Home | History | Annotate | Download | only in src
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include "v8.h"
     29 
     30 #include "accessors.h"
     31 #include "api.h"
     32 #include "arguments.h"
     33 #include "codegen.h"
     34 #include "execution.h"
     35 #include "ic-inl.h"
     36 #include "runtime.h"
     37 #include "stub-cache.h"
     38 
     39 namespace v8 {
     40 namespace internal {
     41 
     42 #ifdef DEBUG
     43 char IC::TransitionMarkFromState(IC::State state) {
     44   switch (state) {
     45     case UNINITIALIZED: return '0';
     46     case PREMONOMORPHIC: return 'P';
     47     case MONOMORPHIC: return '1';
     48     case MONOMORPHIC_PROTOTYPE_FAILURE: return '^';
     49     case MEGAMORPHIC: return IsGeneric() ? 'G' : 'N';
     50 
     51     // We never see the debugger states here, because the state is
     52     // computed from the original code - not the patched code. Let
     53     // these cases fall through to the unreachable code below.
     54     case DEBUG_BREAK: break;
     55     case DEBUG_PREPARE_STEP_IN: break;
     56   }
     57   UNREACHABLE();
     58   return 0;
     59 }
     60 
     61 void IC::TraceIC(const char* type,
     62                  Handle<Object> name,
     63                  State old_state,
     64                  Code* new_target) {
     65   if (FLAG_trace_ic) {
     66     State new_state = StateFrom(new_target,
     67                                 HEAP->undefined_value(),
     68                                 HEAP->undefined_value());
     69     PrintF("[%s in ", type);
     70     StackFrameIterator it;
     71     while (it.frame()->fp() != this->fp()) it.Advance();
     72     StackFrame* raw_frame = it.frame();
     73     if (raw_frame->is_internal()) {
     74       Isolate* isolate = new_target->GetIsolate();
     75       Code* apply_builtin = isolate->builtins()->builtin(
     76           Builtins::kFunctionApply);
     77       if (raw_frame->unchecked_code() == apply_builtin) {
     78         PrintF("apply from ");
     79         it.Advance();
     80         raw_frame = it.frame();
     81       }
     82     }
     83     JavaScriptFrame::PrintTop(stdout, false, true);
     84     bool new_can_grow =
     85         Code::GetKeyedAccessGrowMode(new_target->extra_ic_state()) ==
     86         ALLOW_JSARRAY_GROWTH;
     87     PrintF(" (%c->%c%s)",
     88            TransitionMarkFromState(old_state),
     89            TransitionMarkFromState(new_state),
     90            new_can_grow ? ".GROW" : "");
     91     name->Print();
     92     PrintF("]\n");
     93   }
     94 }
     95 
     96 #define TRACE_GENERIC_IC(type, reason)                          \
     97   do {                                                          \
     98     if (FLAG_trace_ic) {                                        \
     99       PrintF("[%s patching generic stub in ", type);            \
    100       JavaScriptFrame::PrintTop(stdout, false, true);           \
    101       PrintF(" (%s)]\n", reason);                               \
    102     }                                                           \
    103   } while (false)
    104 
    105 #else
    106 #define TRACE_GENERIC_IC(type, reason)
    107 #endif  // DEBUG
    108 
    109 #define TRACE_IC(type, name, old_state, new_target)             \
    110   ASSERT((TraceIC(type, name, old_state, new_target), true))
    111 
    112 IC::IC(FrameDepth depth, Isolate* isolate) : isolate_(isolate) {
    113   ASSERT(isolate == Isolate::Current());
    114   // To improve the performance of the (much used) IC code, we unfold
    115   // a few levels of the stack frame iteration code. This yields a
    116   // ~35% speedup when running DeltaBlue with the '--nouse-ic' flag.
    117   const Address entry =
    118       Isolate::c_entry_fp(isolate->thread_local_top());
    119   Address* pc_address =
    120       reinterpret_cast<Address*>(entry + ExitFrameConstants::kCallerPCOffset);
    121   Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset);
    122   // If there's another JavaScript frame on the stack, we need to look
    123   // one frame further down the stack to find the frame pointer and
    124   // the return address stack slot.
    125   if (depth == EXTRA_CALL_FRAME) {
    126     const int kCallerPCOffset = StandardFrameConstants::kCallerPCOffset;
    127     pc_address = reinterpret_cast<Address*>(fp + kCallerPCOffset);
    128     fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset);
    129   }
    130 #ifdef DEBUG
    131   StackFrameIterator it;
    132   for (int i = 0; i < depth + 1; i++) it.Advance();
    133   StackFrame* frame = it.frame();
    134   ASSERT(fp == frame->fp() && pc_address == frame->pc_address());
    135 #endif
    136   fp_ = fp;
    137   pc_address_ = pc_address;
    138 }
    139 
    140 
    141 #ifdef ENABLE_DEBUGGER_SUPPORT
    142 Address IC::OriginalCodeAddress() const {
    143   HandleScope scope;
    144   // Compute the JavaScript frame for the frame pointer of this IC
    145   // structure. We need this to be able to find the function
    146   // corresponding to the frame.
    147   StackFrameIterator it;
    148   while (it.frame()->fp() != this->fp()) it.Advance();
    149   JavaScriptFrame* frame = JavaScriptFrame::cast(it.frame());
    150   // Find the function on the stack and both the active code for the
    151   // function and the original code.
    152   JSFunction* function = JSFunction::cast(frame->function());
    153   Handle<SharedFunctionInfo> shared(function->shared());
    154   Code* code = shared->code();
    155   ASSERT(Debug::HasDebugInfo(shared));
    156   Code* original_code = Debug::GetDebugInfo(shared)->original_code();
    157   ASSERT(original_code->IsCode());
    158   // Get the address of the call site in the active code. This is the
    159   // place where the call to DebugBreakXXX is and where the IC
    160   // normally would be.
    161   Address addr = pc() - Assembler::kCallTargetAddressOffset;
    162   // Return the address in the original code. This is the place where
    163   // the call which has been overwritten by the DebugBreakXXX resides
    164   // and the place where the inline cache system should look.
    165   intptr_t delta =
    166       original_code->instruction_start() - code->instruction_start();
    167   return addr + delta;
    168 }
    169 #endif
    170 
    171 
    172 static bool HasNormalObjectsInPrototypeChain(Isolate* isolate,
    173                                              LookupResult* lookup,
    174                                              Object* receiver) {
    175   Object* end = lookup->IsProperty()
    176       ? lookup->holder() : Object::cast(isolate->heap()->null_value());
    177   for (Object* current = receiver;
    178        current != end;
    179        current = current->GetPrototype()) {
    180     if (current->IsJSObject() &&
    181         !JSObject::cast(current)->HasFastProperties() &&
    182         !current->IsJSGlobalProxy() &&
    183         !current->IsJSGlobalObject()) {
    184       return true;
    185     }
    186   }
    187 
    188   return false;
    189 }
    190 
    191 
    192 static bool TryRemoveInvalidPrototypeDependentStub(Code* target,
    193                                                    Object* receiver,
    194                                                    Object* name) {
    195   InlineCacheHolderFlag cache_holder =
    196       Code::ExtractCacheHolderFromFlags(target->flags());
    197 
    198   if (cache_holder == OWN_MAP && !receiver->IsJSObject()) {
    199     // The stub was generated for JSObject but called for non-JSObject.
    200     // IC::GetCodeCacheHolder is not applicable.
    201     return false;
    202   } else if (cache_holder == PROTOTYPE_MAP &&
    203              receiver->GetPrototype()->IsNull()) {
    204     // IC::GetCodeCacheHolder is not applicable.
    205     return false;
    206   }
    207   Map* map = IC::GetCodeCacheHolder(receiver, cache_holder)->map();
    208 
    209   // Decide whether the inline cache failed because of changes to the
    210   // receiver itself or changes to one of its prototypes.
    211   //
    212   // If there are changes to the receiver itself, the map of the
    213   // receiver will have changed and the current target will not be in
    214   // the receiver map's code cache.  Therefore, if the current target
    215   // is in the receiver map's code cache, the inline cache failed due
    216   // to prototype check failure.
    217   int index = map->IndexInCodeCache(name, target);
    218   if (index >= 0) {
    219     map->RemoveFromCodeCache(String::cast(name), target, index);
    220     return true;
    221   }
    222 
    223   return false;
    224 }
    225 
    226 
    227 IC::State IC::StateFrom(Code* target, Object* receiver, Object* name) {
    228   IC::State state = target->ic_state();
    229 
    230   if (state != MONOMORPHIC || !name->IsString()) return state;
    231   if (receiver->IsUndefined() || receiver->IsNull()) return state;
    232 
    233   // For keyed load/store/call, the most likely cause of cache failure is
    234   // that the key has changed.  We do not distinguish between
    235   // prototype and non-prototype failures for keyed access.
    236   Code::Kind kind = target->kind();
    237   if (kind == Code::KEYED_LOAD_IC ||
    238       kind == Code::KEYED_STORE_IC ||
    239       kind == Code::KEYED_CALL_IC) {
    240     return MONOMORPHIC;
    241   }
    242 
    243   // Remove the target from the code cache if it became invalid
    244   // because of changes in the prototype chain to avoid hitting it
    245   // again.
    246   // Call stubs handle this later to allow extra IC state
    247   // transitions.
    248   if (kind != Code::CALL_IC &&
    249       TryRemoveInvalidPrototypeDependentStub(target, receiver, name)) {
    250     return MONOMORPHIC_PROTOTYPE_FAILURE;
    251   }
    252 
    253   // The builtins object is special.  It only changes when JavaScript
    254   // builtins are loaded lazily.  It is important to keep inline
    255   // caches for the builtins object monomorphic.  Therefore, if we get
    256   // an inline cache miss for the builtins object after lazily loading
    257   // JavaScript builtins, we return uninitialized as the state to
    258   // force the inline cache back to monomorphic state.
    259   if (receiver->IsJSBuiltinsObject()) {
    260     return UNINITIALIZED;
    261   }
    262 
    263   return MONOMORPHIC;
    264 }
    265 
    266 
    267 RelocInfo::Mode IC::ComputeMode() {
    268   Address addr = address();
    269   Code* code = Code::cast(isolate()->heap()->FindCodeObject(addr));
    270   for (RelocIterator it(code, RelocInfo::kCodeTargetMask);
    271        !it.done(); it.next()) {
    272     RelocInfo* info = it.rinfo();
    273     if (info->pc() == addr) return info->rmode();
    274   }
    275   UNREACHABLE();
    276   return RelocInfo::NONE;
    277 }
    278 
    279 
    280 Failure* IC::TypeError(const char* type,
    281                        Handle<Object> object,
    282                        Handle<Object> key) {
    283   HandleScope scope(isolate());
    284   Handle<Object> args[2] = { key, object };
    285   Handle<Object> error = isolate()->factory()->NewTypeError(
    286       type, HandleVector(args, 2));
    287   return isolate()->Throw(*error);
    288 }
    289 
    290 
    291 Failure* IC::ReferenceError(const char* type, Handle<String> name) {
    292   HandleScope scope(isolate());
    293   Handle<Object> error = isolate()->factory()->NewReferenceError(
    294       type, HandleVector(&name, 1));
    295   return isolate()->Throw(*error);
    296 }
    297 
    298 
    299 static int ComputeTypeInfoCountDelta(IC::State old_state, IC::State new_state) {
    300   bool was_uninitialized =
    301       old_state == UNINITIALIZED || old_state == PREMONOMORPHIC;
    302   bool is_uninitialized =
    303       new_state == UNINITIALIZED || new_state == PREMONOMORPHIC;
    304   return (was_uninitialized && !is_uninitialized) ?  1 :
    305          (!was_uninitialized && is_uninitialized) ? -1 : 0;
    306 }
    307 
    308 
    309 void IC::PostPatching(Address address, Code* target, Code* old_target) {
    310   if (FLAG_type_info_threshold == 0 && !FLAG_watch_ic_patching) {
    311     return;
    312   }
    313   Code* host = target->GetHeap()->isolate()->
    314       inner_pointer_to_code_cache()->GetCacheEntry(address)->code;
    315   if (host->kind() != Code::FUNCTION) return;
    316 
    317   if (FLAG_type_info_threshold > 0 &&
    318       old_target->is_inline_cache_stub() &&
    319       target->is_inline_cache_stub()) {
    320     int delta = ComputeTypeInfoCountDelta(old_target->ic_state(),
    321                                           target->ic_state());
    322     // Not all Code objects have TypeFeedbackInfo.
    323     if (delta != 0 && host->type_feedback_info()->IsTypeFeedbackInfo()) {
    324       TypeFeedbackInfo* info =
    325           TypeFeedbackInfo::cast(host->type_feedback_info());
    326       info->set_ic_with_type_info_count(
    327           info->ic_with_type_info_count() + delta);
    328     }
    329   }
    330   if (FLAG_watch_ic_patching) {
    331     host->set_profiler_ticks(0);
    332     Isolate::Current()->runtime_profiler()->NotifyICChanged();
    333   }
    334   // TODO(2029): When an optimized function is patched, it would
    335   // be nice to propagate the corresponding type information to its
    336   // unoptimized version for the benefit of later inlining.
    337 }
    338 
    339 
    340 void IC::Clear(Address address) {
    341   Code* target = GetTargetAtAddress(address);
    342 
    343   // Don't clear debug break inline cache as it will remove the break point.
