Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineCompares.cpp --------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visitICmp and visitFCmp functions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombine.h"
     15 #include "llvm/IntrinsicInst.h"
     16 #include "llvm/Analysis/ConstantFolding.h"
     17 #include "llvm/Analysis/InstructionSimplify.h"
     18 #include "llvm/Analysis/MemoryBuiltins.h"
     19 #include "llvm/Target/TargetData.h"
     20 #include "llvm/Support/ConstantRange.h"
     21 #include "llvm/Support/GetElementPtrTypeIterator.h"
     22 #include "llvm/Support/PatternMatch.h"
     23 using namespace llvm;
     24 using namespace PatternMatch;
     25 
     26 static ConstantInt *getOne(Constant *C) {
     27   return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
     28 }
     29 
     30 /// AddOne - Add one to a ConstantInt
     31 static Constant *AddOne(Constant *C) {
     32   return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
     33 }
     34 /// SubOne - Subtract one from a ConstantInt
     35 static Constant *SubOne(Constant *C) {
     36   return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
     37 }
     38 
     39 static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
     40   return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
     41 }
     42 
     43 static bool HasAddOverflow(ConstantInt *Result,
     44                            ConstantInt *In1, ConstantInt *In2,
     45                            bool IsSigned) {
     46   if (!IsSigned)
     47     return Result->getValue().ult(In1->getValue());
     48 
     49   if (In2->isNegative())
     50     return Result->getValue().sgt(In1->getValue());
     51   return Result->getValue().slt(In1->getValue());
     52 }
     53 
     54 /// AddWithOverflow - Compute Result = In1+In2, returning true if the result
     55 /// overflowed for this type.
     56 static bool AddWithOverflow(Constant *&Result, Constant *In1,
     57                             Constant *In2, bool IsSigned = false) {
     58   Result = ConstantExpr::getAdd(In1, In2);
     59 
     60   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
     61     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
     62       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
     63       if (HasAddOverflow(ExtractElement(Result, Idx),
     64                          ExtractElement(In1, Idx),
     65                          ExtractElement(In2, Idx),
     66                          IsSigned))
     67         return true;
     68     }
     69     return false;
     70   }
     71 
     72   return HasAddOverflow(cast<ConstantInt>(Result),
     73                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
     74                         IsSigned);
     75 }
     76 
     77 static bool HasSubOverflow(ConstantInt *Result,
     78                            ConstantInt *In1, ConstantInt *In2,
     79                            bool IsSigned) {
     80   if (!IsSigned)
     81     return Result->getValue().ugt(In1->getValue());
     82 
     83   if (In2->isNegative())
     84     return Result->getValue().slt(In1->getValue());
     85 
     86   return Result->getValue().sgt(In1->getValue());
     87 }
     88 
     89 /// SubWithOverflow - Compute Result = In1-In2, returning true if the result
     90 /// overflowed for this type.
     91 static bool SubWithOverflow(Constant *&Result, Constant *In1,
     92                             Constant *In2, bool IsSigned = false) {
     93   Result = ConstantExpr::getSub(In1, In2);
     94 
     95   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
     96     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
     97       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
     98       if (HasSubOverflow(ExtractElement(Result, Idx),
     99                          ExtractElement(In1, Idx),
    100                          ExtractElement(In2, Idx),
    101                          IsSigned))
    102         return true;
    103     }
    104     return false;
    105   }
    106 
    107   return HasSubOverflow(cast<ConstantInt>(Result),
    108                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
    109                         IsSigned);
    110 }
    111 
    112 /// isSignBitCheck - Given an exploded icmp instruction, return true if the
    113 /// comparison only checks the sign bit.  If it only checks the sign bit, set
    114 /// TrueIfSigned if the result of the comparison is true when the input value is
    115 /// signed.
    116 static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
    117                            bool &TrueIfSigned) {
    118   switch (pred) {
    119   case ICmpInst::ICMP_SLT:   // True if LHS s< 0
    120     TrueIfSigned = true;
    121     return RHS->isZero();
    122   case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
    123     TrueIfSigned = true;
    124     return RHS->isAllOnesValue();
    125   case ICmpInst::ICMP_SGT:   // True if LHS s> -1
    126     TrueIfSigned = false;
    127     return RHS->isAllOnesValue();
    128   case ICmpInst::ICMP_UGT:
    129     // True if LHS u> RHS and RHS == high-bit-mask - 1
    130     TrueIfSigned = true;
    131     return RHS->isMaxValue(true);
    132   case ICmpInst::ICMP_UGE:
    133     // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
    134     TrueIfSigned = true;
    135     return RHS->getValue().isSignBit();
    136   default:
    137     return false;
    138   }
    139 }
    140 
    141 // isHighOnes - Return true if the constant is of the form 1+0+.
    142 // This is the same as lowones(~X).
    143 static bool isHighOnes(const ConstantInt *CI) {
    144   return (~CI->getValue() + 1).isPowerOf2();
    145 }
    146 
    147 /// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
    148 /// set of known zero and one bits, compute the maximum and minimum values that
    149 /// could have the specified known zero and known one bits, returning them in
    150 /// min/max.
    151 static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
    152                                                    const APInt& KnownOne,
    153                                                    APInt& Min, APInt& Max) {
    154   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
    155          KnownZero.getBitWidth() == Min.getBitWidth() &&
    156          KnownZero.getBitWidth() == Max.getBitWidth() &&
    157          "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
    158   APInt UnknownBits = ~(KnownZero|KnownOne);
    159 
    160   // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
    161   // bit if it is unknown.
    162   Min = KnownOne;
    163   Max = KnownOne|UnknownBits;
    164 
    165   if (UnknownBits.isNegative()) { // Sign bit is unknown
    166     Min.setBit(Min.getBitWidth()-1);
    167     Max.clearBit(Max.getBitWidth()-1);
    168   }
    169 }
    170 
    171 // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
    172 // a set of known zero and one bits, compute the maximum and minimum values that
    173 // could have the specified known zero and known one bits, returning them in
    174 // min/max.
    175 static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
    176                                                      const APInt &KnownOne,
    177                                                      APInt &Min, APInt &Max) {
    178   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
    179          KnownZero.getBitWidth() == Min.getBitWidth() &&
    180          KnownZero.getBitWidth() == Max.getBitWidth() &&
    181          "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
    182   APInt UnknownBits = ~(KnownZero|KnownOne);
    183 
    184   // The minimum value is when the unknown bits are all zeros.
    185   Min = KnownOne;
    186   // The maximum value is when the unknown bits are all ones.
    187   Max = KnownOne|UnknownBits;
    188 }
    189 
    190 
    191 
    192 /// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
    193 ///   cmp pred (load (gep GV, ...)), cmpcst
    194 /// where GV is a global variable with a constant initializer.  Try to simplify
    195 /// this into some simple computation that does not need the load.  For example
    196 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
    197 ///
    198 /// If AndCst is non-null, then the loaded value is masked with that constant
    199 /// before doing the comparison.  This handles cases like "A[i]&4 == 0".
    200 Instruction *InstCombiner::
    201 FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
    202                              CmpInst &ICI, ConstantInt *AndCst) {
    203   // We need TD information to know the pointer size unless this is inbounds.
    204   if (!GEP->isInBounds() && TD == 0) return 0;
    205 
    206   Constant *Init = GV->getInitializer();
    207   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
    208     return 0;
    209 
    210   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
    211   if (ArrayElementCount > 1024) return 0;  // Don't blow up on huge arrays.
    212 
    213   // There are many forms of this optimization we can handle, for now, just do
    214   // the simple index into a single-dimensional array.
    215   //
    216   // Require: GEP GV, 0, i {{, constant indices}}
    217   if (GEP->getNumOperands() < 3 ||
    218       !isa<ConstantInt>(GEP->getOperand(1)) ||
    219       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
    220       isa<Constant>(GEP->getOperand(2)))
    221     return 0;
    222 
    223   // Check that indices after the variable are constants and in-range for the
    224   // type they index.  Collect the indices.  This is typically for arrays of
    225   // structs.
    226   SmallVector<unsigned, 4> LaterIndices;
    227 
    228   Type *EltTy = Init->getType()->getArrayElementType();
    229   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
    230     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
    231     if (Idx == 0) return 0;  // Variable index.
    232 
    233     uint64_t IdxVal = Idx->getZExtValue();
    234     if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index.
    235 
    236     if (StructType *STy = dyn_cast<StructType>(EltTy))
    237       EltTy = STy->getElementType(IdxVal);
    238     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
    239       if (IdxVal >= ATy->getNumElements()) return 0;
    240       EltTy = ATy->getElementType();
    241     } else {
    242       return 0; // Unknown type.
    243     }
    244 
    245     LaterIndices.push_back(IdxVal);
    246   }
    247 
    248   enum { Overdefined = -3, Undefined = -2 };
    249 
    250   // Variables for our state machines.
    251 
    252   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
    253   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
    254   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
    255   // undefined, otherwise set to the first true element.  SecondTrueElement is
    256   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
    257   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
    258 
    259   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
    260   // form "i != 47 & i != 87".  Same state transitions as for true elements.
    261   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
    262 
    263   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
    264   /// define a state machine that triggers for ranges of values that the index
    265   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
    266   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
    267   /// index in the range (inclusive).  We use -2 for undefined here because we
    268   /// use relative comparisons and don't want 0-1 to match -1.
    269   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
    270 
    271   // MagicBitvector - This is a magic bitvector where we set a bit if the
    272   // comparison is true for element 'i'.  If there are 64 elements or less in
    273   // the array, this will fully represent all the comparison results.
    274   uint64_t MagicBitvector = 0;
    275 
    276 
    277   // Scan the array and see if one of our patterns matches.
    278   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
    279   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
    280     Constant *Elt = Init->getAggregateElement(i);
    281     if (Elt == 0) return 0;
    282 
    283     // If this is indexing an array of structures, get the structure element.
    284     if (!LaterIndices.empty())
    285       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
    286 
    287     // If the element is masked, handle it.
    288     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
    289 
    290     // Find out if the comparison would be true or false for the i'th element.
    291     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
    292                                                   CompareRHS, TD, TLI);
    293     // If the result is undef for this element, ignore it.
    294     if (isa<UndefValue>(C)) {
    295       // Extend range state machines to cover this element in case there is an
    296       // undef in the middle of the range.
    297       if (TrueRangeEnd == (int)i-1)
    298         TrueRangeEnd = i;
    299       if (FalseRangeEnd == (int)i-1)
    300         FalseRangeEnd = i;
    301       continue;
    302     }
    303 
    304     // If we can't compute the result for any of the elements, we have to give
    305     // up evaluating the entire conditional.
    306     if (!isa<ConstantInt>(C)) return 0;
    307 
    308     // Otherwise, we know if the comparison is true or false for this element,
    309     // update our state machines.
    310     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
    311 
    312     // State machine for single/double/range index comparison.
    313     if (IsTrueForElt) {
    314       // Update the TrueElement state machine.
    315       if (FirstTrueElement == Undefined)
    316         FirstTrueElement = TrueRangeEnd = i;  // First true element.
    317       else {
    318         // Update double-compare state machine.
    319         if (SecondTrueElement == Undefined)
    320           SecondTrueElement = i;
    321         else
    322           SecondTrueElement = Overdefined;
    323 
    324         // Update range state machine.
    325         if (TrueRangeEnd == (int)i-1)
    326           TrueRangeEnd = i;
    327         else
    328           TrueRangeEnd = Overdefined;
    329       }
    330     } else {
    331       // Update the FalseElement state machine.
    332       if (FirstFalseElement == Undefined)
    333         FirstFalseElement = FalseRangeEnd = i; // First false element.
    334       else {
    335         // Update double-compare state machine.
    336         if (SecondFalseElement == Undefined)
    337           SecondFalseElement = i;
    338         else
    339           SecondFalseElement = Overdefined;
    340 
    341         // Update range state machine.
    342         if (FalseRangeEnd == (int)i-1)
    343           FalseRangeEnd = i;
    344         else
    345           FalseRangeEnd = Overdefined;
    346       }
    347     }
    348 
    349 
    350     // If this element is in range, update our magic bitvector.
    351     if (i < 64 && IsTrueForElt)
    352       MagicBitvector |= 1ULL << i;
    353 
    354     // If all of our states become overdefined, bail out early.  Since the
    355     // predicate is expensive, only check it every 8 elements.  This is only
    356     // really useful for really huge arrays.
    357     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
    358         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
    359         FalseRangeEnd == Overdefined)
    360       return 0;
    361   }
    362 
    363   // Now that we've scanned the entire array, emit our new comparison(s).  We
    364   // order the state machines in complexity of the generated code.
    365   Value *Idx = GEP->getOperand(2);
    366 
    367   // If the index is larger than the pointer size of the target, truncate the
    368   // index down like the GEP would do implicitly.  We don't have to do this for
    369   // an inbounds GEP because the index can't be out of range.
    370   if (!GEP->isInBounds() &&
    371       Idx->getType()->getPrimitiveSizeInBits() > TD->getPointerSizeInBits())
    372     Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext()));
    373 
    374   // If the comparison is only true for one or two elements, emit direct
    375   // comparisons.
    376   if (SecondTrueElement != Overdefined) {
    377     // None true -> false.
    378     if (FirstTrueElement == Undefined)
    379       return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(GEP->getContext()));
    380 
    381     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
    382 
    383     // True for one element -> 'i == 47'.
    384     if (SecondTrueElement == Undefined)
    385       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
    386 
    387     // True for two elements -> 'i == 47 | i == 72'.
    388     Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
    389     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
    390     Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
    391     return BinaryOperator::CreateOr(C1, C2);
    392   }
    393 
    394   // If the comparison is only false for one or two elements, emit direct
    395   // comparisons.
    396   if (SecondFalseElement != Overdefined) {
    397     // None false -> true.
