Home | History | Annotate | Download | only in ARM
      1 //===-- ARMConstantIslandPass.cpp - ARM constant islands ------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains a pass that splits the constant pool up into 'islands'
     11 // which are scattered through-out the function.  This is required due to the
     12 // limited pc-relative displacements that ARM has.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #define DEBUG_TYPE "arm-cp-islands"
     17 #include "ARM.h"
     18 #include "ARMMachineFunctionInfo.h"
     19 #include "Thumb2InstrInfo.h"
     20 #include "MCTargetDesc/ARMAddressingModes.h"
     21 #include "llvm/CodeGen/MachineConstantPool.h"
     22 #include "llvm/CodeGen/MachineFunctionPass.h"
     23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     24 #include "llvm/CodeGen/MachineRegisterInfo.h"
     25 #include "llvm/Target/TargetData.h"
     26 #include "llvm/Target/TargetMachine.h"
     27 #include "llvm/Support/Debug.h"
     28 #include "llvm/Support/ErrorHandling.h"
     29 #include "llvm/Support/Format.h"
     30 #include "llvm/Support/raw_ostream.h"
     31 #include "llvm/ADT/SmallSet.h"
     32 #include "llvm/ADT/SmallVector.h"
     33 #include "llvm/ADT/STLExtras.h"
     34 #include "llvm/ADT/Statistic.h"
     35 #include "llvm/Support/CommandLine.h"
     36 #include <algorithm>
     37 using namespace llvm;
     38 
     39 STATISTIC(NumCPEs,       "Number of constpool entries");
     40 STATISTIC(NumSplit,      "Number of uncond branches inserted");
     41 STATISTIC(NumCBrFixed,   "Number of cond branches fixed");
     42 STATISTIC(NumUBrFixed,   "Number of uncond branches fixed");
     43 STATISTIC(NumTBs,        "Number of table branches generated");
     44 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
     45 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
     46 STATISTIC(NumCBZ,        "Number of CBZ / CBNZ formed");
     47 STATISTIC(NumJTMoved,    "Number of jump table destination blocks moved");
     48 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted");
     49 
     50 
     51 static cl::opt<bool>
     52 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true),
     53           cl::desc("Adjust basic block layout to better use TB[BH]"));
     54 
     55 // FIXME: This option should be removed once it has received sufficient testing.
     56 static cl::opt<bool>
     57 AlignConstantIslands("arm-align-constant-islands", cl::Hidden, cl::init(true),
     58           cl::desc("Align constant islands in code"));
     59 
     60 /// UnknownPadding - Return the worst case padding that could result from
     61 /// unknown offset bits.  This does not include alignment padding caused by
     62 /// known offset bits.
     63 ///
     64 /// @param LogAlign log2(alignment)
     65 /// @param KnownBits Number of known low offset bits.
     66 static inline unsigned UnknownPadding(unsigned LogAlign, unsigned KnownBits) {
     67   if (KnownBits < LogAlign)
     68     return (1u << LogAlign) - (1u << KnownBits);
     69   return 0;
     70 }
     71 
     72 /// WorstCaseAlign - Assuming only the low KnownBits bits in Offset are exact,
     73 /// add padding such that:
     74 ///
     75 /// 1. The result is aligned to 1 << LogAlign.
     76 ///
     77 /// 2. No other value of the unknown bits would require more padding.
     78 ///
     79 /// This may add more padding than is required to satisfy just one of the
     80 /// constraints.  It is necessary to compute alignment this way to guarantee
     81 /// that we don't underestimate the padding before an aligned block.  If the
     82 /// real padding before a block is larger than we think, constant pool entries
     83 /// may go out of range.
     84 static inline unsigned WorstCaseAlign(unsigned Offset, unsigned LogAlign,
     85                                       unsigned KnownBits) {
     86   // Add the worst possible padding that the unknown bits could cause.
     87   Offset += UnknownPadding(LogAlign, KnownBits);
     88 
     89   // Then align the result.