    344   if (target->ic_state() == DEBUG_BREAK) return;
    345 
    346   switch (target->kind()) {
    347     case Code::LOAD_IC: return LoadIC::Clear(address, target);
    348     case Code::KEYED_LOAD_IC:
    349       return KeyedLoadIC::Clear(address, target);
    350     case Code::STORE_IC: return StoreIC::Clear(address, target);
    351     case Code::KEYED_STORE_IC:
    352       return KeyedStoreIC::Clear(address, target);
    353     case Code::CALL_IC: return CallIC::Clear(address, target);
    354     case Code::KEYED_CALL_IC:  return KeyedCallIC::Clear(address, target);
    355     case Code::UNARY_OP_IC:
    356     case Code::BINARY_OP_IC:
    357     case Code::COMPARE_IC:
    358     case Code::TO_BOOLEAN_IC:
    359       // Clearing these is tricky and does not
    360       // make any performance difference.
    361       return;
    362     default: UNREACHABLE();
    363   }
    364 }
    365 
    366 
    367 void CallICBase::Clear(Address address, Code* target) {
    368   bool contextual = CallICBase::Contextual::decode(target->extra_ic_state());
    369   State state = target->ic_state();
    370   if (state == UNINITIALIZED) return;
    371   Code* code =
    372       Isolate::Current()->stub_cache()->FindCallInitialize(
    373           target->arguments_count(),
    374           contextual ? RelocInfo::CODE_TARGET_CONTEXT : RelocInfo::CODE_TARGET,
    375           target->kind());
    376   SetTargetAtAddress(address, code);
    377 }
    378 
    379 
    380 void KeyedLoadIC::Clear(Address address, Code* target) {
    381   if (target->ic_state() == UNINITIALIZED) return;
    382   // Make sure to also clear the map used in inline fast cases.  If we
    383   // do not clear these maps, cached code can keep objects alive
    384   // through the embedded maps.
    385   SetTargetAtAddress(address, initialize_stub());
    386 }
    387 
    388 
    389 void LoadIC::Clear(Address address, Code* target) {
    390   if (target->ic_state() == UNINITIALIZED) return;
    391   SetTargetAtAddress(address, initialize_stub());
    392 }
    393 
    394 
    395 void StoreIC::Clear(Address address, Code* target) {
    396   if (target->ic_state() == UNINITIALIZED) return;
    397   SetTargetAtAddress(address,
    398       (Code::GetStrictMode(target->extra_ic_state()) == kStrictMode)
    399         ? initialize_stub_strict()
    400         : initialize_stub());
    401 }
    402 
    403 
    404 void KeyedStoreIC::Clear(Address address, Code* target) {
    405   if (target->ic_state() == UNINITIALIZED) return;
    406   SetTargetAtAddress(address,
    407       (Code::GetStrictMode(target->extra_ic_state()) == kStrictMode)
    408         ? initialize_stub_strict()
    409         : initialize_stub());
    410 }
    411 
    412 
    413 static bool HasInterceptorGetter(JSObject* object) {
    414   return !object->GetNamedInterceptor()->getter()->IsUndefined();
    415 }
    416 
    417 
    418 static void LookupForRead(Handle<Object> object,
    419                           Handle<String> name,
    420                           LookupResult* lookup) {
    421   // Skip all the objects with named interceptors, but
    422   // without actual getter.
    423   while (true) {
    424     object->Lookup(*name, lookup);
    425     // Besides normal conditions (property not found or it's not
    426     // an interceptor), bail out if lookup is not cacheable: we won't
    427     // be able to IC it anyway and regular lookup should work fine.
    428     if (!lookup->IsFound()
    429         || (lookup->type() != INTERCEPTOR)
    430         || !lookup->IsCacheable()) {
    431       return;
    432     }
    433 
    434     Handle<JSObject> holder(lookup->holder());
    435     if (HasInterceptorGetter(*holder)) {
    436       return;
    437     }
    438 
    439     holder->LocalLookupRealNamedProperty(*name, lookup);
    440     if (lookup->IsProperty()) {
    441       ASSERT(lookup->type() != INTERCEPTOR);
    442       return;
    443     }
    444 
    445     Handle<Object> proto(holder->GetPrototype());
    446     if (proto->IsNull()) {
    447       lookup->NotFound();
    448       return;
    449     }
    450 
    451     object = proto;
    452   }
    453 }
    454 
    455 
    456 Handle<Object> CallICBase::TryCallAsFunction(Handle<Object> object) {
    457   Handle<Object> delegate = Execution::GetFunctionDelegate(object);
    458 
    459   if (delegate->IsJSFunction() && !object->IsJSFunctionProxy()) {
    460     // Patch the receiver and use the delegate as the function to
    461     // invoke. This is used for invoking objects as if they were functions.
    462     const int argc = target()->arguments_count();
    463     StackFrameLocator locator;
    464     JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
    465     int index = frame->ComputeExpressionsCount() - (argc + 1);
    466     frame->SetExpression(index, *object);
    467   }
    468 
    469   return delegate;
    470 }
    471 
    472 
    473 void CallICBase::ReceiverToObjectIfRequired(Handle<Object> callee,
    474                                             Handle<Object> object) {
    475   while (callee->IsJSFunctionProxy()) {
    476     callee = Handle<Object>(JSFunctionProxy::cast(*callee)->call_trap());
    477   }
    478 
    479   if (callee->IsJSFunction()) {
    480     Handle<JSFunction> function = Handle<JSFunction>::cast(callee);
    481     if (!function->shared()->is_classic_mode() || function->IsBuiltin()) {
    482       // Do not wrap receiver for strict mode functions or for builtins.
    483       return;
    484     }
    485   }
    486 
    487   // And only wrap string, number or boolean.
    488   if (object->IsString() || object->IsNumber() || object->IsBoolean()) {
    489     // Change the receiver to the result of calling ToObject on it.
    490     const int argc = this->target()->arguments_count();
    491     StackFrameLocator locator;
    492     JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
    493     int index = frame->ComputeExpressionsCount() - (argc + 1);
    494     frame->SetExpression(index, *isolate()->factory()->ToObject(object));
    495   }
    496 }
    497 
    498 
    499 MaybeObject* CallICBase::LoadFunction(State state,
    500                                       Code::ExtraICState extra_ic_state,
    501                                       Handle<Object> object,
    502                                       Handle<String> name) {
    503   // If the object is undefined or null it's illegal to try to get any
    504   // of its properties; throw a TypeError in that case.
    505   if (object->IsUndefined() || object->IsNull()) {
    506     return TypeError("non_object_property_call", object, name);
    507   }
    508 
    509   // Check if the name is trivially convertible to an index and get
    510   // the element if so.
    511   uint32_t index;
    512   if (name->AsArrayIndex(&index)) {
    513     Handle<Object> result = Object::GetElement(object, index);
    514     RETURN_IF_EMPTY_HANDLE(isolate(), result);
    515     if (result->IsJSFunction()) return *result;
    516 
    517     // Try to find a suitable function delegate for the object at hand.
    518     result = TryCallAsFunction(result);
    519     if (result->IsJSFunction()) return *result;
    520 
    521     // Otherwise, it will fail in the lookup step.
    522   }
    523 
    524   // Lookup the property in the object.
    525   LookupResult lookup(isolate());
    526   LookupForRead(object, name, &lookup);
    527 
    528   if (!lookup.IsProperty()) {
    529     // If the object does not have the requested property, check which
    530     // exception we need to throw.
    531     return IsContextual(object)
    532         ? ReferenceError("not_defined", name)
    533         : TypeError("undefined_method", object, name);
    534   }
    535 
    536   // Lookup is valid: Update inline cache and stub cache.
    537   if (FLAG_use_ic) {
    538     UpdateCaches(&lookup, state, extra_ic_state, object, name);
    539   }
    540 
    541   // Get the property.
    542   PropertyAttributes attr;
    543   Handle<Object> result =
    544       Object::GetProperty(object, object, &lookup, name, &attr);
    545   RETURN_IF_EMPTY_HANDLE(isolate(), result);
    546 
    547   if (lookup.type() == INTERCEPTOR && attr == ABSENT) {
    548     // If the object does not have the requested property, check which
    549     // exception we need to throw.
    550     return IsContextual(object)
    551         ? ReferenceError("not_defined", name)
    552         : TypeError("undefined_method", object, name);
    553   }
    554 
    555   ASSERT(!result->IsTheHole());
    556 
    557   // Make receiver an object if the callee requires it. Strict mode or builtin
    558   // functions do not wrap the receiver, non-strict functions and objects
    559   // called as functions do.
    560   ReceiverToObjectIfRequired(result, object);
    561 
    562   if (result->IsJSFunction()) {
    563     Handle<JSFunction> function = Handle<JSFunction>::cast(result);
    564 #ifdef ENABLE_DEBUGGER_SUPPORT
    565     // Handle stepping into a function if step into is active.
    566     Debug* debug = isolate()->debug();
    567     if (debug->StepInActive()) {
    568       // Protect the result in a handle as the debugger can allocate and might
    569       // cause GC.
    570       debug->HandleStepIn(function, object, fp(), false);
    571     }
    572 #endif
    573     return *function;
    574   }
    575 
    576   // Try to find a suitable function delegate for the object at hand.
    577   result = TryCallAsFunction(result);
    578   if (result->IsJSFunction()) return *result;
    579 
    580   return TypeError("property_not_function", object, name);
    581 }
    582 
    583 
    584 bool CallICBase::TryUpdateExtraICState(LookupResult* lookup,
    585                                        Handle<Object> object,
    586                                        Code::ExtraICState* extra_ic_state) {
    587   ASSERT(kind_ == Code::CALL_IC);
    588   if (lookup->type() != CONSTANT_FUNCTION) return false;
    589   JSFunction* function = lookup->GetConstantFunction();
    590   if (!function->shared()->HasBuiltinFunctionId()) return false;
    591 
    592   // Fetch the arguments passed to the called function.
    593   const int argc = target()->arguments_count();
    594   Address entry = isolate()->c_entry_fp(isolate()->thread_local_top());
    595   Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset);
    596   Arguments args(argc + 1,
    597                  &Memory::Object_at(fp +
    598                                     StandardFrameConstants::kCallerSPOffset +
    599                                     argc * kPointerSize));
    600   switch (function->shared()->builtin_function_id()) {
    601     case kStringCharCodeAt:
    602     case kStringCharAt:
    603       if (object->IsString()) {
    604         String* string = String::cast(*object);
    605         // Check there's the right string value or wrapper in the receiver slot.
    606         ASSERT(string == args[0] || string == JSValue::cast(args[0])->value());
    607         // If we're in the default (fastest) state and the index is
    608         // out of bounds, update the state to record this fact.
    609         if (StringStubState::decode(*extra_ic_state) == DEFAULT_STRING_STUB &&
    610             argc >= 1 && args[1]->IsNumber()) {
    611           double index = DoubleToInteger(args.number_at(1));
    612           if (index < 0 || index >= string->length()) {
    613             *extra_ic_state =
    614                 StringStubState::update(*extra_ic_state,
    615                                         STRING_INDEX_OUT_OF_BOUNDS);
    616             return true;
    617           }
    618         }
    619       }
    620       break;
    621     default:
    622       return false;
    623   }
    624   return false;
    625 }
    626 
    627 
    628 Handle<Code> CallICBase::ComputeMonomorphicStub(LookupResult* lookup,
    629                                                 State state,
    630                                                 Code::ExtraICState extra_state,
    631                                                 Handle<Object> object,
    632                                                 Handle<String> name) {
    633   int argc = target()->arguments_count();
    634   Handle<JSObject> holder(lookup->holder());
    635   switch (lookup->type()) {
    636     case FIELD: {
    637       int index = lookup->GetFieldIndex();
    638       return isolate()->stub_cache()->ComputeCallField(
    639           argc, kind_, extra_state, name, object, holder, index);
    640     }
    641     case CONSTANT_FUNCTION: {
    642       // Get the constant function and compute the code stub for this
    643       // call; used for rewriting to monomorphic state and making sure
    644       // that the code stub is in the stub cache.
    645       Handle<JSFunction> function(lookup->GetConstantFunction());
    646       return isolate()->stub_cache()->ComputeCallConstant(
    647           argc, kind_, extra_state, name, object, holder, function);
    648     }
    649     case NORMAL: {
    650       // If we return a null handle, the IC will not be patched.
    651       if (!object->IsJSObject()) return Handle<Code>::null();
    652       Handle<JSObject> receiver = Handle<JSObject>::cast(object);
    653 
    654       if (holder->IsGlobalObject()) {
    655         Handle<GlobalObject> global = Handle<GlobalObject>::cast(holder);
    656         Handle<JSGlobalPropertyCell> cell(global->GetPropertyCell(lookup));
    657         if (!cell->value()->IsJSFunction()) return Handle<Code>::null();
    658         Handle<JSFunction> function(JSFunction::cast(cell->value()));
    659         return isolate()->stub_cache()->ComputeCallGlobal(
    660             argc, kind_, extra_state, name, receiver, global, cell, function);
    661       } else {
    662         // There is only one shared stub for calling normalized
    663         // properties. It does not traverse the prototype chain, so the
    664         // property must be found in the receiver for the stub to be
    665         // applicable.
    666         if (!holder.is_identical_to(receiver)) return Handle<Code>::null();
    667         return isolate()->stub_cache()->ComputeCallNormal(
    668             argc, kind_, extra_state);
    669       }
    670       break;
    671     }
    672     case INTERCEPTOR:
    673       ASSERT(HasInterceptorGetter(*holder));
    674       return isolate()->stub_cache()->ComputeCallInterceptor(
    675           argc, kind_, extra_state, name, object, holder);
    676     default:
    677       return Handle<Code>::null();
    678   }
    679 }
    680 
    681 
    682 void CallICBase::UpdateCaches(LookupResult* lookup,
    683                               State state,
    684                               Code::ExtraICState extra_ic_state,
    685                               Handle<Object> object,
    686                               Handle<String> name) {
    687   // Bail out if we didn't find a result.