    398     if (FirstFalseElement == Undefined)
    399       return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(GEP->getContext()));
    400 
    401     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
    402 
    403     // False for one element -> 'i != 47'.
    404     if (SecondFalseElement == Undefined)
    405       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
    406 
    407     // False for two elements -> 'i != 47 & i != 72'.
    408     Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
    409     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
    410     Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
    411     return BinaryOperator::CreateAnd(C1, C2);
    412   }
    413 
    414   // If the comparison can be replaced with a range comparison for the elements
    415   // where it is true, emit the range check.
    416   if (TrueRangeEnd != Overdefined) {
    417     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
    418 
    419     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
    420     if (FirstTrueElement) {
    421       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
    422       Idx = Builder->CreateAdd(Idx, Offs);
    423     }
    424 
    425     Value *End = ConstantInt::get(Idx->getType(),
    426                                   TrueRangeEnd-FirstTrueElement+1);
    427     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
    428   }
    429 
    430   // False range check.
    431   if (FalseRangeEnd != Overdefined) {
    432     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
    433     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
    434     if (FirstFalseElement) {
    435       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
    436       Idx = Builder->CreateAdd(Idx, Offs);
    437     }
    438 
    439     Value *End = ConstantInt::get(Idx->getType(),
    440                                   FalseRangeEnd-FirstFalseElement);
    441     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
    442   }
    443 
    444 
    445   // If a 32-bit or 64-bit magic bitvector captures the entire comparison state
    446   // of this load, replace it with computation that does:
    447   //   ((magic_cst >> i) & 1) != 0
    448   if (ArrayElementCount <= 32 ||
    449       (TD && ArrayElementCount <= 64 && TD->isLegalInteger(64))) {
    450     Type *Ty;
    451     if (ArrayElementCount <= 32)
    452       Ty = Type::getInt32Ty(Init->getContext());
    453     else
    454       Ty = Type::getInt64Ty(Init->getContext());
    455     Value *V = Builder->CreateIntCast(Idx, Ty, false);
    456     V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
    457     V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
    458     return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
    459   }
    460 
    461   return 0;
    462 }
    463 
    464 
    465 /// EvaluateGEPOffsetExpression - Return a value that can be used to compare
    466 /// the *offset* implied by a GEP to zero.  For example, if we have &A[i], we
    467 /// want to return 'i' for "icmp ne i, 0".  Note that, in general, indices can
    468 /// be complex, and scales are involved.  The above expression would also be
    469 /// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
    470 /// This later form is less amenable to optimization though, and we are allowed
    471 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
    472 ///
    473 /// If we can't emit an optimized form for this expression, this returns null.
    474 ///
    475 static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {
    476   TargetData &TD = *IC.getTargetData();
    477   gep_type_iterator GTI = gep_type_begin(GEP);
    478 
    479   // Check to see if this gep only has a single variable index.  If so, and if
    480   // any constant indices are a multiple of its scale, then we can compute this
    481   // in terms of the scale of the variable index.  For example, if the GEP
    482   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
    483   // because the expression will cross zero at the same point.
    484   unsigned i, e = GEP->getNumOperands();
    485   int64_t Offset = 0;
    486   for (i = 1; i != e; ++i, ++GTI) {
    487     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
    488       // Compute the aggregate offset of constant indices.
    489       if (CI->isZero()) continue;
    490 
    491       // Handle a struct index, which adds its field offset to the pointer.
    492       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    493         Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
    494       } else {
    495         uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
    496         Offset += Size*CI->getSExtValue();
    497       }
    498     } else {
    499       // Found our variable index.
    500       break;
    501     }
    502   }
    503 
    504   // If there are no variable indices, we must have a constant offset, just
    505   // evaluate it the general way.
    506   if (i == e) return 0;
    507 
    508   Value *VariableIdx = GEP->getOperand(i);
    509   // Determine the scale factor of the variable element.  For example, this is
    510   // 4 if the variable index is into an array of i32.
    511   uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
    512 
    513   // Verify that there are no other variable indices.  If so, emit the hard way.
    514   for (++i, ++GTI; i != e; ++i, ++GTI) {
    515     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
    516     if (!CI) return 0;
    517 
    518     // Compute the aggregate offset of constant indices.
    519     if (CI->isZero()) continue;
    520 
    521     // Handle a struct index, which adds its field offset to the pointer.
    522     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    523       Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
    524     } else {
    525       uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
    526       Offset += Size*CI->getSExtValue();
    527     }
    528   }
    529 
    530   // Okay, we know we have a single variable index, which must be a
    531   // pointer/array/vector index.  If there is no offset, life is simple, return
    532   // the index.
    533   unsigned IntPtrWidth = TD.getPointerSizeInBits();
    534   if (Offset == 0) {
    535     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
    536     // we don't need to bother extending: the extension won't affect where the
    537     // computation crosses zero.
    538     if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
    539       Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
    540       VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
    541     }
    542     return VariableIdx;
    543   }
    544 
    545   // Otherwise, there is an index.  The computation we will do will be modulo
    546   // the pointer size, so get it.
    547   uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
    548 
    549   Offset &= PtrSizeMask;
    550   VariableScale &= PtrSizeMask;
    551 
    552   // To do this transformation, any constant index must be a multiple of the
    553   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
    554   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
    555   // multiple of the variable scale.
    556   int64_t NewOffs = Offset / (int64_t)VariableScale;
    557   if (Offset != NewOffs*(int64_t)VariableScale)
    558     return 0;
    559 
    560   // Okay, we can do this evaluation.  Start by converting the index to intptr.
    561   Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
    562   if (VariableIdx->getType() != IntPtrTy)
    563     VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
    564                                             true /*Signed*/);
    565   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
    566   return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
    567 }
    568 
    569 /// FoldGEPICmp - Fold comparisons between a GEP instruction and something
    570 /// else.  At this point we know that the GEP is on the LHS of the comparison.
    571 Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
    572                                        ICmpInst::Predicate Cond,
    573                                        Instruction &I) {
    574   // Don't transform signed compares of GEPs into index compares. Even if the
    575   // GEP is inbounds, the final add of the base pointer can have signed overflow
    576   // and would change the result of the icmp.
    577   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
    578   // the maximum signed value for the pointer type.
    579   if (ICmpInst::isSigned(Cond))
    580     return 0;
    581 
    582   // Look through bitcasts.
    583   if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
    584     RHS = BCI->getOperand(0);
    585 
    586   Value *PtrBase = GEPLHS->getOperand(0);
    587   if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
    588     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
    589     // This transformation (ignoring the base and scales) is valid because we
    590     // know pointers can't overflow since the gep is inbounds.  See if we can
    591     // output an optimized form.
    592     Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this);
    593 
    594     // If not, synthesize the offset the hard way.
    595     if (Offset == 0)
    596       Offset = EmitGEPOffset(GEPLHS);
    597     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
    598                         Constant::getNullValue(Offset->getType()));
    599   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
    600     // If the base pointers are different, but the indices are the same, just
    601     // compare the base pointer.
    602     if (PtrBase != GEPRHS->getOperand(0)) {
    603       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
    604       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
    605                         GEPRHS->getOperand(0)->getType();
    606       if (IndicesTheSame)
    607         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
    608           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
    609             IndicesTheSame = false;
    610             break;
    611           }
    612 
    613       // If all indices are the same, just compare the base pointers.
    614       if (IndicesTheSame)
    615         return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
    616                             GEPLHS->getOperand(0), GEPRHS->getOperand(0));
    617 
    618       // If we're comparing GEPs with two base pointers that only differ in type
    619       // and both GEPs have only constant indices or just one use, then fold
    620       // the compare with the adjusted indices.
    621       if (TD && GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
    622           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
    623           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
    624           PtrBase->stripPointerCasts() ==
    625             GEPRHS->getOperand(0)->stripPointerCasts()) {
    626         Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
    627                                          EmitGEPOffset(GEPLHS),
    628                                          EmitGEPOffset(GEPRHS));
    629         return ReplaceInstUsesWith(I, Cmp);
    630       }
    631 
    632       // Otherwise, the base pointers are different and the indices are
    633       // different, bail out.
    634       return 0;
    635     }
    636 
    637     // If one of the GEPs has all zero indices, recurse.
    638     bool AllZeros = true;
    639     for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
    640       if (!isa<Constant>(GEPLHS->getOperand(i)) ||
    641           !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
    642         AllZeros = false;
    643         break;
    644       }
    645     if (AllZeros)
    646       return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
    647                           ICmpInst::getSwappedPredicate(Cond), I);
    648 
    649     // If the other GEP has all zero indices, recurse.
    650     AllZeros = true;
    651     for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
    652       if (!isa<Constant>(GEPRHS->getOperand(i)) ||
    653           !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
    654         AllZeros = false;
    655         break;
    656       }
    657     if (AllZeros)
    658       return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
    659 
    660     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
    661     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
    662       // If the GEPs only differ by one index, compare it.
    663       unsigned NumDifferences = 0;  // Keep track of # differences.
    664       unsigned DiffOperand = 0;     // The operand that differs.
    665       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
    666         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
    667           if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
    668                    GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
    669             // Irreconcilable differences.
    670             NumDifferences = 2;
    671             break;
    672           } else {
    673             if (NumDifferences++) break;
    674             DiffOperand = i;
    675           }
    676         }
    677 
    678       if (NumDifferences == 0)   // SAME GEP?
    679         return ReplaceInstUsesWith(I, // No comparison is needed here.
    680                                ConstantInt::get(Type::getInt1Ty(I.getContext()),
    681                                              ICmpInst::isTrueWhenEqual(Cond)));
    682 
    683       else if (NumDifferences == 1 && GEPsInBounds) {
    684         Value *LHSV = GEPLHS->getOperand(DiffOperand);
    685         Value *RHSV = GEPRHS->getOperand(DiffOperand);
    686         // Make sure we do a signed comparison here.
    687         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
    688       }
    689     }
    690 
    691     // Only lower this if the icmp is the only user of the GEP or if we expect
    692     // the result to fold to a constant!
    693     if (TD &&
    694         GEPsInBounds &&
    695         (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
    696         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
    697       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
    698       Value *L = EmitGEPOffset(GEPLHS);
    699       Value *R = EmitGEPOffset(GEPRHS);
    700       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
    701     }
    702   }
    703   return 0;
    704 }
    705 
    706 /// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
    707 Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
    708                                             Value *X, ConstantInt *CI,
    709                                             ICmpInst::Predicate Pred,
    710                                             Value *TheAdd) {
    711   // If we have X+0, exit early (simplifying logic below) and let it get folded
    712   // elsewhere.   icmp X+0, X  -> icmp X, X
    713   if (CI->isZero()) {
    714     bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
    715     return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
    716   }
    717 
    718   // (X+4) == X -> false.
    719   if (Pred == ICmpInst::ICMP_EQ)
    720     return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
    721 
    722   // (X+4) != X -> true.
    723   if (Pred == ICmpInst::ICMP_NE)
    724     return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
    725 
    726   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
    727   // so the values can never be equal.  Similarly for all other "or equals"
    728   // operators.
    729 
    730   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
    731   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
    732   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
    733   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
    734     Value *R =
    735       ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
    736     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
    737   }
    738 
    739   // (X+1) >u X        --> X <u (0-1)        --> X != 255
    740   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
    741   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
    742   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
    743     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
    744 
    745   unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
    746   ConstantInt *SMax = ConstantInt::get(X->getContext(),
    747                                        APInt::getSignedMaxValue(BitWidth));
    748 
    749   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
    750   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
    751   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
    752   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
    753   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
    754   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
    755   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
    756     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
    757 
    758   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
    759   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
    760   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
    761   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
    762   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
    763   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
    764 
    765   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
    766   Constant *C = ConstantInt::get(X->getContext(), CI->getValue()-1);
    767   return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
    768 }
    769 
    770 /// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
    771 /// and CmpRHS are both known to be integer constants.
    772 Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
    773                                           ConstantInt *DivRHS) {
    774   ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
    775   const APInt &CmpRHSV = CmpRHS->getValue();
    776 
    777   // FIXME: If the operand types don't match the type of the divide
    778   // then don't attempt this transform. The code below doesn't have the
    779   // logic to deal with a signed divide and an unsigned compare (and
    780   // vice versa). This is because (x /s C1) <s C2  produces different
    781   // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
    782   // (x /u C1) <u C2.  Simply casting the operands and result won't
    783   // work. :(  The if statement below tests that condition and bails
    784   // if it finds it.
    785   bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
    786   if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
    787     return 0;
    788   if (DivRHS->isZero())
    789     return 0; // The ProdOV computation fails on divide by zero.
    790   if (DivIsSigned && DivRHS->isAllOnesValue())
    791     return 0; // The overflow computation also screws up here
    792   if (DivRHS->isOne()) {
    793     // This eliminates some funny cases with INT_MIN.
    794     ICI.setOperand(0, DivI->getOperand(0));   // X/1 == X.
    795     return &ICI;
    796   }
    797 
    798   // Compute Prod = CI * DivRHS. We are essentially solving an equation
    799   // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
    800   // C2 (CI). By solving for X we can turn this into a range check
    801   // instead of computing a divide.
    802   Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
    803 
    804   // Determine if the product overflows by seeing if the product is
    805   // not equal to the divide. Make sure we do the same kind of divide
    806   // as in the LHS instruction that we're folding.
    807   bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
    808                  ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
    809 
    810   // Get the ICmp opcode
    811   ICmpInst::Predicate Pred = ICI.getPredicate();
    812 
    813   /// If the division is known to be exact, then there is no remainder from the
    814   /// divide, so the covered range size is unit, otherwise it is the divisor.