     90   return RoundUpToAlignment(Offset, 1u << LogAlign);
     91 }
     92 
     93 namespace {
     94   /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
     95   /// requires constant pool entries to be scattered among the instructions
     96   /// inside a function.  To do this, it completely ignores the normal LLVM
     97   /// constant pool; instead, it places constants wherever it feels like with
     98   /// special instructions.
     99   ///
    100   /// The terminology used in this pass includes:
    101   ///   Islands - Clumps of constants placed in the function.
    102   ///   Water   - Potential places where an island could be formed.
    103   ///   CPE     - A constant pool entry that has been placed somewhere, which
    104   ///             tracks a list of users.
    105   class ARMConstantIslands : public MachineFunctionPass {
    106     /// BasicBlockInfo - Information about the offset and size of a single
    107     /// basic block.
    108     struct BasicBlockInfo {
    109       /// Offset - Distance from the beginning of the function to the beginning
    110       /// of this basic block.
    111       ///
    112       /// The offset is always aligned as required by the basic block.
    113       unsigned Offset;
    114 
    115       /// Size - Size of the basic block in bytes.  If the block contains
    116       /// inline assembly, this is a worst case estimate.
    117       ///
    118       /// The size does not include any alignment padding whether from the
    119       /// beginning of the block, or from an aligned jump table at the end.
    120       unsigned Size;
    121 
    122       /// KnownBits - The number of low bits in Offset that are known to be
    123       /// exact.  The remaining bits of Offset are an upper bound.
    124       uint8_t KnownBits;
    125 
    126       /// Unalign - When non-zero, the block contains instructions (inline asm)
    127       /// of unknown size.  The real size may be smaller than Size bytes by a
    128       /// multiple of 1 << Unalign.
    129       uint8_t Unalign;
    130 
    131       /// PostAlign - When non-zero, the block terminator contains a .align
    132       /// directive, so the end of the block is aligned to 1 << PostAlign
    133       /// bytes.
    134       uint8_t PostAlign;
    135 
    136       BasicBlockInfo() : Offset(0), Size(0), KnownBits(0), Unalign(0),
    137         PostAlign(0) {}
    138 
    139       /// Compute the number of known offset bits internally to this block.
    140       /// This number should be used to predict worst case padding when
    141       /// splitting the block.
    142       unsigned internalKnownBits() const {
    143         return Unalign ? Unalign : KnownBits;
    144       }
    145 
    146       /// Compute the offset immediately following this block.  If LogAlign is
    147       /// specified, return the offset the successor block will get if it has
    148       /// this alignment.
    149       unsigned postOffset(unsigned LogAlign = 0) const {
    150         unsigned PO = Offset + Size;
    151         unsigned LA = std::max(unsigned(PostAlign), LogAlign);
    152         if (!LA)
    153           return PO;
    154         // Add alignment padding from the terminator.
    155         return WorstCaseAlign(PO, LA, internalKnownBits());
    156       }
    157 
    158       /// Compute the number of known low bits of postOffset.  If this block
    159       /// contains inline asm, the number of known bits drops to the
    160       /// instruction alignment.  An aligned terminator may increase the number
    161       /// of know bits.
    162       /// If LogAlign is given, also consider the alignment of the next block.
    163       unsigned postKnownBits(unsigned LogAlign = 0) const {
    164         return std::max(std::max(unsigned(PostAlign), LogAlign),
    165                         internalKnownBits());
    166       }
    167     };
    168 
    169     std::vector<BasicBlockInfo> BBInfo;
    170 
    171     /// WaterList - A sorted list of basic blocks where islands could be placed
    172     /// (i.e. blocks that don't fall through to the following block, due
    173     /// to a return, unreachable, or unconditional branch).
    174     std::vector<MachineBasicBlock*> WaterList;
    175 
    176     /// NewWaterList - The subset of WaterList that was created since the
    177     /// previous iteration by inserting unconditional branches.