    688   if (!lookup->IsProperty() || !lookup->IsCacheable()) return;
    689 
    690   if (lookup->holder() != *object &&
    691       HasNormalObjectsInPrototypeChain(
    692           isolate(), lookup, object->GetPrototype())) {
    693     // Suppress optimization for prototype chains with slow properties objects
    694     // in the middle.
    695     return;
    696   }
    697 
    698   // Compute the number of arguments.
    699   int argc = target()->arguments_count();
    700   bool had_proto_failure = false;
    701   Handle<Code> code;
    702   if (state == UNINITIALIZED) {
    703     // This is the first time we execute this inline cache.
    704     // Set the target to the pre monomorphic stub to delay
    705     // setting the monomorphic state.
    706     code = isolate()->stub_cache()->ComputeCallPreMonomorphic(
    707         argc, kind_, extra_ic_state);
    708   } else if (state == MONOMORPHIC) {
    709     if (kind_ == Code::CALL_IC &&
    710         TryUpdateExtraICState(lookup, object, &extra_ic_state)) {
    711       code = ComputeMonomorphicStub(lookup, state, extra_ic_state,
    712                                     object, name);
    713     } else if (kind_ == Code::CALL_IC &&
    714                TryRemoveInvalidPrototypeDependentStub(target(),
    715                                                       *object,
    716                                                       *name)) {
    717       had_proto_failure = true;
    718       code = ComputeMonomorphicStub(lookup, state, extra_ic_state,
    719                                     object, name);
    720     } else {
    721       code = isolate()->stub_cache()->ComputeCallMegamorphic(
    722           argc, kind_, extra_ic_state);
    723     }
    724   } else {
    725     code = ComputeMonomorphicStub(lookup, state, extra_ic_state,
    726                                   object, name);
    727   }
    728 
    729   // If there's no appropriate stub we simply avoid updating the caches.
    730   if (code.is_null()) return;
    731 
    732   // Patch the call site depending on the state of the cache.
    733   if (state == UNINITIALIZED ||
    734       state == PREMONOMORPHIC ||
    735       state == MONOMORPHIC ||
    736       state == MONOMORPHIC_PROTOTYPE_FAILURE) {
    737     set_target(*code);
    738   } else if (state == MEGAMORPHIC) {
    739     // Cache code holding map should be consistent with
    740     // GenerateMonomorphicCacheProbe. It is not the map which holds the stub.
    741     Handle<JSObject> cache_object = object->IsJSObject()
    742         ? Handle<JSObject>::cast(object)
    743         : Handle<JSObject>(JSObject::cast(object->GetPrototype()));
    744     // Update the stub cache.
    745     isolate()->stub_cache()->Set(*name, cache_object->map(), *code);
    746   }
    747 
    748   if (had_proto_failure) state = MONOMORPHIC_PROTOTYPE_FAILURE;
    749   TRACE_IC(kind_ == Code::CALL_IC ? "CallIC" : "KeyedCallIC",
    750            name, state, target());
    751 }
    752 
    753 
    754 MaybeObject* KeyedCallIC::LoadFunction(State state,
    755                                        Handle<Object> object,
    756                                        Handle<Object> key) {
    757   if (key->IsSymbol()) {
    758     return CallICBase::LoadFunction(state,
    759                                     Code::kNoExtraICState,
    760                                     object,
    761                                     Handle<String>::cast(key));
    762   }
    763 
    764   if (object->IsUndefined() || object->IsNull()) {
    765     return TypeError("non_object_property_call", object, key);
    766   }
    767 
    768   if (FLAG_use_ic && state != MEGAMORPHIC && object->IsHeapObject()) {
    769     int argc = target()->arguments_count();
    770     Handle<Map> map =
    771         isolate()->factory()->non_strict_arguments_elements_map();
    772     if (object->IsJSObject() &&
    773         Handle<JSObject>::cast(object)->elements()->map() == *map) {
    774       Handle<Code> code = isolate()->stub_cache()->ComputeCallArguments(
    775           argc, Code::KEYED_CALL_IC);
    776       set_target(*code);
    777       TRACE_IC("KeyedCallIC", key, state, target());
    778     } else if (!object->IsAccessCheckNeeded()) {
    779       Handle<Code> code = isolate()->stub_cache()->ComputeCallMegamorphic(
    780           argc, Code::KEYED_CALL_IC, Code::kNoExtraICState);
    781       set_target(*code);
    782       TRACE_IC("KeyedCallIC", key, state, target());
    783     }
    784   }
    785 
    786   Handle<Object> result = GetProperty(object, key);
    787   RETURN_IF_EMPTY_HANDLE(isolate(), result);
    788 
    789   // Make receiver an object if the callee requires it. Strict mode or builtin
    790   // functions do not wrap the receiver, non-strict functions and objects
    791   // called as functions do.
    792   ReceiverToObjectIfRequired(result, object);
    793   if (result->IsJSFunction()) return *result;
    794 
    795   result = TryCallAsFunction(result);
    796   if (result->IsJSFunction()) return *result;
    797 
    798   return TypeError("property_not_function", object, key);
    799 }
    800 
    801 
    802 MaybeObject* LoadIC::Load(State state,
    803                           Handle<Object> object,
    804                           Handle<String> name) {
    805   // If the object is undefined or null it's illegal to try to get any
    806   // of its properties; throw a TypeError in that case.
    807   if (object->IsUndefined() || object->IsNull()) {
    808     return TypeError("non_object_property_load", object, name);
    809   }
    810 
    811   if (FLAG_use_ic) {
    812     // Use specialized code for getting the length of strings and
    813     // string wrapper objects.  The length property of string wrapper
    814     // objects is read-only and therefore always returns the length of
    815     // the underlying string value.  See ECMA-262 15.5.5.1.
    816     if ((object->IsString() || object->IsStringWrapper()) &&
    817         name->Equals(isolate()->heap()->length_symbol())) {
    818       Handle<Code> stub;
    819       if (state == UNINITIALIZED) {
    820         stub = pre_monomorphic_stub();
    821       } else if (state == PREMONOMORPHIC) {
    822         stub = object->IsString()
    823             ? isolate()->builtins()->LoadIC_StringLength()
    824             : isolate()->builtins()->LoadIC_StringWrapperLength();
    825       } else if (state == MONOMORPHIC && object->IsStringWrapper()) {
    826         stub = isolate()->builtins()->LoadIC_StringWrapperLength();
    827       } else if (state != MEGAMORPHIC) {
    828         stub = megamorphic_stub();
    829       }
    830       if (!stub.is_null()) {
    831         set_target(*stub);
    832 #ifdef DEBUG
    833         if (FLAG_trace_ic) PrintF("[LoadIC : +#length /string]\n");
    834 #endif
    835       }
    836       // Get the string if we have a string wrapper object.
    837       Handle<Object> string = object->IsJSValue()
    838           ? Handle<Object>(Handle<JSValue>::cast(object)->value())
    839           : object;
    840       return Smi::FromInt(String::cast(*string)->length());
    841     }
    842 
    843     // Use specialized code for getting the length of arrays.
    844     if (object->IsJSArray() &&
    845         name->Equals(isolate()->heap()->length_symbol())) {
    846       Handle<Code> stub;
    847       if (state == UNINITIALIZED) {
    848         stub = pre_monomorphic_stub();
    849       } else if (state == PREMONOMORPHIC) {
    850         stub = isolate()->builtins()->LoadIC_ArrayLength();
    851       } else if (state != MEGAMORPHIC) {
    852         stub = megamorphic_stub();
    853       }
    854       if (!stub.is_null()) {
    855         set_target(*stub);
    856 #ifdef DEBUG
    857         if (FLAG_trace_ic) PrintF("[LoadIC : +#length /array]\n");
    858 #endif
    859       }
    860       return JSArray::cast(*object)->length();
    861     }
    862 
    863     // Use specialized code for getting prototype of functions.
    864     if (object->IsJSFunction() &&
    865         name->Equals(isolate()->heap()->prototype_symbol()) &&
    866         Handle<JSFunction>::cast(object)->should_have_prototype()) {
    867       Handle<Code> stub;
    868       if (state == UNINITIALIZED) {
    869         stub = pre_monomorphic_stub();
    870       } else if (state == PREMONOMORPHIC) {
    871         stub = isolate()->builtins()->LoadIC_FunctionPrototype();
    872       } else if (state != MEGAMORPHIC) {
    873         stub = megamorphic_stub();
    874       }
    875       if (!stub.is_null()) {
    876         set_target(*stub);
    877 #ifdef DEBUG
    878         if (FLAG_trace_ic) PrintF("[LoadIC : +#prototype /function]\n");
    879 #endif
    880       }
    881       return Accessors::FunctionGetPrototype(*object, 0);
    882     }
    883   }
    884 
    885   // Check if the name is trivially convertible to an index and get
    886   // the element if so.
    887   uint32_t index;
    888   if (name->AsArrayIndex(&index)) return object->GetElement(index);
    889 
    890   // Named lookup in the object.
    891   LookupResult lookup(isolate());
    892   LookupForRead(object, name, &lookup);
    893 
    894   // If we did not find a property, check if we need to throw an exception.
    895   if (!lookup.IsProperty()) {
    896     if (IsContextual(object)) {
    897       return ReferenceError("not_defined", name);
    898     }
    899     LOG(isolate(), SuspectReadEvent(*name, *object));
    900   }
    901 
    902   // Update inline cache and stub cache.
    903   if (FLAG_use_ic) {
    904     UpdateCaches(&lookup, state, object, name);
    905   }
    906 
    907   PropertyAttributes attr;
    908   if (lookup.IsFound() &&
    909       (lookup.type() == INTERCEPTOR || lookup.type() == HANDLER)) {
    910     // Get the property.
    911     Handle<Object> result =
    912         Object::GetProperty(object, object, &lookup, name, &attr);
    913     RETURN_IF_EMPTY_HANDLE(isolate(), result);
    914     // If the property is not present, check if we need to throw an
    915     // exception.
    916     if (attr == ABSENT && IsContextual(object)) {
    917       return ReferenceError("not_defined", name);
    918     }
    919     return *result;
    920   }
    921 
    922   // Get the property.
    923   return object->GetProperty(*object, &lookup, *name, &attr);
    924 }
    925 
    926 
    927 void LoadIC::UpdateCaches(LookupResult* lookup,
    928                           State state,
    929                           Handle<Object> object,
    930                           Handle<String> name) {
    931   // Bail out if the result is not cacheable.
    932   if (!lookup->IsCacheable()) return;
    933 
    934   // Loading properties from values is not common, so don't try to
    935   // deal with non-JS objects here.
    936   if (!object->IsJSObject()) return;
    937   Handle<JSObject> receiver = Handle<JSObject>::cast(object);
    938 
    939   if (HasNormalObjectsInPrototypeChain(isolate(), lookup, *object)) return;
    940 
    941   // Compute the code stub for this load.
    942   Handle<Code> code;
    943   if (state == UNINITIALIZED) {
    944     // This is the first time we execute this inline cache.
    945     // Set the target to the pre monomorphic stub to delay
    946     // setting the monomorphic state.
    947     code = pre_monomorphic_stub();
    948   } else if (!lookup->IsProperty()) {
    949     // Nonexistent property. The result is undefined.
    950     code = isolate()->stub_cache()->ComputeLoadNonexistent(name, receiver);
    951   } else {
    952     // Compute monomorphic stub.
    953     Handle<JSObject> holder(lookup->holder());
    954     switch (lookup->type()) {
    955       case FIELD:
    956         code = isolate()->stub_cache()->ComputeLoadField(
    957             name, receiver, holder, lookup->GetFieldIndex());
    958         break;
    959       case CONSTANT_FUNCTION: {
    960         Handle<JSFunction> constant(lookup->GetConstantFunction());
    961         code = isolate()->stub_cache()->ComputeLoadConstant(
    962             name, receiver, holder, constant);
    963         break;
    964       }
    965       case NORMAL:
    966         if (holder->IsGlobalObject()) {
    967           Handle<GlobalObject> global = Handle<GlobalObject>::cast(holder);
    968           Handle<JSGlobalPropertyCell> cell(global->GetPropertyCell(lookup));
    969           code = isolate()->stub_cache()->ComputeLoadGlobal(
    970               name, receiver, global, cell, lookup->IsDontDelete());
    971         } else {
    972           // There is only one shared stub for loading normalized
    973           // properties. It does not traverse the prototype chain, so the
    974           // property must be found in the receiver for the stub to be
    975           // applicable.
    976           if (!holder.is_identical_to(receiver)) return;
    977           code = isolate()->stub_cache()->ComputeLoadNormal();
    978         }
    979         break;
    980       case CALLBACKS: {
    981         Handle<Object> callback_object(lookup->GetCallbackObject());
    982         if (!callback_object->IsAccessorInfo()) return;
    983         Handle<AccessorInfo> callback =
    984             Handle<AccessorInfo>::cast(callback_object);
    985         if (v8::ToCData<Address>(callback->getter()) == 0) return;
    986         code = isolate()->stub_cache()->ComputeLoadCallback(
    987             name, receiver, holder, callback);
    988         break;
    989       }
    990       case INTERCEPTOR:
    991         ASSERT(HasInterceptorGetter(*holder));
    992         code = isolate()->stub_cache()->ComputeLoadInterceptor(
    993             name, receiver, holder);
    994         break;
    995       default:
    996         return;
    997     }
    998   }
    999 
   1000   // Patch the call site depending on the state of the cache.
   1001   if (state == UNINITIALIZED ||
   1002       state == PREMONOMORPHIC ||
   1003       state == MONOMORPHIC_PROTOTYPE_FAILURE) {
   1004     set_target(*code);
   1005   } else if (state == MONOMORPHIC) {
   1006     // We are transitioning from monomorphic to megamorphic case.
   1007     // Place the current monomorphic stub and stub compiled for
   1008     // the receiver into stub cache.