    815   ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
    816 
    817   // Figure out the interval that is being checked.  For example, a comparison
    818   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
    819   // Compute this interval based on the constants involved and the signedness of
    820   // the compare/divide.  This computes a half-open interval, keeping track of
    821   // whether either value in the interval overflows.  After analysis each
    822   // overflow variable is set to 0 if it's corresponding bound variable is valid
    823   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
    824   int LoOverflow = 0, HiOverflow = 0;
    825   Constant *LoBound = 0, *HiBound = 0;
    826 
    827   if (!DivIsSigned) {  // udiv
    828     // e.g. X/5 op 3  --> [15, 20)
    829     LoBound = Prod;
    830     HiOverflow = LoOverflow = ProdOV;
    831     if (!HiOverflow) {
    832       // If this is not an exact divide, then many values in the range collapse
    833       // to the same result value.
    834       HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
    835     }
    836 
    837   } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
    838     if (CmpRHSV == 0) {       // (X / pos) op 0
    839       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
    840       LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
    841       HiBound = RangeSize;
    842     } else if (CmpRHSV.isStrictlyPositive()) {   // (X / pos) op pos
    843       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
    844       HiOverflow = LoOverflow = ProdOV;
    845       if (!HiOverflow)
    846         HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
    847     } else {                       // (X / pos) op neg
    848       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
    849       HiBound = AddOne(Prod);
    850       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
    851       if (!LoOverflow) {
    852         ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
    853         LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
    854       }
    855     }
    856   } else if (DivRHS->isNegative()) { // Divisor is < 0.
    857     if (DivI->isExact())
    858       RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
    859     if (CmpRHSV == 0) {       // (X / neg) op 0
    860       // e.g. X/-5 op 0  --> [-4, 5)
    861       LoBound = AddOne(RangeSize);
    862       HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
    863       if (HiBound == DivRHS) {     // -INTMIN = INTMIN
    864         HiOverflow = 1;            // [INTMIN+1, overflow)
    865         HiBound = 0;               // e.g. X/INTMIN = 0 --> X > INTMIN
    866       }
    867     } else if (CmpRHSV.isStrictlyPositive()) {   // (X / neg) op pos
    868       // e.g. X/-5 op 3  --> [-19, -14)
    869       HiBound = AddOne(Prod);
    870       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
    871       if (!LoOverflow)
    872         LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
    873     } else {                       // (X / neg) op neg
    874       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
    875       LoOverflow = HiOverflow = ProdOV;
    876       if (!HiOverflow)
    877         HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
    878     }
    879 
    880     // Dividing by a negative swaps the condition.  LT <-> GT
    881     Pred = ICmpInst::getSwappedPredicate(Pred);
    882   }
    883 
    884   Value *X = DivI->getOperand(0);
    885   switch (Pred) {
    886   default: llvm_unreachable("Unhandled icmp opcode!");
    887   case ICmpInst::ICMP_EQ:
    888     if (LoOverflow && HiOverflow)
    889       return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
    890     if (HiOverflow)
    891       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
    892                           ICmpInst::ICMP_UGE, X, LoBound);
    893     if (LoOverflow)
    894       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
    895                           ICmpInst::ICMP_ULT, X, HiBound);
    896     return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
    897                                                     DivIsSigned, true));
    898   case ICmpInst::ICMP_NE:
    899     if (LoOverflow && HiOverflow)
    900       return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
    901     if (HiOverflow)
    902       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
    903                           ICmpInst::ICMP_ULT, X, LoBound);
    904     if (LoOverflow)
    905       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
    906                           ICmpInst::ICMP_UGE, X, HiBound);
    907     return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
    908                                                     DivIsSigned, false));
    909   case ICmpInst::ICMP_ULT:
    910   case ICmpInst::ICMP_SLT:
    911     if (LoOverflow == +1)   // Low bound is greater than input range.
    912       return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
    913     if (LoOverflow == -1)   // Low bound is less than input range.
    914       return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
    915     return new ICmpInst(Pred, X, LoBound);
    916   case ICmpInst::ICMP_UGT:
    917   case ICmpInst::ICMP_SGT:
    918     if (HiOverflow == +1)       // High bound greater than input range.
    919       return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
    920     if (HiOverflow == -1)       // High bound less than input range.
    921       return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
    922     if (Pred == ICmpInst::ICMP_UGT)
    923       return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
    924     return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
    925   }
    926 }
    927 
    928 /// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
    929 Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
    930                                           ConstantInt *ShAmt) {
    931   const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
    932 
    933   // Check that the shift amount is in range.  If not, don't perform
    934   // undefined shifts.  When the shift is visited it will be
    935   // simplified.
    936   uint32_t TypeBits = CmpRHSV.getBitWidth();
    937   uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
    938   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
    939     return 0;
    940 
    941   if (!ICI.isEquality()) {
    942     // If we have an unsigned comparison and an ashr, we can't simplify this.
    943     // Similarly for signed comparisons with lshr.
    944     if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
    945       return 0;
    946 
    947     // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
    948     // by a power of 2.  Since we already have logic to simplify these,
    949     // transform to div and then simplify the resultant comparison.
    950     if (Shr->getOpcode() == Instruction::AShr &&
    951         (!Shr->isExact() || ShAmtVal == TypeBits - 1))
    952       return 0;
    953 
    954     // Revisit the shift (to delete it).
    955     Worklist.Add(Shr);
    956 
    957     Constant *DivCst =
    958       ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
    959 
    960     Value *Tmp =
    961       Shr->getOpcode() == Instruction::AShr ?
    962       Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
    963       Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
    964 
    965     ICI.setOperand(0, Tmp);
    966 
    967     // If the builder folded the binop, just return it.
    968     BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
    969     if (TheDiv == 0)
    970       return &ICI;
    971 
    972     // Otherwise, fold this div/compare.
    973     assert(TheDiv->getOpcode() == Instruction::SDiv ||
    974            TheDiv->getOpcode() == Instruction::UDiv);
    975 
    976     Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
    977     assert(Res && "This div/cst should have folded!");
    978     return Res;
    979   }
    980 
    981 
    982   // If we are comparing against bits always shifted out, the
    983   // comparison cannot succeed.
    984   APInt Comp = CmpRHSV << ShAmtVal;
    985   ConstantInt *ShiftedCmpRHS = ConstantInt::get(ICI.getContext(), Comp);
    986   if (Shr->getOpcode() == Instruction::LShr)
    987     Comp = Comp.lshr(ShAmtVal);
    988   else
    989     Comp = Comp.ashr(ShAmtVal);
    990 
    991   if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
    992     bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
    993     Constant *Cst = ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
    994                                      IsICMP_NE);
    995     return ReplaceInstUsesWith(ICI, Cst);
    996   }
    997 
    998   // Otherwise, check to see if the bits shifted out are known to be zero.
    999   // If so, we can compare against the unshifted value:
   1000   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
   1001   if (Shr->hasOneUse() && Shr->isExact())
   1002     return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
   1003 
   1004   if (Shr->hasOneUse()) {
   1005     // Otherwise strength reduce the shift into an and.
   1006     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
   1007     Constant *Mask = ConstantInt::get(ICI.getContext(), Val);
   1008 
   1009     Value *And = Builder->CreateAnd(Shr->getOperand(0),
   1010                                     Mask, Shr->getName()+".mask");
   1011     return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
   1012   }
   1013   return 0;
   1014 }
   1015 
   1016 
   1017 /// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
   1018 ///
   1019 Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
   1020                                                           Instruction *LHSI,
   1021                                                           ConstantInt *RHS) {
   1022   const APInt &RHSV = RHS->getValue();
   1023 
   1024   switch (LHSI->getOpcode()) {
   1025   case Instruction::Trunc:
   1026     if (ICI.isEquality() && LHSI->hasOneUse()) {
   1027       // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
   1028       // of the high bits truncated out of x are known.
   1029       unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
   1030              SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
   1031       APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
   1032       ComputeMaskedBits(LHSI->getOperand(0), KnownZero, KnownOne);
   1033 
   1034       // If all the high bits are known, we can do this xform.
   1035       if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
   1036         // Pull in the high bits from known-ones set.
   1037         APInt NewRHS = RHS->getValue().zext(SrcBits);
   1038         NewRHS |= KnownOne;
   1039         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
   1040                             ConstantInt::get(ICI.getContext(), NewRHS));
   1041       }
   1042     }
   1043     break;
   1044 
   1045   case Instruction::Xor:         // (icmp pred (xor X, XorCST), CI)
   1046     if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
   1047       // If this is a comparison that tests the signbit (X < 0) or (x > -1),
   1048       // fold the xor.
   1049       if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
   1050           (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
   1051         Value *CompareVal = LHSI->getOperand(0);
   1052 
   1053         // If the sign bit of the XorCST is not set, there is no change to
   1054         // the operation, just stop using the Xor.
   1055         if (!XorCST->isNegative()) {
   1056           ICI.setOperand(0, CompareVal);
   1057           Worklist.Add(LHSI);
   1058           return &ICI;
   1059         }
   1060 
   1061         // Was the old condition true if the operand is positive?
   1062         bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
   1063 
   1064         // If so, the new one isn't.
   1065         isTrueIfPositive ^= true;
   1066 
   1067         if (isTrueIfPositive)
   1068           return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
   1069                               SubOne(RHS));
   1070         else
   1071           return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
   1072                               AddOne(RHS));
   1073       }
   1074 
   1075       if (LHSI->hasOneUse()) {
   1076         // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
   1077         if (!ICI.isEquality() && XorCST->getValue().isSignBit()) {
   1078           const APInt &SignBit = XorCST->getValue();
   1079           ICmpInst::Predicate Pred = ICI.isSigned()
   1080                                          ? ICI.getUnsignedPredicate()
   1081                                          : ICI.getSignedPredicate();
   1082           return new ICmpInst(Pred, LHSI->getOperand(0),
   1083                               ConstantInt::get(ICI.getContext(),
   1084                                                RHSV ^ SignBit));
   1085         }
   1086 
   1087         // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
   1088         if (!ICI.isEquality() && XorCST->isMaxValue(true)) {
   1089           const APInt &NotSignBit = XorCST->getValue();
   1090           ICmpInst::Predicate Pred = ICI.isSigned()
   1091                                          ? ICI.getUnsignedPredicate()
   1092                                          : ICI.getSignedPredicate();
   1093           Pred = ICI.getSwappedPredicate(Pred);
   1094           return new ICmpInst(Pred, LHSI->getOperand(0),
   1095                               ConstantInt::get(ICI.getContext(),
   1096                                                RHSV ^ NotSignBit));
   1097         }
   1098       }
   1099     }
   1100     break;
   1101   case Instruction::And:         // (icmp pred (and X, AndCST), RHS)
   1102     if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
   1103         LHSI->getOperand(0)->hasOneUse()) {
   1104       ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
   1105 
   1106       // If the LHS is an AND of a truncating cast, we can widen the
   1107       // and/compare to be the input width without changing the value
   1108       // produced, eliminating a cast.
   1109       if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
   1110         // We can do this transformation if either the AND constant does not
   1111         // have its sign bit set or if it is an equality comparison.
   1112         // Extending a relational comparison when we're checking the sign
   1113         // bit would not work.
   1114         if (ICI.isEquality() ||
   1115             (!AndCST->isNegative() && RHSV.isNonNegative())) {
   1116           Value *NewAnd =
   1117             Builder->CreateAnd(Cast->getOperand(0),
   1118                                ConstantExpr::getZExt(AndCST, Cast->getSrcTy()));
   1119           NewAnd->takeName(LHSI);
   1120           return new ICmpInst(ICI.getPredicate(), NewAnd,
   1121                               ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
   1122         }
   1123       }
   1124 
   1125       // If the LHS is an AND of a zext, and we have an equality compare, we can
   1126       // shrink the and/compare to the smaller type, eliminating the cast.
   1127       if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
   1128         IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
   1129         // Make sure we don't compare the upper bits, SimplifyDemandedBits
   1130         // should fold the icmp to true/false in that case.
   1131         if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
   1132           Value *NewAnd =
   1133             Builder->CreateAnd(Cast->getOperand(0),
   1134                                ConstantExpr::getTrunc(AndCST, Ty));
   1135           NewAnd->takeName(LHSI);
   1136           return new ICmpInst(ICI.getPredicate(), NewAnd,
   1137                               ConstantExpr::getTrunc(RHS, Ty));
   1138         }
   1139       }
   1140 
   1141       // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
   1142       // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
   1143       // happens a LOT in code produced by the C front-end, for bitfield
   1144       // access.
   1145       BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
   1146       if (Shift && !Shift->isShift())
   1147         Shift = 0;
   1148 
   1149       ConstantInt *ShAmt;
   1150       ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
   1151       Type *Ty = Shift ? Shift->getType() : 0;  // Type of the shift.
   1152       Type *AndTy = AndCST->getType();          // Type of the and.
   1153 
   1154       // We can fold this as long as we can't shift unknown bits
   1155       // into the mask.  This can only happen with signed shift
   1156       // rights, as they sign-extend.
   1157       if (ShAmt) {
   1158         bool CanFold = Shift->isLogicalShift();
   1159         if (!CanFold) {
   1160           // To test for the bad case of the signed shr, see if any
   1161           // of the bits shifted in could be tested after the mask.
   1162           uint32_t TyBits = Ty->getPrimitiveSizeInBits();
   1163           int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
   1164 
   1165           uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
   1166           if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
   1167                AndCST->getValue()) == 0)
   1168             CanFold = true;
   1169         }
   1170 
   1171         if (CanFold) {
   1172           Constant *NewCst;
   1173           if (Shift->getOpcode() == Instruction::Shl)
   1174             NewCst = ConstantExpr::getLShr(RHS, ShAmt);
   1175           else
   1176             NewCst = ConstantExpr::getShl(RHS, ShAmt);
   1177 
   1178           // Check to see if we are shifting out any of the bits being
   1179           // compared.
   1180           if (ConstantExpr::get(Shift->getOpcode(),
   1181                                        NewCst, ShAmt) != RHS) {
   1182             // If we shifted bits out, the fold is not going to work out.
   1183             // As a special case, check to see if this means that the
   1184             // result is always true or false now.
