Home | History | Annotate | Download | only in VMCore
      1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements all of the non-inline methods for the LLVM instruction
     11 // classes.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "LLVMContextImpl.h"
     16 #include "llvm/Constants.h"
     17 #include "llvm/DerivedTypes.h"
     18 #include "llvm/Function.h"
     19 #include "llvm/Instructions.h"
     20 #include "llvm/Module.h"
     21 #include "llvm/Operator.h"
     22 #include "llvm/Support/ErrorHandling.h"
     23 #include "llvm/Support/CallSite.h"
     24 #include "llvm/Support/ConstantRange.h"
     25 #include "llvm/Support/MathExtras.h"
     26 using namespace llvm;
     27 
     28 //===----------------------------------------------------------------------===//
     29 //                            CallSite Class
     30 //===----------------------------------------------------------------------===//
     31 
     32 User::op_iterator CallSite::getCallee() const {
     33   Instruction *II(getInstruction());
     34   return isCall()
     35     ? cast<CallInst>(II)->op_end() - 1 // Skip Callee
     36     : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee
     37 }
     38 
     39 //===----------------------------------------------------------------------===//
     40 //                            TerminatorInst Class
     41 //===----------------------------------------------------------------------===//
     42 
     43 // Out of line virtual method, so the vtable, etc has a home.
     44 TerminatorInst::~TerminatorInst() {
     45 }
     46 
     47 //===----------------------------------------------------------------------===//
     48 //                           UnaryInstruction Class
     49 //===----------------------------------------------------------------------===//
     50 
     51 // Out of line virtual method, so the vtable, etc has a home.
     52 UnaryInstruction::~UnaryInstruction() {
     53 }
     54 
     55 //===----------------------------------------------------------------------===//
     56 //                              SelectInst Class
     57 //===----------------------------------------------------------------------===//
     58 
     59 /// areInvalidOperands - Return a string if the specified operands are invalid
     60 /// for a select operation, otherwise return null.
     61 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
     62   if (Op1->getType() != Op2->getType())
     63     return "both values to select must have same type";
     64 
     65   if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
     66     // Vector select.
     67     if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
     68       return "vector select condition element type must be i1";
     69     VectorType *ET = dyn_cast<VectorType>(Op1->getType());
     70     if (ET == 0)
     71       return "selected values for vector select must be vectors";
     72     if (ET->getNumElements() != VT->getNumElements())
     73       return "vector select requires selected vectors to have "
     74                    "the same vector length as select condition";
     75   } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
     76     return "select condition must be i1 or <n x i1>";
     77   }
     78   return 0;
     79 }
     80 
     81 
     82 //===----------------------------------------------------------------------===//
     83 //                               PHINode Class
     84 //===----------------------------------------------------------------------===//
     85 
     86 PHINode::PHINode(const PHINode &PN)
     87   : Instruction(PN.getType(), Instruction::PHI,
     88                 allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()),
     89     ReservedSpace(PN.getNumOperands()) {
     90   std::copy(PN.op_begin(), PN.op_end(), op_begin());
     91   std::copy(PN.block_begin(), PN.block_end(), block_begin());
     92   SubclassOptionalData = PN.SubclassOptionalData;
     93 }
     94 
     95 PHINode::~PHINode() {
     96   dropHungoffUses();
     97 }
     98 
     99 Use *PHINode::allocHungoffUses(unsigned N) const {
    100   // Allocate the array of Uses of the incoming values, followed by a pointer
    101   // (with bottom bit set) to the User, followed by the array of pointers to
    102   // the incoming basic blocks.
    103   size_t size = N * sizeof(Use) + sizeof(Use::UserRef)
    104     + N * sizeof(BasicBlock*);
    105   Use *Begin = static_cast<Use*>(::operator new(size));
    106   Use *End = Begin + N;
    107   (void) new(End) Use::UserRef(const_cast<PHINode*>(this), 1);
    108   return Use::initTags(Begin, End);
    109 }
    110 
    111 // removeIncomingValue - Remove an incoming value.  This is useful if a
    112 // predecessor basic block is deleted.
    113 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
    114   Value *Removed = getIncomingValue(Idx);
    115 
    116   // Move everything after this operand down.
    117   //
    118   // FIXME: we could just swap with the end of the list, then erase.  However,
    119   // clients might not expect this to happen.  The code as it is thrashes the
    120   // use/def lists, which is kinda lame.
    121   std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
    122   std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
    123 
    124   // Nuke the last value.
    125   Op<-1>().set(0);
    126   --NumOperands;
    127 
    128   // If the PHI node is dead, because it has zero entries, nuke it now.
    129   if (getNumOperands() == 0 && DeletePHIIfEmpty) {
    130     // If anyone is using this PHI, make them use a dummy value instead...
    131     replaceAllUsesWith(UndefValue::get(getType()));
    132     eraseFromParent();
    133   }
    134   return Removed;
    135 }
    136 
    137 /// growOperands - grow operands - This grows the operand list in response
    138 /// to a push_back style of operation.  This grows the number of ops by 1.5
    139 /// times.
    140 ///
    141 void PHINode::growOperands() {
    142   unsigned e = getNumOperands();
    143   unsigned NumOps = e + e / 2;
    144   if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
    145 
    146   Use *OldOps = op_begin();
    147   BasicBlock **OldBlocks = block_begin();
    148 
    149   ReservedSpace = NumOps;
    150   OperandList = allocHungoffUses(ReservedSpace);
    151 
    152   std::copy(OldOps, OldOps + e, op_begin());
    153   std::copy(OldBlocks, OldBlocks + e, block_begin());
    154 
    155   Use::zap(OldOps, OldOps + e, true);
    156 }
    157 
    158 /// hasConstantValue - If the specified PHI node always merges together the same
    159 /// value, return the value, otherwise return null.
    160 Value *PHINode::hasConstantValue() const {
    161   // Exploit the fact that phi nodes always have at least one entry.
    162   Value *ConstantValue = getIncomingValue(0);
    163   for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
    164     if (getIncomingValue(i) != ConstantValue)
    165       return 0; // Incoming values not all the same.
    166   return ConstantValue;
    167 }
    168 
    169 //===----------------------------------------------------------------------===//
    170 //                       LandingPadInst Implementation
    171 //===----------------------------------------------------------------------===//
    172 
    173 LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
    174                                unsigned NumReservedValues, const Twine &NameStr,
    175                                Instruction *InsertBefore)
    176   : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertBefore) {
    177   init(PersonalityFn, 1 + NumReservedValues, NameStr);
    178 }
    179 
    180 LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
    181                                unsigned NumReservedValues, const Twine &NameStr,
    182                                BasicBlock *InsertAtEnd)
    183   : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertAtEnd) {
    184   init(PersonalityFn, 1 + NumReservedValues, NameStr);
    185 }
    186 
    187 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
    188   : Instruction(LP.getType(), Instruction::LandingPad,
    189                 allocHungoffUses(LP.getNumOperands()), LP.getNumOperands()),
    190     ReservedSpace(LP.getNumOperands()) {
    191   Use *OL = OperandList, *InOL = LP.OperandList;
    192   for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
    193     OL[I] = InOL[I];
    194 
    195   setCleanup(LP.isCleanup());
    196 }
    197 
    198 LandingPadInst::~LandingPadInst() {
    199   dropHungoffUses();
    200 }
    201 
    202 LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
    203                                        unsigned NumReservedClauses,
    204                                        const Twine &NameStr,
    205                                        Instruction *InsertBefore) {
    206   return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
    207                             InsertBefore);
    208 }
    209 
    210 LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
    211                                        unsigned NumReservedClauses,
    212                                        const Twine &NameStr,
    213                                        BasicBlock *InsertAtEnd) {
    214   return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
    215                             InsertAtEnd);
    216 }
    217 
    218 void LandingPadInst::init(Value *PersFn, unsigned NumReservedValues,
    219                           const Twine &NameStr) {
    220   ReservedSpace = NumReservedValues;
    221   NumOperands = 1;
    222   OperandList = allocHungoffUses(ReservedSpace);
    223   OperandList[0] = PersFn;
    224   setName(NameStr);
    225   setCleanup(false);
    226 }
    227 
    228 /// growOperands - grow operands - This grows the operand list in response to a
    229 /// push_back style of operation. This grows the number of ops by 2 times.
    230 void LandingPadInst::growOperands(unsigned Size) {
    231   unsigned e = getNumOperands();
    232   if (ReservedSpace >= e + Size) return;
    233   ReservedSpace = (e + Size / 2) * 2;
    234 
    235   Use *NewOps = allocHungoffUses(ReservedSpace);
    236   Use *OldOps = OperandList;
    237   for (unsigned i = 0; i != e; ++i)
    238       NewOps[i] = OldOps[i];
    239 
    240   OperandList = NewOps;
    241   Use::zap(OldOps, OldOps + e, true);
    242 }
    243 
    244 void LandingPadInst::addClause(Value *Val) {
    245   unsigned OpNo = getNumOperands();
    246   growOperands(1);
    247   assert(OpNo < ReservedSpace && "Growing didn't work!");
    248   ++NumOperands;
    249   OperandList[OpNo] = Val;
    250 }
    251 
    252 //===----------------------------------------------------------------------===//
    253 //                        CallInst Implementation
    254 //===----------------------------------------------------------------------===//
    255 
    256 CallInst::~CallInst() {
    257 }
    258 
    259 void CallInst::init(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr) {
    260   assert(NumOperands == Args.size() + 1 && "NumOperands not set up?");
    261   Op<-1>() = Func;
    262 
    263 #ifndef NDEBUG
    264   FunctionType *FTy =
    265     cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
    266 
    267   assert((Args.size() == FTy->getNumParams() ||
    268           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
    269          "Calling a function with bad signature!");
    270 
    271   for (unsigned i = 0; i != Args.size(); ++i)
    272     assert((i >= FTy->getNumParams() ||
    273             FTy->getParamType(i) == Args[i]->getType()) &&
    274            "Calling a function with a bad signature!");
    275 #endif
    276 
    277   std::copy(Args.begin(), Args.end(), op_begin());
    278   setName(NameStr);
    279 }
    280 
    281 void CallInst::init(Value *Func, const Twine &NameStr) {
    282   assert(NumOperands == 1 && "NumOperands not set up?");
    283   Op<-1>() = Func;
    284 
    285 #ifndef NDEBUG
    286   FunctionType *FTy =
    287     cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
    288 
    289   assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
    290 #endif
    291 
    292   setName(NameStr);
    293 }
    294 
    295 CallInst::CallInst(Value *Func, const Twine &Name,
    296                    Instruction *InsertBefore)
    297   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
    298                                    ->getElementType())->getReturnType(),
    299                 Instruction::Call,
    300                 OperandTraits<CallInst>::op_end(this) - 1,
    301                 1, InsertBefore) {
    302   init(Func, Name);
    303 }
    304 
    305 CallInst::CallInst(Value *Func, const Twine &Name,
    306                    BasicBlock *InsertAtEnd)
    307   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
    308                                    ->getElementType())->getReturnType(),
    309                 Instruction::Call,
    310                 OperandTraits<CallInst>::op_end(this) - 1,
    311                 1, InsertAtEnd) {
    312   init(Func, Name);
    313 }
    314 
    315 CallInst::CallInst(const CallInst &CI)
    316   : Instruction(CI.getType(), Instruction::Call,
    317                 OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
    318                 CI.getNumOperands()) {
    319   setAttributes(CI.getAttributes());
    320   setTailCall(CI.isTailCall());
    321   setCallingConv(CI.getCallingConv());
    322 
    323   std::copy(CI.op_begin(), CI.op_end(), op_begin());
    324   SubclassOptionalData = CI.SubclassOptionalData;
    325 }
    326 
    327 void CallInst::addAttribute(unsigned i, Attributes attr) {
    328   AttrListPtr PAL = getAttributes();
    329   PAL = PAL.addAttr(i, attr);
    330   setAttributes(PAL);
    331 }
    332 
    333 void CallInst::removeAttribute(unsigned i, Attributes attr) {
    334   AttrListPtr PAL = getAttributes();
    335   PAL = PAL.removeAttr(i, attr);
    336   setAttributes(PAL);
    337 }
    338 
    339 bool CallInst::paramHasAttr(unsigned i, Attributes attr) const {
    340   if (AttributeList.paramHasAttr(i, attr))
    341     return true;
    342   if (const Function *F = getCalledFunction())
    343     return F->paramHasAttr(i, attr);
    344   return false;
    345 }
    346 
    347 /// IsConstantOne - Return true only if val is constant int 1
    348 static bool IsConstantOne(Value *val) {
    349   assert(val && "IsConstantOne does not work with NULL val");
    350   return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne();
    351 }
    352 
    353 static Instruction *createMalloc(Instruction *InsertBefore,
    354                                  BasicBlock *InsertAtEnd, Type *IntPtrTy,
    355                                  Type *AllocTy, Value *AllocSize,
    356                                  Value *ArraySize, Function *MallocF,
    357                                  const Twine &Name) {
    358   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
    359          "createMalloc needs either InsertBefore or InsertAtEnd");
    360 
    361   // malloc(type) becomes:
    362   //       bitcast (i8* malloc(typeSize)) to type*
    363   // malloc(type, arraySize) becomes:
    364   //       bitcast (i8 *malloc(typeSize*arraySize)) to type*
    365   if (!ArraySize)
    366     ArraySize = ConstantInt::get(IntPtrTy, 1);
    367   else if (ArraySize->getType() != IntPtrTy) {
    368     if (InsertBefore)
    369       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
    370                                               "", InsertBefore);
    371     else
    372       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
    373                                               "", InsertAtEnd);
    374   }
    375 
    376   if (!IsConstantOne(ArraySize)) {
    377     if (IsConstantOne(AllocSize)) {
    378       AllocSize = ArraySize;         // Operand * 1 = Operand
    379     } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
    380       Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
    381                                                      false /*ZExt*/);
    382       // Malloc arg is constant product of type size and array size
    383       AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
    384     } else {
    385       // Multiply type size by the array size...
    386       if (InsertBefore)
    387         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
    388                                               "mallocsize", InsertBefore);
    389       else
    390         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
    391                                               "mallocsize", InsertAtEnd);
    392     }
    393   }
    394 
    395   assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
    396   // Create the call to Malloc.
    397   BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
    398   Module* M = BB->getParent()->getParent();
    399   Type *BPTy = Type::getInt8PtrTy(BB->getContext());
    400   Value *MallocFunc = MallocF;
    401   if (!MallocFunc)
    402     // prototype malloc as "void *malloc(size_t)"
    403     MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, NULL);
    404   PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
    405   CallInst *MCall = NULL;
    406   Instruction *Result = NULL;
    407   if (InsertBefore) {
    408     MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore);
    409     Result = MCall;
    410     if (Result->getType() != AllocPtrType)
    411       // Create a cast instruction to convert to the right type...
    412       Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
    413   } else {
    414     MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall");
    415     Result = MCall;
    416     if (Result->getType() != AllocPtrType) {
    417       InsertAtEnd->getInstList().push_back(MCall);
    418       // Create a cast instruction to convert to the right type...
    419       Result = new BitCastInst(MCall, AllocPtrType, Name);
    420     }
    421   }
    422   MCall->setTailCall();
    423   if (Function *F = dyn_cast<Function>(MallocFunc)) {
    424     MCall->setCallingConv(F->getCallingConv());
    425     if (!F->doesNotAlias(0)) F->setDoesNotAlias(0);
    426   }
    427   assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
    428 
    429   return Result;
    430 }
    431 
    432 /// CreateMalloc - Generate the IR for a call to malloc:
    433 /// 1. Compute the malloc call's argument as the specified type's size,
    434 ///    possibly multiplied by the array size if the array size is not
    435 ///    constant 1.
    436 /// 2. Call malloc with that argument.
    437 /// 3. Bitcast the result of the malloc call to the specified type.
    438 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
    439                                     Type *IntPtrTy, Type *AllocTy,
    440                                     Value *AllocSize, Value *ArraySize,
    441                                     Function * MallocF,
    442                                     const Twine &Name) {
    443   return createMalloc(InsertBefore, NULL, IntPtrTy, AllocTy, AllocSize,
    444                       ArraySize, MallocF, Name);
    445 }
    446 
    447 /// CreateMalloc - Generate the IR for a call to malloc:
    448 /// 1. Compute the malloc call's argument as the specified type's size,
    449 ///    possibly multiplied by the array size if the array size is not
    450 ///    constant 1.