   1009     Map* map = target()->FindFirstMap();
   1010     if (map != NULL) {
   1011       isolate()->stub_cache()->Set(*name, map, target());
   1012     }
   1013     isolate()->stub_cache()->Set(*name, receiver->map(), *code);
   1014 
   1015     set_target(*megamorphic_stub());
   1016   } else if (state == MEGAMORPHIC) {
   1017     // Cache code holding map should be consistent with
   1018     // GenerateMonomorphicCacheProbe.
   1019     isolate()->stub_cache()->Set(*name, receiver->map(), *code);
   1020   }
   1021 
   1022   TRACE_IC("LoadIC", name, state, target());
   1023 }
   1024 
   1025 
   1026 Handle<Code> KeyedLoadIC::GetElementStubWithoutMapCheck(
   1027     bool is_js_array,
   1028     ElementsKind elements_kind,
   1029     KeyedAccessGrowMode grow_mode) {
   1030   ASSERT(grow_mode == DO_NOT_ALLOW_JSARRAY_GROWTH);
   1031   return KeyedLoadElementStub(elements_kind).GetCode();
   1032 }
   1033 
   1034 
   1035 Handle<Code> KeyedLoadIC::ComputePolymorphicStub(
   1036     MapHandleList* receiver_maps,
   1037     StrictModeFlag strict_mode,
   1038     KeyedAccessGrowMode growth_mode) {
   1039   CodeHandleList handler_ics(receiver_maps->length());
   1040   for (int i = 0; i < receiver_maps->length(); ++i) {
   1041     Handle<Map> receiver_map = receiver_maps->at(i);
   1042     Handle<Code> cached_stub = ComputeMonomorphicStubWithoutMapCheck(
   1043         receiver_map, strict_mode, growth_mode);
   1044     handler_ics.Add(cached_stub);
   1045   }
   1046   KeyedLoadStubCompiler compiler(isolate());
   1047   Handle<Code> code = compiler.CompileLoadPolymorphic(
   1048       receiver_maps, &handler_ics);
   1049   isolate()->counters()->keyed_load_polymorphic_stubs()->Increment();
   1050   PROFILE(isolate(),
   1051           CodeCreateEvent(Logger::KEYED_LOAD_MEGAMORPHIC_IC_TAG, *code, 0));
   1052   return code;
   1053 }
   1054 
   1055 
   1056 MaybeObject* KeyedLoadIC::Load(State state,
   1057                                Handle<Object> object,
   1058                                Handle<Object> key,
   1059                                bool force_generic_stub) {
   1060   // Check for values that can be converted into a symbol.
   1061   // TODO(1295): Remove this code.
   1062   if (key->IsHeapNumber() &&
   1063       isnan(Handle<HeapNumber>::cast(key)->value())) {
   1064     key = isolate()->factory()->nan_symbol();
   1065   } else if (key->IsUndefined()) {
   1066     key = isolate()->factory()->undefined_symbol();
   1067   }
   1068 
   1069   if (key->IsSymbol()) {
   1070     Handle<String> name = Handle<String>::cast(key);
   1071 
   1072     // If the object is undefined or null it's illegal to try to get any
   1073     // of its properties; throw a TypeError in that case.
   1074     if (object->IsUndefined() || object->IsNull()) {
   1075       return TypeError("non_object_property_load", object, name);
   1076     }
   1077 
   1078     if (FLAG_use_ic) {
   1079       // TODO(1073): don't ignore the current stub state.
   1080 
   1081       // Use specialized code for getting the length of strings.
   1082       if (object->IsString() &&
   1083           name->Equals(isolate()->heap()->length_symbol())) {
   1084         Handle<String> string = Handle<String>::cast(object);
   1085         Handle<Code> code =
   1086             isolate()->stub_cache()->ComputeKeyedLoadStringLength(name, string);
   1087         ASSERT(!code.is_null());
   1088         set_target(*code);
   1089         TRACE_IC("KeyedLoadIC", name, state, target());
   1090         return Smi::FromInt(string->length());
   1091       }
   1092 
   1093       // Use specialized code for getting the length of arrays.
   1094       if (object->IsJSArray() &&
   1095           name->Equals(isolate()->heap()->length_symbol())) {
   1096         Handle<JSArray> array = Handle<JSArray>::cast(object);
   1097         Handle<Code> code =
   1098             isolate()->stub_cache()->ComputeKeyedLoadArrayLength(name, array);
   1099         ASSERT(!code.is_null());
   1100         set_target(*code);
   1101         TRACE_IC("KeyedLoadIC", name, state, target());
   1102         return array->length();
   1103       }
   1104 
   1105       // Use specialized code for getting prototype of functions.
   1106       if (object->IsJSFunction() &&
   1107           name->Equals(isolate()->heap()->prototype_symbol()) &&
   1108           Handle<JSFunction>::cast(object)->should_have_prototype()) {
   1109         Handle<JSFunction> function = Handle<JSFunction>::cast(object);
   1110         Handle<Code> code =
   1111             isolate()->stub_cache()->ComputeKeyedLoadFunctionPrototype(
   1112                 name, function);
   1113         ASSERT(!code.is_null());
   1114         set_target(*code);
   1115         TRACE_IC("KeyedLoadIC", name, state, target());
   1116         return Accessors::FunctionGetPrototype(*object, 0);
   1117       }
   1118     }
   1119 
   1120     // Check if the name is trivially convertible to an index and get
   1121     // the element or char if so.
   1122     uint32_t index = 0;
   1123     if (name->AsArrayIndex(&index)) {
   1124       // Rewrite to the generic keyed load stub.
   1125       if (FLAG_use_ic) set_target(*generic_stub());
   1126       return Runtime::GetElementOrCharAt(isolate(), object, index);
   1127     }
   1128 
   1129     // Named lookup.
   1130     LookupResult lookup(isolate());
   1131     LookupForRead(object, name, &lookup);
   1132 
   1133     // If we did not find a property, check if we need to throw an exception.
   1134     if (!lookup.IsProperty() && IsContextual(object)) {
   1135       return ReferenceError("not_defined", name);
   1136     }
   1137 
   1138     if (FLAG_use_ic) {
   1139       UpdateCaches(&lookup, state, object, name);
   1140     }
   1141 
   1142     PropertyAttributes attr;
   1143     if (lookup.IsFound() && lookup.type() == INTERCEPTOR) {
   1144       // Get the property.
   1145       Handle<Object> result =
   1146           Object::GetProperty(object, object, &lookup, name, &attr);
   1147       RETURN_IF_EMPTY_HANDLE(isolate(), result);
   1148       // If the property is not present, check if we need to throw an
   1149       // exception.
   1150       if (attr == ABSENT && IsContextual(object)) {
   1151         return ReferenceError("not_defined", name);
   1152       }
   1153       return *result;
   1154     }
   1155 
   1156     return object->GetProperty(*object, &lookup, *name, &attr);
   1157   }
   1158 
   1159   // Do not use ICs for objects that require access checks (including
   1160   // the global object).
   1161   bool use_ic = FLAG_use_ic && !object->IsAccessCheckNeeded();
   1162 
   1163   if (use_ic) {
   1164     Handle<Code> stub = generic_stub();
   1165     if (!force_generic_stub) {
   1166       if (object->IsString() && key->IsNumber()) {
   1167         if (state == UNINITIALIZED) {
   1168           stub = string_stub();
   1169         }
   1170       } else if (object->IsJSObject()) {
   1171         Handle<JSObject> receiver = Handle<JSObject>::cast(object);
   1172         if (receiver->elements()->map() ==
   1173             isolate()->heap()->non_strict_arguments_elements_map()) {
   1174           stub = non_strict_arguments_stub();
   1175         } else if (receiver->HasIndexedInterceptor()) {
   1176           stub = indexed_interceptor_stub();
   1177         } else if (key->IsSmi() && (target() != *non_strict_arguments_stub())) {
   1178           stub = ComputeStub(receiver, LOAD, kNonStrictMode, stub);
   1179         }
   1180       }
   1181     } else {
   1182       TRACE_GENERIC_IC("KeyedLoadIC", "force generic");
   1183     }
   1184     if (!stub.is_null()) set_target(*stub);
   1185   }
   1186 
   1187   TRACE_IC("KeyedLoadIC", key, state, target());
   1188 
   1189   // Get the property.
   1190   return Runtime::GetObjectProperty(isolate(), object, key);
   1191 }
   1192 
   1193 
   1194 void KeyedLoadIC::UpdateCaches(LookupResult* lookup,
   1195                                State state,
   1196                                Handle<Object> object,
   1197                                Handle<String> name) {
   1198   // Bail out if we didn't find a result.
   1199   if (!lookup->IsProperty() || !lookup->IsCacheable()) return;
   1200 
   1201   if (!object->IsJSObject()) return;
   1202   Handle<JSObject> receiver = Handle<JSObject>::cast(object);
   1203 
   1204   if (HasNormalObjectsInPrototypeChain(isolate(), lookup, *object)) return;
   1205 
   1206   // Compute the code stub for this load.
   1207   Handle<Code> code;
   1208 
   1209   if (state == UNINITIALIZED) {
   1210     // This is the first time we execute this inline cache.
   1211     // Set the target to the pre monomorphic stub to delay
   1212     // setting the monomorphic state.
   1213     code = pre_monomorphic_stub();
   1214   } else {
   1215     // Compute a monomorphic stub.
   1216     Handle<JSObject> holder(lookup->holder());
   1217     switch (lookup->type()) {
   1218       case FIELD:
   1219         code = isolate()->stub_cache()->ComputeKeyedLoadField(
   1220             name, receiver, holder, lookup->GetFieldIndex());
   1221         break;
   1222       case CONSTANT_FUNCTION: {
   1223         Handle<JSFunction> constant(lookup->GetConstantFunction());
   1224         code = isolate()->stub_cache()->ComputeKeyedLoadConstant(
   1225             name, receiver, holder, constant);
   1226         break;
   1227       }
   1228       case CALLBACKS: {
   1229         Handle<Object> callback_object(lookup->GetCallbackObject());
   1230         if (!callback_object->IsAccessorInfo()) return;
   1231         Handle<AccessorInfo> callback =
   1232             Handle<AccessorInfo>::cast(callback_object);
   1233         if (v8::ToCData<Address>(callback->getter()) == 0) return;
   1234         code = isolate()->stub_cache()->ComputeKeyedLoadCallback(
   1235             name, receiver, holder, callback);
   1236         break;
   1237       }
   1238       case INTERCEPTOR:
   1239         ASSERT(HasInterceptorGetter(lookup->holder()));
   1240         code = isolate()->stub_cache()->ComputeKeyedLoadInterceptor(
   1241             name, receiver, holder);
   1242         break;
   1243       default:
   1244         // Always rewrite to the generic case so that we do not
   1245         // repeatedly try to rewrite.
   1246         code = generic_stub();
   1247         break;
   1248     }
   1249   }
   1250 
   1251   // Patch the call site depending on the state of the cache.  Make
   1252   // sure to always rewrite from monomorphic to megamorphic.
   1253   ASSERT(state != MONOMORPHIC_PROTOTYPE_FAILURE);
   1254   if (state == UNINITIALIZED || state == PREMONOMORPHIC) {
   1255     set_target(*code);
   1256   } else if (state == MONOMORPHIC) {
   1257     set_target(*megamorphic_stub());
   1258   }
   1259 
   1260   TRACE_IC("KeyedLoadIC", name, state, target());
   1261 }
   1262 
   1263 
   1264 static bool StoreICableLookup(LookupResult* lookup) {
   1265   // Bail out if we didn't find a result.
   1266   if (!lookup->IsFound() || lookup->type() == NULL_DESCRIPTOR) return false;
   1267 
   1268   // Bail out if inline caching is not allowed.
   1269   if (!lookup->IsCacheable()) return false;
   1270 
   1271   // If the property is read-only, we leave the IC in its current state.
   1272   if (lookup->IsReadOnly()) return false;
   1273 
   1274   return true;
   1275 }
   1276 
   1277 
   1278 static bool LookupForWrite(Handle<JSObject> receiver,
   1279                            Handle<String> name,
   1280                            LookupResult* lookup) {
   1281   receiver->LocalLookup(*name, lookup);
   1282   if (!StoreICableLookup(lookup)) {
   1283     return false;
   1284   }
   1285 
   1286   if (lookup->type() == INTERCEPTOR &&
   1287       receiver->GetNamedInterceptor()->setter()->IsUndefined()) {
   1288     receiver->LocalLookupRealNamedProperty(*name, lookup);
   1289     return StoreICableLookup(lookup);
   1290   }
   1291 
   1292   return true;
   1293 }
   1294 
   1295 
   1296 MaybeObject* StoreIC::Store(State state,
   1297                             StrictModeFlag strict_mode,
   1298                             Handle<Object> object,
   1299                             Handle<String> name,
   1300                             Handle<Object> value) {
   1301   if (!object->IsJSObject()) {
   1302     // Handle proxies.
   1303     if (object->IsJSProxy()) {
   1304       return JSProxy::cast(*object)->
   1305           SetProperty(*name, *value, NONE, strict_mode);
   1306     }
   1307 
   1308     // If the object is undefined or null it's illegal to try to set any
   1309     // properties on it; throw a TypeError in that case.
   1310     if (object->IsUndefined() || object->IsNull()) {
   1311       return TypeError("non_object_property_store", object, name);
   1312     }
   1313 
   1314     // The length property of string values is read-only. Throw in strict mode.
   1315     if (strict_mode == kStrictMode && object->IsString() &&
   1316         name->Equals(isolate()->heap()->length_symbol())) {
   1317       return TypeError("strict_read_only_property", object, name);
   1318     }
   1319     // Ignore other stores where the receiver is not a JSObject.
   1320     // TODO(1475): Must check prototype chains of object wrappers.