   1185             if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
   1186               return ReplaceInstUsesWith(ICI,
   1187                                        ConstantInt::getFalse(ICI.getContext()));
   1188             if (ICI.getPredicate() == ICmpInst::ICMP_NE)
   1189               return ReplaceInstUsesWith(ICI,
   1190                                        ConstantInt::getTrue(ICI.getContext()));
   1191           } else {
   1192             ICI.setOperand(1, NewCst);
   1193             Constant *NewAndCST;
   1194             if (Shift->getOpcode() == Instruction::Shl)
   1195               NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
   1196             else
   1197               NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
   1198             LHSI->setOperand(1, NewAndCST);
   1199             LHSI->setOperand(0, Shift->getOperand(0));
   1200             Worklist.Add(Shift); // Shift is dead.
   1201             return &ICI;
   1202           }
   1203         }
   1204       }
   1205 
   1206       // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is
   1207       // preferable because it allows the C<<Y expression to be hoisted out
   1208       // of a loop if Y is invariant and X is not.
   1209       if (Shift && Shift->hasOneUse() && RHSV == 0 &&
   1210           ICI.isEquality() && !Shift->isArithmeticShift() &&
   1211           !isa<Constant>(Shift->getOperand(0))) {
   1212         // Compute C << Y.
   1213         Value *NS;
   1214         if (Shift->getOpcode() == Instruction::LShr) {
   1215           NS = Builder->CreateShl(AndCST, Shift->getOperand(1));
   1216         } else {
   1217           // Insert a logical shift.
   1218           NS = Builder->CreateLShr(AndCST, Shift->getOperand(1));
   1219         }
   1220 
   1221         // Compute X & (C << Y).
   1222         Value *NewAnd =
   1223           Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
   1224 
   1225         ICI.setOperand(0, NewAnd);
   1226         return &ICI;
   1227       }
   1228     }
   1229 
   1230     // Try to optimize things like "A[i]&42 == 0" to index computations.
   1231     if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
   1232       if (GetElementPtrInst *GEP =
   1233           dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
   1234         if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
   1235           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
   1236               !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
   1237             ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
   1238             if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
   1239               return Res;
   1240           }
   1241     }
   1242     break;
   1243 
   1244   case Instruction::Or: {
   1245     if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
   1246       break;
   1247     Value *P, *Q;
   1248     if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
   1249       // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
   1250       // -> and (icmp eq P, null), (icmp eq Q, null).
   1251       Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
   1252                                         Constant::getNullValue(P->getType()));
   1253       Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
   1254                                         Constant::getNullValue(Q->getType()));
   1255       Instruction *Op;
   1256       if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
   1257         Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
   1258       else
   1259         Op = BinaryOperator::CreateOr(ICIP, ICIQ);
   1260       return Op;
   1261     }
   1262     break;
   1263   }
   1264 
   1265   case Instruction::Shl: {       // (icmp pred (shl X, ShAmt), CI)
   1266     ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
   1267     if (!ShAmt) break;
   1268 
   1269     uint32_t TypeBits = RHSV.getBitWidth();
   1270 
   1271     // Check that the shift amount is in range.  If not, don't perform
   1272     // undefined shifts.  When the shift is visited it will be
   1273     // simplified.
   1274     if (ShAmt->uge(TypeBits))
   1275       break;
   1276 
   1277     if (ICI.isEquality()) {
   1278       // If we are comparing against bits always shifted out, the
   1279       // comparison cannot succeed.
   1280       Constant *Comp =
   1281         ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
   1282                                                                  ShAmt);
   1283       if (Comp != RHS) {// Comparing against a bit that we know is zero.
   1284         bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
   1285         Constant *Cst =
   1286           ConstantInt::get(Type::getInt1Ty(ICI.getContext()), IsICMP_NE);
   1287         return ReplaceInstUsesWith(ICI, Cst);
   1288       }
   1289 
   1290       // If the shift is NUW, then it is just shifting out zeros, no need for an
   1291       // AND.
   1292       if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
   1293         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
   1294                             ConstantExpr::getLShr(RHS, ShAmt));
   1295 
   1296       if (LHSI->hasOneUse()) {
   1297         // Otherwise strength reduce the shift into an and.
   1298         uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
   1299         Constant *Mask =
   1300           ConstantInt::get(ICI.getContext(), APInt::getLowBitsSet(TypeBits,
   1301                                                        TypeBits-ShAmtVal));
   1302 
   1303         Value *And =
   1304           Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
   1305         return new ICmpInst(ICI.getPredicate(), And,
   1306                             ConstantExpr::getLShr(RHS, ShAmt));
   1307       }
   1308     }
   1309 
   1310     // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
   1311     bool TrueIfSigned = false;
   1312     if (LHSI->hasOneUse() &&
   1313         isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
   1314       // (X << 31) <s 0  --> (X&1) != 0
   1315       Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
   1316                                         APInt::getOneBitSet(TypeBits,
   1317                                             TypeBits-ShAmt->getZExtValue()-1));
   1318       Value *And =
   1319         Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
   1320       return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
   1321                           And, Constant::getNullValue(And->getType()));
   1322     }
   1323     break;
   1324   }
   1325 
   1326   case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI)
   1327   case Instruction::AShr: {
   1328     // Handle equality comparisons of shift-by-constant.
   1329     BinaryOperator *BO = cast<BinaryOperator>(LHSI);
   1330     if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
   1331       if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
   1332         return Res;
   1333     }
   1334 
   1335     // Handle exact shr's.
   1336     if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
   1337       if (RHSV.isMinValue())
   1338         return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
   1339     }
   1340     break;
   1341   }
   1342 
   1343   case Instruction::SDiv:
   1344   case Instruction::UDiv:
   1345     // Fold: icmp pred ([us]div X, C1), C2 -> range test
   1346     // Fold this div into the comparison, producing a range check.
   1347     // Determine, based on the divide type, what the range is being
   1348     // checked.  If there is an overflow on the low or high side, remember
   1349     // it, otherwise compute the range [low, hi) bounding the new value.
   1350     // See: InsertRangeTest above for the kinds of replacements possible.
   1351     if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
   1352       if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
   1353                                           DivRHS))
   1354         return R;
   1355     break;
   1356 
   1357   case Instruction::Add:
   1358     // Fold: icmp pred (add X, C1), C2
   1359     if (!ICI.isEquality()) {
   1360       ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
   1361       if (!LHSC) break;
   1362       const APInt &LHSV = LHSC->getValue();
   1363 
   1364       ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
   1365                             .subtract(LHSV);
   1366 
   1367       if (ICI.isSigned()) {
   1368         if (CR.getLower().isSignBit()) {
   1369           return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
   1370                               ConstantInt::get(ICI.getContext(),CR.getUpper()));
   1371         } else if (CR.getUpper().isSignBit()) {
   1372           return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
   1373                               ConstantInt::get(ICI.getContext(),CR.getLower()));
   1374         }
   1375       } else {
   1376         if (CR.getLower().isMinValue()) {
   1377           return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
   1378                               ConstantInt::get(ICI.getContext(),CR.getUpper()));
   1379         } else if (CR.getUpper().isMinValue()) {
   1380           return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
   1381                               ConstantInt::get(ICI.getContext(),CR.getLower()));
   1382         }
   1383       }
   1384     }
   1385     break;
   1386   }
   1387 
   1388   // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
   1389   if (ICI.isEquality()) {
   1390     bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
   1391 
   1392     // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
   1393     // the second operand is a constant, simplify a bit.
   1394     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
   1395       switch (BO->getOpcode()) {
   1396       case Instruction::SRem:
   1397         // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
   1398         if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
   1399           const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
   1400           if (V.sgt(1) && V.isPowerOf2()) {
   1401             Value *NewRem =
   1402               Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
   1403                                   BO->getName());
   1404             return new ICmpInst(ICI.getPredicate(), NewRem,
   1405                                 Constant::getNullValue(BO->getType()));
   1406           }
   1407         }
   1408         break;
   1409       case Instruction::Add:
   1410         // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
   1411         if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   1412           if (BO->hasOneUse())
   1413             return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1414                                 ConstantExpr::getSub(RHS, BOp1C));
   1415         } else if (RHSV == 0) {
   1416           // Replace ((add A, B) != 0) with (A != -B) if A or B is
   1417           // efficiently invertible, or if the add has just this one use.
   1418           Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
   1419 
   1420           if (Value *NegVal = dyn_castNegVal(BOp1))
   1421             return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
   1422           if (Value *NegVal = dyn_castNegVal(BOp0))
   1423             return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
   1424           if (BO->hasOneUse()) {
   1425             Value *Neg = Builder->CreateNeg(BOp1);
   1426             Neg->takeName(BO);
   1427             return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
   1428           }
   1429         }
   1430         break;
   1431       case Instruction::Xor:
   1432         // For the xor case, we can xor two constants together, eliminating
   1433         // the explicit xor.
   1434         if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
   1435           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1436                               ConstantExpr::getXor(RHS, BOC));
   1437         } else if (RHSV == 0) {
   1438           // Replace ((xor A, B) != 0) with (A != B)
   1439           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1440                               BO->getOperand(1));
   1441         }
   1442         break;
   1443       case Instruction::Sub:
   1444         // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
   1445         if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
   1446           if (BO->hasOneUse())
   1447             return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
   1448                                 ConstantExpr::getSub(BOp0C, RHS));
   1449         } else if (RHSV == 0) {
   1450           // Replace ((sub A, B) != 0) with (A != B)
   1451           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1452                               BO->getOperand(1));
   1453         }
   1454         break;
   1455       case Instruction::Or:
   1456         // If bits are being or'd in that are not present in the constant we
   1457         // are comparing against, then the comparison could never succeed!
   1458         if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   1459           Constant *NotCI = ConstantExpr::getNot(RHS);
   1460           if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
   1461             return ReplaceInstUsesWith(ICI,
   1462                              ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
   1463                                        isICMP_NE));
   1464         }
   1465         break;
   1466 
   1467       case Instruction::And:
   1468         if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   1469           // If bits are being compared against that are and'd out, then the
   1470           // comparison can never succeed!
   1471           if ((RHSV & ~BOC->getValue()) != 0)
   1472             return ReplaceInstUsesWith(ICI,
   1473                              ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
   1474                                        isICMP_NE));
   1475 
   1476           // If we have ((X & C) == C), turn it into ((X & C) != 0).
   1477           if (RHS == BOC && RHSV.isPowerOf2())
   1478             return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
   1479                                 ICmpInst::ICMP_NE, LHSI,
   1480                                 Constant::getNullValue(RHS->getType()));
   1481 
   1482           // Don't perform the following transforms if the AND has multiple uses
   1483           if (!BO->hasOneUse())
   1484             break;
   1485 
   1486           // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
   1487           if (BOC->getValue().isSignBit()) {
   1488             Value *X = BO->getOperand(0);
   1489             Constant *Zero = Constant::getNullValue(X->getType());
   1490             ICmpInst::Predicate pred = isICMP_NE ?
   1491               ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
   1492             return new ICmpInst(pred, X, Zero);
   1493           }
   1494 
   1495           // ((X & ~7) == 0) --> X < 8
   1496           if (RHSV == 0 && isHighOnes(BOC)) {
   1497             Value *X = BO->getOperand(0);
   1498             Constant *NegX = ConstantExpr::getNeg(BOC);
   1499             ICmpInst::Predicate pred = isICMP_NE ?
   1500               ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
   1501             return new ICmpInst(pred, X, NegX);
   1502           }
   1503         }
   1504       default: break;
   1505       }
   1506     } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
   1507       // Handle icmp {eq|ne} <intrinsic>, intcst.
   1508       switch (II->getIntrinsicID()) {
   1509       case Intrinsic::bswap:
   1510         Worklist.Add(II);
   1511         ICI.setOperand(0, II->getArgOperand(0));
   1512         ICI.setOperand(1, ConstantInt::get(II->getContext(), RHSV.byteSwap()));
   1513         return &ICI;
   1514       case Intrinsic::ctlz:
   1515       case Intrinsic::cttz:
   1516         // ctz(A) == bitwidth(a)  ->  A == 0 and likewise for !=
   1517         if (RHSV == RHS->getType()->getBitWidth()) {
   1518           Worklist.Add(II);
   1519           ICI.setOperand(0, II->getArgOperand(0));
   1520           ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
   1521           return &ICI;
   1522         }
   1523         break;
   1524       case Intrinsic::ctpop:
   1525         // popcount(A) == 0  ->  A == 0 and likewise for !=
   1526         if (RHS->isZero()) {
   1527           Worklist.Add(II);
   1528           ICI.setOperand(0, II->getArgOperand(0));
   1529           ICI.setOperand(1, RHS);
   1530           return &ICI;
   1531         }
   1532         break;
   1533       default:
   1534         break;
   1535       }
   1536     }
   1537   }
   1538   return 0;
   1539 }
   1540 
   1541 /// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
   1542 /// We only handle extending casts so far.
   1543 ///
   1544 Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
   1545   const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
   1546   Value *LHSCIOp        = LHSCI->getOperand(0);
   1547   Type *SrcTy     = LHSCIOp->getType();
   1548   Type *DestTy    = LHSCI->getType();
   1549   Value *RHSCIOp;
   1550 
   1551   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
   1552   // integer type is the same size as the pointer type.
   1553   if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
   1554       TD->getPointerSizeInBits() ==
   1555          cast<IntegerType>(DestTy)->getBitWidth()) {
   1556     Value *RHSOp = 0;
   1557     if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
   1558       RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
   1559     } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
   1560       RHSOp = RHSC->getOperand(0);
   1561       // If the pointer types don't match, insert a bitcast.
   1562       if (LHSCIOp->getType() != RHSOp->getType())
   1563         RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
   1564     }
   1565 
   1566     if (RHSOp)
   1567       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
   1568   }
   1569 
   1570   // The code below only handles extension cast instructions, so far.
   1571   // Enforce this.