    178     SmallSet<MachineBasicBlock*, 4> NewWaterList;
    179 
    180     typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
    181 
    182     /// CPUser - One user of a constant pool, keeping the machine instruction
    183     /// pointer, the constant pool being referenced, and the max displacement
    184     /// allowed from the instruction to the CP.  The HighWaterMark records the
    185     /// highest basic block where a new CPEntry can be placed.  To ensure this
    186     /// pass terminates, the CP entries are initially placed at the end of the
    187     /// function and then move monotonically to lower addresses.  The
    188     /// exception to this rule is when the current CP entry for a particular
    189     /// CPUser is out of range, but there is another CP entry for the same
    190     /// constant value in range.  We want to use the existing in-range CP
    191     /// entry, but if it later moves out of range, the search for new water
    192     /// should resume where it left off.  The HighWaterMark is used to record
    193     /// that point.
    194     struct CPUser {
    195       MachineInstr *MI;
    196       MachineInstr *CPEMI;
    197       MachineBasicBlock *HighWaterMark;
    198     private:
    199       unsigned MaxDisp;
    200     public:
    201       bool NegOk;
    202       bool IsSoImm;
    203       bool KnownAlignment;
    204       CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
    205              bool neg, bool soimm)
    206         : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm),
    207           KnownAlignment(false) {
    208         HighWaterMark = CPEMI->getParent();
    209       }
    210       /// getMaxDisp - Returns the maximum displacement supported by MI.
    211       /// Correct for unknown alignment.
    212       /// Conservatively subtract 2 bytes to handle weird alignment effects.
    213       unsigned getMaxDisp() const {
    214         return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2;
    215       }
    216     };
    217 
    218     /// CPUsers - Keep track of all of the machine instructions that use various
    219     /// constant pools and their max displacement.
    220     std::vector<CPUser> CPUsers;
    221 
    222     /// CPEntry - One per constant pool entry, keeping the machine instruction
    223     /// pointer, the constpool index, and the number of CPUser's which
    224     /// reference this entry.
    225     struct CPEntry {
    226       MachineInstr *CPEMI;
    227       unsigned CPI;
    228       unsigned RefCount;
    229       CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
    230         : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
    231     };
    232 
    233     /// CPEntries - Keep track of all of the constant pool entry machine
    234     /// instructions. For each original constpool index (i.e. those that
    235     /// existed upon entry to this pass), it keeps a vector of entries.
    236     /// Original elements are cloned as we go along; the clones are
    237     /// put in the vector of the original element, but have distinct CPIs.
    238     std::vector<std::vector<CPEntry> > CPEntries;
    239 
    240     /// ImmBranch - One per immediate branch, keeping the machine instruction
    241     /// pointer, conditional or unconditional, the max displacement,
    242     /// and (if isCond is true) the corresponding unconditional branch
    243     /// opcode.
    244     struct ImmBranch {
    245       MachineInstr *MI;
    246       unsigned MaxDisp : 31;
    247       bool isCond : 1;
    248       int UncondBr;
    249       ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
    250         : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
    251     };
    252 
    253     /// ImmBranches - Keep track of all the immediate branch instructions.
    254     ///
    255     std::vector<ImmBranch> ImmBranches;
    256 
    257     /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
    258     ///
    259     SmallVector<MachineInstr*, 4> PushPopMIs;
    260 
    261     /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
    262     SmallVector<MachineInstr*, 4> T2JumpTables;
    263 
    264     /// HasFarJump - True if any far jump instruction has been emitted during
    265     /// the branch fix up pass.