    451 /// 2. Call malloc with that argument.
    452 /// 3. Bitcast the result of the malloc call to the specified type.
    453 /// Note: This function does not add the bitcast to the basic block, that is the
    454 /// responsibility of the caller.
    455 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
    456                                     Type *IntPtrTy, Type *AllocTy,
    457                                     Value *AllocSize, Value *ArraySize,
    458                                     Function *MallocF, const Twine &Name) {
    459   return createMalloc(NULL, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
    460                       ArraySize, MallocF, Name);
    461 }
    462 
    463 static Instruction* createFree(Value* Source, Instruction *InsertBefore,
    464                                BasicBlock *InsertAtEnd) {
    465   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
    466          "createFree needs either InsertBefore or InsertAtEnd");
    467   assert(Source->getType()->isPointerTy() &&
    468          "Can not free something of nonpointer type!");
    469 
    470   BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
    471   Module* M = BB->getParent()->getParent();
    472 
    473   Type *VoidTy = Type::getVoidTy(M->getContext());
    474   Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
    475   // prototype free as "void free(void*)"
    476   Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, NULL);
    477   CallInst* Result = NULL;
    478   Value *PtrCast = Source;
    479   if (InsertBefore) {
    480     if (Source->getType() != IntPtrTy)
    481       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
    482     Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore);
    483   } else {
    484     if (Source->getType() != IntPtrTy)
    485       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
    486     Result = CallInst::Create(FreeFunc, PtrCast, "");
    487   }
    488   Result->setTailCall();
    489   if (Function *F = dyn_cast<Function>(FreeFunc))
    490     Result->setCallingConv(F->getCallingConv());
    491 
    492   return Result;
    493 }
    494 
    495 /// CreateFree - Generate the IR for a call to the builtin free function.
    496 Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) {
    497   return createFree(Source, InsertBefore, NULL);
    498 }
    499 
    500 /// CreateFree - Generate the IR for a call to the builtin free function.
    501 /// Note: This function does not add the call to the basic block, that is the
    502 /// responsibility of the caller.
    503 Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) {
    504   Instruction* FreeCall = createFree(Source, NULL, InsertAtEnd);
    505   assert(FreeCall && "CreateFree did not create a CallInst");
    506   return FreeCall;
    507 }
    508 
    509 //===----------------------------------------------------------------------===//
    510 //                        InvokeInst Implementation
    511 //===----------------------------------------------------------------------===//
    512 
    513 void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
    514                       ArrayRef<Value *> Args, const Twine &NameStr) {
    515   assert(NumOperands == 3 + Args.size() && "NumOperands not set up?");
    516   Op<-3>() = Fn;
    517   Op<-2>() = IfNormal;
    518   Op<-1>() = IfException;
    519 
    520 #ifndef NDEBUG
    521   FunctionType *FTy =
    522     cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
    523 
    524   assert(((Args.size() == FTy->getNumParams()) ||
    525           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
    526          "Invoking a function with bad signature");
    527 
    528   for (unsigned i = 0, e = Args.size(); i != e; i++)
    529     assert((i >= FTy->getNumParams() ||
    530             FTy->getParamType(i) == Args[i]->getType()) &&
    531            "Invoking a function with a bad signature!");
    532 #endif
    533 
    534   std::copy(Args.begin(), Args.end(), op_begin());
    535   setName(NameStr);
    536 }
    537 
    538 InvokeInst::InvokeInst(const InvokeInst &II)
    539   : TerminatorInst(II.getType(), Instruction::Invoke,
    540                    OperandTraits<InvokeInst>::op_end(this)
    541                    - II.getNumOperands(),
    542                    II.getNumOperands()) {
    543   setAttributes(II.getAttributes());
    544   setCallingConv(II.getCallingConv());
    545   std::copy(II.op_begin(), II.op_end(), op_begin());
    546   SubclassOptionalData = II.SubclassOptionalData;
    547 }
    548 
    549 BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
    550   return getSuccessor(idx);
    551 }
    552 unsigned InvokeInst::getNumSuccessorsV() const {
    553   return getNumSuccessors();
    554 }
    555 void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
    556   return setSuccessor(idx, B);
    557 }
    558 
    559 bool InvokeInst::paramHasAttr(unsigned i, Attributes attr) const {
    560   if (AttributeList.paramHasAttr(i, attr))
    561     return true;
    562   if (const Function *F = getCalledFunction())
    563     return F->paramHasAttr(i, attr);
    564   return false;
    565 }
    566 
    567 void InvokeInst::addAttribute(unsigned i, Attributes attr) {
    568   AttrListPtr PAL = getAttributes();
    569   PAL = PAL.addAttr(i, attr);
    570   setAttributes(PAL);
    571 }
    572 
    573 void InvokeInst::removeAttribute(unsigned i, Attributes attr) {
    574   AttrListPtr PAL = getAttributes();
    575   PAL = PAL.removeAttr(i, attr);
    576   setAttributes(PAL);
    577 }
    578 
    579 LandingPadInst *InvokeInst::getLandingPadInst() const {
    580   return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
    581 }
    582 
    583 //===----------------------------------------------------------------------===//
    584 //                        ReturnInst Implementation
    585 //===----------------------------------------------------------------------===//
    586 
    587 ReturnInst::ReturnInst(const ReturnInst &RI)
    588   : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
    589                    OperandTraits<ReturnInst>::op_end(this) -
    590                      RI.getNumOperands(),
    591                    RI.getNumOperands()) {
    592   if (RI.getNumOperands())
    593     Op<0>() = RI.Op<0>();
    594   SubclassOptionalData = RI.SubclassOptionalData;
    595 }
    596 
    597 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
    598   : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
    599                    OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
    600                    InsertBefore) {
    601   if (retVal)
    602     Op<0>() = retVal;
    603 }
    604 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
    605   : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
    606                    OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
    607                    InsertAtEnd) {
    608   if (retVal)
    609     Op<0>() = retVal;
    610 }
    611 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
    612   : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
    613                    OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
    614 }
    615 
    616 unsigned ReturnInst::getNumSuccessorsV() const {
    617   return getNumSuccessors();
    618 }
    619 
    620 /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
    621 /// emit the vtable for the class in this translation unit.
    622 void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
    623   llvm_unreachable("ReturnInst has no successors!");
    624 }
    625 
    626 BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
    627   llvm_unreachable("ReturnInst has no successors!");
    628 }
    629 
    630 ReturnInst::~ReturnInst() {
    631 }
    632 
    633 //===----------------------------------------------------------------------===//
    634 //                        ResumeInst Implementation
    635 //===----------------------------------------------------------------------===//
    636 
    637 ResumeInst::ResumeInst(const ResumeInst &RI)
    638   : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume,
    639                    OperandTraits<ResumeInst>::op_begin(this), 1) {
    640   Op<0>() = RI.Op<0>();
    641 }
    642 
    643 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
    644   : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
    645                    OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
    646   Op<0>() = Exn;
    647 }
    648 
    649 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
    650   : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
    651                    OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
    652   Op<0>() = Exn;
    653 }
    654 
    655 unsigned ResumeInst::getNumSuccessorsV() const {
    656   return getNumSuccessors();
    657 }
    658 
    659 void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
    660   llvm_unreachable("ResumeInst has no successors!");
    661 }
    662 
    663 BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const {
    664   llvm_unreachable("ResumeInst has no successors!");
    665 }
    666 
    667 //===----------------------------------------------------------------------===//
    668 //                      UnreachableInst Implementation
    669 //===----------------------------------------------------------------------===//
    670 
    671 UnreachableInst::UnreachableInst(LLVMContext &Context,
    672                                  Instruction *InsertBefore)
    673   : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
    674                    0, 0, InsertBefore) {
    675 }
    676 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
    677   : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
    678                    0, 0, InsertAtEnd) {
    679 }
    680 
    681 unsigned UnreachableInst::getNumSuccessorsV() const {
    682   return getNumSuccessors();
    683 }
    684 
    685 void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
    686   llvm_unreachable("UnreachableInst has no successors!");
    687 }
    688 
    689 BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
    690   llvm_unreachable("UnreachableInst has no successors!");
    691 }
    692 
    693 //===----------------------------------------------------------------------===//
    694 //                        BranchInst Implementation
    695 //===----------------------------------------------------------------------===//
    696 
    697 void BranchInst::AssertOK() {
    698   if (isConditional())
    699     assert(getCondition()->getType()->isIntegerTy(1) &&
    700            "May only branch on boolean predicates!");
    701 }
    702 
    703 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
    704   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
    705                    OperandTraits<BranchInst>::op_end(this) - 1,
    706                    1, InsertBefore) {
    707   assert(IfTrue != 0 && "Branch destination may not be null!");
    708   Op<-1>() = IfTrue;
    709 }
    710 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
    711                        Instruction *InsertBefore)
    712   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
    713                    OperandTraits<BranchInst>::op_end(this) - 3,
    714                    3, InsertBefore) {
    715   Op<-1>() = IfTrue;
    716   Op<-2>() = IfFalse;
    717   Op<-3>() = Cond;
    718 #ifndef NDEBUG
    719   AssertOK();
    720 #endif
    721 }
    722 
    723 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
    724   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
    725                    OperandTraits<BranchInst>::op_end(this) - 1,
    726                    1, InsertAtEnd) {
    727   assert(IfTrue != 0 && "Branch destination may not be null!");
    728   Op<-1>() = IfTrue;
    729 }
    730 
    731 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
    732            BasicBlock *InsertAtEnd)
    733   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
    734                    OperandTraits<BranchInst>::op_end(this) - 3,
    735                    3, InsertAtEnd) {
    736   Op<-1>() = IfTrue;
    737   Op<-2>() = IfFalse;
    738   Op<-3>() = Cond;
    739 #ifndef NDEBUG
    740   AssertOK();
    741 #endif
    742 }
    743 
    744 
    745 BranchInst::BranchInst(const BranchInst &BI) :
    746   TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
    747                  OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
    748                  BI.getNumOperands()) {
    749   Op<-1>() = BI.Op<-1>();
    750   if (BI.getNumOperands() != 1) {
    751     assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
    752     Op<-3>() = BI.Op<-3>();
    753     Op<-2>() = BI.Op<-2>();
    754   }
    755   SubclassOptionalData = BI.SubclassOptionalData;
    756 }
    757 
    758 void BranchInst::swapSuccessors() {
    759   assert(isConditional() &&
    760          "Cannot swap successors of an unconditional branch");
    761   Op<-1>().swap(Op<-2>());
    762 
    763   // Update profile metadata if present and it matches our structural
    764   // expectations.
    765   MDNode *ProfileData = getMetadata(LLVMContext::MD_prof);
    766   if (!ProfileData || ProfileData->getNumOperands() != 3)
    767     return;
    768 
    769   // The first operand is the name. Fetch them backwards and build a new one.
    770   Value *Ops[] = {
    771     ProfileData->getOperand(0),
    772     ProfileData->getOperand(2),
    773     ProfileData->getOperand(1)
    774   };
    775   setMetadata(LLVMContext::MD_prof,
    776               MDNode::get(ProfileData->getContext(), Ops));
    777 }
    778 
    779 BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
    780   return getSuccessor(idx);
    781 }
    782 unsigned BranchInst::getNumSuccessorsV() const {
    783   return getNumSuccessors();
    784 }
    785 void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
    786   setSuccessor(idx, B);
    787 }
    788 
    789 
    790 //===----------------------------------------------------------------------===//
    791 //                        AllocaInst Implementation
    792 //===----------------------------------------------------------------------===//
    793 
    794 static Value *getAISize(LLVMContext &Context, Value *Amt) {
    795   if (!Amt)
    796     Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
    797   else {
    798     assert(!isa<BasicBlock>(Amt) &&
    799            "Passed basic block into allocation size parameter! Use other ctor");
    800     assert(Amt->getType()->isIntegerTy() &&
    801            "Allocation array size is not an integer!");
    802   }
    803   return Amt;
    804 }
    805 
    806 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
    807                        const Twine &Name, Instruction *InsertBefore)
    808   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
    809                      getAISize(Ty->getContext(), ArraySize), InsertBefore) {
    810   setAlignment(0);
    811   assert(!Ty->isVoidTy() && "Cannot allocate void!");
    812   setName(Name);
    813 }
    814 
    815 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
    816                        const Twine &Name, BasicBlock *InsertAtEnd)
    817   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
    818                      getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
    819   setAlignment(0);
    820   assert(!Ty->isVoidTy() && "Cannot allocate void!");
    821   setName(Name);
    822 }
    823 
    824 AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
    825                        Instruction *InsertBefore)
    826   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
    827                      getAISize(Ty->getContext(), 0), InsertBefore) {
    828   setAlignment(0);
    829   assert(!Ty->isVoidTy() && "Cannot allocate void!");
    830   setName(Name);
    831 }
    832 
    833 AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
    834                        BasicBlock *InsertAtEnd)
    835   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
    836                      getAISize(Ty->getContext(), 0), InsertAtEnd) {
    837   setAlignment(0);
    838   assert(!Ty->isVoidTy() && "Cannot allocate void!");
    839   setName(Name);
    840 }
    841 
    842 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
    843                        const Twine &Name, Instruction *InsertBefore)
    844   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
    845                      getAISize(Ty->getContext(), ArraySize), InsertBefore) {
    846   setAlignment(Align);
    847   assert(!Ty->isVoidTy() && "Cannot allocate void!");
    848   setName(Name);
    849 }
    850 
    851 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
    852                        const Twine &Name, BasicBlock *InsertAtEnd)
    853   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
    854                      getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
    855   setAlignment(Align);
    856   assert(!Ty->isVoidTy() && "Cannot allocate void!");
    857   setName(Name);
    858 }
    859 
    860 // Out of line virtual method, so the vtable, etc has a home.
    861 AllocaInst::~AllocaInst() {
    862 }
    863 
    864 void AllocaInst::setAlignment(unsigned Align) {
    865   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
    866   assert(Align <= MaximumAlignment &&
    867          "Alignment is greater than MaximumAlignment!");
    868   setInstructionSubclassData(Log2_32(Align) + 1);
    869   assert(getAlignment() == Align && "Alignment representation error!");
    870 }
    871 
    872 bool AllocaInst::isArrayAllocation() const {
    873   if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
    874     return !CI->isOne();
    875   return true;
    876 }
    877 
    878 Type *AllocaInst::getAllocatedType() const {
    879   return getType()->getElementType();
    880 }
    881 
    882 /// isStaticAlloca - Return true if this alloca is in the entry block of the
    883 /// function and is a constant size.  If so, the code generator will fold it
    884 /// into the prolog/epilog code, so it is basically free.
    885 bool AllocaInst::isStaticAlloca() const {
    886   // Must be constant size.
    887   if (!isa<ConstantInt>(getArraySize())) return false;
    888 
    889   // Must be in the entry block.