   1321     return *value;
   1322   }
   1323 
   1324   Handle<JSObject> receiver = Handle<JSObject>::cast(object);
   1325 
   1326   // Check if the given name is an array index.
   1327   uint32_t index;
   1328   if (name->AsArrayIndex(&index)) {
   1329     Handle<Object> result =
   1330         JSObject::SetElement(receiver, index, value, NONE, strict_mode);
   1331     RETURN_IF_EMPTY_HANDLE(isolate(), result);
   1332     return *value;
   1333   }
   1334 
   1335   // Use specialized code for setting the length of arrays with fast
   1336   // properties.  Slow properties might indicate redefinition of the
   1337   // length property.
   1338   if (receiver->IsJSArray() &&
   1339       name->Equals(isolate()->heap()->length_symbol()) &&
   1340       Handle<JSArray>::cast(receiver)->AllowsSetElementsLength() &&
   1341       receiver->HasFastProperties()) {
   1342 #ifdef DEBUG
   1343     if (FLAG_trace_ic) PrintF("[StoreIC : +#length /array]\n");
   1344 #endif
   1345     Handle<Code> stub = (strict_mode == kStrictMode)
   1346         ? isolate()->builtins()->StoreIC_ArrayLength_Strict()
   1347         : isolate()->builtins()->StoreIC_ArrayLength();
   1348     set_target(*stub);
   1349     return receiver->SetProperty(*name, *value, NONE, strict_mode);
   1350   }
   1351 
   1352   // Lookup the property locally in the receiver.
   1353   if (FLAG_use_ic && !receiver->IsJSGlobalProxy()) {
   1354     LookupResult lookup(isolate());
   1355 
   1356     if (LookupForWrite(receiver, name, &lookup)) {
   1357       // Generate a stub for this store.
   1358       UpdateCaches(&lookup, state, strict_mode, receiver, name, value);
   1359     } else {
   1360       // Strict mode doesn't allow setting non-existent global property
   1361       // or an assignment to a read only property.
   1362       if (strict_mode == kStrictMode) {
   1363         if (lookup.IsProperty() && lookup.IsReadOnly()) {
   1364           return TypeError("strict_read_only_property", object, name);
   1365         } else if (IsContextual(object)) {
   1366           return ReferenceError("not_defined", name);
   1367         }
   1368       }
   1369     }
   1370   }
   1371 
   1372   if (receiver->IsJSGlobalProxy()) {
   1373     // TODO(ulan): find out why we patch this site even with --no-use-ic
   1374     // Generate a generic stub that goes to the runtime when we see a global
   1375     // proxy as receiver.
   1376     Handle<Code> stub = (strict_mode == kStrictMode)
   1377         ? global_proxy_stub_strict()
   1378         : global_proxy_stub();
   1379     if (target() != *stub) {
   1380       set_target(*stub);
   1381       TRACE_IC("StoreIC", name, state, target());
   1382     }
   1383   }
   1384 
   1385   // Set the property.
   1386   return receiver->SetProperty(*name, *value, NONE, strict_mode);
   1387 }
   1388 
   1389 
   1390 void StoreIC::UpdateCaches(LookupResult* lookup,
   1391                            State state,
   1392                            StrictModeFlag strict_mode,
   1393                            Handle<JSObject> receiver,
   1394                            Handle<String> name,
   1395                            Handle<Object> value) {
   1396   ASSERT(!receiver->IsJSGlobalProxy());
   1397   ASSERT(StoreICableLookup(lookup));
   1398   // These are not cacheable, so we never see such LookupResults here.
   1399   ASSERT(lookup->type() != HANDLER);
   1400   // We get only called for properties or transitions, see StoreICableLookup.
   1401   ASSERT(lookup->type() != NULL_DESCRIPTOR);
   1402 
   1403   // If the property has a non-field type allowing map transitions
   1404   // where there is extra room in the object, we leave the IC in its
   1405   // current state.
   1406   PropertyType type = lookup->type();
   1407 
   1408   // Compute the code stub for this store; used for rewriting to
   1409   // monomorphic state and making sure that the code stub is in the
   1410   // stub cache.
   1411   Handle<Code> code;
   1412   switch (type) {
   1413     case FIELD:
   1414       code = isolate()->stub_cache()->ComputeStoreField(name,
   1415                                                         receiver,
   1416                                                         lookup->GetFieldIndex(),
   1417                                                         Handle<Map>::null(),
   1418                                                         strict_mode);
   1419       break;
   1420     case MAP_TRANSITION: {
   1421       if (lookup->GetAttributes() != NONE) return;
   1422       Handle<Map> transition(lookup->GetTransitionMap());
   1423       int index = transition->PropertyIndexFor(*name);
   1424       code = isolate()->stub_cache()->ComputeStoreField(
   1425           name, receiver, index, transition, strict_mode);
   1426       break;
   1427     }
   1428     case NORMAL:
   1429       if (receiver->IsGlobalObject()) {
   1430         // The stub generated for the global object picks the value directly
   1431         // from the property cell. So the property must be directly on the
   1432         // global object.
   1433         Handle<GlobalObject> global = Handle<GlobalObject>::cast(receiver);
   1434         Handle<JSGlobalPropertyCell> cell(global->GetPropertyCell(lookup));
   1435         code = isolate()->stub_cache()->ComputeStoreGlobal(
   1436             name, global, cell, strict_mode);
   1437       } else {
   1438         if (lookup->holder() != *receiver) return;
   1439         code = isolate()->stub_cache()->ComputeStoreNormal(strict_mode);
   1440       }
   1441       break;
   1442     case CALLBACKS: {
   1443       Handle<Object> callback_object(lookup->GetCallbackObject());
   1444       if (!callback_object->IsAccessorInfo()) return;
   1445       Handle<AccessorInfo> callback =
   1446           Handle<AccessorInfo>::cast(callback_object);
   1447       if (v8::ToCData<Address>(callback->setter()) == 0) return;
   1448       code = isolate()->stub_cache()->ComputeStoreCallback(
   1449           name, receiver, callback, strict_mode);
   1450       break;
   1451     }
   1452     case INTERCEPTOR:
   1453       ASSERT(!receiver->GetNamedInterceptor()->setter()->IsUndefined());
   1454       code = isolate()->stub_cache()->ComputeStoreInterceptor(
   1455           name, receiver, strict_mode);
   1456       break;
   1457     case CONSTANT_FUNCTION:
   1458     case CONSTANT_TRANSITION:
   1459     case ELEMENTS_TRANSITION:
   1460       return;
   1461     case HANDLER:
   1462     case NULL_DESCRIPTOR:
   1463       UNREACHABLE();
   1464       return;
   1465   }
   1466 
   1467   // Patch the call site depending on the state of the cache.
   1468   if (state == UNINITIALIZED || state == MONOMORPHIC_PROTOTYPE_FAILURE) {
   1469     set_target(*code);
   1470   } else if (state == MONOMORPHIC) {
   1471     // Only move to megamorphic if the target changes.
   1472     if (target() != *code) {
   1473       set_target((strict_mode == kStrictMode)
   1474                    ? megamorphic_stub_strict()
   1475                    : megamorphic_stub());
   1476     }
   1477   } else if (state == MEGAMORPHIC) {
   1478     // Update the stub cache.
   1479     isolate()->stub_cache()->Set(*name, receiver->map(), *code);
   1480   }
   1481 
   1482   TRACE_IC("StoreIC", name, state, target());
   1483 }
   1484 
   1485 
   1486 static bool AddOneReceiverMapIfMissing(MapHandleList* receiver_maps,
   1487                                        Handle<Map> new_receiver_map) {
   1488   ASSERT(!new_receiver_map.is_null());
   1489   for (int current = 0; current < receiver_maps->length(); ++current) {
   1490     if (!receiver_maps->at(current).is_null() &&
   1491         receiver_maps->at(current).is_identical_to(new_receiver_map)) {
   1492       return false;
   1493     }
   1494   }
   1495   receiver_maps->Add(new_receiver_map);
   1496   return true;
   1497 }
   1498 
   1499 
   1500 void KeyedIC::GetReceiverMapsForStub(Handle<Code> stub,
   1501                                      MapHandleList* result) {
   1502   ASSERT(stub->is_inline_cache_stub());
   1503   if (!string_stub().is_null() && stub.is_identical_to(string_stub())) {
   1504     return result->Add(isolate()->factory()->string_map());
   1505   } else if (stub->is_keyed_load_stub() || stub->is_keyed_store_stub()) {
   1506     if (stub->ic_state() == MONOMORPHIC) {
   1507       result->Add(Handle<Map>(stub->FindFirstMap()));
   1508     } else {
   1509       ASSERT(stub->ic_state() == MEGAMORPHIC);
   1510       AssertNoAllocation no_allocation;
   1511       int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
   1512       for (RelocIterator it(*stub, mask); !it.done(); it.next()) {
   1513         RelocInfo* info = it.rinfo();
   1514         Handle<Object> object(info->target_object());
   1515         ASSERT(object->IsMap());
   1516         AddOneReceiverMapIfMissing(result, Handle<Map>::cast(object));
   1517       }
   1518     }
   1519   }
   1520 }
   1521 
   1522 
   1523 Handle<Code> KeyedIC::ComputeStub(Handle<JSObject> receiver,
   1524                                   StubKind stub_kind,
   1525                                   StrictModeFlag strict_mode,
   1526                                   Handle<Code> generic_stub) {
   1527   State ic_state = target()->ic_state();
   1528   KeyedAccessGrowMode grow_mode = IsGrowStubKind(stub_kind)
   1529       ? ALLOW_JSARRAY_GROWTH
   1530       : DO_NOT_ALLOW_JSARRAY_GROWTH;
   1531 
   1532   // Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS
   1533   // via megamorphic stubs, since they don't have a map in their relocation info
   1534   // and so the stubs can't be harvested for the object needed for a map check.
   1535   if (target()->type() != NORMAL) {
   1536     TRACE_GENERIC_IC("KeyedIC", "non-NORMAL target type");
   1537     return generic_stub;
   1538   }
   1539 
   1540   bool monomorphic = false;
   1541   MapHandleList target_receiver_maps;
   1542   if (ic_state != UNINITIALIZED && ic_state != PREMONOMORPHIC) {
   1543     GetReceiverMapsForStub(Handle<Code>(target()), &target_receiver_maps);
   1544   }
   1545   if (!IsTransitionStubKind(stub_kind)) {
   1546     if (ic_state == UNINITIALIZED || ic_state == PREMONOMORPHIC) {
   1547       monomorphic = true;
   1548     } else {
   1549       if (ic_state == MONOMORPHIC) {
   1550         // The first time a receiver is seen that is a transitioned version of
   1551         // the previous monomorphic receiver type, assume the new ElementsKind
   1552         // is the monomorphic type. This benefits global arrays that only
   1553         // transition once, and all call sites accessing them are faster if they
   1554         // remain monomorphic. If this optimistic assumption is not true, the IC
   1555         // will miss again and it will become polymorphic and support both the
   1556         // untransitioned and transitioned maps.
   1557         monomorphic = IsMoreGeneralElementsKindTransition(
   1558             target_receiver_maps.at(0)->elements_kind(),
   1559             receiver->GetElementsKind());
   1560       }
   1561     }
   1562   }
   1563 
   1564   if (monomorphic) {
   1565     return ComputeMonomorphicStub(
   1566         receiver, stub_kind, strict_mode, generic_stub);
   1567   }
   1568   ASSERT(target() != *generic_stub);
   1569 
   1570   // Determine the list of receiver maps that this call site has seen,
   1571   // adding the map that was just encountered.
   1572   Handle<Map> receiver_map(receiver->map());
   1573   bool map_added =
   1574       AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map);
   1575   if (IsTransitionStubKind(stub_kind)) {
   1576     Handle<Map> new_map = ComputeTransitionedMap(receiver, stub_kind);
   1577     map_added |= AddOneReceiverMapIfMissing(&target_receiver_maps, new_map);
   1578   }
   1579   if (!map_added) {
   1580     // If the miss wasn't due to an unseen map, a polymorphic stub
   1581     // won't help, use the generic stub.
   1582     TRACE_GENERIC_IC("KeyedIC", "same map added twice");
   1583     return generic_stub;
   1584   }
   1585 
   1586   // If the maximum number of receiver maps has been exceeded, use the generic
   1587   // version of the IC.