    266     bool HasFarJump;
    267 
    268     MachineFunction *MF;
    269     MachineConstantPool *MCP;
    270     const ARMBaseInstrInfo *TII;
    271     const ARMSubtarget *STI;
    272     ARMFunctionInfo *AFI;
    273     bool isThumb;
    274     bool isThumb1;
    275     bool isThumb2;
    276   public:
    277     static char ID;
    278     ARMConstantIslands() : MachineFunctionPass(ID) {}
    279 
    280     virtual bool runOnMachineFunction(MachineFunction &MF);
    281 
    282     virtual const char *getPassName() const {
    283       return "ARM constant island placement and branch shortening pass";
    284     }
    285 
    286   private:
    287     void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs);
    288     CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
    289     unsigned getCPELogAlign(const MachineInstr *CPEMI);
    290     void scanFunctionJumpTables();
    291     void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
    292     MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
    293     void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
    294     void adjustBBOffsetsAfter(MachineBasicBlock *BB);
    295     bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
    296     int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
    297     bool findAvailableWater(CPUser&U, unsigned UserOffset,
    298                             water_iterator &WaterIter);
    299     void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
    300                         MachineBasicBlock *&NewMBB);
    301     bool handleConstantPoolUser(unsigned CPUserIndex);
    302     void removeDeadCPEMI(MachineInstr *CPEMI);
    303     bool removeUnusedCPEntries();
    304     bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
    305                           MachineInstr *CPEMI, unsigned Disp, bool NegOk,
    306                           bool DoDump = false);
    307     bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
    308                         CPUser &U, unsigned &Growth);
    309     bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
    310     bool fixupImmediateBr(ImmBranch &Br);
    311     bool fixupConditionalBr(ImmBranch &Br);
    312     bool fixupUnconditionalBr(ImmBranch &Br);
    313     bool undoLRSpillRestore();
    314     bool mayOptimizeThumb2Instruction(const MachineInstr *MI) const;
    315     bool optimizeThumb2Instructions();
    316     bool optimizeThumb2Branches();
    317     bool reorderThumb2JumpTables();
    318     bool optimizeThumb2JumpTables();
    319     MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB,
    320                                                   MachineBasicBlock *JTBB);
    321 
    322     void computeBlockSize(MachineBasicBlock *MBB);
    323     unsigned getOffsetOf(MachineInstr *MI) const;
    324     unsigned getUserOffset(CPUser&) const;
    325     void dumpBBs();
    326     void verify();
    327 
    328     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
    329                          unsigned Disp, bool NegativeOK, bool IsSoImm = false);
    330     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
    331                          const CPUser &U) {
    332       return isOffsetInRange(UserOffset, TrialOffset,
    333                              U.getMaxDisp(), U.NegOk, U.IsSoImm);
    334     }
    335   };
    336   char ARMConstantIslands::ID = 0;
    337 }
    338 
    339 /// verify - check BBOffsets, BBSizes, alignment of islands
    340 void ARMConstantIslands::verify() {
    341 #ifndef NDEBUG
    342   for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
    343        MBBI != E; ++MBBI) {
    344     MachineBasicBlock *MBB = MBBI;
    345     unsigned Align = MBB->getAlignment();
    346     unsigned MBBId = MBB->getNumber();
    347     assert(BBInfo[MBBId].Offset % (1u << Align) == 0);
    348     assert(!MBBId || BBInfo[MBBId - 1].postOffset() <= BBInfo[MBBId].Offset);
    349   }
    350   DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n");
    351   for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
    352     CPUser &U = CPUsers[i];
    353     unsigned UserOffset = getUserOffset(U);
    354     // Verify offset using the real max displacement without the safety
    355     // adjustment.
    356     if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk,
    357                          /* DoDump = */ true)) {
    358       DEBUG(dbgs() << "OK\n");
    359       continue;
    360     }
    361     DEBUG(dbgs() << "Out of range.\n");
    362     dumpBBs();
    363     DEBUG(MF->dump());
    364     llvm_unreachable("Constant pool entry out of range!");
    365   }
    366 #endif
    367 }
    368 
    369 /// print block size and offset information - debugging
    370 void ARMConstantIslands::dumpBBs() {
    371   DEBUG({
    372     for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
    373       const BasicBlockInfo &BBI = BBInfo[J];
    374       dbgs() << format("%08x BB#%u\t", BBI.Offset, J)
    375              << " kb=" << unsigned(BBI.KnownBits)
    376              << " ua=" << unsigned(BBI.Unalign)
    377              << " pa=" << unsigned(BBI.PostAlign)
    378              << format(" size=%#x\n", BBInfo[J].Size);
    379     }
    380   });
    381 }
    382 
    383 /// createARMConstantIslandPass - returns an instance of the constpool
    384 /// island pass.