    890   const BasicBlock *Parent = getParent();
    891   return Parent == &Parent->getParent()->front();
    892 }
    893 
    894 //===----------------------------------------------------------------------===//
    895 //                           LoadInst Implementation
    896 //===----------------------------------------------------------------------===//
    897 
    898 void LoadInst::AssertOK() {
    899   assert(getOperand(0)->getType()->isPointerTy() &&
    900          "Ptr must have pointer type.");
    901   assert(!(isAtomic() && getAlignment() == 0) &&
    902          "Alignment required for atomic load");
    903 }
    904 
    905 LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
    906   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
    907                      Load, Ptr, InsertBef) {
    908   setVolatile(false);
    909   setAlignment(0);
    910   setAtomic(NotAtomic);
    911   AssertOK();
    912   setName(Name);
    913 }
    914 
    915 LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
    916   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
    917                      Load, Ptr, InsertAE) {
    918   setVolatile(false);
    919   setAlignment(0);
    920   setAtomic(NotAtomic);
    921   AssertOK();
    922   setName(Name);
    923 }
    924 
    925 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
    926                    Instruction *InsertBef)
    927   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
    928                      Load, Ptr, InsertBef) {
    929   setVolatile(isVolatile);
    930   setAlignment(0);
    931   setAtomic(NotAtomic);
    932   AssertOK();
    933   setName(Name);
    934 }
    935 
    936 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
    937                    BasicBlock *InsertAE)
    938   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
    939                      Load, Ptr, InsertAE) {
    940   setVolatile(isVolatile);
    941   setAlignment(0);
    942   setAtomic(NotAtomic);
    943   AssertOK();
    944   setName(Name);
    945 }
    946 
    947 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
    948                    unsigned Align, Instruction *InsertBef)
    949   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
    950                      Load, Ptr, InsertBef) {
    951   setVolatile(isVolatile);
    952   setAlignment(Align);
    953   setAtomic(NotAtomic);
    954   AssertOK();
    955   setName(Name);
    956 }
    957 
    958 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
    959                    unsigned Align, BasicBlock *InsertAE)
    960   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
    961                      Load, Ptr, InsertAE) {
    962   setVolatile(isVolatile);
    963   setAlignment(Align);
    964   setAtomic(NotAtomic);
    965   AssertOK();
    966   setName(Name);
    967 }
    968 
    969 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
    970                    unsigned Align, AtomicOrdering Order,
    971                    SynchronizationScope SynchScope,
    972                    Instruction *InsertBef)
    973   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
    974                      Load, Ptr, InsertBef) {
    975   setVolatile(isVolatile);
    976   setAlignment(Align);
    977   setAtomic(Order, SynchScope);
    978   AssertOK();
    979   setName(Name);
    980 }
    981 
    982 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
    983                    unsigned Align, AtomicOrdering Order,
    984                    SynchronizationScope SynchScope,
    985                    BasicBlock *InsertAE)
    986   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
    987                      Load, Ptr, InsertAE) {
    988   setVolatile(isVolatile);
    989   setAlignment(Align);
    990   setAtomic(Order, SynchScope);
    991   AssertOK();
    992   setName(Name);
    993 }
    994 
    995 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
    996   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
    997                      Load, Ptr, InsertBef) {
    998   setVolatile(false);
    999   setAlignment(0);
   1000   setAtomic(NotAtomic);
   1001   AssertOK();
   1002   if (Name && Name[0]) setName(Name);
   1003 }
   1004 
   1005 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
   1006   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
   1007                      Load, Ptr, InsertAE) {
   1008   setVolatile(false);
   1009   setAlignment(0);
   1010   setAtomic(NotAtomic);
   1011   AssertOK();
   1012   if (Name && Name[0]) setName(Name);
   1013 }
   1014 
   1015 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
   1016                    Instruction *InsertBef)
   1017 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
   1018                    Load, Ptr, InsertBef) {
   1019   setVolatile(isVolatile);
   1020   setAlignment(0);
   1021   setAtomic(NotAtomic);
   1022   AssertOK();
   1023   if (Name && Name[0]) setName(Name);
   1024 }
   1025 
   1026 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
   1027                    BasicBlock *InsertAE)
   1028   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
   1029                      Load, Ptr, InsertAE) {
   1030   setVolatile(isVolatile);
   1031   setAlignment(0);
   1032   setAtomic(NotAtomic);
   1033   AssertOK();
   1034   if (Name && Name[0]) setName(Name);
   1035 }
   1036 
   1037 void LoadInst::setAlignment(unsigned Align) {
   1038   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
   1039   assert(Align <= MaximumAlignment &&
   1040          "Alignment is greater than MaximumAlignment!");
   1041   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
   1042                              ((Log2_32(Align)+1)<<1));
   1043   assert(getAlignment() == Align && "Alignment representation error!");
   1044 }
   1045 
   1046 //===----------------------------------------------------------------------===//
   1047 //                           StoreInst Implementation
   1048 //===----------------------------------------------------------------------===//
   1049 
   1050 void StoreInst::AssertOK() {
   1051   assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
   1052   assert(getOperand(1)->getType()->isPointerTy() &&
   1053          "Ptr must have pointer type!");
   1054   assert(getOperand(0)->getType() ==
   1055                  cast<PointerType>(getOperand(1)->getType())->getElementType()
   1056          && "Ptr must be a pointer to Val type!");
   1057   assert(!(isAtomic() && getAlignment() == 0) &&
   1058          "Alignment required for atomic load");
   1059 }
   1060 
   1061 
   1062 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
   1063   : Instruction(Type::getVoidTy(val->getContext()), Store,
   1064                 OperandTraits<StoreInst>::op_begin(this),
   1065                 OperandTraits<StoreInst>::operands(this),
   1066                 InsertBefore) {
   1067   Op<0>() = val;
   1068   Op<1>() = addr;
   1069   setVolatile(false);
   1070   setAlignment(0);
   1071   setAtomic(NotAtomic);
   1072   AssertOK();
   1073 }
   1074 
   1075 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
   1076   : Instruction(Type::getVoidTy(val->getContext()), Store,
   1077                 OperandTraits<StoreInst>::op_begin(this),
   1078                 OperandTraits<StoreInst>::operands(this),
   1079                 InsertAtEnd) {
   1080   Op<0>() = val;
   1081   Op<1>() = addr;
   1082   setVolatile(false);
   1083   setAlignment(0);
   1084   setAtomic(NotAtomic);
   1085   AssertOK();
   1086 }
   1087 
   1088 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
   1089                      Instruction *InsertBefore)
   1090   : Instruction(Type::getVoidTy(val->getContext()), Store,
   1091                 OperandTraits<StoreInst>::op_begin(this),
   1092                 OperandTraits<StoreInst>::operands(this),
   1093                 InsertBefore) {
   1094   Op<0>() = val;
   1095   Op<1>() = addr;
   1096   setVolatile(isVolatile);
   1097   setAlignment(0);
   1098   setAtomic(NotAtomic);
   1099   AssertOK();
   1100 }
   1101 
   1102 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
   1103                      unsigned Align, Instruction *InsertBefore)
   1104   : Instruction(Type::getVoidTy(val->getContext()), Store,
   1105                 OperandTraits<StoreInst>::op_begin(this),
   1106                 OperandTraits<StoreInst>::operands(this),
   1107                 InsertBefore) {
   1108   Op<0>() = val;
   1109   Op<1>() = addr;
   1110   setVolatile(isVolatile);
   1111   setAlignment(Align);
   1112   setAtomic(NotAtomic);
   1113   AssertOK();
   1114 }
   1115 
   1116 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
   1117                      unsigned Align, AtomicOrdering Order,
   1118                      SynchronizationScope SynchScope,
   1119                      Instruction *InsertBefore)
   1120   : Instruction(Type::getVoidTy(val->getContext()), Store,
   1121                 OperandTraits<StoreInst>::op_begin(this),
   1122                 OperandTraits<StoreInst>::operands(this),
   1123                 InsertBefore) {
   1124   Op<0>() = val;
   1125   Op<1>() = addr;
   1126   setVolatile(isVolatile);
   1127   setAlignment(Align);
   1128   setAtomic(Order, SynchScope);
   1129   AssertOK();
   1130 }
   1131 
   1132 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
   1133                      BasicBlock *InsertAtEnd)
   1134   : Instruction(Type::getVoidTy(val->getContext()), Store,
   1135                 OperandTraits<StoreInst>::op_begin(this),
   1136                 OperandTraits<StoreInst>::operands(this),
   1137                 InsertAtEnd) {
   1138   Op<0>() = val;
   1139   Op<1>() = addr;
   1140   setVolatile(isVolatile);
   1141   setAlignment(0);
   1142   setAtomic(NotAtomic);
   1143   AssertOK();
   1144 }
   1145 
   1146 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
   1147                      unsigned Align, BasicBlock *InsertAtEnd)
   1148   : Instruction(Type::getVoidTy(val->getContext()), Store,
   1149                 OperandTraits<StoreInst>::op_begin(this),
   1150                 OperandTraits<StoreInst>::operands(this),
   1151                 InsertAtEnd) {
   1152   Op<0>() = val;
   1153   Op<1>() = addr;
   1154   setVolatile(isVolatile);
   1155   setAlignment(Align);
   1156   setAtomic(NotAtomic);
   1157   AssertOK();
   1158 }
   1159 
   1160 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
   1161                      unsigned Align, AtomicOrdering Order,
   1162                      SynchronizationScope SynchScope,
   1163                      BasicBlock *InsertAtEnd)
   1164   : Instruction(Type::getVoidTy(val->getContext()), Store,
   1165                 OperandTraits<StoreInst>::op_begin(this),
   1166                 OperandTraits<StoreInst>::operands(this),
   1167                 InsertAtEnd) {
   1168   Op<0>() = val;
   1169   Op<1>() = addr;
   1170   setVolatile(isVolatile);
   1171   setAlignment(Align);
   1172   setAtomic(Order, SynchScope);
   1173   AssertOK();
   1174 }
   1175 
   1176 void StoreInst::setAlignment(unsigned Align) {
   1177   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
   1178   assert(Align <= MaximumAlignment &&
   1179          "Alignment is greater than MaximumAlignment!");
   1180   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
   1181                              ((Log2_32(Align)+1) << 1));
   1182   assert(getAlignment() == Align && "Alignment representation error!");
   1183 }
   1184 
   1185 //===----------------------------------------------------------------------===//
   1186 //                       AtomicCmpXchgInst Implementation
   1187 //===----------------------------------------------------------------------===//
   1188 
   1189 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
   1190                              AtomicOrdering Ordering,
   1191                              SynchronizationScope SynchScope) {
   1192   Op<0>() = Ptr;
   1193   Op<1>() = Cmp;
   1194   Op<2>() = NewVal;
   1195   setOrdering(Ordering);
   1196   setSynchScope(SynchScope);
   1197 
   1198   assert(getOperand(0) && getOperand(1) && getOperand(2) &&
   1199          "All operands must be non-null!");
   1200   assert(getOperand(0)->getType()->isPointerTy() &&
   1201          "Ptr must have pointer type!");
   1202   assert(getOperand(1)->getType() ==
   1203                  cast<PointerType>(getOperand(0)->getType())->getElementType()
   1204          && "Ptr must be a pointer to Cmp type!");
   1205   assert(getOperand(2)->getType() ==
   1206                  cast<PointerType>(getOperand(0)->getType())->getElementType()
   1207          && "Ptr must be a pointer to NewVal type!");
   1208   assert(Ordering != NotAtomic &&
   1209          "AtomicCmpXchg instructions must be atomic!");
   1210 }
   1211 
   1212 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
   1213                                      AtomicOrdering Ordering,
   1214                                      SynchronizationScope SynchScope,
   1215                                      Instruction *InsertBefore)
   1216   : Instruction(Cmp->getType(), AtomicCmpXchg,
   1217                 OperandTraits<AtomicCmpXchgInst>::op_begin(this),
   1218                 OperandTraits<AtomicCmpXchgInst>::operands(this),
   1219                 InsertBefore) {
   1220   Init(Ptr, Cmp, NewVal, Ordering, SynchScope);
   1221 }
   1222 
   1223 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
   1224                                      AtomicOrdering Ordering,
   1225                                      SynchronizationScope SynchScope,
   1226                                      BasicBlock *InsertAtEnd)
   1227   : Instruction(Cmp->getType(), AtomicCmpXchg,
   1228                 OperandTraits<AtomicCmpXchgInst>::op_begin(this),
   1229                 OperandTraits<AtomicCmpXchgInst>::operands(this),
   1230                 InsertAtEnd) {
   1231   Init(Ptr, Cmp, NewVal, Ordering, SynchScope);
   1232 }
   1233 
   1234 //===----------------------------------------------------------------------===//
   1235 //                       AtomicRMWInst Implementation
   1236 //===----------------------------------------------------------------------===//
   1237 
   1238 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
   1239                          AtomicOrdering Ordering,
   1240                          SynchronizationScope SynchScope) {
   1241   Op<0>() = Ptr;
   1242   Op<1>() = Val;
   1243   setOperation(Operation);
   1244   setOrdering(Ordering);
   1245   setSynchScope(SynchScope);
   1246 
   1247   assert(getOperand(0) && getOperand(1) &&
   1248          "All operands must be non-null!");
   1249   assert(getOperand(0)->getType()->isPointerTy() &&
   1250          "Ptr must have pointer type!");
   1251   assert(getOperand(1)->getType() ==
   1252          cast<PointerType>(getOperand(0)->getType())->getElementType()
   1253          && "Ptr must be a pointer to Val type!");
   1254   assert(Ordering != NotAtomic &&
   1255          "AtomicRMW instructions must be atomic!");
   1256 }
   1257 
   1258 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
   1259                              AtomicOrdering Ordering,
   1260                              SynchronizationScope SynchScope,
   1261                              Instruction *InsertBefore)
   1262   : Instruction(Val->getType(), AtomicRMW,
   1263                 OperandTraits<AtomicRMWInst>::op_begin(this),
   1264                 OperandTraits<AtomicRMWInst>::operands(this),
   1265                 InsertBefore) {
   1266   Init(Operation, Ptr, Val, Ordering, SynchScope);
   1267 }
   1268 
   1269 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
   1270                              AtomicOrdering Ordering,
   1271                              SynchronizationScope SynchScope,
   1272                              BasicBlock *InsertAtEnd)
   1273   : Instruction(Val->getType(), AtomicRMW,
   1274                 OperandTraits<AtomicRMWInst>::op_begin(this),
   1275                 OperandTraits<AtomicRMWInst>::operands(this),
   1276                 InsertAtEnd) {
   1277   Init(Operation, Ptr, Val, Ordering, SynchScope);
   1278 }
   1279 
   1280 //===----------------------------------------------------------------------===//
   1281 //                       FenceInst Implementation
   1282 //===----------------------------------------------------------------------===//
   1283 
   1284 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
   1285                      SynchronizationScope SynchScope,
   1286                      Instruction *InsertBefore)
   1287   : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertBefore) {
   1288   setOrdering(Ordering);
   1289   setSynchScope(SynchScope);
   1290 }
   1291 
   1292 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
   1293                      SynchronizationScope SynchScope,
   1294                      BasicBlock *InsertAtEnd)
   1295   : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertAtEnd) {
   1296   setOrdering(Ordering);
   1297   setSynchScope(SynchScope);
   1298 }
   1299 
   1300 //===----------------------------------------------------------------------===//
   1301 //                       GetElementPtrInst Implementation
   1302 //===----------------------------------------------------------------------===//
   1303 
   1304 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
   1305                              const Twine &Name) {
   1306   assert(NumOperands == 1 + IdxList.size() && "NumOperands not initialized?");
   1307   OperandList[0] = Ptr;
   1308   std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1);
   1309   setName(Name);
   1310 }
   1311 
   1312 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
   1313   : Instruction(GEPI.getType(), GetElementPtr,
   1314                 OperandTraits<GetElementPtrInst>::op_end(this)
   1315                 - GEPI.getNumOperands(),
   1316                 GEPI.getNumOperands()) {
   1317   std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
   1318   SubclassOptionalData = GEPI.SubclassOptionalData;
   1319 }
   1320 
   1321 /// getIndexedType - Returns the type of the element that would be accessed with
   1322 /// a gep instruction with the specified parameters.
   1323 ///
   1324 /// The Idxs pointer should point to a continuous piece of memory containing the
   1325 /// indices, either as Value* or uint64_t.
   1326 ///
   1327 /// A null type is returned if the indices are invalid for the specified
   1328 /// pointer type.
   1329 ///
   1330 template <typename IndexTy>
   1331 static Type *getIndexedTypeInternal(Type *Ptr, ArrayRef<IndexTy> IdxList) {
   1332   if (Ptr->isVectorTy()) {
   1333     assert(IdxList.size() == 1 &&
   1334       "GEP with vector pointers must have a single index");
   1335     PointerType *PTy = dyn_cast<PointerType>(
   1336         cast<VectorType>(Ptr)->getElementType());
   1337     assert(PTy && "Gep with invalid vector pointer found");
   1338     return PTy->getElementType();
   1339   }
   1340 
   1341   PointerType *PTy = dyn_cast<PointerType>(Ptr);
   1342   if (!PTy) return 0;   // Type isn't a pointer type!
   1343   Type *Agg = PTy->getElementType();
   1344 
   1345   // Handle the special case of the empty set index set, which is always valid.