   1572   if (LHSCI->getOpcode() != Instruction::ZExt &&
   1573       LHSCI->getOpcode() != Instruction::SExt)
   1574     return 0;
   1575 
   1576   bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
   1577   bool isSignedCmp = ICI.isSigned();
   1578 
   1579   if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
   1580     // Not an extension from the same type?
   1581     RHSCIOp = CI->getOperand(0);
   1582     if (RHSCIOp->getType() != LHSCIOp->getType())
   1583       return 0;
   1584 
   1585     // If the signedness of the two casts doesn't agree (i.e. one is a sext
   1586     // and the other is a zext), then we can't handle this.
   1587     if (CI->getOpcode() != LHSCI->getOpcode())
   1588       return 0;
   1589 
   1590     // Deal with equality cases early.
   1591     if (ICI.isEquality())
   1592       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
   1593 
   1594     // A signed comparison of sign extended values simplifies into a
   1595     // signed comparison.
   1596     if (isSignedCmp && isSignedExt)
   1597       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
   1598 
   1599     // The other three cases all fold into an unsigned comparison.
   1600     return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
   1601   }
   1602 
   1603   // If we aren't dealing with a constant on the RHS, exit early
   1604   ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
   1605   if (!CI)
   1606     return 0;
   1607 
   1608   // Compute the constant that would happen if we truncated to SrcTy then
   1609   // reextended to DestTy.
   1610   Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
   1611   Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
   1612                                                 Res1, DestTy);
   1613 
   1614   // If the re-extended constant didn't change...
   1615   if (Res2 == CI) {
   1616     // Deal with equality cases early.
   1617     if (ICI.isEquality())
   1618       return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
   1619 
   1620     // A signed comparison of sign extended values simplifies into a
   1621     // signed comparison.
   1622     if (isSignedExt && isSignedCmp)
   1623       return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
   1624 
   1625     // The other three cases all fold into an unsigned comparison.
   1626     return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
   1627   }
   1628 
   1629   // The re-extended constant changed so the constant cannot be represented
   1630   // in the shorter type. Consequently, we cannot emit a simple comparison.
   1631   // All the cases that fold to true or false will have already been handled
   1632   // by SimplifyICmpInst, so only deal with the tricky case.
   1633 
   1634   if (isSignedCmp || !isSignedExt)
   1635     return 0;
   1636 
   1637   // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
   1638   // should have been folded away previously and not enter in here.
   1639 
   1640   // We're performing an unsigned comp with a sign extended value.
   1641   // This is true if the input is >= 0. [aka >s -1]
   1642   Constant *NegOne = Constant::getAllOnesValue(SrcTy);
   1643   Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
   1644 
   1645   // Finally, return the value computed.
   1646   if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
   1647     return ReplaceInstUsesWith(ICI, Result);
   1648 
   1649   assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
   1650   return BinaryOperator::CreateNot(Result);
   1651 }
   1652 
   1653 /// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
   1654 ///   I = icmp ugt (add (add A, B), CI2), CI1
   1655 /// If this is of the form:
   1656 ///   sum = a + b
   1657 ///   if (sum+128 >u 255)
   1658 /// Then replace it with llvm.sadd.with.overflow.i8.
   1659 ///
   1660 static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
   1661                                           ConstantInt *CI2, ConstantInt *CI1,
   1662                                           InstCombiner &IC) {
   1663   // The transformation we're trying to do here is to transform this into an
   1664   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
   1665   // with a narrower add, and discard the add-with-constant that is part of the
   1666   // range check (if we can't eliminate it, this isn't profitable).
   1667 
   1668   // In order to eliminate the add-with-constant, the compare can be its only
   1669   // use.
   1670   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
   1671   if (!AddWithCst->hasOneUse()) return 0;
   1672 
   1673   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
   1674   if (!CI2->getValue().isPowerOf2()) return 0;
   1675   unsigned NewWidth = CI2->getValue().countTrailingZeros();
   1676   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return 0;
   1677 
   1678   // The width of the new add formed is 1 more than the bias.
   1679   ++NewWidth;
   1680 
   1681   // Check to see that CI1 is an all-ones value with NewWidth bits.
   1682   if (CI1->getBitWidth() == NewWidth ||
   1683       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
   1684     return 0;
   1685 
   1686   // This is only really a signed overflow check if the inputs have been
   1687   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
   1688   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
   1689   unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
   1690   if (IC.ComputeNumSignBits(A) < NeededSignBits ||
   1691       IC.ComputeNumSignBits(B) < NeededSignBits)
   1692     return 0;
   1693 
   1694   // In order to replace the original add with a narrower
   1695   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
   1696   // and truncates that discard the high bits of the add.  Verify that this is
   1697   // the case.
   1698   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
   1699   for (Value::use_iterator UI = OrigAdd->use_begin(), E = OrigAdd->use_end();
   1700        UI != E; ++UI) {
   1701     if (*UI == AddWithCst) continue;
   1702 
   1703     // Only accept truncates for now.  We would really like a nice recursive
   1704     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
   1705     // chain to see which bits of a value are actually demanded.  If the
   1706     // original add had another add which was then immediately truncated, we
   1707     // could still do the transformation.
   1708     TruncInst *TI = dyn_cast<TruncInst>(*UI);
   1709     if (TI == 0 ||
   1710         TI->getType()->getPrimitiveSizeInBits() > NewWidth) return 0;
   1711   }
   1712 
   1713   // If the pattern matches, truncate the inputs to the narrower type and
   1714   // use the sadd_with_overflow intrinsic to efficiently compute both the
   1715   // result and the overflow bit.
   1716   Module *M = I.getParent()->getParent()->getParent();
   1717 
   1718   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
   1719   Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
   1720                                        NewType);
   1721 
   1722   InstCombiner::BuilderTy *Builder = IC.Builder;
   1723 
   1724   // Put the new code above the original add, in case there are any uses of the
   1725   // add between the add and the compare.
   1726   Builder->SetInsertPoint(OrigAdd);
   1727 
   1728   Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
   1729   Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
   1730   CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd");
   1731   Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
   1732   Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
   1733 
   1734   // The inner add was the result of the narrow add, zero extended to the
   1735   // wider type.  Replace it with the result computed by the intrinsic.
   1736   IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
   1737 
   1738   // The original icmp gets replaced with the overflow value.
   1739   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
   1740 }
   1741 
   1742 static Instruction *ProcessUAddIdiom(Instruction &I, Value *OrigAddV,
   1743                                      InstCombiner &IC) {
   1744   // Don't bother doing this transformation for pointers, don't do it for
   1745   // vectors.
   1746   if (!isa<IntegerType>(OrigAddV->getType())) return 0;
   1747 
   1748   // If the add is a constant expr, then we don't bother transforming it.
   1749   Instruction *OrigAdd = dyn_cast<Instruction>(OrigAddV);
   1750   if (OrigAdd == 0) return 0;
   1751 
   1752   Value *LHS = OrigAdd->getOperand(0), *RHS = OrigAdd->getOperand(1);
   1753 
   1754   // Put the new code above the original add, in case there are any uses of the
   1755   // add between the add and the compare.
   1756   InstCombiner::BuilderTy *Builder = IC.Builder;
   1757   Builder->SetInsertPoint(OrigAdd);
   1758 
   1759   Module *M = I.getParent()->getParent()->getParent();
   1760   Type *Ty = LHS->getType();
   1761   Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
   1762   CallInst *Call = Builder->CreateCall2(F, LHS, RHS, "uadd");
   1763   Value *Add = Builder->CreateExtractValue(Call, 0);
   1764 
   1765   IC.ReplaceInstUsesWith(*OrigAdd, Add);
   1766 
   1767   // The original icmp gets replaced with the overflow value.
   1768   return ExtractValueInst::Create(Call, 1, "uadd.overflow");
   1769 }
   1770 
   1771 // DemandedBitsLHSMask - When performing a comparison against a constant,
   1772 // it is possible that not all the bits in the LHS are demanded.  This helper
   1773 // method computes the mask that IS demanded.
   1774 static APInt DemandedBitsLHSMask(ICmpInst &I,
   1775                                  unsigned BitWidth, bool isSignCheck) {
   1776   if (isSignCheck)
   1777     return APInt::getSignBit(BitWidth);
   1778 
   1779   ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
   1780   if (!CI) return APInt::getAllOnesValue(BitWidth);
   1781   const APInt &RHS = CI->getValue();
   1782 
   1783   switch (I.getPredicate()) {
   1784   // For a UGT comparison, we don't care about any bits that
   1785   // correspond to the trailing ones of the comparand.  The value of these
   1786   // bits doesn't impact the outcome of the comparison, because any value
   1787   // greater than the RHS must differ in a bit higher than these due to carry.
   1788   case ICmpInst::ICMP_UGT: {
   1789     unsigned trailingOnes = RHS.countTrailingOnes();
   1790     APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
   1791     return ~lowBitsSet;
   1792   }
   1793 
   1794   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
   1795   // Any value less than the RHS must differ in a higher bit because of carries.
   1796   case ICmpInst::ICMP_ULT: {
   1797     unsigned trailingZeros = RHS.countTrailingZeros();
   1798     APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
   1799     return ~lowBitsSet;
   1800   }
   1801 
   1802   default:
   1803     return APInt::getAllOnesValue(BitWidth);
   1804   }
   1805 
   1806 }
   1807 
   1808 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
   1809   bool Changed = false;
   1810   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1811 
   1812   /// Orders the operands of the compare so that they are listed from most
   1813   /// complex to least complex.  This puts constants before unary operators,
   1814   /// before binary operators.
   1815   if (getComplexity(Op0) < getComplexity(Op1)) {
   1816     I.swapOperands();
   1817     std::swap(Op0, Op1);
   1818     Changed = true;
   1819   }
   1820 
   1821   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD))
   1822     return ReplaceInstUsesWith(I, V);
   1823 
   1824   // comparing -val or val with non-zero is the same as just comparing val
   1825   // ie, abs(val) != 0 -> val != 0
   1826   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero()))
   1827   {
   1828     Value *Cond, *SelectTrue, *SelectFalse;
   1829     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
   1830                             m_Value(SelectFalse)))) {
   1831       if (Value *V = dyn_castNegVal(SelectTrue)) {
   1832         if (V == SelectFalse)
   1833           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
   1834       }
   1835       else if (Value *V = dyn_castNegVal(SelectFalse)) {
   1836         if (V == SelectTrue)
   1837           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
   1838       }
   1839     }
   1840   }
   1841 
   1842   Type *Ty = Op0->getType();
   1843 
   1844   // icmp's with boolean values can always be turned into bitwise operations
   1845   if (Ty->isIntegerTy(1)) {
   1846     switch (I.getPredicate()) {
   1847     default: llvm_unreachable("Invalid icmp instruction!");
   1848     case ICmpInst::ICMP_EQ: {               // icmp eq i1 A, B -> ~(A^B)
   1849       Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
   1850       return BinaryOperator::CreateNot(Xor);
   1851     }
   1852     case ICmpInst::ICMP_NE:                  // icmp eq i1 A, B -> A^B
   1853       return BinaryOperator::CreateXor(Op0, Op1);
   1854 
   1855     case ICmpInst::ICMP_UGT:
   1856       std::swap(Op0, Op1);                   // Change icmp ugt -> icmp ult
   1857       // FALL THROUGH
   1858     case ICmpInst::ICMP_ULT:{               // icmp ult i1 A, B -> ~A & B
   1859       Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
   1860       return BinaryOperator::CreateAnd(Not, Op1);
   1861     }
   1862     case ICmpInst::ICMP_SGT:
   1863       std::swap(Op0, Op1);                   // Change icmp sgt -> icmp slt
   1864       // FALL THROUGH
   1865     case ICmpInst::ICMP_SLT: {               // icmp slt i1 A, B -> A & ~B
   1866       Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
   1867       return BinaryOperator::CreateAnd(Not, Op0);
   1868     }
   1869     case ICmpInst::ICMP_UGE:
   1870       std::swap(Op0, Op1);                   // Change icmp uge -> icmp ule
   1871       // FALL THROUGH
   1872     case ICmpInst::ICMP_ULE: {               //  icmp ule i1 A, B -> ~A | B
   1873       Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
   1874       return BinaryOperator::CreateOr(Not, Op1);
   1875     }
   1876     case ICmpInst::ICMP_SGE:
   1877       std::swap(Op0, Op1);                   // Change icmp sge -> icmp sle
   1878       // FALL THROUGH
   1879     case ICmpInst::ICMP_SLE: {               //  icmp sle i1 A, B -> A | ~B
   1880       Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
   1881       return BinaryOperator::CreateOr(Not, Op0);
   1882     }
   1883     }
   1884   }
   1885 
   1886   unsigned BitWidth = 0;
   1887   if (Ty->isIntOrIntVectorTy())
   1888     BitWidth = Ty->getScalarSizeInBits();
   1889   else if (TD)  // Pointers require TD info to get their size.
   1890     BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
   1891 
   1892   bool isSignBit = false;
   1893 
   1894   // See if we are doing a comparison with a constant.
   1895   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   1896     Value *A = 0, *B = 0;
   1897 
   1898     // Match the following pattern, which is a common idiom when writing
   1899     // overflow-safe integer arithmetic function.  The source performs an
   1900     // addition in wider type, and explicitly checks for overflow using
   1901     // comparisons against INT_MIN and INT_MAX.  Simplify this by using the
   1902     // sadd_with_overflow intrinsic.
   1903     //
   1904     // TODO: This could probably be generalized to handle other overflow-safe
   1905     // operations if we worked out the formulas to compute the appropriate
   1906     // magic constants.