   1588   if (target_receiver_maps.length() > kMaxKeyedPolymorphism) {
   1589     TRACE_GENERIC_IC("KeyedIC", "max polymorph exceeded");
   1590     return generic_stub;
   1591   }
   1592 
   1593   if ((Code::GetKeyedAccessGrowMode(target()->extra_ic_state()) ==
   1594        ALLOW_JSARRAY_GROWTH)) {
   1595     grow_mode = ALLOW_JSARRAY_GROWTH;
   1596   }
   1597 
   1598   Handle<PolymorphicCodeCache> cache =
   1599       isolate()->factory()->polymorphic_code_cache();
   1600   Code::ExtraICState extra_state = Code::ComputeExtraICState(grow_mode,
   1601                                                              strict_mode);
   1602   Code::Flags flags = Code::ComputeFlags(kind(), MEGAMORPHIC, extra_state);
   1603   Handle<Object> probe = cache->Lookup(&target_receiver_maps, flags);
   1604   if (probe->IsCode()) return Handle<Code>::cast(probe);
   1605 
   1606   Handle<Code> stub =
   1607       ComputePolymorphicStub(&target_receiver_maps, strict_mode, grow_mode);
   1608   PolymorphicCodeCache::Update(cache, &target_receiver_maps, flags, stub);
   1609   return stub;
   1610 }
   1611 
   1612 
   1613 Handle<Code> KeyedIC::ComputeMonomorphicStubWithoutMapCheck(
   1614     Handle<Map> receiver_map,
   1615     StrictModeFlag strict_mode,
   1616     KeyedAccessGrowMode grow_mode) {
   1617   if ((receiver_map->instance_type() & kNotStringTag) == 0) {
   1618     ASSERT(!string_stub().is_null());
   1619     return string_stub();
   1620   } else {
   1621     ASSERT(receiver_map->has_dictionary_elements() ||
   1622            receiver_map->has_fast_elements() ||
   1623            receiver_map->has_fast_smi_only_elements() ||
   1624            receiver_map->has_fast_double_elements() ||
   1625            receiver_map->has_external_array_elements());
   1626     bool is_js_array = receiver_map->instance_type() == JS_ARRAY_TYPE;
   1627     return GetElementStubWithoutMapCheck(is_js_array,
   1628                                          receiver_map->elements_kind(),
   1629                                          grow_mode);
   1630   }
   1631 }
   1632 
   1633 
   1634 Handle<Code> KeyedIC::ComputeMonomorphicStub(Handle<JSObject> receiver,
   1635                                              StubKind stub_kind,
   1636                                              StrictModeFlag strict_mode,
   1637                                              Handle<Code> generic_stub) {
   1638   if (receiver->HasFastElements() ||
   1639       receiver->HasFastSmiOnlyElements() ||
   1640       receiver->HasExternalArrayElements() ||
   1641       receiver->HasFastDoubleElements() ||
   1642       receiver->HasDictionaryElements()) {
   1643     return isolate()->stub_cache()->ComputeKeyedLoadOrStoreElement(
   1644         receiver, stub_kind, strict_mode);
   1645   } else {
   1646     return generic_stub;
   1647   }
   1648 }
   1649 
   1650 
   1651 Handle<Map> KeyedIC::ComputeTransitionedMap(Handle<JSObject> receiver,
   1652                                             StubKind stub_kind) {
   1653   switch (stub_kind) {
   1654     case KeyedIC::STORE_TRANSITION_SMI_TO_OBJECT:
   1655     case KeyedIC::STORE_TRANSITION_DOUBLE_TO_OBJECT:
   1656     case KeyedIC::STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT:
   1657     case KeyedIC::STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT:
   1658       return JSObject::GetElementsTransitionMap(receiver, FAST_ELEMENTS);
   1659       break;
   1660     case KeyedIC::STORE_TRANSITION_SMI_TO_DOUBLE:
   1661     case KeyedIC::STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE:
   1662       return JSObject::GetElementsTransitionMap(receiver, FAST_DOUBLE_ELEMENTS);
   1663       break;
   1664     default:
   1665       UNREACHABLE();
   1666       return Handle<Map>::null();
   1667   }
   1668 }
   1669 
   1670 
   1671 Handle<Code> KeyedStoreIC::GetElementStubWithoutMapCheck(
   1672     bool is_js_array,
   1673     ElementsKind elements_kind,
   1674     KeyedAccessGrowMode grow_mode) {
   1675   return KeyedStoreElementStub(is_js_array, elements_kind, grow_mode).GetCode();
   1676 }
   1677 
   1678 
   1679 Handle<Code> KeyedStoreIC::ComputePolymorphicStub(
   1680     MapHandleList* receiver_maps,
   1681     StrictModeFlag strict_mode,
   1682     KeyedAccessGrowMode grow_mode) {
   1683   // Collect MONOMORPHIC stubs for all target_receiver_maps.
   1684   CodeHandleList handler_ics(receiver_maps->length());
   1685   MapHandleList transitioned_maps(receiver_maps->length());
   1686   for (int i = 0; i < receiver_maps->length(); ++i) {
   1687     Handle<Map> receiver_map(receiver_maps->at(i));
   1688     Handle<Code> cached_stub;
   1689     Handle<Map> transitioned_map =
   1690         receiver_map->FindTransitionedMap(receiver_maps);
   1691     if (!transitioned_map.is_null()) {
   1692       cached_stub = ElementsTransitionAndStoreStub(
   1693           receiver_map->elements_kind(),  // original elements_kind
   1694           transitioned_map->elements_kind(),
   1695           receiver_map->instance_type() == JS_ARRAY_TYPE,  // is_js_array
   1696           strict_mode, grow_mode).GetCode();
   1697     } else {
   1698       cached_stub = ComputeMonomorphicStubWithoutMapCheck(receiver_map,
   1699                                                           strict_mode,
   1700                                                           grow_mode);
   1701     }
   1702     ASSERT(!cached_stub.is_null());
   1703     handler_ics.Add(cached_stub);
   1704     transitioned_maps.Add(transitioned_map);
   1705   }
   1706   KeyedStoreStubCompiler compiler(isolate(), strict_mode, grow_mode);
   1707   Handle<Code> code = compiler.CompileStorePolymorphic(
   1708       receiver_maps, &handler_ics, &transitioned_maps);
   1709   isolate()->counters()->keyed_store_polymorphic_stubs()->Increment();
   1710   PROFILE(isolate(),
   1711           CodeCreateEvent(Logger::KEYED_STORE_MEGAMORPHIC_IC_TAG, *code, 0));
   1712   return code;
   1713 }
   1714 
   1715 
   1716 KeyedIC::StubKind KeyedStoreIC::GetStubKind(Handle<JSObject> receiver,
   1717                                             Handle<Object> key,
   1718                                             Handle<Object> value) {
   1719   ASSERT(key->IsSmi());
   1720   int index = Smi::cast(*key)->value();
   1721   bool allow_growth = receiver->IsJSArray() &&
   1722       JSArray::cast(*receiver)->length()->IsSmi() &&
   1723       index >= Smi::cast(JSArray::cast(*receiver)->length())->value();
   1724 
   1725   if (allow_growth) {
   1726     // Handle growing array in stub if necessary.
   1727     if (receiver->HasFastSmiOnlyElements()) {
   1728       if (value->IsHeapNumber()) {
   1729         return STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE;
   1730       }
   1731       if (value->IsHeapObject()) {
   1732         return STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT;
   1733       }
   1734     } else if (receiver->HasFastDoubleElements()) {
   1735       if (!value->IsSmi() && !value->IsHeapNumber()) {
   1736         return STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT;
   1737       }
   1738     }
   1739     return STORE_AND_GROW_NO_TRANSITION;
   1740   } else {
   1741     // Handle only in-bounds elements accesses.
   1742     if (receiver->HasFastSmiOnlyElements()) {
   1743       if (value->IsHeapNumber()) {
   1744         return STORE_TRANSITION_SMI_TO_DOUBLE;
   1745       } else if (value->IsHeapObject()) {
   1746         return STORE_TRANSITION_SMI_TO_OBJECT;
   1747       }
   1748     } else if (receiver->HasFastDoubleElements()) {
   1749       if (!value->IsSmi() && !value->IsHeapNumber()) {
   1750         return STORE_TRANSITION_DOUBLE_TO_OBJECT;
   1751       }
   1752     }
   1753     return STORE_NO_TRANSITION;
   1754   }
   1755 }
   1756 
   1757 
   1758 MaybeObject* KeyedStoreIC::Store(State state,
   1759                                  StrictModeFlag strict_mode,
   1760                                  Handle<Object> object,
   1761                                  Handle<Object> key,
   1762                                  Handle<Object> value,
   1763                                  bool force_generic) {
   1764   if (key->IsSymbol()) {
   1765     Handle<String> name = Handle<String>::cast(key);
   1766 
   1767     // Handle proxies.
   1768     if (object->IsJSProxy()) {
   1769       return JSProxy::cast(*object)->SetProperty(
   1770           *name, *value, NONE, strict_mode);
   1771     }
   1772 
   1773     // If the object is undefined or null it's illegal to try to set any
   1774     // properties on it; throw a TypeError in that case.
   1775     if (object->IsUndefined() || object->IsNull()) {
   1776       return TypeError("non_object_property_store", object, name);
   1777     }
   1778 
   1779     // Ignore stores where the receiver is not a JSObject.
   1780     if (!object->IsJSObject()) return *value;
   1781     Handle<JSObject> receiver = Handle<JSObject>::cast(object);
   1782 
   1783     // Check if the given name is an array index.
   1784     uint32_t index;
   1785     if (name->AsArrayIndex(&index)) {
   1786       Handle<Object> result =
   1787           JSObject::SetElement(receiver, index, value, NONE, strict_mode);
   1788       RETURN_IF_EMPTY_HANDLE(isolate(), result);
   1789       return *value;
   1790     }
   1791 
   1792     // Update inline cache and stub cache.
   1793     if (FLAG_use_ic && !receiver->IsJSGlobalProxy()) {
   1794       LookupResult lookup(isolate());
   1795       if (LookupForWrite(receiver, name, &lookup)) {
   1796         UpdateCaches(&lookup, state, strict_mode, receiver, name, value);
   1797       }
   1798     }
   1799 
   1800     // Set the property.
   1801     return receiver->SetProperty(*name, *value, NONE, strict_mode);
   1802   }
   1803 
   1804   // Do not use ICs for objects that require access checks (including
   1805   // the global object).
   1806   bool use_ic = FLAG_use_ic && !object->IsAccessCheckNeeded();
   1807   ASSERT(!(use_ic && object->IsJSGlobalProxy()));
   1808 
   1809   if (use_ic) {
   1810     Handle<Code> stub = (strict_mode == kStrictMode)
   1811         ? generic_stub_strict()
   1812         : generic_stub();
   1813     if (object->IsJSObject()) {
   1814       Handle<JSObject> receiver = Handle<JSObject>::cast(object);
   1815       if (receiver->elements()->map() ==
   1816           isolate()->heap()->non_strict_arguments_elements_map()) {
   1817         stub = non_strict_arguments_stub();
   1818       } else if (!force_generic) {
   1819         if (key->IsSmi() && (target() != *non_strict_arguments_stub())) {
   1820           StubKind stub_kind = GetStubKind(receiver, key, value);
   1821           stub = ComputeStub(receiver, stub_kind, strict_mode, stub);
   1822         }
   1823       } else {
   1824         TRACE_GENERIC_IC("KeyedStoreIC", "force generic");
   1825       }
   1826     }
   1827     if (!stub.is_null()) set_target(*stub);
   1828   }
   1829 
   1830   TRACE_IC("KeyedStoreIC", key, state, target());
   1831 
   1832   // Set the property.
   1833   return Runtime::SetObjectProperty(
   1834       isolate(), object , key, value, NONE, strict_mode);
   1835 }
   1836 
   1837 
   1838 void KeyedStoreIC::UpdateCaches(LookupResult* lookup,
   1839                                 State state,
   1840                                 StrictModeFlag strict_mode,
   1841                                 Handle<JSObject> receiver,
   1842                                 Handle<String> name,
   1843                                 Handle<Object> value) {
   1844   ASSERT(!receiver->IsJSGlobalProxy());
   1845   ASSERT(StoreICableLookup(lookup));
   1846   // These are not cacheable, so we never see such LookupResults here.
   1847   ASSERT(lookup->type() != HANDLER);
   1848   // We get only called for properties or transitions, see StoreICableLookup.
   1849   ASSERT(lookup->type() != NULL_DESCRIPTOR);
   1850 
   1851   // If the property has a non-field type allowing map transitions
   1852   // where there is extra room in the object, we leave the IC in its
   1853   // current state.
   1854   PropertyType type = lookup->type();
   1855 
   1856   // Compute the code stub for this store; used for rewriting to
   1857   // monomorphic state and making sure that the code stub is in the
   1858   // stub cache.
   1859   Handle<Code> code;
   1860 
   1861   switch (type) {
   1862     case FIELD:
   1863       code = isolate()->stub_cache()->ComputeKeyedStoreField(
   1864           name, receiver, lookup->GetFieldIndex(),
   1865           Handle<Map>::null(), strict_mode);
   1866       break;
   1867     case MAP_TRANSITION:
   1868       if (lookup->GetAttributes() == NONE) {
   1869         Handle<Map> transition(lookup->GetTransitionMap());
   1870         int index = transition->PropertyIndexFor(*name);
   1871         code = isolate()->stub_cache()->ComputeKeyedStoreField(
   1872             name, receiver, index, transition, strict_mode);
   1873         break;
   1874       }
   1875       // fall through.
   1876     case NORMAL:
   1877     case CONSTANT_FUNCTION:
   1878     case CALLBACKS:
   1879     case INTERCEPTOR:
   1880     case CONSTANT_TRANSITION:
   1881     case ELEMENTS_TRANSITION:
   1882       // Always rewrite to the generic case so that we do not
   1883       // repeatedly try to rewrite.
   1884       code = (strict_mode == kStrictMode)
   1885           ? generic_stub_strict()
   1886           : generic_stub();
   1887       break;
   1888     case HANDLER:
   1889     case NULL_DESCRIPTOR:
   1890       UNREACHABLE();
   1891       return;
   1892   }
   1893 
   1894   ASSERT(!code.is_null());
   1895 
   1896   // Patch the call site depending on the state of the cache.  Make
   1897   // sure to always rewrite from monomorphic to megamorphic.
   1898   ASSERT(state != MONOMORPHIC_PROTOTYPE_FAILURE);
   1899   if (state == UNINITIALIZED || state == PREMONOMORPHIC) {
   1900     set_target(*code);
   1901   } else if (state == MONOMORPHIC) {
   1902     set_target((strict_mode == kStrictMode)
   1903                  ? *megamorphic_stub_strict()
   1904                  : *megamorphic_stub());
   1905   }
   1906 
   1907   TRACE_IC("KeyedStoreIC", name, state, target());
   1908 }
   1909 
   1910 
   1911 #undef TRACE_IC
   1912 
   1913 
   1914 // ----------------------------------------------------------------------------
   1915 // Static IC stub generators.
   1916 //
   1917 
   1918 // Used from ic-<arch>.cc.