   1346   if (IdxList.empty())
   1347     return Agg;
   1348 
   1349   // If there is at least one index, the top level type must be sized, otherwise
   1350   // it cannot be 'stepped over'.
   1351   if (!Agg->isSized())
   1352     return 0;
   1353 
   1354   unsigned CurIdx = 1;
   1355   for (; CurIdx != IdxList.size(); ++CurIdx) {
   1356     CompositeType *CT = dyn_cast<CompositeType>(Agg);
   1357     if (!CT || CT->isPointerTy()) return 0;
   1358     IndexTy Index = IdxList[CurIdx];
   1359     if (!CT->indexValid(Index)) return 0;
   1360     Agg = CT->getTypeAtIndex(Index);
   1361   }
   1362   return CurIdx == IdxList.size() ? Agg : 0;
   1363 }
   1364 
   1365 Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<Value *> IdxList) {
   1366   return getIndexedTypeInternal(Ptr, IdxList);
   1367 }
   1368 
   1369 Type *GetElementPtrInst::getIndexedType(Type *Ptr,
   1370                                         ArrayRef<Constant *> IdxList) {
   1371   return getIndexedTypeInternal(Ptr, IdxList);
   1372 }
   1373 
   1374 Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<uint64_t> IdxList) {
   1375   return getIndexedTypeInternal(Ptr, IdxList);
   1376 }
   1377 
   1378 unsigned GetElementPtrInst::getAddressSpace(Value *Ptr) {
   1379   Type *Ty = Ptr->getType();
   1380 
   1381   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
   1382     Ty = VTy->getElementType();
   1383 
   1384   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
   1385     return PTy->getAddressSpace();
   1386 
   1387   llvm_unreachable("Invalid GEP pointer type");
   1388 }
   1389 
   1390 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
   1391 /// zeros.  If so, the result pointer and the first operand have the same
   1392 /// value, just potentially different types.
   1393 bool GetElementPtrInst::hasAllZeroIndices() const {
   1394   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
   1395     if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
   1396       if (!CI->isZero()) return false;
   1397     } else {
   1398       return false;
   1399     }
   1400   }
   1401   return true;
   1402 }
   1403 
   1404 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
   1405 /// constant integers.  If so, the result pointer and the first operand have
   1406 /// a constant offset between them.
   1407 bool GetElementPtrInst::hasAllConstantIndices() const {
   1408   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
   1409     if (!isa<ConstantInt>(getOperand(i)))
   1410       return false;
   1411   }
   1412   return true;
   1413 }
   1414 
   1415 void GetElementPtrInst::setIsInBounds(bool B) {
   1416   cast<GEPOperator>(this)->setIsInBounds(B);
   1417 }
   1418 
   1419 bool GetElementPtrInst::isInBounds() const {
   1420   return cast<GEPOperator>(this)->isInBounds();
   1421 }
   1422 
   1423 //===----------------------------------------------------------------------===//
   1424 //                           ExtractElementInst Implementation
   1425 //===----------------------------------------------------------------------===//
   1426 
   1427 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
   1428                                        const Twine &Name,
   1429                                        Instruction *InsertBef)
   1430   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
   1431                 ExtractElement,
   1432                 OperandTraits<ExtractElementInst>::op_begin(this),
   1433                 2, InsertBef) {
   1434   assert(isValidOperands(Val, Index) &&
   1435          "Invalid extractelement instruction operands!");
   1436   Op<0>() = Val;
   1437   Op<1>() = Index;
   1438   setName(Name);
   1439 }
   1440 
   1441 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
   1442                                        const Twine &Name,
   1443                                        BasicBlock *InsertAE)
   1444   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
   1445                 ExtractElement,
   1446                 OperandTraits<ExtractElementInst>::op_begin(this),
   1447                 2, InsertAE) {
   1448   assert(isValidOperands(Val, Index) &&
   1449          "Invalid extractelement instruction operands!");
   1450 
   1451   Op<0>() = Val;
   1452   Op<1>() = Index;
   1453   setName(Name);
   1454 }
   1455 
   1456 
   1457 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
   1458   if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy(32))
   1459     return false;
   1460   return true;
   1461 }
   1462 
   1463 
   1464 //===----------------------------------------------------------------------===//
   1465 //                           InsertElementInst Implementation
   1466 //===----------------------------------------------------------------------===//
   1467 
   1468 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
   1469                                      const Twine &Name,
   1470                                      Instruction *InsertBef)
   1471   : Instruction(Vec->getType(), InsertElement,
   1472                 OperandTraits<InsertElementInst>::op_begin(this),
   1473                 3, InsertBef) {
   1474   assert(isValidOperands(Vec, Elt, Index) &&
   1475          "Invalid insertelement instruction operands!");
   1476   Op<0>() = Vec;
   1477   Op<1>() = Elt;
   1478   Op<2>() = Index;
   1479   setName(Name);
   1480 }
   1481 
   1482 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
   1483                                      const Twine &Name,
   1484                                      BasicBlock *InsertAE)
   1485   : Instruction(Vec->getType(), InsertElement,
   1486                 OperandTraits<InsertElementInst>::op_begin(this),
   1487                 3, InsertAE) {
   1488   assert(isValidOperands(Vec, Elt, Index) &&
   1489          "Invalid insertelement instruction operands!");
   1490 
   1491   Op<0>() = Vec;
   1492   Op<1>() = Elt;
   1493   Op<2>() = Index;
   1494   setName(Name);
   1495 }
   1496 
   1497 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
   1498                                         const Value *Index) {
   1499   if (!Vec->getType()->isVectorTy())
   1500     return false;   // First operand of insertelement must be vector type.
   1501 
   1502   if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
   1503     return false;// Second operand of insertelement must be vector element type.
   1504 
   1505   if (!Index->getType()->isIntegerTy(32))
   1506     return false;  // Third operand of insertelement must be i32.
   1507   return true;
   1508 }
   1509 
   1510 
   1511 //===----------------------------------------------------------------------===//
   1512 //                      ShuffleVectorInst Implementation
   1513 //===----------------------------------------------------------------------===//
   1514 
   1515 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
   1516                                      const Twine &Name,
   1517                                      Instruction *InsertBefore)
   1518 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
   1519                 cast<VectorType>(Mask->getType())->getNumElements()),
   1520               ShuffleVector,
   1521               OperandTraits<ShuffleVectorInst>::op_begin(this),
   1522               OperandTraits<ShuffleVectorInst>::operands(this),
   1523               InsertBefore) {
   1524   assert(isValidOperands(V1, V2, Mask) &&
   1525          "Invalid shuffle vector instruction operands!");
   1526   Op<0>() = V1;
   1527   Op<1>() = V2;
   1528   Op<2>() = Mask;
   1529   setName(Name);
   1530 }
   1531 
   1532 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
   1533                                      const Twine &Name,
   1534                                      BasicBlock *InsertAtEnd)
   1535 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
   1536                 cast<VectorType>(Mask->getType())->getNumElements()),
   1537               ShuffleVector,
   1538               OperandTraits<ShuffleVectorInst>::op_begin(this),
   1539               OperandTraits<ShuffleVectorInst>::operands(this),
   1540               InsertAtEnd) {
   1541   assert(isValidOperands(V1, V2, Mask) &&
   1542          "Invalid shuffle vector instruction operands!");
   1543 
   1544   Op<0>() = V1;
   1545   Op<1>() = V2;
   1546   Op<2>() = Mask;
   1547   setName(Name);
   1548 }
   1549 
   1550 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
   1551                                         const Value *Mask) {
   1552   // V1 and V2 must be vectors of the same type.
   1553   if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
   1554     return false;
   1555 
   1556   // Mask must be vector of i32.
   1557   VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
   1558   if (MaskTy == 0 || !MaskTy->getElementType()->isIntegerTy(32))
   1559     return false;
   1560 
   1561   // Check to see if Mask is valid.
   1562   if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
   1563     return true;
   1564 
   1565   if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) {
   1566     unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
   1567     for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) {
   1568       if (ConstantInt *CI = dyn_cast<ConstantInt>(MV->getOperand(i))) {
   1569         if (CI->uge(V1Size*2))
   1570           return false;
   1571       } else if (!isa<UndefValue>(MV->getOperand(i))) {
   1572         return false;
   1573       }
   1574     }
   1575     return true;
   1576   }
   1577 
   1578   if (const ConstantDataSequential *CDS =
   1579         dyn_cast<ConstantDataSequential>(Mask)) {
   1580     unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
   1581     for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
   1582       if (CDS->getElementAsInteger(i) >= V1Size*2)
   1583         return false;
   1584     return true;
   1585   }
   1586 
   1587   // The bitcode reader can create a place holder for a forward reference
   1588   // used as the shuffle mask. When this occurs, the shuffle mask will
   1589   // fall into this case and fail. To avoid this error, do this bit of
   1590   // ugliness to allow such a mask pass.
   1591   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Mask))
   1592     if (CE->getOpcode() == Instruction::UserOp1)
   1593       return true;
   1594 
   1595   return false;
   1596 }
   1597 
   1598 /// getMaskValue - Return the index from the shuffle mask for the specified
   1599 /// output result.  This is either -1 if the element is undef or a number less
   1600 /// than 2*numelements.
   1601 int ShuffleVectorInst::getMaskValue(Constant *Mask, unsigned i) {
   1602   assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
   1603   if (ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(Mask))
   1604     return CDS->getElementAsInteger(i);
   1605   Constant *C = Mask->getAggregateElement(i);
   1606   if (isa<UndefValue>(C))
   1607     return -1;
   1608   return cast<ConstantInt>(C)->getZExtValue();
   1609 }
   1610 
   1611 /// getShuffleMask - Return the full mask for this instruction, where each
   1612 /// element is the element number and undef's are returned as -1.
   1613 void ShuffleVectorInst::getShuffleMask(Constant *Mask,
   1614                                        SmallVectorImpl<int> &Result) {
   1615   unsigned NumElts = Mask->getType()->getVectorNumElements();
   1616 
   1617   if (ConstantDataSequential *CDS=dyn_cast<ConstantDataSequential>(Mask)) {
   1618     for (unsigned i = 0; i != NumElts; ++i)
   1619       Result.push_back(CDS->getElementAsInteger(i));
   1620     return;
   1621   }
   1622   for (unsigned i = 0; i != NumElts; ++i) {
   1623     Constant *C = Mask->getAggregateElement(i);
   1624     Result.push_back(isa<UndefValue>(C) ? -1 :
   1625                      cast<ConstantInt>(C)->getZExtValue());
   1626   }
   1627 }
   1628 
   1629 
   1630 //===----------------------------------------------------------------------===//
   1631 //                             InsertValueInst Class
   1632 //===----------------------------------------------------------------------===//
   1633 
   1634 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
   1635                            const Twine &Name) {
   1636   assert(NumOperands == 2 && "NumOperands not initialized?");
   1637 
   1638   // There's no fundamental reason why we require at least one index
   1639   // (other than weirdness with &*IdxBegin being invalid; see
   1640   // getelementptr's init routine for example). But there's no
   1641   // present need to support it.
   1642   assert(Idxs.size() > 0 && "InsertValueInst must have at least one index");
   1643 
   1644   assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
   1645          Val->getType() && "Inserted value must match indexed type!");
   1646   Op<0>() = Agg;
   1647   Op<1>() = Val;
   1648 
   1649   Indices.append(Idxs.begin(), Idxs.end());
   1650   setName(Name);
   1651 }
   1652 
   1653 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
   1654   : Instruction(IVI.getType(), InsertValue,
   1655                 OperandTraits<InsertValueInst>::op_begin(this), 2),
   1656     Indices(IVI.Indices) {
   1657   Op<0>() = IVI.getOperand(0);
   1658   Op<1>() = IVI.getOperand(1);
   1659   SubclassOptionalData = IVI.SubclassOptionalData;
   1660 }
   1661 
   1662 //===----------------------------------------------------------------------===//
   1663 //                             ExtractValueInst Class
   1664 //===----------------------------------------------------------------------===//
   1665 
   1666 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
   1667   assert(NumOperands == 1 && "NumOperands not initialized?");
   1668 
   1669   // There's no fundamental reason why we require at least one index.
   1670   // But there's no present need to support it.
   1671   assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index");
   1672 
   1673   Indices.append(Idxs.begin(), Idxs.end());
   1674   setName(Name);
   1675 }
   1676 
   1677 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
   1678   : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
   1679     Indices(EVI.Indices) {
   1680   SubclassOptionalData = EVI.SubclassOptionalData;
   1681 }
   1682 
   1683 // getIndexedType - Returns the type of the element that would be extracted
   1684 // with an extractvalue instruction with the specified parameters.
   1685 //
   1686 // A null type is returned if the indices are invalid for the specified
   1687 // pointer type.
   1688 //
   1689 Type *ExtractValueInst::getIndexedType(Type *Agg,
   1690                                        ArrayRef<unsigned> Idxs) {
   1691   for (unsigned CurIdx = 0; CurIdx != Idxs.size(); ++CurIdx) {
   1692     unsigned Index = Idxs[CurIdx];
   1693     // We can't use CompositeType::indexValid(Index) here.
   1694     // indexValid() always returns true for arrays because getelementptr allows
   1695     // out-of-bounds indices. Since we don't allow those for extractvalue and
   1696     // insertvalue we need to check array indexing manually.
   1697     // Since the only other types we can index into are struct types it's just
   1698     // as easy to check those manually as well.
   1699     if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
   1700       if (Index >= AT->getNumElements())
   1701         return 0;
   1702     } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
   1703       if (Index >= ST->getNumElements())
   1704         return 0;
   1705     } else {
   1706       // Not a valid type to index into.
   1707       return 0;
   1708     }
   1709 
   1710     Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
   1711   }
   1712   return const_cast<Type*>(Agg);
   1713 }
   1714 
   1715 //===----------------------------------------------------------------------===//
   1716 //                             BinaryOperator Class
   1717 //===----------------------------------------------------------------------===//
   1718 
   1719 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
   1720                                Type *Ty, const Twine &Name,
   1721                                Instruction *InsertBefore)
   1722   : Instruction(Ty, iType,
   1723                 OperandTraits<BinaryOperator>::op_begin(this),
   1724                 OperandTraits<BinaryOperator>::operands(this),
   1725                 InsertBefore) {
   1726   Op<0>() = S1;
   1727   Op<1>() = S2;
   1728   init(iType);
   1729   setName(Name);
   1730 }
   1731 
   1732 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
   1733                                Type *Ty, const Twine &Name,
   1734                                BasicBlock *InsertAtEnd)
   1735   : Instruction(Ty, iType,
   1736                 OperandTraits<BinaryOperator>::op_begin(this),
   1737                 OperandTraits<BinaryOperator>::operands(this),
   1738                 InsertAtEnd) {
   1739   Op<0>() = S1;
   1740   Op<1>() = S2;
   1741   init(iType);
   1742   setName(Name);
   1743 }
   1744 
   1745 
   1746 void BinaryOperator::init(BinaryOps iType) {
   1747   Value *LHS = getOperand(0), *RHS = getOperand(1);
   1748   (void)LHS; (void)RHS; // Silence warnings.