    385 FunctionPass *llvm::createARMConstantIslandPass() {
    386   return new ARMConstantIslands();
    387 }
    388 
    389 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) {
    390   MF = &mf;
    391   MCP = mf.getConstantPool();
    392 
    393   DEBUG(dbgs() << "***** ARMConstantIslands: "
    394                << MCP->getConstants().size() << " CP entries, aligned to "
    395                << MCP->getConstantPoolAlignment() << " bytes *****\n");
    396 
    397   TII = (const ARMBaseInstrInfo*)MF->getTarget().getInstrInfo();
    398   AFI = MF->getInfo<ARMFunctionInfo>();
    399   STI = &MF->getTarget().getSubtarget<ARMSubtarget>();
    400 
    401   isThumb = AFI->isThumbFunction();
    402   isThumb1 = AFI->isThumb1OnlyFunction();
    403   isThumb2 = AFI->isThumb2Function();
    404 
    405   HasFarJump = false;
    406 
    407   // This pass invalidates liveness information when it splits basic blocks.
    408   MF->getRegInfo().invalidateLiveness();
    409 
    410   // Renumber all of the machine basic blocks in the function, guaranteeing that
    411   // the numbers agree with the position of the block in the function.
    412   MF->RenumberBlocks();
    413 
    414   // Try to reorder and otherwise adjust the block layout to make good use
    415   // of the TB[BH] instructions.
    416   bool MadeChange = false;
    417   if (isThumb2 && AdjustJumpTableBlocks) {
    418     scanFunctionJumpTables();
    419     MadeChange |= reorderThumb2JumpTables();
    420     // Data is out of date, so clear it. It'll be re-computed later.
    421     T2JumpTables.clear();
    422     // Blocks may have shifted around. Keep the numbering up to date.
    423     MF->RenumberBlocks();
    424   }
    425 
    426   // Thumb1 functions containing constant pools get 4-byte alignment.
    427   // This is so we can keep exact track of where the alignment padding goes.
    428 
    429   // ARM and Thumb2 functions need to be 4-byte aligned.
    430   if (!isThumb1)
    431     MF->EnsureAlignment(2);  // 2 = log2(4)
    432 
    433   // Perform the initial placement of the constant pool entries.  To start with,
    434   // we put them all at the end of the function.
    435   std::vector<MachineInstr*> CPEMIs;
    436   if (!MCP->isEmpty())
    437     doInitialPlacement(CPEMIs);
    438 
    439   /// The next UID to take is the first unused one.
    440   AFI->initPICLabelUId(CPEMIs.size());
    441 
    442   // Do the initial scan of the function, building up information about the
    443   // sizes of each block, the location of all the water, and finding all of the
    444   // constant pool users.
    445   initializeFunctionInfo(CPEMIs);
    446   CPEMIs.clear();
    447   DEBUG(dumpBBs());
    448 
    449 
    450   /// Remove dead constant pool entries.
    451   MadeChange |= removeUnusedCPEntries();
    452 
    453   // Iteratively place constant pool entries and fix up branches until there
    454   // is no change.
    455   unsigned NoCPIters = 0, NoBRIters = 0;
    456   while (true) {
    457     DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
    458     bool CPChange = false;
    459     for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
    460       CPChange |= handleConstantPoolUser(i);
    461     if (CPChange && ++NoCPIters > 30)
    462       report_fatal_error("Constant Island pass failed to converge!");
    463     DEBUG(dumpBBs());
    464 
    465     // Clear NewWaterList now.  If we split a block for branches, it should
    466     // appear as "new water" for the next iteration of constant pool placement.
    467     NewWaterList.clear();
    468 
    469     DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
    470     bool BRChange = false;
    471     for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
    472       BRChange |= fixupImmediateBr(ImmBranches[i]);
    473     if (BRChange && ++NoBRIters > 30)
    474       report_fatal_error("Branch Fix Up pass failed to converge!");
    475     DEBUG(dumpBBs());
    476 
    477     if (!CPChange && !BRChange)
    478       break;
    479     MadeChange = true;
    480   }
    481 
    482   // Shrink 32-bit Thumb2 branch, load, and store instructions.