   1919 RUNTIME_FUNCTION(MaybeObject*, CallIC_Miss) {
   1920   HandleScope scope(isolate);
   1921   ASSERT(args.length() == 2);
   1922   CallIC ic(isolate);
   1923   IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
   1924   Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
   1925   MaybeObject* maybe_result = ic.LoadFunction(state,
   1926                                               extra_ic_state,
   1927                                               args.at<Object>(0),
   1928                                               args.at<String>(1));
   1929   // Result could be a function or a failure.
   1930   JSFunction* raw_function = NULL;
   1931   if (!maybe_result->To(&raw_function)) return maybe_result;
   1932 
   1933   // The first time the inline cache is updated may be the first time the
   1934   // function it references gets called.  If the function is lazily compiled
   1935   // then the first call will trigger a compilation.  We check for this case
   1936   // and we do the compilation immediately, instead of waiting for the stub
   1937   // currently attached to the JSFunction object to trigger compilation.
   1938   if (raw_function->is_compiled()) return raw_function;
   1939 
   1940   Handle<JSFunction> function(raw_function);
   1941   JSFunction::CompileLazy(function, CLEAR_EXCEPTION);
   1942   return *function;
   1943 }
   1944 
   1945 
   1946 // Used from ic-<arch>.cc.
   1947 RUNTIME_FUNCTION(MaybeObject*, KeyedCallIC_Miss) {
   1948   HandleScope scope(isolate);
   1949   ASSERT(args.length() == 2);
   1950   KeyedCallIC ic(isolate);
   1951   IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
   1952   MaybeObject* maybe_result =
   1953       ic.LoadFunction(state, args.at<Object>(0), args.at<Object>(1));
   1954   // Result could be a function or a failure.
   1955   JSFunction* raw_function = NULL;
   1956   if (!maybe_result->To(&raw_function)) return maybe_result;
   1957 
   1958   if (raw_function->is_compiled()) return raw_function;
   1959 
   1960   Handle<JSFunction> function(raw_function);
   1961   JSFunction::CompileLazy(function, CLEAR_EXCEPTION);
   1962   return *function;
   1963 }
   1964 
   1965 
   1966 // Used from ic-<arch>.cc.
   1967 RUNTIME_FUNCTION(MaybeObject*, LoadIC_Miss) {
   1968   HandleScope scope(isolate);
   1969   ASSERT(args.length() == 2);
   1970   LoadIC ic(isolate);
   1971   IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
   1972   return ic.Load(state, args.at<Object>(0), args.at<String>(1));
   1973 }
   1974 
   1975 
   1976 // Used from ic-<arch>.cc
   1977 RUNTIME_FUNCTION(MaybeObject*, KeyedLoadIC_Miss) {
   1978   HandleScope scope(isolate);
   1979   ASSERT(args.length() == 2);
   1980   KeyedLoadIC ic(isolate);
   1981   IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
   1982   return ic.Load(state, args.at<Object>(0), args.at<Object>(1), false);
   1983 }
   1984 
   1985 
   1986 RUNTIME_FUNCTION(MaybeObject*, KeyedLoadIC_MissForceGeneric) {
   1987   HandleScope scope(isolate);
   1988   ASSERT(args.length() == 2);
   1989   KeyedLoadIC ic(isolate);
   1990   IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
   1991   return ic.Load(state, args.at<Object>(0), args.at<Object>(1), true);
   1992 }
   1993 
   1994 
   1995 // Used from ic-<arch>.cc.
   1996 RUNTIME_FUNCTION(MaybeObject*, StoreIC_Miss) {
   1997   HandleScope scope;
   1998   ASSERT(args.length() == 3);
   1999   StoreIC ic(isolate);
   2000   IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
   2001   Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
   2002   return ic.Store(state,
   2003                   Code::GetStrictMode(extra_ic_state),
   2004                   args.at<Object>(0),
   2005                   args.at<String>(1),
   2006                   args.at<Object>(2));
   2007 }
   2008 
   2009 
   2010 RUNTIME_FUNCTION(MaybeObject*, StoreIC_ArrayLength) {
   2011   NoHandleAllocation nha;
   2012 
   2013   ASSERT(args.length() == 2);
   2014   JSArray* receiver = JSArray::cast(args[0]);
   2015   Object* len = args[1];
   2016 
   2017   // The generated code should filter out non-Smis before we get here.
   2018   ASSERT(len->IsSmi());
   2019 
   2020 #ifdef DEBUG
   2021   // The length property has to be a writable callback property.
   2022   LookupResult debug_lookup(isolate);
   2023   receiver->LocalLookup(isolate->heap()->length_symbol(), &debug_lookup);
   2024   ASSERT(debug_lookup.type() == CALLBACKS && !debug_lookup.IsReadOnly());
   2025 #endif
   2026 
   2027   Object* result;
   2028   { MaybeObject* maybe_result = receiver->SetElementsLength(len);
   2029     if (!maybe_result->ToObject(&result)) return maybe_result;
   2030   }
   2031   return len;
   2032 }
   2033 
   2034 
   2035 // Extend storage is called in a store inline cache when
   2036 // it is necessary to extend the properties array of a
   2037 // JSObject.
   2038 RUNTIME_FUNCTION(MaybeObject*, SharedStoreIC_ExtendStorage) {
   2039   NoHandleAllocation na;
   2040   ASSERT(args.length() == 3);
   2041 
   2042   // Convert the parameters
   2043   JSObject* object = JSObject::cast(args[0]);
   2044   Map* transition = Map::cast(args[1]);
   2045   Object* value = args[2];
   2046 
   2047   // Check the object has run out out property space.
   2048   ASSERT(object->HasFastProperties());
   2049   ASSERT(object->map()->unused_property_fields() == 0);
   2050 
   2051   // Expand the properties array.
   2052   FixedArray* old_storage = object->properties();
   2053   int new_unused = transition->unused_property_fields();
   2054   int new_size = old_storage->length() + new_unused + 1;
   2055   Object* result;
   2056   { MaybeObject* maybe_result = old_storage->CopySize(new_size);
   2057     if (!maybe_result->ToObject(&result)) return maybe_result;
   2058   }
   2059   FixedArray* new_storage = FixedArray::cast(result);
   2060   new_storage->set(old_storage->length(), value);
   2061 
   2062   // Set the new property value and do the map transition.
   2063   object->set_properties(new_storage);
   2064   object->set_map(transition);
   2065 
   2066   // Return the stored value.
   2067   return value;
   2068 }
   2069 
   2070 
   2071 // Used from ic-<arch>.cc.
   2072 RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_Miss) {
   2073   HandleScope scope(isolate);
   2074   ASSERT(args.length() == 3);
   2075   KeyedStoreIC ic(isolate);
   2076   IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
   2077   Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
   2078   return ic.Store(state,
   2079                   Code::GetStrictMode(extra_ic_state),
   2080                   args.at<Object>(0),
   2081                   args.at<Object>(1),
   2082                   args.at<Object>(2),
   2083                   false);
   2084 }
   2085 
   2086 
   2087 RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_Slow) {
   2088   NoHandleAllocation na;
   2089   ASSERT(args.length() == 3);
   2090   KeyedStoreIC ic(isolate);
   2091   Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
   2092   Handle<Object> object = args.at<Object>(0);
   2093   Handle<Object> key = args.at<Object>(1);
   2094   Handle<Object> value = args.at<Object>(2);
   2095   StrictModeFlag strict_mode = Code::GetStrictMode(extra_ic_state);
   2096   return Runtime::SetObjectProperty(isolate,
   2097                                     object,
   2098                                     key,
   2099                                     value,
   2100                                     NONE,
   2101                                     strict_mode);
   2102 }
   2103 
   2104 
   2105 RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_MissForceGeneric) {
   2106   HandleScope scope(isolate);
   2107   ASSERT(args.length() == 3);
   2108   KeyedStoreIC ic(isolate);
   2109   IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
   2110   Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
   2111   return ic.Store(state,
   2112                   Code::GetStrictMode(extra_ic_state),
   2113                   args.at<Object>(0),
   2114                   args.at<Object>(1),
   2115                   args.at<Object>(2),
   2116                   true);
   2117 }
   2118 
   2119 
   2120 void UnaryOpIC::patch(Code* code) {
   2121   set_target(code);
   2122 }
   2123 
   2124 
   2125 const char* UnaryOpIC::GetName(TypeInfo type_info) {
   2126   switch (type_info) {
   2127     case UNINITIALIZED: return "Uninitialized";
   2128     case SMI: return "Smi";
   2129     case HEAP_NUMBER: return "HeapNumbers";
   2130     case GENERIC: return "Generic";
   2131     default: return "Invalid";
   2132   }
   2133 }
   2134 
   2135 
   2136 UnaryOpIC::State UnaryOpIC::ToState(TypeInfo type_info) {
   2137   switch (type_info) {
   2138     case UNINITIALIZED:
   2139       return ::v8::internal::UNINITIALIZED;
   2140     case SMI:
   2141     case HEAP_NUMBER:
   2142       return MONOMORPHIC;
   2143     case GENERIC:
   2144       return MEGAMORPHIC;
   2145   }
   2146   UNREACHABLE();
   2147   return ::v8::internal::UNINITIALIZED;
   2148 }
   2149 
   2150 UnaryOpIC::TypeInfo UnaryOpIC::GetTypeInfo(Handle<Object> operand) {
   2151   ::v8::internal::TypeInfo operand_type =
   2152       ::v8::internal::TypeInfo::TypeFromValue(operand);
   2153   if (operand_type.IsSmi()) {
   2154     return SMI;
   2155   } else if (operand_type.IsNumber()) {
   2156     return HEAP_NUMBER;
   2157   } else {
   2158     return GENERIC;
   2159   }
   2160 }
   2161 
   2162 
   2163 UnaryOpIC::TypeInfo UnaryOpIC::ComputeNewType(
   2164     UnaryOpIC::TypeInfo current_type,
   2165     UnaryOpIC::TypeInfo previous_type) {
   2166   switch (previous_type) {
   2167     case UnaryOpIC::UNINITIALIZED:
   2168       return current_type;
   2169     case UnaryOpIC::SMI:
   2170       return (current_type == UnaryOpIC::GENERIC)
   2171           ? UnaryOpIC::GENERIC
   2172           : UnaryOpIC::HEAP_NUMBER;
   2173     case UnaryOpIC::HEAP_NUMBER:
   2174       return UnaryOpIC::GENERIC;
   2175     case UnaryOpIC::GENERIC:
   2176       // We should never do patching if we are in GENERIC state.
   2177       UNREACHABLE();
   2178       return UnaryOpIC::GENERIC;
   2179   }
   2180   UNREACHABLE();
   2181   return UnaryOpIC::GENERIC;
   2182 }
   2183 
   2184 
   2185 void BinaryOpIC::patch(Code* code) {
   2186   set_target(code);
   2187 }
   2188 
   2189 
   2190 const char* BinaryOpIC::GetName(TypeInfo type_info) {
   2191   switch (type_info) {
   2192     case UNINITIALIZED: return "Uninitialized";
   2193     case SMI: return "SMI";
   2194     case INT32: return "Int32s";
   2195     case HEAP_NUMBER: return "HeapNumbers";
   2196     case ODDBALL: return "Oddball";
   2197     case BOTH_STRING: return "BothStrings";
   2198     case STRING: return "Strings";
   2199     case GENERIC: return "Generic";
   2200     default: return "Invalid";
   2201   }
   2202 }
   2203 
   2204 
   2205 BinaryOpIC::State BinaryOpIC::ToState(TypeInfo type_info) {
   2206   switch (type_info) {
   2207     case UNINITIALIZED:
   2208       return ::v8::internal::UNINITIALIZED;
   2209     case SMI:
   2210     case INT32:
   2211     case HEAP_NUMBER:
   2212     case ODDBALL:
   2213     case BOTH_STRING:
   2214     case STRING:
   2215       return MONOMORPHIC;
   2216     case GENERIC:
   2217       return MEGAMORPHIC;
   2218   }
   2219   UNREACHABLE();
   2220   return ::v8::internal::UNINITIALIZED;
   2221 }
   2222 
   2223 
   2224 BinaryOpIC::TypeInfo BinaryOpIC::JoinTypes(BinaryOpIC::TypeInfo x,
   2225                                            BinaryOpIC::TypeInfo y) {
   2226   if (x == UNINITIALIZED) return y;
   2227   if (y == UNINITIALIZED) return x;
   2228   if (x == y) return x;
   2229   if (x == BOTH_STRING && y == STRING) return STRING;
   2230   if (x == STRING && y == BOTH_STRING) return STRING;
   2231   if (x == STRING || x == BOTH_STRING || y == STRING || y == BOTH_STRING) {
   2232     return GENERIC;
   2233   }
   2234   if (x > y) return x;
   2235   return y;
   2236 }
   2237 
   2238 
   2239 BinaryOpIC::TypeInfo BinaryOpIC::GetTypeInfo(Handle<Object> left,
   2240                                              Handle<Object> right) {
   2241   ::v8::internal::TypeInfo left_type =
   2242       ::v8::internal::TypeInfo::TypeFromValue(left);
   2243   ::v8::internal::TypeInfo right_type =
   2244       ::v8::internal::TypeInfo::TypeFromValue(right);
   2245 
   2246   if (left_type.IsSmi() && right_type.IsSmi()) {
   2247     return SMI;
   2248   }
   2249 
   2250   if (left_type.IsInteger32() && right_type.IsInteger32()) {
   2251     // Platforms with 32-bit Smis have no distinct INT32 type.
   2252     if (kSmiValueSize == 32) return SMI;
   2253     return INT32;
   2254   }
   2255 
   2256   if (left_type.IsNumber() && right_type.IsNumber()) {
   2257     return HEAP_NUMBER;
   2258   }
   2259 
   2260   // Patching for fast string ADD makes sense even if only one of the
   2261   // arguments is a string.