   1907     //
   1908     // sum = a + b
   1909     // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
   1910     {
   1911     ConstantInt *CI2;    // I = icmp ugt (add (add A, B), CI2), CI
   1912     if (I.getPredicate() == ICmpInst::ICMP_UGT &&
   1913         match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
   1914       if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
   1915         return Res;
   1916     }
   1917 
   1918     // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
   1919     if (I.isEquality() && CI->isZero() &&
   1920         match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
   1921       // (icmp cond A B) if cond is equality
   1922       return new ICmpInst(I.getPredicate(), A, B);
   1923     }
   1924 
   1925     // If we have an icmp le or icmp ge instruction, turn it into the
   1926     // appropriate icmp lt or icmp gt instruction.  This allows us to rely on
   1927     // them being folded in the code below.  The SimplifyICmpInst code has
   1928     // already handled the edge cases for us, so we just assert on them.
   1929     switch (I.getPredicate()) {
   1930     default: break;
   1931     case ICmpInst::ICMP_ULE:
   1932       assert(!CI->isMaxValue(false));                 // A <=u MAX -> TRUE
   1933       return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
   1934                           ConstantInt::get(CI->getContext(), CI->getValue()+1));
   1935     case ICmpInst::ICMP_SLE:
   1936       assert(!CI->isMaxValue(true));                  // A <=s MAX -> TRUE
   1937       return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
   1938                           ConstantInt::get(CI->getContext(), CI->getValue()+1));
   1939     case ICmpInst::ICMP_UGE:
   1940       assert(!CI->isMinValue(false));                 // A >=u MIN -> TRUE
   1941       return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
   1942                           ConstantInt::get(CI->getContext(), CI->getValue()-1));
   1943     case ICmpInst::ICMP_SGE:
   1944       assert(!CI->isMinValue(true));                  // A >=s MIN -> TRUE
   1945       return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
   1946                           ConstantInt::get(CI->getContext(), CI->getValue()-1));
   1947     }
   1948 
   1949     // If this comparison is a normal comparison, it demands all
   1950     // bits, if it is a sign bit comparison, it only demands the sign bit.
   1951     bool UnusedBit;
   1952     isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
   1953   }
   1954 
   1955   // See if we can fold the comparison based on range information we can get
   1956   // by checking whether bits are known to be zero or one in the input.
   1957   if (BitWidth != 0) {
   1958     APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
   1959     APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
   1960 
   1961     if (SimplifyDemandedBits(I.getOperandUse(0),
   1962                              DemandedBitsLHSMask(I, BitWidth, isSignBit),
   1963                              Op0KnownZero, Op0KnownOne, 0))
   1964       return &I;
   1965     if (SimplifyDemandedBits(I.getOperandUse(1),
   1966                              APInt::getAllOnesValue(BitWidth),
   1967                              Op1KnownZero, Op1KnownOne, 0))
   1968       return &I;
   1969 
   1970     // Given the known and unknown bits, compute a range that the LHS could be
   1971     // in.  Compute the Min, Max and RHS values based on the known bits. For the
   1972     // EQ and NE we use unsigned values.
   1973     APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
   1974     APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
   1975     if (I.isSigned()) {
   1976       ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
   1977                                              Op0Min, Op0Max);
   1978       ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
   1979                                              Op1Min, Op1Max);
   1980     } else {
   1981       ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
   1982                                                Op0Min, Op0Max);
   1983       ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
   1984                                                Op1Min, Op1Max);
   1985     }
   1986 
   1987     // If Min and Max are known to be the same, then SimplifyDemandedBits
   1988     // figured out that the LHS is a constant.  Just constant fold this now so
   1989     // that code below can assume that Min != Max.
   1990     if (!isa<Constant>(Op0) && Op0Min == Op0Max)
   1991       return new ICmpInst(I.getPredicate(),
   1992                           ConstantInt::get(Op0->getType(), Op0Min), Op1);
   1993     if (!isa<Constant>(Op1) && Op1Min == Op1Max)
   1994       return new ICmpInst(I.getPredicate(), Op0,
   1995                           ConstantInt::get(Op1->getType(), Op1Min));
   1996 
   1997     // Based on the range information we know about the LHS, see if we can
   1998     // simplify this comparison.  For example, (x&4) < 8 is always true.
   1999     switch (I.getPredicate()) {
   2000     default: llvm_unreachable("Unknown icmp opcode!");
   2001     case ICmpInst::ICMP_EQ: {
   2002       if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
   2003         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2004 
   2005       // If all bits are known zero except for one, then we know at most one
   2006       // bit is set.   If the comparison is against zero, then this is a check
   2007       // to see if *that* bit is set.
   2008       APInt Op0KnownZeroInverted = ~Op0KnownZero;
   2009       if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
   2010         // If the LHS is an AND with the same constant, look through it.
   2011         Value *LHS = 0;
   2012         ConstantInt *LHSC = 0;
   2013         if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
   2014             LHSC->getValue() != Op0KnownZeroInverted)
   2015           LHS = Op0;
   2016 
   2017         // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
   2018         // then turn "((1 << x)&8) == 0" into "x != 3".
   2019         Value *X = 0;
   2020         if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
   2021           unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
   2022           return new ICmpInst(ICmpInst::ICMP_NE, X,
   2023                               ConstantInt::get(X->getType(), CmpVal));
   2024         }
   2025 
   2026         // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
   2027         // then turn "((8 >>u x)&1) == 0" into "x != 3".
   2028         const APInt *CI;
   2029         if (Op0KnownZeroInverted == 1 &&
   2030             match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
   2031           return new ICmpInst(ICmpInst::ICMP_NE, X,
   2032                               ConstantInt::get(X->getType(),
   2033                                                CI->countTrailingZeros()));
   2034       }
   2035 
   2036       break;
   2037     }
   2038     case ICmpInst::ICMP_NE: {
   2039       if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
   2040         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2041 
   2042       // If all bits are known zero except for one, then we know at most one
   2043       // bit is set.   If the comparison is against zero, then this is a check
   2044       // to see if *that* bit is set.
   2045       APInt Op0KnownZeroInverted = ~Op0KnownZero;
   2046       if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
   2047         // If the LHS is an AND with the same constant, look through it.
   2048         Value *LHS = 0;
   2049         ConstantInt *LHSC = 0;
   2050         if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
   2051             LHSC->getValue() != Op0KnownZeroInverted)
   2052           LHS = Op0;
   2053 
   2054         // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
   2055         // then turn "((1 << x)&8) != 0" into "x == 3".
   2056         Value *X = 0;
   2057         if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
   2058           unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
   2059           return new ICmpInst(ICmpInst::ICMP_EQ, X,
   2060                               ConstantInt::get(X->getType(), CmpVal));
   2061         }
   2062 
   2063         // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
   2064         // then turn "((8 >>u x)&1) != 0" into "x == 3".
   2065         const APInt *CI;
   2066         if (Op0KnownZeroInverted == 1 &&
   2067             match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
   2068           return new ICmpInst(ICmpInst::ICMP_EQ, X,
   2069                               ConstantInt::get(X->getType(),
   2070                                                CI->countTrailingZeros()));
   2071       }
   2072 
   2073       break;
   2074     }
   2075     case ICmpInst::ICMP_ULT:
   2076       if (Op0Max.ult(Op1Min))          // A <u B -> true if max(A) < min(B)
   2077         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2078       if (Op0Min.uge(Op1Max))          // A <u B -> false if min(A) >= max(B)
   2079         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2080       if (Op1Min == Op0Max)            // A <u B -> A != B if max(A) == min(B)
   2081         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   2082       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2083         if (Op1Max == Op0Min+1)        // A <u C -> A == C-1 if min(A)+1 == C
   2084           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   2085                           ConstantInt::get(CI->getContext(), CI->getValue()-1));
   2086 
   2087         // (x <u 2147483648) -> (x >s -1)  -> true if sign bit clear
   2088         if (CI->isMinValue(true))
   2089           return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
   2090                            Constant::getAllOnesValue(Op0->getType()));
   2091       }
   2092       break;
   2093     case ICmpInst::ICMP_UGT:
   2094       if (Op0Min.ugt(Op1Max))          // A >u B -> true if min(A) > max(B)
   2095         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2096       if (Op0Max.ule(Op1Min))          // A >u B -> false if max(A) <= max(B)
   2097         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2098 
   2099       if (Op1Max == Op0Min)            // A >u B -> A != B if min(A) == max(B)
   2100         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   2101       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2102         if (Op1Min == Op0Max-1)        // A >u C -> A == C+1 if max(a)-1 == C
   2103           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   2104                           ConstantInt::get(CI->getContext(), CI->getValue()+1));
   2105 
   2106         // (x >u 2147483647) -> (x <s 0)  -> true if sign bit set
   2107         if (CI->isMaxValue(true))
   2108           return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
   2109                               Constant::getNullValue(Op0->getType()));
   2110       }
   2111       break;
   2112     case ICmpInst::ICMP_SLT:
   2113       if (Op0Max.slt(Op1Min))          // A <s B -> true if max(A) < min(C)
   2114         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2115       if (Op0Min.sge(Op1Max))          // A <s B -> false if min(A) >= max(C)
   2116         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2117       if (Op1Min == Op0Max)            // A <s B -> A != B if max(A) == min(B)
   2118         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   2119       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2120         if (Op1Max == Op0Min+1)        // A <s C -> A == C-1 if min(A)+1 == C
   2121           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   2122                           ConstantInt::get(CI->getContext(), CI->getValue()-1));
   2123       }
   2124       break;
   2125     case ICmpInst::ICMP_SGT:
   2126       if (Op0Min.sgt(Op1Max))          // A >s B -> true if min(A) > max(B)
   2127         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2128       if (Op0Max.sle(Op1Min))          // A >s B -> false if max(A) <= min(B)
   2129         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2130 
   2131       if (Op1Max == Op0Min)            // A >s B -> A != B if min(A) == max(B)
   2132         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   2133       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2134         if (Op1Min == Op0Max-1)        // A >s C -> A == C+1 if max(A)-1 == C
   2135           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   2136                           ConstantInt::get(CI->getContext(), CI->getValue()+1));
   2137       }
   2138       break;
   2139     case ICmpInst::ICMP_SGE:
   2140       assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
   2141       if (Op0Min.sge(Op1Max))          // A >=s B -> true if min(A) >= max(B)
   2142         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2143       if (Op0Max.slt(Op1Min))          // A >=s B -> false if max(A) < min(B)
   2144         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2145       break;
   2146     case ICmpInst::ICMP_SLE:
   2147       assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
   2148       if (Op0Max.sle(Op1Min))          // A <=s B -> true if max(A) <= min(B)
   2149         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2150       if (Op0Min.sgt(Op1Max))          // A <=s B -> false if min(A) > max(B)
   2151         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2152       break;
   2153     case ICmpInst::ICMP_UGE:
   2154       assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
   2155       if (Op0Min.uge(Op1Max))          // A >=u B -> true if min(A) >= max(B)
   2156         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2157       if (Op0Max.ult(Op1Min))          // A >=u B -> false if max(A) < min(B)
   2158         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2159       break;
   2160     case ICmpInst::ICMP_ULE:
   2161       assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
   2162       if (Op0Max.ule(Op1Min))          // A <=u B -> true if max(A) <= min(B)
   2163         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2164       if (Op0Min.ugt(Op1Max))          // A <=u B -> false if min(A) > max(B)
   2165         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2166       break;
   2167     }
   2168 
   2169     // Turn a signed comparison into an unsigned one if both operands
   2170     // are known to have the same sign.
   2171     if (I.isSigned() &&
   2172         ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
   2173          (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
   2174       return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
   2175   }
   2176 
   2177   // Test if the ICmpInst instruction is used exclusively by a select as
   2178   // part of a minimum or maximum operation. If so, refrain from doing
   2179   // any other folding. This helps out other analyses which understand
   2180   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
   2181   // and CodeGen. And in this case, at least one of the comparison
   2182   // operands has at least one user besides the compare (the select),
   2183   // which would often largely negate the benefit of folding anyway.
   2184   if (I.hasOneUse())
   2185     if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
   2186       if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
   2187           (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
   2188         return 0;
   2189 
   2190   // See if we are doing a comparison between a constant and an instruction that
   2191   // can be folded into the comparison.
   2192   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2193     // Since the RHS is a ConstantInt (CI), if the left hand side is an
   2194     // instruction, see if that instruction also has constants so that the
   2195     // instruction can be folded into the icmp
   2196     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
   2197       if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
   2198         return Res;
   2199   }
   2200 
   2201   // Handle icmp with constant (but not simple integer constant) RHS
   2202   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
   2203     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
   2204       switch (LHSI->getOpcode()) {
   2205       case Instruction::GetElementPtr:
   2206           // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
   2207         if (RHSC->isNullValue() &&
   2208             cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
   2209           return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
   2210                   Constant::getNullValue(LHSI->getOperand(0)->getType()));
   2211         break;
   2212       case Instruction::PHI:
   2213         // Only fold icmp into the PHI if the phi and icmp are in the same
   2214         // block.  If in the same block, we're encouraging jump threading.  If
   2215         // not, we are just pessimizing the code by making an i1 phi.
   2216         if (LHSI->getParent() == I.getParent())
   2217           if (Instruction *NV = FoldOpIntoPhi(I))
   2218             return NV;
   2219         break;
   2220       case Instruction::Select: {
   2221         // If either operand of the select is a constant, we can fold the
   2222         // comparison into the select arms, which will cause one to be
   2223         // constant folded and the select turned into a bitwise or.
   2224         Value *Op1 = 0, *Op2 = 0;
   2225         if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
   2226           Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
   2227         if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
   2228           Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
   2229 
   2230         // We only want to perform this transformation if it will not lead to
   2231         // additional code. This is true if either both sides of the select
   2232         // fold to a constant (in which case the icmp is replaced with a select
   2233         // which will usually simplify) or this is the only user of the
   2234         // select (in which case we are trading a select+icmp for a simpler
   2235         // select+icmp).