    483   if (isThumb2 && !STI->prefers32BitThumb())
    484     MadeChange |= optimizeThumb2Instructions();
    485 
    486   // After a while, this might be made debug-only, but it is not expensive.
    487   verify();
    488 
    489   // If LR has been forced spilled and no far jump (i.e. BL) has been issued,
    490   // undo the spill / restore of LR if possible.
    491   if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump())
    492     MadeChange |= undoLRSpillRestore();
    493 
    494   // Save the mapping between original and cloned constpool entries.
    495   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
    496     for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) {
    497       const CPEntry & CPE = CPEntries[i][j];
    498       AFI->recordCPEClone(i, CPE.CPI);
    499     }
    500   }
    501 
    502   DEBUG(dbgs() << '\n'; dumpBBs());
    503 
    504   BBInfo.clear();
    505   WaterList.clear();
    506   CPUsers.clear();
    507   CPEntries.clear();
    508   ImmBranches.clear();
    509   PushPopMIs.clear();
    510   T2JumpTables.clear();
    511 
    512   return MadeChange;
    513 }
    514 
    515 /// doInitialPlacement - Perform the initial placement of the constant pool
    516 /// entries.  To start with, we put them all at the end of the function.
    517 void
    518 ARMConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
    519   // Create the basic block to hold the CPE's.
    520   MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
    521   MF->push_back(BB);
    522 
    523   // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
    524   unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment());
    525 
    526   // Mark the basic block as required by the const-pool.
    527   // If AlignConstantIslands isn't set, use 4-byte alignment for everything.
    528   BB->setAlignment(AlignConstantIslands ? MaxAlign : 2);
    529 
    530   // The function needs to be as aligned as the basic blocks. The linker may
    531   // move functions around based on their alignment.
    532   MF->EnsureAlignment(BB->getAlignment());
    533 
    534   // Order the entries in BB by descending alignment.  That ensures correct
    535   // alignment of all entries as long as BB is sufficiently aligned.  Keep
    536   // track of the insertion point for each alignment.  We are going to bucket
    537   // sort the entries as they are created.
    538   SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end());
    539 
    540   // Add all of the constants from the constant pool to the end block, use an
    541   // identity mapping of CPI's to CPE's.
    542   const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
    543 
    544   const TargetData &TD = *MF->getTarget().getTargetData();
    545   for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
    546     unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
    547     assert(Size >= 4 && "Too small constant pool entry");
    548     unsigned Align = CPs[i].getAlignment();
    549     assert(isPowerOf2_32(Align) && "Invalid alignment");
    550     // Verify that all constant pool entries are a multiple of their alignment.
    551     // If not, we would have to pad them out so that instructions stay aligned.
    552     assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
    553 
    554     // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
    555     unsigned LogAlign = Log2_32(Align);
    556     MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
    557     MachineInstr *CPEMI =
    558       BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
    559         .addImm(i).addConstantPoolIndex(i).addImm(Size);
    560     CPEMIs.push_back(CPEMI);
    561 
    562     // Ensure that future entries with higher alignment get inserted before
    563     // CPEMI. This is bucket sort with iterators.
    564     for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a)
    565       if (InsPoint[a] == InsAt)
    566         InsPoint[a] = CPEMI;
    567 
    568     // Add a new CPEntry, but no corresponding CPUser yet.
    569     std::vector<CPEntry> CPEs;
    570     CPEs.push_back(CPEntry(CPEMI, i));
    571     CPEntries.push_back(CPEs);
    572     ++NumCPEs;
    573     DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
    574                  << Size << ", align = " << Align <<'\n');
    575   }
    576   DEBUG(BB->dump());
    577 }
    578 
    579 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
    580 /// into the block immediately after it.
    581 static bool BBHasFallthrough(MachineBasicBlock *MBB) {
    582   // Get the next machine basic block in the function.