   2262   if (left_type.IsString())  {
   2263     return right_type.IsString() ? BOTH_STRING : STRING;
   2264   } else if (right_type.IsString()) {
   2265     return STRING;
   2266   }
   2267 
   2268   // Check for oddball objects.
   2269   if (left->IsUndefined() && right->IsNumber()) return ODDBALL;
   2270   if (left->IsNumber() && right->IsUndefined()) return ODDBALL;
   2271 
   2272   return GENERIC;
   2273 }
   2274 
   2275 
   2276 RUNTIME_FUNCTION(MaybeObject*, UnaryOp_Patch) {
   2277   ASSERT(args.length() == 4);
   2278 
   2279   HandleScope scope(isolate);
   2280   Handle<Object> operand = args.at<Object>(0);
   2281   Token::Value op = static_cast<Token::Value>(args.smi_at(1));
   2282   UnaryOverwriteMode mode = static_cast<UnaryOverwriteMode>(args.smi_at(2));
   2283   UnaryOpIC::TypeInfo previous_type =
   2284       static_cast<UnaryOpIC::TypeInfo>(args.smi_at(3));
   2285 
   2286   UnaryOpIC::TypeInfo type = UnaryOpIC::GetTypeInfo(operand);
   2287   type = UnaryOpIC::ComputeNewType(type, previous_type);
   2288 
   2289   UnaryOpStub stub(op, mode, type);
   2290   Handle<Code> code = stub.GetCode();
   2291   if (!code.is_null()) {
   2292     if (FLAG_trace_ic) {
   2293       PrintF("[UnaryOpIC (%s->%s)#%s]\n",
   2294              UnaryOpIC::GetName(previous_type),
   2295              UnaryOpIC::GetName(type),
   2296              Token::Name(op));
   2297     }
   2298     UnaryOpIC ic(isolate);
   2299     ic.patch(*code);
   2300   }
   2301 
   2302   Handle<JSBuiltinsObject> builtins = Handle<JSBuiltinsObject>(
   2303       isolate->thread_local_top()->context_->builtins(), isolate);
   2304   Object* builtin = NULL;  // Initialization calms down the compiler.
   2305   switch (op) {
   2306     case Token::SUB:
   2307       builtin = builtins->javascript_builtin(Builtins::UNARY_MINUS);
   2308       break;
   2309     case Token::BIT_NOT:
   2310       builtin = builtins->javascript_builtin(Builtins::BIT_NOT);
   2311       break;
   2312     default:
   2313       UNREACHABLE();
   2314   }
   2315 
   2316   Handle<JSFunction> builtin_function(JSFunction::cast(builtin), isolate);
   2317 
   2318   bool caught_exception;
   2319   Handle<Object> result = Execution::Call(builtin_function, operand, 0, NULL,
   2320                                           &caught_exception);
   2321   if (caught_exception) {
   2322     return Failure::Exception();
   2323   }
   2324   return *result;
   2325 }
   2326 
   2327 RUNTIME_FUNCTION(MaybeObject*, BinaryOp_Patch) {
   2328   ASSERT(args.length() == 5);
   2329 
   2330   HandleScope scope(isolate);
   2331   Handle<Object> left = args.at<Object>(0);
   2332   Handle<Object> right = args.at<Object>(1);
   2333   int key = args.smi_at(2);
   2334   Token::Value op = static_cast<Token::Value>(args.smi_at(3));
   2335   BinaryOpIC::TypeInfo previous_type =
   2336       static_cast<BinaryOpIC::TypeInfo>(args.smi_at(4));
   2337 
   2338   BinaryOpIC::TypeInfo type = BinaryOpIC::GetTypeInfo(left, right);
   2339   type = BinaryOpIC::JoinTypes(type, previous_type);
   2340   BinaryOpIC::TypeInfo result_type = BinaryOpIC::UNINITIALIZED;
   2341   if ((type == BinaryOpIC::STRING || type == BinaryOpIC::BOTH_STRING) &&
   2342       op != Token::ADD) {
   2343     type = BinaryOpIC::GENERIC;
   2344   }
   2345   if (type == BinaryOpIC::SMI && previous_type == BinaryOpIC::SMI) {
   2346     if (op == Token::DIV ||
   2347         op == Token::MUL ||
   2348         op == Token::SHR ||
   2349         kSmiValueSize == 32) {
   2350       // Arithmetic on two Smi inputs has yielded a heap number.
   2351       // That is the only way to get here from the Smi stub.
   2352       // With 32-bit Smis, all overflows give heap numbers, but with
   2353       // 31-bit Smis, most operations overflow to int32 results.
   2354       result_type = BinaryOpIC::HEAP_NUMBER;
   2355     } else {
   2356       // Other operations on SMIs that overflow yield int32s.
   2357       result_type = BinaryOpIC::INT32;
   2358     }
   2359   }
   2360   if (type == BinaryOpIC::INT32 && previous_type == BinaryOpIC::INT32) {
   2361     // We must be here because an operation on two INT32 types overflowed.
   2362     result_type = BinaryOpIC::HEAP_NUMBER;
   2363   }
   2364 
   2365   BinaryOpStub stub(key, type, result_type);
   2366   Handle<Code> code = stub.GetCode();
   2367   if (!code.is_null()) {
   2368     if (FLAG_trace_ic) {
   2369       PrintF("[BinaryOpIC (%s->(%s->%s))#%s]\n",
   2370              BinaryOpIC::GetName(previous_type),
   2371              BinaryOpIC::GetName(type),
   2372              BinaryOpIC::GetName(result_type),
   2373              Token::Name(op));
   2374     }
   2375     BinaryOpIC ic(isolate);
   2376     ic.patch(*code);
   2377 
   2378     // Activate inlined smi code.
   2379     if (previous_type == BinaryOpIC::UNINITIALIZED) {
   2380       PatchInlinedSmiCode(ic.address());
   2381     }
   2382   }
   2383 
   2384   Handle<JSBuiltinsObject> builtins = Handle<JSBuiltinsObject>(
   2385       isolate->thread_local_top()->context_->builtins(), isolate);
   2386   Object* builtin = NULL;  // Initialization calms down the compiler.
   2387   switch (op) {
   2388     case Token::ADD:
   2389       builtin = builtins->javascript_builtin(Builtins::ADD);
   2390       break;
   2391     case Token::SUB:
   2392       builtin = builtins->javascript_builtin(Builtins::SUB);
   2393       break;
   2394     case Token::MUL:
   2395       builtin = builtins->javascript_builtin(Builtins::MUL);
   2396       break;
   2397     case Token::DIV:
   2398       builtin = builtins->javascript_builtin(Builtins::DIV);
   2399       break;
   2400     case Token::MOD:
   2401       builtin = builtins->javascript_builtin(Builtins::MOD);
   2402       break;
   2403     case Token::BIT_AND:
   2404       builtin = builtins->javascript_builtin(Builtins::BIT_AND);
   2405       break;
   2406     case Token::BIT_OR:
   2407       builtin = builtins->javascript_builtin(Builtins::BIT_OR);
   2408       break;
   2409     case Token::BIT_XOR:
   2410       builtin = builtins->javascript_builtin(Builtins::BIT_XOR);
   2411       break;
   2412     case Token::SHR:
   2413       builtin = builtins->javascript_builtin(Builtins::SHR);
   2414       break;
   2415     case Token::SAR:
   2416       builtin = builtins->javascript_builtin(Builtins::SAR);
   2417       break;
   2418     case Token::SHL:
   2419       builtin = builtins->javascript_builtin(Builtins::SHL);
   2420       break;
   2421     default:
   2422       UNREACHABLE();
   2423   }
   2424 
   2425   Handle<JSFunction> builtin_function(JSFunction::cast(builtin), isolate);
   2426 
   2427   bool caught_exception;
   2428   Handle<Object> builtin_args[] = { right };
   2429   Handle<Object> result = Execution::Call(builtin_function,
   2430                                           left,
   2431                                           ARRAY_SIZE(builtin_args),
   2432                                           builtin_args,
   2433                                           &caught_exception);
   2434   if (caught_exception) {
   2435     return Failure::Exception();
   2436   }
   2437   return *result;
   2438 }
   2439 
   2440 
   2441 Handle<Code> CompareIC::GetUninitialized(Token::Value op) {
   2442   ICCompareStub stub(op, UNINITIALIZED);
   2443   return stub.GetCode();
   2444 }
   2445 
   2446 
   2447 CompareIC::State CompareIC::ComputeState(Code* target) {
   2448   int key = target->major_key();
   2449   if (key == CodeStub::Compare) return GENERIC;
   2450   ASSERT(key == CodeStub::CompareIC);
   2451   return static_cast<State>(target->compare_state());
   2452 }
   2453 
   2454 
   2455 const char* CompareIC::GetStateName(State state) {
   2456   switch (state) {
   2457     case UNINITIALIZED: return "UNINITIALIZED";
   2458     case SMIS: return "SMIS";
   2459     case HEAP_NUMBERS: return "HEAP_NUMBERS";
   2460     case OBJECTS: return "OBJECTS";
   2461     case KNOWN_OBJECTS: return "OBJECTS";
   2462     case SYMBOLS: return "SYMBOLS";
   2463     case STRINGS: return "STRINGS";
   2464     case GENERIC: return "GENERIC";
   2465     default:
   2466       UNREACHABLE();
   2467       return NULL;
   2468   }
   2469 }
   2470 
   2471 
   2472 CompareIC::State CompareIC::TargetState(State state,
   2473                                         bool has_inlined_smi_code,
   2474                                         Handle<Object> x,
   2475                                         Handle<Object> y) {
   2476   switch (state) {
   2477     case UNINITIALIZED:
   2478       if (x->IsSmi() && y->IsSmi()) return SMIS;
   2479       if (x->IsNumber() && y->IsNumber()) return HEAP_NUMBERS;
   2480       if (Token::IsOrderedRelationalCompareOp(op_)) {
   2481         // Ordered comparisons treat undefined as NaN, so the
   2482         // HEAP_NUMBER stub will do the right thing.
   2483         if ((x->IsNumber() && y->IsUndefined()) ||
   2484             (y->IsNumber() && x->IsUndefined())) {
   2485           return HEAP_NUMBERS;
   2486         }
   2487       }
   2488       if (x->IsSymbol() && y->IsSymbol()) {
   2489         // We compare symbols as strings if we need to determine
   2490         // the order in a non-equality compare.
   2491         return Token::IsEqualityOp(op_) ? SYMBOLS : STRINGS;
   2492       }
   2493       if (x->IsString() && y->IsString()) return STRINGS;
   2494       if (!Token::IsEqualityOp(op_)) return GENERIC;
   2495       if (x->IsJSObject() && y->IsJSObject()) {
   2496         if (Handle<JSObject>::cast(x)->map() ==
   2497             Handle<JSObject>::cast(y)->map() &&
   2498             Token::IsEqualityOp(op_)) {
   2499           return KNOWN_OBJECTS;
   2500         } else {
   2501           return OBJECTS;
   2502         }
   2503       }
   2504       return GENERIC;
   2505     case SMIS:
   2506       return has_inlined_smi_code && x->IsNumber() && y->IsNumber()
   2507           ? HEAP_NUMBERS
   2508           : GENERIC;
   2509     case SYMBOLS:
   2510       ASSERT(Token::IsEqualityOp(op_));
   2511       return x->IsString() && y->IsString() ? STRINGS : GENERIC;
   2512     case HEAP_NUMBERS:
   2513     case STRINGS:
   2514     case OBJECTS:
   2515     case KNOWN_OBJECTS:
   2516     case GENERIC:
   2517       return GENERIC;
   2518   }
   2519   UNREACHABLE();
   2520   return GENERIC;
   2521 }
   2522 
   2523 
   2524 // Used from ic_<arch>.cc.
   2525 RUNTIME_FUNCTION(Code*, CompareIC_Miss) {
   2526   NoHandleAllocation na;
   2527   ASSERT(args.length() == 3);
   2528   CompareIC ic(isolate, static_cast<Token::Value>(args.smi_at(2)));
   2529   ic.UpdateCaches(args.at<Object>(0), args.at<Object>(1));
   2530   return ic.target();
   2531 }
   2532 
   2533 
   2534 RUNTIME_FUNCTION(MaybeObject*, ToBoolean_Patch) {
   2535   ASSERT(args.length() == 3);
   2536 
   2537   HandleScope scope(isolate);
   2538   Handle<Object> object = args.at<Object>(0);
   2539   Register tos = Register::from_code(args.smi_at(1));
   2540   ToBooleanStub::Types old_types(args.smi_at(2));
   2541 
   2542   ToBooleanStub::Types new_types(old_types);
   2543   bool to_boolean_value = new_types.Record(object);
   2544   old_types.TraceTransition(new_types);
   2545 
   2546   ToBooleanStub stub(tos, new_types);
   2547   Handle<Code> code = stub.GetCode();
   2548   ToBooleanIC ic(isolate);
   2549   ic.patch(*code);
   2550   return Smi::FromInt(to_boolean_value ? 1 : 0);
   2551 }
   2552 
   2553 
   2554 void ToBooleanIC::patch(Code* code) {
   2555   set_target(code);
   2556 }
   2557 
   2558 
   2559 static const Address IC_utilities[] = {
   2560 #define ADDR(name) FUNCTION_ADDR(name),
   2561     IC_UTIL_LIST(ADDR)
   2562     NULL
   2563 #undef ADDR
   2564 };
   2565 
   2566 
   2567 Address IC::AddressFromUtilityId(IC::UtilityId id) {
   2568   return IC_utilities[id];
   2569 }
   2570 
   2571 
   2572 } }  // namespace v8::internal
   2573