   1749   assert(LHS->getType() == RHS->getType() &&
   1750          "Binary operator operand types must match!");
   1751 #ifndef NDEBUG
   1752   switch (iType) {
   1753   case Add: case Sub:
   1754   case Mul:
   1755     assert(getType() == LHS->getType() &&
   1756            "Arithmetic operation should return same type as operands!");
   1757     assert(getType()->isIntOrIntVectorTy() &&
   1758            "Tried to create an integer operation on a non-integer type!");
   1759     break;
   1760   case FAdd: case FSub:
   1761   case FMul:
   1762     assert(getType() == LHS->getType() &&
   1763            "Arithmetic operation should return same type as operands!");
   1764     assert(getType()->isFPOrFPVectorTy() &&
   1765            "Tried to create a floating-point operation on a "
   1766            "non-floating-point type!");
   1767     break;
   1768   case UDiv:
   1769   case SDiv:
   1770     assert(getType() == LHS->getType() &&
   1771            "Arithmetic operation should return same type as operands!");
   1772     assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
   1773             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
   1774            "Incorrect operand type (not integer) for S/UDIV");
   1775     break;
   1776   case FDiv:
   1777     assert(getType() == LHS->getType() &&
   1778            "Arithmetic operation should return same type as operands!");
   1779     assert(getType()->isFPOrFPVectorTy() &&
   1780            "Incorrect operand type (not floating point) for FDIV");
   1781     break;
   1782   case URem:
   1783   case SRem:
   1784     assert(getType() == LHS->getType() &&
   1785            "Arithmetic operation should return same type as operands!");
   1786     assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
   1787             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
   1788            "Incorrect operand type (not integer) for S/UREM");
   1789     break;
   1790   case FRem:
   1791     assert(getType() == LHS->getType() &&
   1792            "Arithmetic operation should return same type as operands!");
   1793     assert(getType()->isFPOrFPVectorTy() &&
   1794            "Incorrect operand type (not floating point) for FREM");
   1795     break;
   1796   case Shl:
   1797   case LShr:
   1798   case AShr:
   1799     assert(getType() == LHS->getType() &&
   1800            "Shift operation should return same type as operands!");
   1801     assert((getType()->isIntegerTy() ||
   1802             (getType()->isVectorTy() &&
   1803              cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
   1804            "Tried to create a shift operation on a non-integral type!");
   1805     break;
   1806   case And: case Or:
   1807   case Xor:
   1808     assert(getType() == LHS->getType() &&
   1809            "Logical operation should return same type as operands!");
   1810     assert((getType()->isIntegerTy() ||
   1811             (getType()->isVectorTy() &&
   1812              cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
   1813            "Tried to create a logical operation on a non-integral type!");
   1814     break;
   1815   default:
   1816     break;
   1817   }
   1818 #endif
   1819 }
   1820 
   1821 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
   1822                                        const Twine &Name,
   1823                                        Instruction *InsertBefore) {
   1824   assert(S1->getType() == S2->getType() &&
   1825          "Cannot create binary operator with two operands of differing type!");
   1826   return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
   1827 }
   1828 
   1829 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
   1830                                        const Twine &Name,
   1831                                        BasicBlock *InsertAtEnd) {
   1832   BinaryOperator *Res = Create(Op, S1, S2, Name);
   1833   InsertAtEnd->getInstList().push_back(Res);
   1834   return Res;
   1835 }
   1836 
   1837 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
   1838                                           Instruction *InsertBefore) {
   1839   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
   1840   return new BinaryOperator(Instruction::Sub,
   1841                             zero, Op,
   1842                             Op->getType(), Name, InsertBefore);
   1843 }
   1844 
   1845 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
   1846                                           BasicBlock *InsertAtEnd) {
   1847   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
   1848   return new BinaryOperator(Instruction::Sub,
   1849                             zero, Op,
   1850                             Op->getType(), Name, InsertAtEnd);
   1851 }
   1852 
   1853 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
   1854                                              Instruction *InsertBefore) {
   1855   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
   1856   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
   1857 }
   1858 
   1859 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
   1860                                              BasicBlock *InsertAtEnd) {
   1861   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
   1862   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
   1863 }
   1864 
   1865 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
   1866                                              Instruction *InsertBefore) {
   1867   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
   1868   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
   1869 }
   1870 
   1871 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
   1872                                              BasicBlock *InsertAtEnd) {
   1873   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
   1874   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
   1875 }
   1876 
   1877 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
   1878                                            Instruction *InsertBefore) {
   1879   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
   1880   return new BinaryOperator(Instruction::FSub, zero, Op,
   1881                             Op->getType(), Name, InsertBefore);
   1882 }
   1883 
   1884 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
   1885                                            BasicBlock *InsertAtEnd) {
   1886   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
   1887   return new BinaryOperator(Instruction::FSub, zero, Op,
   1888                             Op->getType(), Name, InsertAtEnd);
   1889 }
   1890 
   1891 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
   1892                                           Instruction *InsertBefore) {
   1893   Constant *C = Constant::getAllOnesValue(Op->getType());
   1894   return new BinaryOperator(Instruction::Xor, Op, C,
   1895                             Op->getType(), Name, InsertBefore);
   1896 }
   1897 
   1898 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
   1899                                           BasicBlock *InsertAtEnd) {
   1900   Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
   1901   return new BinaryOperator(Instruction::Xor, Op, AllOnes,
   1902                             Op->getType(), Name, InsertAtEnd);
   1903 }
   1904 
   1905 
   1906 // isConstantAllOnes - Helper function for several functions below
   1907 static inline bool isConstantAllOnes(const Value *V) {
   1908   if (const Constant *C = dyn_cast<Constant>(V))
   1909     return C->isAllOnesValue();
   1910   return false;
   1911 }
   1912 
   1913 bool BinaryOperator::isNeg(const Value *V) {
   1914   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
   1915     if (Bop->getOpcode() == Instruction::Sub)
   1916       if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
   1917         return C->isNegativeZeroValue();
   1918   return false;
   1919 }
   1920 
   1921 bool BinaryOperator::isFNeg(const Value *V) {
   1922   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
   1923     if (Bop->getOpcode() == Instruction::FSub)
   1924       if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
   1925         return C->isNegativeZeroValue();
   1926   return false;
   1927 }
   1928 
   1929 bool BinaryOperator::isNot(const Value *V) {
   1930   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
   1931     return (Bop->getOpcode() == Instruction::Xor &&
   1932             (isConstantAllOnes(Bop->getOperand(1)) ||
   1933              isConstantAllOnes(Bop->getOperand(0))));
   1934   return false;
   1935 }
   1936 
   1937 Value *BinaryOperator::getNegArgument(Value *BinOp) {
   1938   return cast<BinaryOperator>(BinOp)->getOperand(1);
   1939 }
   1940 
   1941 const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
   1942   return getNegArgument(const_cast<Value*>(BinOp));
   1943 }
   1944 
   1945 Value *BinaryOperator::getFNegArgument(Value *BinOp) {
   1946   return cast<BinaryOperator>(BinOp)->getOperand(1);
   1947 }
   1948 
   1949 const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
   1950   return getFNegArgument(const_cast<Value*>(BinOp));
   1951 }
   1952 
   1953 Value *BinaryOperator::getNotArgument(Value *BinOp) {
   1954   assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
   1955   BinaryOperator *BO = cast<BinaryOperator>(BinOp);
   1956   Value *Op0 = BO->getOperand(0);
   1957   Value *Op1 = BO->getOperand(1);
   1958   if (isConstantAllOnes(Op0)) return Op1;
   1959 
   1960   assert(isConstantAllOnes(Op1));
   1961   return Op0;
   1962 }
   1963 
   1964 const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
   1965   return getNotArgument(const_cast<Value*>(BinOp));
   1966 }
   1967 
   1968 
   1969 // swapOperands - Exchange the two operands to this instruction.  This
   1970 // instruction is safe to use on any binary instruction and does not
   1971 // modify the semantics of the instruction.  If the instruction is
   1972 // order dependent (SetLT f.e.) the opcode is changed.
   1973 //
   1974 bool BinaryOperator::swapOperands() {
   1975   if (!isCommutative())
   1976     return true; // Can't commute operands
   1977   Op<0>().swap(Op<1>());
   1978   return false;
   1979 }
   1980 
   1981 void BinaryOperator::setHasNoUnsignedWrap(bool b) {
   1982   cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
   1983 }
   1984 
   1985 void BinaryOperator::setHasNoSignedWrap(bool b) {
   1986   cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
   1987 }
   1988 
   1989 void BinaryOperator::setIsExact(bool b) {
   1990   cast<PossiblyExactOperator>(this)->setIsExact(b);
   1991 }
   1992 
   1993 bool BinaryOperator::hasNoUnsignedWrap() const {
   1994   return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
   1995 }
   1996 
   1997 bool BinaryOperator::hasNoSignedWrap() const {
   1998   return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
   1999 }
   2000 
   2001 bool BinaryOperator::isExact() const {
   2002   return cast<PossiblyExactOperator>(this)->isExact();
   2003 }
   2004 
   2005 //===----------------------------------------------------------------------===//
   2006 //                             FPMathOperator Class
   2007 //===----------------------------------------------------------------------===//
   2008 
   2009 /// getFPAccuracy - Get the maximum error permitted by this operation in ULPs.
   2010 /// An accuracy of 0.0 means that the operation should be performed with the
   2011 /// default precision.
   2012 float FPMathOperator::getFPAccuracy() const {
   2013   const MDNode *MD =
   2014     cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
   2015   if (!MD)
   2016     return 0.0;
   2017   ConstantFP *Accuracy = cast<ConstantFP>(MD->getOperand(0));
   2018   return Accuracy->getValueAPF().convertToFloat();
   2019 }
   2020 
   2021 
   2022 //===----------------------------------------------------------------------===//
   2023 //                                CastInst Class
   2024 //===----------------------------------------------------------------------===//
   2025 
   2026 void CastInst::anchor() {}
   2027 
   2028 // Just determine if this cast only deals with integral->integral conversion.
   2029 bool CastInst::isIntegerCast() const {
   2030   switch (getOpcode()) {
   2031     default: return false;
   2032     case Instruction::ZExt:
   2033     case Instruction::SExt:
   2034     case Instruction::Trunc:
   2035       return true;
   2036     case Instruction::BitCast:
   2037       return getOperand(0)->getType()->isIntegerTy() &&
   2038         getType()->isIntegerTy();
   2039   }
   2040 }
   2041 
   2042 bool CastInst::isLosslessCast() const {
   2043   // Only BitCast can be lossless, exit fast if we're not BitCast
   2044   if (getOpcode() != Instruction::BitCast)
   2045     return false;
   2046 
   2047   // Identity cast is always lossless
   2048   Type* SrcTy = getOperand(0)->getType();
   2049   Type* DstTy = getType();
   2050   if (SrcTy == DstTy)
   2051     return true;
   2052 
   2053   // Pointer to pointer is always lossless.
   2054   if (SrcTy->isPointerTy())
   2055     return DstTy->isPointerTy();
   2056   return false;  // Other types have no identity values
   2057 }
   2058 
   2059 /// This function determines if the CastInst does not require any bits to be
   2060 /// changed in order to effect the cast. Essentially, it identifies cases where
   2061 /// no code gen is necessary for the cast, hence the name no-op cast.  For
   2062 /// example, the following are all no-op casts:
   2063 /// # bitcast i32* %x to i8*
   2064 /// # bitcast <2 x i32> %x to <4 x i16>
   2065 /// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
   2066 /// @brief Determine if the described cast is a no-op.
   2067 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
   2068                           Type *SrcTy,
   2069                           Type *DestTy,
   2070                           Type *IntPtrTy) {
   2071   switch (Opcode) {
   2072     default: llvm_unreachable("Invalid CastOp");
   2073     case Instruction::Trunc:
   2074     case Instruction::ZExt:
   2075     case Instruction::SExt:
   2076     case Instruction::FPTrunc:
   2077     case Instruction::FPExt:
   2078     case Instruction::UIToFP:
   2079     case Instruction::SIToFP:
   2080     case Instruction::FPToUI:
   2081     case Instruction::FPToSI:
   2082       return false; // These always modify bits
   2083     case Instruction::BitCast:
   2084       return true;  // BitCast never modifies bits.
   2085     case Instruction::PtrToInt:
   2086       return IntPtrTy->getScalarSizeInBits() ==
   2087              DestTy->getScalarSizeInBits();
   2088     case Instruction::IntToPtr:
   2089       return IntPtrTy->getScalarSizeInBits() ==
   2090              SrcTy->getScalarSizeInBits();
   2091   }
   2092 }
   2093 
   2094 /// @brief Determine if a cast is a no-op.
   2095 bool CastInst::isNoopCast(Type *IntPtrTy) const {
   2096   return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
   2097 }
   2098 
   2099 /// This function determines if a pair of casts can be eliminated and what
   2100 /// opcode should be used in the elimination. This assumes that there are two
   2101 /// instructions like this:
   2102 /// *  %F = firstOpcode SrcTy %x to MidTy
   2103 /// *  %S = secondOpcode MidTy %F to DstTy
   2104 /// The function returns a resultOpcode so these two casts can be replaced with:
   2105 /// *  %Replacement = resultOpcode %SrcTy %x to DstTy
   2106 /// If no such cast is permited, the function returns 0.
   2107 unsigned CastInst::isEliminableCastPair(
   2108   Instruction::CastOps firstOp, Instruction::CastOps secondOp,
   2109   Type *SrcTy, Type *MidTy, Type *DstTy, Type *IntPtrTy) {
   2110   // Define the 144 possibilities for these two cast instructions. The values
   2111   // in this matrix determine what to do in a given situation and select the
   2112   // case in the switch below.  The rows correspond to firstOp, the columns
   2113   // correspond to secondOp.  In looking at the table below, keep in  mind
   2114   // the following cast properties:
   2115   //
   2116   //          Size Compare       Source               Destination
   2117   // Operator  Src ? Size   Type       Sign         Type       Sign
   2118   // -------- ------------ -------------------   ---------------------
   2119   // TRUNC         >       Integer      Any        Integral     Any
   2120   // ZEXT          <       Integral   Unsigned     Integer      Any
   2121   // SEXT          <       Integral    Signed      Integer      Any
   2122   // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
   2123   // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
   2124   // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
   2125   // SITOFP       n/a      Integral    Signed      FloatPt      n/a
   2126   // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
   2127   // FPEXT         <       FloatPt      n/a        FloatPt      n/a
   2128   // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
   2129   // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
   2130   // BITCAST       =       FirstClass   n/a       FirstClass    n/a
   2131   //
   2132   // NOTE: some transforms are safe, but we consider them to be non-profitable.
   2133   // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
   2134   // into "fptoui double to i64", but this loses information about the range
   2135   // of the produced value (we no longer know the top-part is all zeros).
   2136   // Further this conversion is often much more expensive for typical hardware,
   2137   // and causes issues when building libgcc.  We disallow fptosi+sext for the
   2138   // same reason.
   2139   const unsigned numCastOps =
   2140     Instruction::CastOpsEnd - Instruction::CastOpsBegin;
   2141   static const uint8_t CastResults[numCastOps][numCastOps] = {
   2142     // T        F  F  U  S  F  F  P  I  B   -+
   2143     // R  Z  S  P  P  I  I  T  P  2  N  T    |
   2144     // U  E  E  2  2  2  2  R  E  I  T  C    +- secondOp
   2145     // N  X  X  U  S  F  F  N  X  N  2  V    |
   2146     // C  T  T  I  I  P  P  C  T  T  P  T   -+
   2147     {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc      -+
   2148     {  8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt        |
   2149     {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt        |
   2150     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI      |
   2151     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI      |
   2152     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP      +- firstOp
   2153     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP      |
   2154     { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc     |
   2155     { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt       |
   2156     {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt    |
   2157     { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr    |
   2158     {  5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast    -+
   2159   };
   2160 
   2161   // If either of the casts are a bitcast from scalar to vector, disallow the
   2162   // merging. However, bitcast of A->B->A are allowed.
   2163   bool isFirstBitcast  = (firstOp == Instruction::BitCast);
   2164   bool isSecondBitcast = (secondOp == Instruction::BitCast);
   2165   bool chainedBitcast  = (SrcTy == DstTy && isFirstBitcast && isSecondBitcast);
   2166 
   2167   // Check if any of the bitcasts convert scalars<->vectors.
   2168   if ((isFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
   2169       (isSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
   2170     // Unless we are bitcasing to the original type, disallow optimizations.
   2171     if (!chainedBitcast) return 0;
   2172 
   2173   int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
   2174                             [secondOp-Instruction::CastOpsBegin];
   2175   switch (ElimCase) {
   2176     case 0:
   2177       // categorically disallowed
   2178       return 0;
   2179     case 1:
   2180       // allowed, use first cast's opcode
   2181       return firstOp;
   2182     case 2:
   2183       // allowed, use second cast's opcode
   2184       return secondOp;
   2185     case 3:
   2186       // no-op cast in second op implies firstOp as long as the DestTy
   2187       // is integer and we are not converting between a vector and a
   2188       // non vector type.
   2189       if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
   2190         return firstOp;
   2191       return 0;
   2192     case 4:
   2193       // no-op cast in second op implies firstOp as long as the DestTy
   2194       // is floating point.
