:
   1314       case Intrinsic::x86_sse_cvtss2si64:
   1315       case Intrinsic::x86_sse2_cvtsd2si:
   1316       case Intrinsic::x86_sse2_cvtsd2si64:
   1317         if (ConstantFP *FPOp =
   1318               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
   1319           return ConstantFoldConvertToInt(FPOp->getValueAPF(),
   1320                                           /*roundTowardZero=*/false, Ty);
   1321       case Intrinsic::x86_sse_cvttss2si:
   1322       case Intrinsic::x86_sse_cvttss2si64:
   1323       case Intrinsic::x86_sse2_cvttsd2si:
   1324       case Intrinsic::x86_sse2_cvttsd2si64:
   1325         if (ConstantFP *FPOp =
   1326               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
   1327           return ConstantFoldConvertToInt(FPOp->getValueAPF(),
   1328                                           /*roundTowardZero=*/true, Ty);
   1329       }
   1330     }
   1331 
   1332     if (isa<UndefValue>(Operands[0])) {
   1333       if (F->getIntrinsicID() == Intrinsic::bswap)
   1334         return Operands[0];
   1335       return 0;
   1336     }
   1337 
   1338     return 0;
   1339   }
   1340 
   1341   if (Operands.size() == 2) {
   1342     if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
   1343       if (!Ty->isFloatTy() && !Ty->isDoubleTy())
   1344         return 0;
   1345       double Op1V = Ty->isFloatTy() ?
   1346                       (double)Op1->getValueAPF().convertToFloat() :
   1347                       Op1->getValueAPF().convertToDouble();
   1348       if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
   1349         if (Op2->getType() != Op1->getType())
   1350           return 0;
   1351 
   1352         double Op2V = Ty->isFloatTy() ?
   1353                       (double)Op2->getValueAPF().convertToFloat():
   1354                       Op2->getValueAPF().convertToDouble();
   1355 
   1356         if (F->getIntrinsicID() == Intrinsic::pow) {
   1357           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
   1358         }
   1359         if (!TLI)
   1360           return 0;
   1361         if (Name == "pow" && TLI->has(LibFunc::pow))
   1362           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
   1363         if (Name == "fmod" && TLI->has(LibFunc::fmod))
   1364           return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
   1365         if (Name == "atan2" && TLI->has(LibFunc::atan2))
   1366           return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
   1367       } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
   1368         if (F->getIntrinsicID() == Intrinsic::powi && Ty->isFloatTy())
   1369           return ConstantFP::get(F->getContext(),
   1370                                  APFloat((float)std::pow((float)Op1V,
   1371                                                  (int)Op2C->getZExtValue())));
   1372         if (F->getIntrinsicID() == Intrinsic::powi && Ty->isDoubleTy())
   1373           return ConstantFP::get(F->getContext(),
   1374                                  APFloat((double)std::pow((double)Op1V,
   1375                                                    (int)Op2C->getZExtValue())));
   1376       }
   1377       return 0;
   1378     }
   1379 
   1380     if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
   1381       if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
   1382         switch (F->getIntrinsicID()) {
   1383         default: break;
   1384         case Intrinsic::sadd_with_overflow:
   1385         case Intrinsic::uadd_with_overflow:
   1386         case Intrinsic::ssub_with_overflow:
   1387         case Intrinsic::usub_with_overflow:
   1388         case Intrinsic::smul_with_overflow:
   1389         case Intrinsic::umul_with_overflow: {
   1390           APInt Res;
   1391           bool Overflow;
   1392           switch (F->getIntrinsicID()) {
   1393           default: llvm_unreachable("Invalid case");
   1394           case Intrinsic::sadd_with_overflow:
   1395             Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
   1396             break;
   1397           case Intrinsic::uadd_with_overflow:
   1398             Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
   1399             break;
   1400           case Intrinsic::ssub_with_overflow:
   1401             Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
   1402             break;
   1403           case Intrinsic::usub_with_overflow:
   1404             Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
   1405             break;
   1406           case Intrinsic::smul_with_overflow:
   1407             Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
   1408             break;
   1409           case Intrinsic::umul_with_overflow:
   1410             Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
   1411             break;
   1412           }
   1413           Constant *Ops[] = {
   1414             ConstantInt::get(F->getContext(), Res),
   1415             ConstantInt::get(Type::getInt1Ty(F->getContext()), Overflow)
   1416           };
   1417           return ConstantStruct::get(cast<StructType>(F->getReturnType()), Ops);
   1418         }
   1419         case Intrinsic::cttz:
   1420           // FIXME: This should check for Op2 == 1, and become unreachable if
   1421           // Op1 == 0.
   1422           return ConstantInt::get(Ty, Op1->getValue().countTrailingZeros());
   1423         case Intrinsic::ctlz:
   1424           // FIXME: This should check for Op2 == 1, and become unreachable if
   1425           // Op1 == 0.
   1426           return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
   1427         }
   1428       }
   1429 
   1430       return 0;
   1431     }
   1432     return 0;
   1433   }
   1434   return 0;
   1435 }
   1436