   2236         if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
   2237           if (!Op1)
   2238             Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
   2239                                       RHSC, I.getName());
   2240           if (!Op2)
   2241             Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
   2242                                       RHSC, I.getName());
   2243           return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
   2244         }
   2245         break;
   2246       }
   2247       case Instruction::IntToPtr:
   2248         // icmp pred inttoptr(X), null -> icmp pred X, 0
   2249         if (RHSC->isNullValue() && TD &&
   2250             TD->getIntPtrType(RHSC->getContext()) ==
   2251                LHSI->getOperand(0)->getType())
   2252           return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
   2253                         Constant::getNullValue(LHSI->getOperand(0)->getType()));
   2254         break;
   2255 
   2256       case Instruction::Load:
   2257         // Try to optimize things like "A[i] > 4" to index computations.
   2258         if (GetElementPtrInst *GEP =
   2259               dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
   2260           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
   2261             if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
   2262                 !cast<LoadInst>(LHSI)->isVolatile())
   2263               if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
   2264                 return Res;
   2265         }
   2266         break;
   2267       }
   2268   }
   2269 
   2270   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
   2271   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
   2272     if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
   2273       return NI;
   2274   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
   2275     if (Instruction *NI = FoldGEPICmp(GEP, Op0,
   2276                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
   2277       return NI;
   2278 
   2279   // Test to see if the operands of the icmp are casted versions of other
   2280   // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
   2281   // now.
   2282   if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
   2283     if (Op0->getType()->isPointerTy() &&
   2284         (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
   2285       // We keep moving the cast from the left operand over to the right
   2286       // operand, where it can often be eliminated completely.
   2287       Op0 = CI->getOperand(0);
   2288 
   2289       // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
   2290       // so eliminate it as well.
   2291       if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
   2292         Op1 = CI2->getOperand(0);
   2293 
   2294       // If Op1 is a constant, we can fold the cast into the constant.
   2295       if (Op0->getType() != Op1->getType()) {
   2296         if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
   2297           Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
   2298         } else {
   2299           // Otherwise, cast the RHS right before the icmp
   2300           Op1 = Builder->CreateBitCast(Op1, Op0->getType());
   2301         }
   2302       }
   2303       return new ICmpInst(I.getPredicate(), Op0, Op1);
   2304     }
   2305   }
   2306 
   2307   if (isa<CastInst>(Op0)) {
   2308     // Handle the special case of: icmp (cast bool to X), <cst>
   2309     // This comes up when you have code like
   2310     //   int X = A < B;
   2311     //   if (X) ...
   2312     // For generality, we handle any zero-extension of any operand comparison
   2313     // with a constant or another cast from the same type.
   2314     if (isa<Constant>(Op1) || isa<CastInst>(Op1))
   2315       if (Instruction *R = visitICmpInstWithCastAndCast(I))
   2316         return R;
   2317   }
   2318 
   2319   // Special logic for binary operators.
   2320   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
   2321   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
   2322   if (BO0 || BO1) {
   2323     CmpInst::Predicate Pred = I.getPredicate();
   2324     bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
   2325     if (BO0 && isa<OverflowingBinaryOperator>(BO0))
   2326       NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
   2327         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
   2328         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
   2329     if (BO1 && isa<OverflowingBinaryOperator>(BO1))
   2330       NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
   2331         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
   2332         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
   2333 
   2334     // Analyze the case when either Op0 or Op1 is an add instruction.
   2335     // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
   2336     Value *A = 0, *B = 0, *C = 0, *D = 0;
   2337     if (BO0 && BO0->getOpcode() == Instruction::Add)
   2338       A = BO0->getOperand(0), B = BO0->getOperand(1);
   2339     if (BO1 && BO1->getOpcode() == Instruction::Add)
   2340       C = BO1->getOperand(0), D = BO1->getOperand(1);
   2341 
   2342     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
   2343     if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
   2344       return new ICmpInst(Pred, A == Op1 ? B : A,
   2345                           Constant::getNullValue(Op1->getType()));
   2346 
   2347     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
   2348     if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
   2349       return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
   2350                           C == Op0 ? D : C);
   2351 
   2352     // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
   2353     if (A && C && (A == C || A == D || B == C || B == D) &&
   2354         NoOp0WrapProblem && NoOp1WrapProblem &&
   2355         // Try not to increase register pressure.
   2356         BO0->hasOneUse() && BO1->hasOneUse()) {
   2357       // Determine Y and Z in the form icmp (X+Y), (X+Z).
   2358       Value *Y = (A == C || A == D) ? B : A;
   2359       Value *Z = (C == A || C == B) ? D : C;
   2360       return new ICmpInst(Pred, Y, Z);
   2361     }
   2362 
   2363     // Analyze the case when either Op0 or Op1 is a sub instruction.
   2364     // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
   2365     A = 0; B = 0; C = 0; D = 0;
   2366     if (BO0 && BO0->getOpcode() == Instruction::Sub)
   2367       A = BO0->getOperand(0), B = BO0->getOperand(1);
   2368     if (BO1 && BO1->getOpcode() == Instruction::Sub)
   2369       C = BO1->getOperand(0), D = BO1->getOperand(1);
   2370 
   2371     // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
   2372     if (A == Op1 && NoOp0WrapProblem)
   2373       return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
   2374 
   2375     // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
   2376     if (C == Op0 && NoOp1WrapProblem)
   2377       return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
   2378 
   2379     // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
   2380     if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
   2381         // Try not to increase register pressure.
   2382         BO0->hasOneUse() && BO1->hasOneUse())
   2383       return new ICmpInst(Pred, A, C);
   2384 
   2385     // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
   2386     if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
   2387         // Try not to increase register pressure.
   2388         BO0->hasOneUse() && BO1->hasOneUse())
   2389       return new ICmpInst(Pred, D, B);
   2390 
   2391     BinaryOperator *SRem = NULL;
   2392     // icmp (srem X, Y), Y
   2393     if (BO0 && BO0->getOpcode() == Instruction::SRem &&
   2394         Op1 == BO0->getOperand(1))
   2395       SRem = BO0;
   2396     // icmp Y, (srem X, Y)
   2397     else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
   2398              Op0 == BO1->getOperand(1))
   2399       SRem = BO1;
   2400     if (SRem) {
   2401       // We don't check hasOneUse to avoid increasing register pressure because
   2402       // the value we use is the same value this instruction was already using.
   2403       switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
   2404         default: break;
   2405         case ICmpInst::ICMP_EQ:
   2406           return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2407         case ICmpInst::ICMP_NE:
   2408           return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2409         case ICmpInst::ICMP_SGT:
   2410         case ICmpInst::ICMP_SGE:
   2411           return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
   2412                               Constant::getAllOnesValue(SRem->getType()));
   2413         case ICmpInst::ICMP_SLT:
   2414         case ICmpInst::ICMP_SLE:
   2415           return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
   2416                               Constant::getNullValue(SRem->getType()));
   2417       }
   2418     }
   2419 
   2420     if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
   2421         BO0->hasOneUse() && BO1->hasOneUse() &&
   2422         BO0->getOperand(1) == BO1->getOperand(1)) {
   2423       switch (BO0->getOpcode()) {
   2424       default: break;
   2425       case Instruction::Add:
   2426       case Instruction::Sub:
   2427       case Instruction::Xor:
   2428         if (I.isEquality())    // a+x icmp eq/ne b+x --> a icmp b
   2429           return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
   2430                               BO1->getOperand(0));
   2431         // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
   2432         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
   2433           if (CI->getValue().isSignBit()) {
   2434             ICmpInst::Predicate Pred = I.isSigned()
   2435                                            ? I.getUnsignedPredicate()
   2436                                            : I.getSignedPredicate();
   2437             return new ICmpInst(Pred, BO0->getOperand(0),
   2438                                 BO1->getOperand(0));
   2439           }
   2440 
   2441           if (CI->isMaxValue(true)) {
   2442             ICmpInst::Predicate Pred = I.isSigned()
   2443                                            ? I.getUnsignedPredicate()
   2444                                            : I.getSignedPredicate();
   2445             Pred = I.getSwappedPredicate(Pred);
   2446             return new ICmpInst(Pred, BO0->getOperand(0),
   2447                                 BO1->getOperand(0));
   2448           }
   2449         }
   2450         break;
   2451       case Instruction::Mul:
   2452         if (!I.isEquality())
   2453           break;
   2454 
   2455         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
   2456           // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
   2457           // Mask = -1 >> count-trailing-zeros(Cst).
   2458           if (!CI->isZero() && !CI->isOne()) {
   2459             const APInt &AP = CI->getValue();
   2460             ConstantInt *Mask = ConstantInt::get(I.getContext(),
   2461                                     APInt::getLowBitsSet(AP.getBitWidth(),
   2462                                                          AP.getBitWidth() -
   2463                                                     AP.countTrailingZeros()));
   2464             Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
   2465             Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
   2466             return new ICmpInst(I.getPredicate(), And1, And2);
   2467           }
   2468         }
   2469         break;
   2470       case Instruction::UDiv:
   2471       case Instruction::LShr:
   2472         if (I.isSigned())
   2473           break;
   2474         // fall-through
   2475       case Instruction::SDiv:
   2476       case Instruction::AShr:
   2477         if (!BO0->isExact() || !BO1->isExact())
   2478           break;
   2479         return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
   2480                             BO1->getOperand(0));
   2481       case Instruction::Shl: {
   2482         bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
   2483         bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
   2484         if (!NUW && !NSW)
   2485           break;
   2486         if (!NSW && I.isSigned())
   2487           break;
   2488         return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
   2489                             BO1->getOperand(0));
   2490       }
   2491       }
   2492     }
   2493   }
   2494 
   2495   { Value *A, *B;
   2496     // ~x < ~y --> y < x
   2497     // ~x < cst --> ~cst < x
   2498     if (match(Op0, m_Not(m_Value(A)))) {
   2499       if (match(Op1, m_Not(m_Value(B))))
   2500         return new ICmpInst(I.getPredicate(), B, A);
   2501       if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
   2502         return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
   2503     }
   2504 
   2505     // (a+b) <u a  --> llvm.uadd.with.overflow.
   2506     // (a+b) <u b  --> llvm.uadd.with.overflow.
   2507     if (I.getPredicate() == ICmpInst::ICMP_ULT &&
   2508         match(Op0, m_Add(m_Value(A), m_Value(B))) &&
   2509         (Op1 == A || Op1 == B))
   2510       if (Instruction *R = ProcessUAddIdiom(I, Op0, *this))
   2511         return R;
   2512 
   2513     // a >u (a+b)  --> llvm.uadd.with.overflow.
   2514     // b >u (a+b)  --> llvm.uadd.with.overflow.
   2515     if (I.getPredicate() == ICmpInst::ICMP_UGT &&
   2516         match(Op1, m_Add(m_Value(A), m_Value(B))) &&
   2517         (Op0 == A || Op0 == B))
   2518       if (Instruction *R = ProcessUAddIdiom(I, Op1, *this))
   2519         return R;
   2520   }
   2521 
   2522   if (I.isEquality()) {
   2523     Value *A, *B, *C, *D;
   2524 
   2525     if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
   2526       if (A == Op1 || B == Op1) {    // (A^B) == A  ->  B == 0
   2527         Value *OtherVal = A == Op1 ? B : A;
   2528         return new ICmpInst(I.getPredicate(), OtherVal,
   2529                             Constant::getNullValue(A->getType()));
   2530       }
   2531 
   2532       if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
   2533         // A^c1 == C^c2 --> A == C^(c1^c2)
   2534         ConstantInt *C1, *C2;
   2535         if (match(B, m_ConstantInt(C1)) &&
   2536             match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
   2537           Constant *NC = ConstantInt::get(I.getContext(),
   2538                                           C1->getValue() ^ C2->getValue());
   2539           Value *Xor = Builder->CreateXor(C, NC);
   2540           return new ICmpInst(I.getPredicate(), A, Xor);
   2541         }
   2542 
   2543         // A^B == A^D -> B == D
   2544         if (A == C) return new ICmpInst(I.getPredicate(), B, D);
   2545         if (A == D) return new ICmpInst(I.getPredicate(), B, C);
   2546         if (B == C) return new ICmpInst(I.getPredicate(), A, D);
   2547         if (B == D) return new ICmpInst(I.getPredicate(), A, C);
   2548       }
   2549     }
   2550 
   2551     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
   2552         (A == Op0 || B == Op0)) {
   2553       // A == (A^B)  ->  B == 0
   2554       Value *OtherVal = A == Op0 ? B : A;
   2555       return new ICmpInst(I.getPredicate(), OtherVal,
   2556                           Constant::getNullValue(A->getType()));
   2557     }
   2558 
   2559     // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
   2560     if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
   2561         match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
   2562       Value *X = 0, *Y = 0, *Z = 0;
   2563 
   2564       if (A == C) {
   2565         X = B; Y = D; Z = A;
   2566       } else if (A == D) {
   2567         X = B; Y = C; Z = A;
   2568       } else if (B == C) {
   2569         X = A; Y = D; Z = B;
   2570       } else if (B == D) {
   2571         X = A; Y = C; Z = B;
   2572       }
   2573 
   2574       if (X) {   // Build (X^Y) & Z
   2575         Op1 = Builder->CreateXor(X, Y);
   2576         Op1 = Builder->CreateAnd(Op1, Z);
   2577         I.setOperand(0, Op1);
   2578         I.setOperand(1, Constant::getNullValue(Op1->getType()));
   2579         return &I;
   2580       }
   2581     }
   2582 
   2583     // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
   2584     // "icmp (and X, mask), cst"
   2585     uint64_t ShAmt = 0;
   2586     ConstantInt *Cst1;
   2587     if (Op0->hasOneUse() &&
   2588         match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A),
   2589                                            m_ConstantInt(ShAmt))))) &&
   2590         match(Op1, m_ConstantInt(Cst1)) &&
   2591         // Only do this when A has multiple uses.  This is most important to do
   2592         // when it exposes other optimizations.