   2195       if (DstTy->isFloatingPointTy())
   2196         return firstOp;
   2197       return 0;
   2198     case 5:
   2199       // no-op cast in first op implies secondOp as long as the SrcTy
   2200       // is an integer.
   2201       if (SrcTy->isIntegerTy())
   2202         return secondOp;
   2203       return 0;
   2204     case 6:
   2205       // no-op cast in first op implies secondOp as long as the SrcTy
   2206       // is a floating point.
   2207       if (SrcTy->isFloatingPointTy())
   2208         return secondOp;
   2209       return 0;
   2210     case 7: {
   2211       // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size
   2212       if (!IntPtrTy)
   2213         return 0;
   2214       unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
   2215       unsigned MidSize = MidTy->getScalarSizeInBits();
   2216       if (MidSize >= PtrSize)
   2217         return Instruction::BitCast;
   2218       return 0;
   2219     }
   2220     case 8: {
   2221       // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
   2222       // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
   2223       // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
   2224       unsigned SrcSize = SrcTy->getScalarSizeInBits();
   2225       unsigned DstSize = DstTy->getScalarSizeInBits();
   2226       if (SrcSize == DstSize)
   2227         return Instruction::BitCast;
   2228       else if (SrcSize < DstSize)
   2229         return firstOp;
   2230       return secondOp;
   2231     }
   2232     case 9: // zext, sext -> zext, because sext can't sign extend after zext
   2233       return Instruction::ZExt;
   2234     case 10:
   2235       // fpext followed by ftrunc is allowed if the bit size returned to is
   2236       // the same as the original, in which case its just a bitcast
   2237       if (SrcTy == DstTy)
   2238         return Instruction::BitCast;
   2239       return 0; // If the types are not the same we can't eliminate it.
   2240     case 11:
   2241       // bitcast followed by ptrtoint is allowed as long as the bitcast
   2242       // is a pointer to pointer cast.
   2243       if (SrcTy->isPointerTy() && MidTy->isPointerTy())
   2244         return secondOp;
   2245       return 0;
   2246     case 12:
   2247       // inttoptr, bitcast -> intptr  if bitcast is a ptr to ptr cast
   2248       if (MidTy->isPointerTy() && DstTy->isPointerTy())
   2249         return firstOp;
   2250       return 0;
   2251     case 13: {
   2252       // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
   2253       if (!IntPtrTy)
   2254         return 0;
   2255       unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
   2256       unsigned SrcSize = SrcTy->getScalarSizeInBits();
   2257       unsigned DstSize = DstTy->getScalarSizeInBits();
   2258       if (SrcSize <= PtrSize && SrcSize == DstSize)
   2259         return Instruction::BitCast;
   2260       return 0;
   2261     }
   2262     case 99:
   2263       // cast combination can't happen (error in input). This is for all cases
   2264       // where the MidTy is not the same for the two cast instructions.
   2265       llvm_unreachable("Invalid Cast Combination");
   2266     default:
   2267       llvm_unreachable("Error in CastResults table!!!");
   2268   }
   2269 }
   2270 
   2271 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
   2272   const Twine &Name, Instruction *InsertBefore) {
   2273   assert(castIsValid(op, S, Ty) && "Invalid cast!");
   2274   // Construct and return the appropriate CastInst subclass
   2275   switch (op) {
   2276     case Trunc:    return new TruncInst    (S, Ty, Name, InsertBefore);
   2277     case ZExt:     return new ZExtInst     (S, Ty, Name, InsertBefore);
   2278     case SExt:     return new SExtInst     (S, Ty, Name, InsertBefore);
   2279     case FPTrunc:  return new FPTruncInst  (S, Ty, Name, InsertBefore);
   2280     case FPExt:    return new FPExtInst    (S, Ty, Name, InsertBefore);
   2281     case UIToFP:   return new UIToFPInst   (S, Ty, Name, InsertBefore);
   2282     case SIToFP:   return new SIToFPInst   (S, Ty, Name, InsertBefore);
   2283     case FPToUI:   return new FPToUIInst   (S, Ty, Name, InsertBefore);
   2284     case FPToSI:   return new FPToSIInst   (S, Ty, Name, InsertBefore);
   2285     case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
   2286     case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
   2287     case BitCast:  return new BitCastInst  (S, Ty, Name, InsertBefore);
   2288     default: llvm_unreachable("Invalid opcode provided");
   2289   }
   2290 }
   2291 
   2292 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
   2293   const Twine &Name, BasicBlock *InsertAtEnd) {
   2294   assert(castIsValid(op, S, Ty) && "Invalid cast!");
   2295   // Construct and return the appropriate CastInst subclass
   2296   switch (op) {
   2297     case Trunc:    return new TruncInst    (S, Ty, Name, InsertAtEnd);
   2298     case ZExt:     return new ZExtInst     (S, Ty, Name, InsertAtEnd);
   2299     case SExt:     return new SExtInst     (S, Ty, Name, InsertAtEnd);
   2300     case FPTrunc:  return new FPTruncInst  (S, Ty, Name, InsertAtEnd);
   2301     case FPExt:    return new FPExtInst    (S, Ty, Name, InsertAtEnd);
   2302     case UIToFP:   return new UIToFPInst   (S, Ty, Name, InsertAtEnd);
   2303     case SIToFP:   return new SIToFPInst   (S, Ty, Name, InsertAtEnd);
   2304     case FPToUI:   return new FPToUIInst   (S, Ty, Name, InsertAtEnd);
   2305     case FPToSI:   return new FPToSIInst   (S, Ty, Name, InsertAtEnd);
   2306     case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
   2307     case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
   2308     case BitCast:  return new BitCastInst  (S, Ty, Name, InsertAtEnd);
   2309     default: llvm_unreachable("Invalid opcode provided");
   2310   }
   2311 }
   2312 
   2313 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
   2314                                         const Twine &Name,
   2315                                         Instruction *InsertBefore) {
   2316   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   2317     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
   2318   return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
   2319 }
   2320 
   2321 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
   2322                                         const Twine &Name,
   2323                                         BasicBlock *InsertAtEnd) {
   2324   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   2325     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
   2326   return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
   2327 }
   2328 
   2329 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
   2330                                         const Twine &Name,
   2331                                         Instruction *InsertBefore) {
   2332   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   2333     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
   2334   return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
   2335 }
   2336 
   2337 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
   2338                                         const Twine &Name,
   2339                                         BasicBlock *InsertAtEnd) {
   2340   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   2341     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
   2342   return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
   2343 }
   2344 
   2345 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
   2346                                          const Twine &Name,
   2347                                          Instruction *InsertBefore) {
   2348   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   2349     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
   2350   return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
   2351 }
   2352 
   2353 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
   2354                                          const Twine &Name,
   2355                                          BasicBlock *InsertAtEnd) {
   2356   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   2357     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
   2358   return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
   2359 }
   2360 
   2361 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
   2362                                       const Twine &Name,
   2363                                       BasicBlock *InsertAtEnd) {
   2364   assert(S->getType()->isPointerTy() && "Invalid cast");
   2365   assert((Ty->isIntegerTy() || Ty->isPointerTy()) &&
   2366          "Invalid cast");
   2367 
   2368   if (Ty->isIntegerTy())
   2369     return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
   2370   return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
   2371 }
   2372 
   2373 /// @brief Create a BitCast or a PtrToInt cast instruction
   2374 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
   2375                                       const Twine &Name,
   2376                                       Instruction *InsertBefore) {
   2377   assert(S->getType()->isPointerTy() && "Invalid cast");
   2378   assert((Ty->isIntegerTy() || Ty->isPointerTy()) &&
   2379          "Invalid cast");
   2380 
   2381   if (Ty->isIntegerTy())
   2382     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
   2383   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
   2384 }
   2385 
   2386 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
   2387                                       bool isSigned, const Twine &Name,
   2388                                       Instruction *InsertBefore) {
   2389   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
   2390          "Invalid integer cast");
   2391   unsigned SrcBits = C->getType()->getScalarSizeInBits();
   2392   unsigned DstBits = Ty->getScalarSizeInBits();
   2393   Instruction::CastOps opcode =
   2394     (SrcBits == DstBits ? Instruction::BitCast :
   2395      (SrcBits > DstBits ? Instruction::Trunc :
   2396       (isSigned ? Instruction::SExt : Instruction::ZExt)));
   2397   return Create(opcode, C, Ty, Name, InsertBefore);
   2398 }
   2399 
   2400 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
   2401                                       bool isSigned, const Twine &Name,
   2402                                       BasicBlock *InsertAtEnd) {
   2403   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
   2404          "Invalid cast");
   2405   unsigned SrcBits = C->getType()->getScalarSizeInBits();
   2406   unsigned DstBits = Ty->getScalarSizeInBits();
   2407   Instruction::CastOps opcode =
   2408     (SrcBits == DstBits ? Instruction::BitCast :
   2409      (SrcBits > DstBits ? Instruction::Trunc :
   2410       (isSigned ? Instruction::SExt : Instruction::ZExt)));
   2411   return Create(opcode, C, Ty, Name, InsertAtEnd);
   2412 }
   2413 
   2414 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
   2415                                  const Twine &Name,
   2416                                  Instruction *InsertBefore) {
   2417   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
   2418          "Invalid cast");
   2419   unsigned SrcBits = C->getType()->getScalarSizeInBits();
   2420   unsigned DstBits = Ty->getScalarSizeInBits();
   2421   Instruction::CastOps opcode =
   2422     (SrcBits == DstBits ? Instruction::BitCast :
   2423      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
   2424   return Create(opcode, C, Ty, Name, InsertBefore);
   2425 }
   2426 
   2427 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
   2428                                  const Twine &Name,
   2429                                  BasicBlock *InsertAtEnd) {
   2430   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
   2431          "Invalid cast");
   2432   unsigned SrcBits = C->getType()->getScalarSizeInBits();
   2433   unsigned DstBits = Ty->getScalarSizeInBits();
   2434   Instruction::CastOps opcode =
   2435     (SrcBits == DstBits ? Instruction::BitCast :
   2436      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
   2437   return Create(opcode, C, Ty, Name, InsertAtEnd);
   2438 }
   2439 
   2440 // Check whether it is valid to call getCastOpcode for these types.
   2441 // This routine must be kept in sync with getCastOpcode.
   2442 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
   2443   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
   2444     return false;
   2445 
   2446   if (SrcTy == DestTy)
   2447     return true;
   2448 
   2449   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
   2450     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
   2451       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
   2452         // An element by element cast.  Valid if casting the elements is valid.
   2453         SrcTy = SrcVecTy->getElementType();
   2454         DestTy = DestVecTy->getElementType();
   2455       }
   2456 
   2457   // Get the bit sizes, we'll need these
   2458   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
   2459   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
   2460 
   2461   // Run through the possibilities ...
   2462   if (DestTy->isIntegerTy()) {               // Casting to integral
   2463     if (SrcTy->isIntegerTy()) {                // Casting from integral
   2464         return true;
   2465     } else if (SrcTy->isFloatingPointTy()) {   // Casting from floating pt
   2466       return true;
   2467     } else if (SrcTy->isVectorTy()) {          // Casting from vector
   2468       return DestBits == SrcBits;
   2469     } else {                                   // Casting from something else
   2470       return SrcTy->isPointerTy();
   2471     }
   2472   } else if (DestTy->isFloatingPointTy()) {  // Casting to floating pt
   2473     if (SrcTy->isIntegerTy()) {                // Casting from integral
   2474       return true;
   2475     } else if (SrcTy->isFloatingPointTy()) {   // Casting from floating pt
   2476       return true;
   2477     } else if (SrcTy->isVectorTy()) {          // Casting from vector
   2478       return DestBits == SrcBits;
   2479     } else {                                   // Casting from something else
   2480       return false;
   2481     }
   2482   } else if (DestTy->isVectorTy()) {         // Casting to vector
   2483     return DestBits == SrcBits;
   2484   } else if (DestTy->isPointerTy()) {        // Casting to pointer
   2485     if (SrcTy->isPointerTy()) {                // Casting from pointer
   2486       return true;
   2487     } else if (SrcTy->isIntegerTy()) {         // Casting from integral
   2488       return true;
   2489     } else {                                   // Casting from something else
   2490       return false;
   2491     }
   2492   } else if (DestTy->isX86_MMXTy()) {
   2493     if (SrcTy->isVectorTy()) {
   2494       return DestBits == SrcBits;       // 64-bit vector to MMX
   2495     } else {
   2496       return false;
   2497     }
   2498   } else {                                   // Casting to something else
   2499     return false;
   2500   }
   2501 }
   2502 
   2503 // Provide a way to get a "cast" where the cast opcode is inferred from the
   2504 // types and size of the operand. This, basically, is a parallel of the
   2505 // logic in the castIsValid function below.  This axiom should hold:
   2506 //   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
   2507 // should not assert in castIsValid. In other words, this produces a "correct"
   2508 // casting opcode for the arguments passed to it.
   2509 // This routine must be kept in sync with isCastable.
   2510 Instruction::CastOps
   2511 CastInst::getCastOpcode(
   2512   const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
   2513   Type *SrcTy = Src->getType();
   2514 
   2515   assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
   2516          "Only first class types are castable!");
   2517 
   2518   if (SrcTy == DestTy)
   2519     return BitCast;
   2520 
   2521   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
   2522     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
   2523       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
   2524         // An element by element cast.  Find the appropriate opcode based on the
   2525         // element types.
   2526         SrcTy = SrcVecTy->getElementType();
   2527         DestTy = DestVecTy->getElementType();
   2528       }
   2529 
   2530   // Get the bit sizes, we'll need these
   2531   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
   2532   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
   2533 
   2534   // Run through the possibilities ...
   2535   if (DestTy->isIntegerTy()) {                      // Casting to integral
   2536     if (SrcTy->isIntegerTy()) {                     // Casting from integral
   2537       if (DestBits < SrcBits)
   2538         return Trunc;                               // int -> smaller int
   2539       else if (DestBits > SrcBits) {                // its an extension
   2540         if (SrcIsSigned)
   2541           return SExt;                              // signed -> SEXT
   2542         else
   2543           return ZExt;                              // unsigned -> ZEXT
   2544       } else {
   2545         return BitCast;                             // Same size, No-op cast
   2546       }
   2547     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
   2548       if (DestIsSigned)
   2549         return FPToSI;                              // FP -> sint
   2550       else
   2551         return FPToUI;                              // FP -> uint
   2552     } else if (SrcTy->isVectorTy()) {
   2553       assert(DestBits == SrcBits &&
   2554              "Casting vector to integer of different width");
   2555       return BitCast;                             // Same size, no-op cast
   2556     } else {
   2557       assert(SrcTy->isPointerTy() &&
   2558              "Casting from a value that is not first-class type");
   2559       return PtrToInt;                              // ptr -> int
   2560     }
   2561   } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
   2562     if (SrcTy->isIntegerTy()) {                     // Casting from integral
   2563       if (SrcIsSigned)
   2564         return SIToFP;                              // sint -> FP
   2565       else
   2566         return UIToFP;                              // uint -> FP
   2567     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
   2568       if (DestBits < SrcBits) {
   2569         return FPTrunc;                             // FP -> smaller FP
   2570       } else if (DestBits > SrcBits) {
   2571         return FPExt;                               // FP -> larger FP
   2572       } else  {
   2573         return BitCast;                             // same size, no-op cast
   2574       }
   2575     } else if (SrcTy->isVectorTy()) {
   2576       assert(DestBits == SrcBits &&
   2577              "Casting vector to floating point of different width");
   2578       return BitCast;                             // same size, no-op cast
   2579     }
   2580     llvm_unreachable("Casting pointer or non-first class to float");
   2581   } else if (DestTy->isVectorTy()) {
   2582     assert(DestBits == SrcBits &&
   2583            "Illegal cast to vector (wrong type or size)");
   2584     return BitCast;
   2585   } else if (DestTy->isPointerTy()) {
   2586     if (SrcTy->isPointerTy()) {
   2587       return BitCast;                               // ptr -> ptr
   2588     } else if (SrcTy->isIntegerTy()) {
   2589       return IntToPtr;                              // int -> ptr
   2590     }
   2591     llvm_unreachable("Casting pointer to other than pointer or int");
   2592   } else if (DestTy->isX86_MMXTy()) {
   2593     if (SrcTy->isVectorTy()) {
   2594       assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
   2595       return BitCast;                               // 64-bit vector to MMX
   2596     }
   2597     llvm_unreachable("Illegal cast to X86_MMX");
   2598   }
   2599   llvm_unreachable("Casting to type that is not first-class");
   2600 }
   2601 
   2602 //===----------------------------------------------------------------------===//
   2603 //                    CastInst SubClass Constructors
   2604 //===----------------------------------------------------------------------===//
   2605 
   2606 /// Check that the construction parameters for a CastInst are correct. This
   2607 /// could be broken out into the separate constructors but it is useful to have
   2608 /// it in one place and to eliminate the redundant code for getting the sizes
   2609 /// of the types involved.
   2610 bool
   2611 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
   2612 
   2613   // Check for type sanity on the arguments
   2614   Type *SrcTy = S->getType();
   2615   if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
   2616       SrcTy->isAggregateType() || DstTy->isAggregateType())
   2617     return false;
   2618 
   2619   // Get the size of the types in bits, we'll need this later
   2620   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
   2621   unsigned DstBitSize = DstTy->getScalarSizeInBits();
   2622 
   2623   // If these are vector types, get the lengths of the vectors (using zero for
   2624   // scalar types means that checking that vector lengths match also checks that
   2625   // scalars are not being converted to vectors or vectors to scalars).
   2626   unsigned SrcLength = SrcTy->isVectorTy() ?
   2627     cast<VectorType>(SrcTy)->getNumElements() : 0;
   2628   unsigned DstLength = DstTy->isVectorTy() ?
   2629     cast<VectorType>(DstTy)->getNumElements() : 0;
   2630 
   2631   // Switch on the opcode provided
   2632   switch (op) {
   2633   default: return false; // This is an input error
   2634   case Instruction::Trunc:
   2635     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
   2636       SrcLength == DstLength && SrcBitSize > DstBitSize;
   2637   case Instruction::ZExt:
   2638     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
   2639       SrcLength == DstLength && SrcBitSize < DstBitSize;
   2640   case Instruction::SExt:
   2641     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
   2642       SrcLength == DstLength && SrcBitSize < DstBitSize;
   2643   case Instruction::FPTrunc:
   2644     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
   2645       SrcLength == DstLength && SrcBitSize > DstBitSize;
   2646   case Instruction::FPExt:
   2647     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
   2648       SrcLength == DstLength && SrcBitSize < DstBitSize;
   2649   case Instruction::UIToFP:
   2650   case Instruction::SIToFP:
   2651     return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
   2652       SrcLength == DstLength;
   2653   case Instruction::FPToUI:
   2654   case Instruction::FPToSI:
   2655     return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
   2656       SrcLength == DstLength;
   2657   case Instruction::PtrToInt:
   2658     if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
   2659       return false;
   2660     if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
   2661       if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
   2662         return false;
   2663     return SrcTy->getScalarType()->isPointerTy() &&
   2664            DstTy->getScalarType()->isIntegerTy();
   2665   case Instruction::IntToPtr:
   2666     if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
   2667       return false;
   2668     if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
   2669       if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
   2670         return false;
   2671     return SrcTy->getScalarType()->isIntegerTy() &&
   2672            DstTy->getScalarType()->isPointerTy();
   2673   case Instruction::BitCast:
   2674     // BitCast implies a no-op cast of type only. No bits change.
   2675     // However, you can't cast pointers to anything but pointers.
   2676     if (SrcTy->isPointerTy() != DstTy->isPointerTy())
   2677       return false;
   2678 
   2679     // Now we know we're not dealing with a pointer/non-pointer mismatch. In all
   2680     // these cases, the cast is okay if the source and destination bit widths
   2681     // are identical.
   2682     return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
   2683   }
   2684 }
   2685 
   2686 TruncInst::TruncInst(
   2687   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2688 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
   2689   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
   2690 }
   2691 
   2692 TruncInst::TruncInst(
   2693   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2694 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
   2695   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
   2696 }
   2697 
   2698 ZExtInst::ZExtInst(
   2699   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2700 )  : CastInst(Ty, ZExt, S, Name, InsertBefore) {
   2701   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
   2702 }
   2703 
   2704 ZExtInst::ZExtInst(
   2705   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2706 )  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
   2707   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
   2708 }
   2709 SExtInst::SExtInst(
   2710   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2711 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
   2712   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
   2713 }
   2714 
   2715 SExtInst::SExtInst(
   2716   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2717 )  : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
   2718   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
   2719 }
   2720 
   2721 FPTruncInst::FPTruncInst(
   2722   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2723 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
   2724   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
   2725 }
   2726 
   2727 FPTruncInst::FPTruncInst(
   2728   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2729 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
   2730   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
   2731 }
   2732 
   2733 FPExtInst::FPExtInst(
   2734   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2735 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
   2736   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
   2737 }
   2738 
   2739 FPExtInst::FPExtInst(
   2740   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2741 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
   2742   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
   2743 }
   2744 
   2745 UIToFPInst::UIToFPInst(
   2746   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2747 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
   2748   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
   2749 }
   2750 
   2751 UIToFPInst::UIToFPInst(
   2752   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2753 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
   2754   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
   2755 }
   2756 
   2757 SIToFPInst::SIToFPInst(
   2758   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2759 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
   2760   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
   2761 }
   2762 
   2763 SIToFPInst::SIToFPInst(
   2764   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2765 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
   2766   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
   2767 }
   2768 
   2769 FPToUIInst::FPToUIInst(
   2770   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2771 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
   2772   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
   2773 }
   2774 
   2775 FPToUIInst::FPToUIInst(
   2776   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2777 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
   2778   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
   2779 }
   2780 
   2781 FPToSIInst::FPToSIInst(
   2782   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2783 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
   2784   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
   2785 }
   2786 
   2787 FPToSIInst::FPToSIInst(
   2788   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2789 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
   2790   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
   2791 }
   2792 
   2793 PtrToIntInst::PtrToIntInst(
   2794   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2795 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
   2796   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
   2797 }
   2798 
   2799 PtrToIntInst::PtrToIntInst(
   2800   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2801 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
   2802   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
   2803 }
   2804 
   2805 IntToPtrInst::IntToPtrInst(
   2806   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2807 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
   2808   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
   2809 }
   2810 
   2811 IntToPtrInst::IntToPtrInst(
   2812   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2813 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
   2814   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
   2815 }
   2816 
   2817 BitCastInst::BitCastInst(
   2818   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2819 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
   2820   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
   2821 }
   2822 
   2823 BitCastInst::BitCastInst(
   2824   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2825 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
   2826   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
   2827 }
   2828 
   2829 //===----------------------------------------------------------------------===//
   2830 //                               CmpInst Classes
   2831 //===----------------------------------------------------------------------===//
   2832 
   2833 void CmpInst::Anchor() const {}
   2834 
   2835 CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
   2836                  Value *LHS, Value *RHS, const Twine &Name,
   2837                  Instruction *InsertBefore)
   2838   : Instruction(ty, op,
   2839                 OperandTraits<CmpInst>::op_begin(this),
   2840                 OperandTraits<CmpInst>::operands(this),
   2841                 InsertBefore) {
   2842     Op<0>() = LHS;
   2843     Op<1>() = RHS;
   2844   setPredicate((Predicate)predicate);
   2845   setName(Name);
   2846 }
   2847 
   2848 CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
   2849                  Value *LHS, Value *RHS, const Twine &Name,
   2850                  BasicBlock *InsertAtEnd)
   2851   : Instruction(ty, op,
   2852                 OperandTraits<CmpInst>::op_begin(this),
   2853                 OperandTraits<CmpInst>::operands(this),
   2854                 InsertAtEnd) {
   2855   Op<0>() = LHS;
   2856   Op<1>() = RHS;
   2857   setPredicate((Predicate)predicate);
   2858   setName(Name);
   2859 }
   2860 
   2861 CmpInst *
   2862 CmpInst::Create(OtherOps Op, unsigned short predicate,
   2863                 Value *S1, Value *S2,
   2864                 const Twine &Name, Instruction *InsertBefore) {
   2865   if (Op == Instruction::ICmp) {
   2866     if (InsertBefore)
   2867       return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
   2868                           S1, S2, Name);
   2869     else
   2870       return new ICmpInst(CmpInst::Predicate(predicate),
   2871                           S1, S2, Name);
   2872   }
   2873 
   2874   if (InsertBefore)
   2875     return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
   2876                         S1, S2, Name);
   2877   else
   2878     return new FCmpInst(CmpInst::Predicate(predicate),
   2879                         S1, S2, Name);
   2880 }
   2881 
   2882 CmpInst *
   2883 CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
   2884                 const Twine &Name, BasicBlock *InsertAtEnd) {
   2885   if (Op == Instruction::ICmp) {
   2886     return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
   2887                         S1, S2, Name);
   2888   }
   2889   return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
   2890                       S1, S2, Name);
   2891 }
   2892 
   2893 void CmpInst::swapOperands() {
   2894   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
   2895     IC->swapOperands();
   2896   else
   2897     cast<FCmpInst>(this)->swapOperands();
   2898 }
   2899 
   2900 bool CmpInst::isCommutative() const {
   2901   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
   2902     return IC->isCommutative();
   2903   return cast<FCmpInst>(this)->isCommutative();
   2904 }
   2905 
   2906 bool CmpInst::isEquality() const {
   2907   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
   2908     return IC->isEquality();
   2909   return cast<FCmpInst>(this)->isEquality();
   2910 }
   2911 
   2912 
   2913 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
   2914   switch (pred) {
   2915     default: llvm_unreachable("Unknown cmp predicate!");
   2916     case ICMP_EQ: return ICMP_NE;
   2917     case ICMP_NE: return ICMP_EQ;
   2918     case ICMP_UGT: return ICMP_ULE;
   2919     case ICMP_ULT: return ICMP_UGE;
   2920     case ICMP_UGE: return ICMP_ULT;
   2921     case ICMP_ULE: return ICMP_UGT;
   2922     case ICMP_SGT: return ICMP_SLE;
   2923     case ICMP_SLT: return ICMP_SGE;
   2924     case ICMP_SGE: return ICMP_SLT;
   2925     case ICMP_SLE: return ICMP_SGT;
   2926 
   2927     case FCMP_OEQ: return FCMP_UNE;
   2928     case FCMP_ONE: return FCMP_UEQ;
   2929     case FCMP_OGT: return FCMP_ULE;
   2930     case FCMP_OLT: return FCMP_UGE;
   2931     case FCMP_OGE: return FCMP_ULT;
   2932     case FCMP_OLE: return FCMP_UGT;
   2933     case FCMP_UEQ: return FCMP_ONE;
   2934     case FCMP_UNE: return FCMP_OEQ;
   2935     case FCMP_UGT: return FCMP_OLE;
   2936     case FCMP_ULT: return FCMP_OGE;
   2937     case FCMP_UGE: return FCMP_OLT;
   2938     case FCMP_ULE: return FCMP_OGT;
   2939     case FCMP_ORD: return FCMP_UNO;
   2940     case FCMP_UNO: return FCMP_ORD;
   2941     case FCMP_TRUE: return FCMP_FALSE;
   2942     case FCMP_FALSE: return FCMP_TRUE;
   2943   }
   2944 }
   2945 
   2946 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
   2947   switch (pred) {
   2948     default: llvm_unreachable("Unknown icmp predicate!");
   2949     case ICMP_EQ: case ICMP_NE:
   2950     case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
   2951        return pred;
   2952     case ICMP_UGT: return ICMP_SGT;
   2953     case ICMP_ULT: return ICMP_SLT;
   2954     case ICMP_UGE: return ICMP_SGE;
   2955     case ICMP_ULE: return ICMP_SLE;
   2956   }
   2957 }
   2958 
   2959 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
   2960   switch (pred) {
   2961     default: llvm_unreachable("Unknown icmp predicate!");
   2962     case ICMP_EQ: case ICMP_NE:
   2963     case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
   2964        return pred;
   2965     case ICMP_SGT: return ICMP_UGT;
   2966     case ICMP_SLT: return ICMP_ULT;
   2967     case ICMP_SGE: return ICMP_UGE;
   2968     case ICMP_SLE: return ICMP_ULE;
   2969   }
   2970 }
   2971 
   2972 /// Initialize a set of values that all satisfy the condition with C.
   2973 ///
   2974 ConstantRange
   2975 ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
   2976   APInt Lower(C);
   2977   APInt Upper(C);
   2978   uint32_t BitWidth = C.getBitWidth();
   2979   switch (pred) {
   2980   default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
   2981   case ICmpInst::ICMP_EQ: Upper++; break;
   2982   case ICmpInst::ICMP_NE: Lower++; break;
   2983   case ICmpInst::ICMP_ULT:
   2984     Lower = APInt::getMinValue(BitWidth);
   2985     // Check for an empty-set condition.
   2986     if (Lower == Upper)
   2987       return ConstantRange(BitWidth, /*isFullSet=*/false);
   2988     break;
   2989   case ICmpInst::ICMP_SLT:
   2990     Lower = APInt::getSignedMinValue(BitWidth);
   2991     // Check for an empty-set condition.
   2992     if (Lower == Upper)
   2993       return ConstantRange(BitWidth, /*isFullSet=*/false);
   2994     break;
   2995   case ICmpInst::ICMP_UGT:
   2996     Lower++; Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
   2997     // Check for an empty-set condition.
   2998     if (Lower == Upper)
   2999       return ConstantRange(BitWidth, /*isFullSet=*/false);
   3000     break;
   3001   case ICmpInst::ICMP_SGT:
   3002     Lower++; Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
   3003     // Check for an empty-set condition.
   3004     if (Lower == Upper)
   3005       return ConstantRange(BitWidth, /*isFullSet=*/false);
   3006     break;
   3007   case ICmpInst::ICMP_ULE:
   3008     Lower = APInt::getMinValue(BitWidth); Upper++;
   3009     // Check for a full-set condition.
   3010     if (Lower == Upper)
   3011       return ConstantRange(BitWidth, /*isFullSet=*/true);
   3012     break;
   3013   case ICmpInst::ICMP_SLE:
   3014     Lower = APInt::getSignedMinValue(BitWidth); Upper++;
   3015     // Check for a full-set condition.
   3016     if (Lower == Upper)
   3017       return ConstantRange(BitWidth, /*isFullSet=*/true);
   3018     break;
   3019   case ICmpInst::ICMP_UGE:
   3020     Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
   3021     // Check for a full-set condition.
   3022     if (Lower == Upper)
   3023       return ConstantRange(BitWidth, /*isFullSet=*/true);
   3024     break;
   3025   case ICmpInst::ICMP_SGE:
   3026     Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
   3027     // Check for a full-set condition.