   2593         !A->hasOneUse()) {
   2594       unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
   2595 
   2596       if (ShAmt < ASize) {
   2597         APInt MaskV =
   2598           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
   2599         MaskV <<= ShAmt;
   2600 
   2601         APInt CmpV = Cst1->getValue().zext(ASize);
   2602         CmpV <<= ShAmt;
   2603 
   2604         Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
   2605         return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
   2606       }
   2607     }
   2608   }
   2609 
   2610   {
   2611     Value *X; ConstantInt *Cst;
   2612     // icmp X+Cst, X
   2613     if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
   2614       return FoldICmpAddOpCst(I, X, Cst, I.getPredicate(), Op0);
   2615 
   2616     // icmp X, X+Cst
   2617     if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
   2618       return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate(), Op1);
   2619   }
   2620   return Changed ? &I : 0;
   2621 }
   2622 
   2623 
   2624 
   2625 
   2626 
   2627 
   2628 /// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
   2629 ///
   2630 Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
   2631                                                 Instruction *LHSI,
   2632                                                 Constant *RHSC) {
   2633   if (!isa<ConstantFP>(RHSC)) return 0;
   2634   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
   2635 
   2636   // Get the width of the mantissa.  We don't want to hack on conversions that
   2637   // might lose information from the integer, e.g. "i64 -> float"
   2638   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
   2639   if (MantissaWidth == -1) return 0;  // Unknown.
   2640 
   2641   // Check to see that the input is converted from an integer type that is small
   2642   // enough that preserves all bits.  TODO: check here for "known" sign bits.
   2643   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
   2644   unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
   2645 
   2646   // If this is a uitofp instruction, we need an extra bit to hold the sign.
   2647   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
   2648   if (LHSUnsigned)
   2649     ++InputSize;
   2650 
   2651   // If the conversion would lose info, don't hack on this.
   2652   if ((int)InputSize > MantissaWidth)
   2653     return 0;
   2654 
   2655   // Otherwise, we can potentially simplify the comparison.  We know that it
   2656   // will always come through as an integer value and we know the constant is
   2657   // not a NAN (it would have been previously simplified).
   2658   assert(!RHS.isNaN() && "NaN comparison not already folded!");
   2659 
   2660   ICmpInst::Predicate Pred;
   2661   switch (I.getPredicate()) {
   2662   default: llvm_unreachable("Unexpected predicate!");
   2663   case FCmpInst::FCMP_UEQ:
   2664   case FCmpInst::FCMP_OEQ:
   2665     Pred = ICmpInst::ICMP_EQ;
   2666     break;
   2667   case FCmpInst::FCMP_UGT:
   2668   case FCmpInst::FCMP_OGT:
   2669     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
   2670     break;
   2671   case FCmpInst::FCMP_UGE:
   2672   case FCmpInst::FCMP_OGE:
   2673     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
   2674     break;
   2675   case FCmpInst::FCMP_ULT:
   2676   case FCmpInst::FCMP_OLT:
   2677     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
   2678     break;
   2679   case FCmpInst::FCMP_ULE:
   2680   case FCmpInst::FCMP_OLE:
   2681     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
   2682     break;
   2683   case FCmpInst::FCMP_UNE:
   2684   case FCmpInst::FCMP_ONE:
   2685     Pred = ICmpInst::ICMP_NE;
   2686     break;
   2687   case FCmpInst::FCMP_ORD:
   2688     return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2689   case FCmpInst::FCMP_UNO:
   2690     return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2691   }
   2692 
   2693   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
   2694 
   2695   // Now we know that the APFloat is a normal number, zero or inf.
   2696 
   2697   // See if the FP constant is too large for the integer.  For example,
   2698   // comparing an i8 to 300.0.
   2699   unsigned IntWidth = IntTy->getScalarSizeInBits();
   2700 
   2701   if (!LHSUnsigned) {
   2702     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
   2703     // and large values.
   2704     APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
   2705     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
   2706                           APFloat::rmNearestTiesToEven);
   2707     if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
   2708       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
   2709           Pred == ICmpInst::ICMP_SLE)
   2710         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2711       return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2712     }
   2713   } else {
   2714     // If the RHS value is > UnsignedMax, fold the comparison. This handles
   2715     // +INF and large values.
   2716     APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
   2717     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
   2718                           APFloat::rmNearestTiesToEven);
   2719     if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
   2720       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
   2721           Pred == ICmpInst::ICMP_ULE)
   2722         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2723       return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2724     }
   2725   }
   2726 
   2727   if (!LHSUnsigned) {
   2728     // See if the RHS value is < SignedMin.
   2729     APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
   2730     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
   2731                           APFloat::rmNearestTiesToEven);
   2732     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
   2733       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
   2734           Pred == ICmpInst::ICMP_SGE)
   2735         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2736       return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2737     }
   2738   } else {
   2739     // See if the RHS value is < UnsignedMin.
   2740     APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
   2741     SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
   2742                           APFloat::rmNearestTiesToEven);
   2743     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
   2744       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
   2745           Pred == ICmpInst::ICMP_UGE)
   2746         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2747       return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2748     }
   2749   }
   2750 
   2751   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
   2752   // [0, UMAX], but it may still be fractional.  See if it is fractional by
   2753   // casting the FP value to the integer value and back, checking for equality.
   2754   // Don't do this for zero, because -0.0 is not fractional.
   2755   Constant *RHSInt = LHSUnsigned
   2756     ? ConstantExpr::getFPToUI(RHSC, IntTy)
   2757     : ConstantExpr::getFPToSI(RHSC, IntTy);
   2758   if (!RHS.isZero()) {
   2759     bool Equal = LHSUnsigned
   2760       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
   2761       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
   2762     if (!Equal) {
   2763       // If we had a comparison against a fractional value, we have to adjust
   2764       // the compare predicate and sometimes the value.  RHSC is rounded towards
   2765       // zero at this point.
   2766       switch (Pred) {
   2767       default: llvm_unreachable("Unexpected integer comparison!");
   2768       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
   2769         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2770       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
   2771         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2772       case ICmpInst::ICMP_ULE:
   2773         // (float)int <= 4.4   --> int <= 4
   2774         // (float)int <= -4.4  --> false
   2775         if (RHS.isNegative())
   2776           return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2777         break;
   2778       case ICmpInst::ICMP_SLE:
   2779         // (float)int <= 4.4   --> int <= 4
   2780         // (float)int <= -4.4  --> int < -4
   2781         if (RHS.isNegative())
   2782           Pred = ICmpInst::ICMP_SLT;
   2783         break;
   2784       case ICmpInst::ICMP_ULT:
   2785         // (float)int < -4.4   --> false
   2786         // (float)int < 4.4    --> int <= 4
   2787         if (RHS.isNegative())
   2788           return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2789         Pred = ICmpInst::ICMP_ULE;
   2790         break;
   2791       case ICmpInst::ICMP_SLT:
   2792         // (float)int < -4.4   --> int < -4
   2793         // (float)int < 4.4    --> int <= 4
   2794         if (!RHS.isNegative())
   2795           Pred = ICmpInst::ICMP_SLE;
   2796         break;
   2797       case ICmpInst::ICMP_UGT:
   2798         // (float)int > 4.4    --> int > 4
   2799         // (float)int > -4.4   --> true
   2800         if (RHS.isNegative())
   2801           return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2802         break;
   2803       case ICmpInst::ICMP_SGT:
   2804         // (float)int > 4.4    --> int > 4
   2805         // (float)int > -4.4   --> int >= -4
   2806         if (RHS.isNegative())
   2807           Pred = ICmpInst::ICMP_SGE;
   2808         break;
   2809       case ICmpInst::ICMP_UGE:
   2810         // (float)int >= -4.4   --> true
   2811         // (float)int >= 4.4    --> int > 4
   2812         if (!RHS.isNegative())
   2813           return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2814         Pred = ICmpInst::ICMP_UGT;
   2815         break;
   2816       case ICmpInst::ICMP_SGE:
   2817         // (float)int >= -4.4   --> int >= -4
   2818         // (float)int >= 4.4    --> int > 4
   2819         if (!RHS.isNegative())
   2820           Pred = ICmpInst::ICMP_SGT;
   2821         break;
   2822       }
   2823     }
   2824   }
   2825 
   2826   // Lower this FP comparison into an appropriate integer version of the
   2827   // comparison.
   2828   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
   2829 }
   2830 
   2831 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
   2832   bool Changed = false;
   2833 
   2834   /// Orders the operands of the compare so that they are listed from most
   2835   /// complex to least complex.  This puts constants before unary operators,
   2836   /// before binary operators.
   2837   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
   2838     I.swapOperands();
   2839     Changed = true;
   2840   }
   2841 
   2842   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   2843 
   2844   if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD))
   2845     return ReplaceInstUsesWith(I, V);
   2846 
   2847   // Simplify 'fcmp pred X, X'
   2848   if (Op0 == Op1) {
   2849     switch (I.getPredicate()) {
   2850     default: llvm_unreachable("Unknown predicate!");
   2851     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
   2852     case FCmpInst::FCMP_ULT:    // True if unordered or less than
   2853     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
   2854     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
   2855       // Canonicalize these to be 'fcmp uno %X, 0.0'.
   2856       I.setPredicate(FCmpInst::FCMP_UNO);
   2857       I.setOperand(1, Constant::getNullValue(Op0->getType()));
   2858       return &I;
   2859 
   2860     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
   2861     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
   2862     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
   2863     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
   2864       // Canonicalize these to be 'fcmp ord %X, 0.0'.
   2865       I.setPredicate(FCmpInst::FCMP_ORD);
   2866       I.setOperand(1, Constant::getNullValue(Op0->getType()));
   2867       return &I;
   2868     }
   2869   }
   2870 
   2871   // Handle fcmp with constant RHS
   2872   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
   2873     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
   2874       switch (LHSI->getOpcode()) {
   2875       case Instruction::FPExt: {
   2876         // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
   2877         FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
   2878         ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
   2879         if (!RHSF)
   2880           break;
   2881 
   2882         // We can't convert a PPC double double.
   2883         if (RHSF->getType()->isPPC_FP128Ty())
   2884           break;
   2885 
   2886         const fltSemantics *Sem;
   2887         // FIXME: This shouldn't be here.
   2888         if (LHSExt->getSrcTy()->isHalfTy())
   2889           Sem = &APFloat::IEEEhalf;
   2890         else if (LHSExt->getSrcTy()->isFloatTy())
   2891           Sem = &APFloat::IEEEsingle;
   2892         else if (LHSExt->getSrcTy()->isDoubleTy())
   2893           Sem = &APFloat::IEEEdouble;
   2894         else if (LHSExt->getSrcTy()->isFP128Ty())
   2895           Sem = &APFloat::IEEEquad;
   2896         else if (LHSExt->getSrcTy()->isX86_FP80Ty())
   2897           Sem = &APFloat::x87DoubleExtended;
   2898         else
   2899           break;
   2900 
   2901         bool Lossy;
   2902         APFloat F = RHSF->getValueAPF();
   2903         F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
   2904 
   2905         // Avoid lossy conversions and denormals. Zero is a special case
   2906         // that's OK to convert.
   2907         APFloat Fabs = F;
   2908         Fabs.clearSign();
   2909         if (!Lossy &&
   2910             ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
   2911                  APFloat::cmpLessThan) || Fabs.isZero()))
   2912 
   2913           return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
   2914                               ConstantFP::get(RHSC->getContext(), F));
   2915         break;
   2916       }
   2917       case Instruction::PHI:
   2918         // Only fold fcmp into the PHI if the phi and fcmp are in the same
   2919         // block.  If in the same block, we're encouraging jump threading.  If
   2920         // not, we are just pessimizing the code by making an i1 phi.
   2921         if (LHSI->getParent() == I.getParent())
   2922           if (Instruction *NV = FoldOpIntoPhi(I))
   2923             return NV;
   2924         break;
   2925       case Instruction::SIToFP:
   2926       case Instruction::UIToFP:
   2927         if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
   2928           return NV;
   2929         break;
   2930       case Instruction::Select: {
   2931         // If either operand of the select is a constant, we can fold the
   2932         // comparison into the select arms, which will cause one to be
   2933         // constant folded and the select turned into a bitwise or.
   2934         Value *Op1 = 0, *Op2 = 0;
   2935         if (LHSI->hasOneUse()) {
   2936           if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
   2937             // Fold the known value into the constant operand.
   2938             Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
   2939             // Insert a new FCmp of the other select operand.
   2940             Op2 = Builder->CreateFCmp(I.getPredicate(),
   2941                                       LHSI->getOperand(2), RHSC, I.getName());
   2942           } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
   2943             // Fold the known value into the constant operand.
   2944             Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
   2945             // Insert a new FCmp of the other select operand.
   2946             Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1),
   2947                                       RHSC, I.getName());
   2948           }
   2949         }
   2950 
   2951         if (Op1)
   2952           return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
   2953         break;
   2954       }
   2955       case Instruction::FSub: {
   2956         // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
   2957         Value *Op;
   2958         if (match(LHSI, m_FNeg(m_Value(Op))))
   2959           return new FCmpInst(I.getSwappedPredicate(), Op,
   2960                               ConstantExpr::getFNeg(RHSC));
   2961         break;
   2962       }
   2963       case Instruction::Load:
   2964         if (GetElementPtrInst *GEP =
   2965             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
   2966           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
   2967             if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
   2968                 !cast<LoadInst>(LHSI)->isVolatile())
   2969               if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
   2970                 return Res;
   2971         }
   2972         break;
   2973       }
   2974   }
   2975 
   2976   // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
   2977   Value *X, *Y;
   2978   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
   2979     return new FCmpInst(I.getSwappedPredicate(), X, Y);
   2980 
   2981   // fcmp (fpext x), (fpext y) -> fcmp x, y
   2982   if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
   2983     if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
   2984       if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
   2985         return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
   2986                             RHSExt->getOperand(0));
   2987 
   2988   return Changed ? &I : 0;
   2989 }
   2990