   3028     if (Lower == Upper)
   3029       return ConstantRange(BitWidth, /*isFullSet=*/true);
   3030     break;
   3031   }
   3032   return ConstantRange(Lower, Upper);
   3033 }
   3034 
   3035 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
   3036   switch (pred) {
   3037     default: llvm_unreachable("Unknown cmp predicate!");
   3038     case ICMP_EQ: case ICMP_NE:
   3039       return pred;
   3040     case ICMP_SGT: return ICMP_SLT;
   3041     case ICMP_SLT: return ICMP_SGT;
   3042     case ICMP_SGE: return ICMP_SLE;
   3043     case ICMP_SLE: return ICMP_SGE;
   3044     case ICMP_UGT: return ICMP_ULT;
   3045     case ICMP_ULT: return ICMP_UGT;
   3046     case ICMP_UGE: return ICMP_ULE;
   3047     case ICMP_ULE: return ICMP_UGE;
   3048 
   3049     case FCMP_FALSE: case FCMP_TRUE:
   3050     case FCMP_OEQ: case FCMP_ONE:
   3051     case FCMP_UEQ: case FCMP_UNE:
   3052     case FCMP_ORD: case FCMP_UNO:
   3053       return pred;
   3054     case FCMP_OGT: return FCMP_OLT;
   3055     case FCMP_OLT: return FCMP_OGT;
   3056     case FCMP_OGE: return FCMP_OLE;
   3057     case FCMP_OLE: return FCMP_OGE;
   3058     case FCMP_UGT: return FCMP_ULT;
   3059     case FCMP_ULT: return FCMP_UGT;
   3060     case FCMP_UGE: return FCMP_ULE;
   3061     case FCMP_ULE: return FCMP_UGE;
   3062   }
   3063 }
   3064 
   3065 bool CmpInst::isUnsigned(unsigned short predicate) {
   3066   switch (predicate) {
   3067     default: return false;
   3068     case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
   3069     case ICmpInst::ICMP_UGE: return true;
   3070   }
   3071 }
   3072 
   3073 bool CmpInst::isSigned(unsigned short predicate) {
   3074   switch (predicate) {
   3075     default: return false;
   3076     case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
   3077     case ICmpInst::ICMP_SGE: return true;
   3078   }
   3079 }
   3080 
   3081 bool CmpInst::isOrdered(unsigned short predicate) {
   3082   switch (predicate) {
   3083     default: return false;
   3084     case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
   3085     case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
   3086     case FCmpInst::FCMP_ORD: return true;
   3087   }
   3088 }
   3089 
   3090 bool CmpInst::isUnordered(unsigned short predicate) {
   3091   switch (predicate) {
   3092     default: return false;
   3093     case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
   3094     case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
   3095     case FCmpInst::FCMP_UNO: return true;
   3096   }
   3097 }
   3098 
   3099 bool CmpInst::isTrueWhenEqual(unsigned short predicate) {
   3100   switch(predicate) {
   3101     default: return false;
   3102     case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
   3103     case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
   3104   }
   3105 }
   3106 
   3107 bool CmpInst::isFalseWhenEqual(unsigned short predicate) {
   3108   switch(predicate) {
   3109   case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
   3110   case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
   3111   default: return false;
   3112   }
   3113 }
   3114 
   3115 
   3116 //===----------------------------------------------------------------------===//
   3117 //                        SwitchInst Implementation
   3118 //===----------------------------------------------------------------------===//
   3119 
   3120 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
   3121   assert(Value && Default && NumReserved);
   3122   ReservedSpace = NumReserved;
   3123   NumOperands = 2;
   3124   OperandList = allocHungoffUses(ReservedSpace);
   3125 
   3126   OperandList[0] = Value;
   3127   OperandList[1] = Default;
   3128 }
   3129 
   3130 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
   3131 /// switch on and a default destination.  The number of additional cases can
   3132 /// be specified here to make memory allocation more efficient.  This
   3133 /// constructor can also autoinsert before another instruction.
   3134 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
   3135                        Instruction *InsertBefore)
   3136   : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
   3137                    0, 0, InsertBefore) {
   3138   init(Value, Default, 2+NumCases*2);
   3139 }
   3140 
   3141 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
   3142 /// switch on and a default destination.  The number of additional cases can
   3143 /// be specified here to make memory allocation more efficient.  This
   3144 /// constructor also autoinserts at the end of the specified BasicBlock.
   3145 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
   3146                        BasicBlock *InsertAtEnd)
   3147   : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
   3148                    0, 0, InsertAtEnd) {
   3149   init(Value, Default, 2+NumCases*2);
   3150 }
   3151 
   3152 SwitchInst::SwitchInst(const SwitchInst &SI)
   3153   : TerminatorInst(SI.getType(), Instruction::Switch, 0, 0) {
   3154   init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
   3155   NumOperands = SI.getNumOperands();
   3156   Use *OL = OperandList, *InOL = SI.OperandList;
   3157   for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
   3158     OL[i] = InOL[i];
   3159     OL[i+1] = InOL[i+1];
   3160   }
   3161   SubclassOptionalData = SI.SubclassOptionalData;
   3162 }
   3163 
   3164 SwitchInst::~SwitchInst() {
   3165   dropHungoffUses();
   3166 }
   3167 
   3168 
   3169 /// addCase - Add an entry to the switch instruction...
   3170 ///
   3171 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
   3172   unsigned NewCaseIdx = getNumCases();
   3173   unsigned OpNo = NumOperands;
   3174   if (OpNo+2 > ReservedSpace)
   3175     growOperands();  // Get more space!
   3176   // Initialize some new operands.
   3177   assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
   3178   NumOperands = OpNo+2;
   3179   CaseIt Case(this, NewCaseIdx);
   3180   Case.setValue(OnVal);
   3181   Case.setSuccessor(Dest);
   3182 }
   3183 
   3184 /// removeCase - This method removes the specified case and its successor
   3185 /// from the switch instruction.
   3186 void SwitchInst::removeCase(CaseIt i) {
   3187   unsigned idx = i.getCaseIndex();
   3188 
   3189   assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
   3190 
   3191   unsigned NumOps = getNumOperands();
   3192   Use *OL = OperandList;
   3193 
   3194   // Overwrite this case with the end of the list.
   3195   if (2 + (idx + 1) * 2 != NumOps) {
   3196     OL[2 + idx * 2] = OL[NumOps - 2];
   3197     OL[2 + idx * 2 + 1] = OL[NumOps - 1];
   3198   }
   3199 
   3200   // Nuke the last value.
   3201   OL[NumOps-2].set(0);
   3202   OL[NumOps-2+1].set(0);
   3203   NumOperands = NumOps-2;
   3204 }
   3205 
   3206 /// growOperands - grow operands - This grows the operand list in response
   3207 /// to a push_back style of operation.  This grows the number of ops by 3 times.
   3208 ///
   3209 void SwitchInst::growOperands() {
   3210   unsigned e = getNumOperands();
   3211   unsigned NumOps = e*3;
   3212 
   3213   ReservedSpace = NumOps;
   3214   Use *NewOps = allocHungoffUses(NumOps);
   3215   Use *OldOps = OperandList;
   3216   for (unsigned i = 0; i != e; ++i) {
   3217       NewOps[i] = OldOps[i];
   3218   }
   3219   OperandList = NewOps;
   3220   Use::zap(OldOps, OldOps + e, true);
   3221 }
   3222 
   3223 
   3224 BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
   3225   return getSuccessor(idx);
   3226 }
   3227 unsigned SwitchInst::getNumSuccessorsV() const {
   3228   return getNumSuccessors();
   3229 }
   3230 void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
   3231   setSuccessor(idx, B);
   3232 }
   3233 
   3234 //===----------------------------------------------------------------------===//
   3235 //                        IndirectBrInst Implementation
   3236 //===----------------------------------------------------------------------===//
   3237 
   3238 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
   3239   assert(Address && Address->getType()->isPointerTy() &&
   3240          "Address of indirectbr must be a pointer");
   3241   ReservedSpace = 1+NumDests;
   3242   NumOperands = 1;
   3243   OperandList = allocHungoffUses(ReservedSpace);
   3244 
   3245   OperandList[0] = Address;
   3246 }
   3247 
   3248 
   3249 /// growOperands - grow operands - This grows the operand list in response
   3250 /// to a push_back style of operation.  This grows the number of ops by 2 times.
   3251 ///
   3252 void IndirectBrInst::growOperands() {
   3253   unsigned e = getNumOperands();
   3254   unsigned NumOps = e*2;
   3255 
   3256   ReservedSpace = NumOps;
   3257   Use *NewOps = allocHungoffUses(NumOps);
   3258   Use *OldOps = OperandList;
   3259   for (unsigned i = 0; i != e; ++i)
   3260     NewOps[i] = OldOps[i];
   3261   OperandList = NewOps;
   3262   Use::zap(OldOps, OldOps + e, true);
   3263 }
   3264 
   3265 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
   3266                                Instruction *InsertBefore)
   3267 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
   3268                  0, 0, InsertBefore) {
   3269   init(Address, NumCases);
   3270 }
   3271 
   3272 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
   3273                                BasicBlock *InsertAtEnd)
   3274 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
   3275                  0, 0, InsertAtEnd) {
   3276   init(Address, NumCases);
   3277 }
   3278 
   3279 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
   3280   : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
   3281                    allocHungoffUses(IBI.getNumOperands()),
   3282                    IBI.getNumOperands()) {
   3283   Use *OL = OperandList, *InOL = IBI.OperandList;
   3284   for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
   3285     OL[i] = InOL[i];
   3286   SubclassOptionalData = IBI.SubclassOptionalData;
   3287 }
   3288 
   3289 IndirectBrInst::~IndirectBrInst() {
   3290   dropHungoffUses();
   3291 }
   3292 
   3293 /// addDestination - Add a destination.
   3294 ///
   3295 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
   3296   unsigned OpNo = NumOperands;
   3297   if (OpNo+1 > ReservedSpace)
   3298     growOperands();  // Get more space!
   3299   // Initialize some new operands.
   3300   assert(OpNo < ReservedSpace && "Growing didn't work!");
   3301   NumOperands = OpNo+1;
   3302   OperandList[OpNo] = DestBB;
   3303 }
   3304 
   3305 /// removeDestination - This method removes the specified successor from the
   3306 /// indirectbr instruction.
   3307 void IndirectBrInst::removeDestination(unsigned idx) {
   3308   assert(idx < getNumOperands()-1 && "Successor index out of range!");
   3309 
   3310   unsigned NumOps = getNumOperands();
   3311   Use *OL = OperandList;
   3312 
   3313   // Replace this value with the last one.
   3314   OL[idx+1] = OL[NumOps-1];
   3315 
   3316   // Nuke the last value.
   3317   OL[NumOps-1].set(0);
   3318   NumOperands = NumOps-1;
   3319 }
   3320 
   3321 BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const {
   3322   return getSuccessor(idx);
   3323 }
   3324 unsigned IndirectBrInst::getNumSuccessorsV() const {
   3325   return getNumSuccessors();
   3326 }
   3327 void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) {
   3328   setSuccessor(idx, B);
   3329 }
   3330 
   3331 //===----------------------------------------------------------------------===//
   3332 //                           clone_impl() implementations
   3333 //===----------------------------------------------------------------------===//
   3334 
   3335 // Define these methods here so vtables don't get emitted into every translation
   3336 // unit that uses these classes.
   3337 
   3338 GetElementPtrInst *GetElementPtrInst::clone_impl() const {
   3339   return new (getNumOperands()) GetElementPtrInst(*this);
   3340 }
   3341 
   3342 BinaryOperator *BinaryOperator::clone_impl() const {
   3343   return Create(getOpcode(), Op<0>(), Op<1>());
   3344 }
   3345 
   3346 FCmpInst* FCmpInst::clone_impl() const {
   3347   return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
   3348 }
   3349 
   3350 ICmpInst* ICmpInst::clone_impl() const {
   3351   return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
   3352 }
   3353 
   3354 ExtractValueInst *ExtractValueInst::clone_impl() const {
   3355   return new ExtractValueInst(*this);
   3356 }
   3357 
   3358 InsertValueInst *InsertValueInst::clone_impl() const {
   3359   return new InsertValueInst(*this);
   3360 }
   3361 
   3362 AllocaInst *AllocaInst::clone_impl() const {
   3363   return new AllocaInst(getAllocatedType(),
   3364                         (Value*)getOperand(0),
   3365                         getAlignment());
   3366 }
   3367 
   3368 LoadInst *LoadInst::clone_impl() const {
   3369   return new LoadInst(getOperand(0), Twine(), isVolatile(),
   3370                       getAlignment(), getOrdering(), getSynchScope());
   3371 }
   3372 
   3373 StoreInst *StoreInst::clone_impl() const {
   3374   return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
   3375                        getAlignment(), getOrdering(), getSynchScope());
   3376 
   3377 }
   3378 
   3379 AtomicCmpXchgInst *AtomicCmpXchgInst::clone_impl() const {
   3380   AtomicCmpXchgInst *Result =
   3381     new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
   3382                           getOrdering(), getSynchScope());
   3383   Result->setVolatile(isVolatile());
   3384   return Result;
   3385 }
   3386 
   3387 AtomicRMWInst *AtomicRMWInst::clone_impl() const {
   3388   AtomicRMWInst *Result =
   3389     new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1),
   3390                       getOrdering(), getSynchScope());
   3391   Result->setVolatile(isVolatile());
   3392   return Result;
   3393 }
   3394 
   3395 FenceInst *FenceInst::clone_impl() const {
   3396   return new FenceInst(getContext(), getOrdering(), getSynchScope());
   3397 }
   3398 
   3399 TruncInst *TruncInst::clone_impl() const {
   3400   return new TruncInst(getOperand(0), getType());
   3401 }
   3402 
   3403 ZExtInst *ZExtInst::clone_impl() const {
   3404   return new ZExtInst(getOperand(0), getType());
   3405 }
   3406 
   3407 SExtInst *SExtInst::clone_impl() const {
   3408   return new SExtInst(getOperand(0), getType());
   3409 }
   3410 
   3411 FPTruncInst *FPTruncInst::clone_impl() const {
   3412   return new FPTruncInst(getOperand(0), getType());
   3413 }
   3414 
   3415 FPExtInst *FPExtInst::clone_impl() const {
   3416   return new FPExtInst(getOperand(0), getType());
   3417 }
   3418 
   3419 UIToFPInst *UIToFPInst::clone_impl() const {
   3420   return new UIToFPInst(getOperand(0), getType());
   3421 }
   3422 
   3423 SIToFPInst *SIToFPInst::clone_impl() const {
   3424   return new SIToFPInst(getOperand(0), getType());
   3425 }
   3426 
   3427 FPToUIInst *FPToUIInst::clone_impl() const {
   3428   return new FPToUIInst(getOperand(0), getType());
   3429 }
   3430 
   3431 FPToSIInst *FPToSIInst::clone_impl() const {
   3432   return new FPToSIInst(getOperand(0), getType());
   3433 }
   3434 
   3435 PtrToIntInst *PtrToIntInst::clone_impl() const {
   3436   return new PtrToIntInst(getOperand(0), getType());
   3437 }
   3438 
   3439 IntToPtrInst *IntToPtrInst::clone_impl() const {
   3440   return new IntToPtrInst(getOperand(0), getType());
   3441 }
   3442 
   3443 BitCastInst *BitCastInst::clone_impl() const {
   3444   return new BitCastInst(getOperand(0), getType());
   3445 }
   3446 
   3447 CallInst *CallInst::clone_impl() const {
   3448   return  new(getNumOperands()) CallInst(*this);
   3449 }
   3450 
   3451 SelectInst *SelectInst::clone_impl() const {
   3452   return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
   3453 }
   3454 
   3455 VAArgInst *VAArgInst::clone_impl() const {
   3456   return new VAArgInst(getOperand(0), getType());
   3457 }
   3458 
   3459 ExtractElementInst *ExtractElementInst::clone_impl() const {
   3460   return ExtractElementInst::Create(getOperand(0), getOperand(1));
   3461 }
   3462 
   3463 InsertElementInst *InsertElementInst::clone_impl() const {
   3464   return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
   3465 }
   3466 
   3467 ShuffleVectorInst *ShuffleVectorInst::clone_impl() const {
   3468   return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
   3469 }
   3470 
   3471 PHINode *PHINode::clone_impl() const {
   3472   return new PHINode(*this);
   3473 }
   3474 
   3475 LandingPadInst *LandingPadInst::clone_impl() const {
   3476   return new LandingPadInst(*this);
   3477 }
   3478 
   3479 ReturnInst *ReturnInst::clone_impl() const {
   3480   return new(getNumOperands()) ReturnInst(*this);
   3481 }
   3482 
   3483 BranchInst *BranchInst::clone_impl() const {
   3484   return new(getNumOperands()) BranchInst(*this);
   3485 }
   3486 
   3487 SwitchInst *SwitchInst::clone_impl() const {
   3488   return new SwitchInst(*this);
   3489 }
   3490 
   3491 IndirectBrInst *IndirectBrInst::clone_impl() const {
   3492   return new IndirectBrInst(*this);
   3493 }
   3494 
   3495 
   3496 InvokeInst *InvokeInst::clone_impl() const {
   3497   return new(getNumOperands()) InvokeInst(*this);
   3498 }
   3499 
   3500 ResumeInst *ResumeInst::clone_impl() const {
   3501   return new(1) ResumeInst(*this);
   3502 }
   3503 
   3504 UnreachableInst *UnreachableInst::clone_impl() const {
   3505   LLVMContext &Context = getContext();
   3506   return new UnreachableInst(Context);
   3507 }
   3508