    583   MachineFunction::iterator MBBI = MBB;
    584   // Can't fall off end of function.
    585   if (llvm::next(MBBI) == MBB->getParent()->end())
    586     return false;
    587 
    588   MachineBasicBlock *NextBB = llvm::next(MBBI);
    589   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
    590        E = MBB->succ_end(); I != E; ++I)
    591     if (*I == NextBB)
    592       return true;
    593 
    594   return false;
    595 }
    596 
    597 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
    598 /// look up the corresponding CPEntry.
    599 ARMConstantIslands::CPEntry
    600 *ARMConstantIslands::findConstPoolEntry(unsigned CPI,
    601                                         const MachineInstr *CPEMI) {
    602   std::vector<CPEntry> &CPEs = CPEntries[CPI];
    603   // Number of entries per constpool index should be small, just do a
    604   // linear search.
    605   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
    606     if (CPEs[i].CPEMI == CPEMI)
    607       return &CPEs[i];
    608   }
    609   return NULL;
    610 }
    611 
    612 /// getCPELogAlign - Returns the required alignment of the constant pool entry
    613 /// represented by CPEMI.  Alignment is measured in log2(bytes) units.
    614 unsigned ARMConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) {
    615   assert(CPEMI && CPEMI->getOpcode() == ARM::CONSTPOOL_ENTRY);
    616 
    617   // Everything is 4-byte aligned unless AlignConstantIslands is set.
    618   if (!AlignConstantIslands)
    619     return 2;
    620 
    621   unsigned CPI = CPEMI->getOperand(1).getIndex();
    622   assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
    623   unsigned Align = MCP->getConstants()[CPI].getAlignment();
    624   assert(isPowerOf2_32(Align) && "Invalid CPE alignment");
    625   return Log2_32(Align);
    626 }
    627 
    628 /// scanFunctionJumpTables - Do a scan of the function, building up
    629 /// information about the sizes of each block and the locations of all
    630 /// the jump tables.
    631 void ARMConstantIslands::scanFunctionJumpTables() {
    632   for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
    633        MBBI != E; ++MBBI) {
    634     MachineBasicBlock &MBB = *MBBI;
    635 
    636     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
    637          I != E; ++I)
    638       if (I->isBranch() && I->getOpcode() == ARM::t2BR_JT)
    639         T2JumpTables.push_back(I);
    640   }
    641 }
    642 
    643 /// initializeFunctionInfo - Do the initial scan of the function, building up
    644 /// information about the sizes of each block, the location of all the water,
    645 /// and finding all of the constant pool users.
    646 void ARMConstantIslands::
    647 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
    648   BBInfo.clear();
    649   BBInfo.resize(MF->getNumBlockIDs());
    650 
    651   // First thing, compute the size of all basic blocks, and see if the function
    652   // has any inline assembly in it. If so, we have to be conservative about
    653   // alignment assumptions, as we don't know for sure the size of any
    654   // instructions in the inline assembly.
    655   for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I)
    656     computeBlockSize(I);
    657 
    658   // The known bits of the entry block offset are determined by the function
    659   // alignment.
    660   BBInfo.front().KnownBits = MF->getAlignment();
    661 
    662   // Compute block offsets and known bits.
    663   adjustBBOffsetsAfter(MF->begin());
    664 
    665   // Now go back through the instructions and build up our data structures.
    666   for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
    667        MBBI != E; ++MBBI) {
    668     MachineBasicBlock &MBB = *MBBI;
    669 
    670     // If this block doesn't fall through into the next MBB, then this is
    671     // 'water' that a constant pool island could be placed.
    672     if (!BBHasFallthrough(&MBB))
    673       WaterList.push_back(&MBB);
    674 
    675     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
    676          I != E; ++I) {
    677       if (I->isDebugValue())
    678         continue;
    679 
    680       int Opc = I->getOpcode();
    681       if (I->isBranch()) {
    682         bool isCond = false;
    683         unsigned Bits = 0;
    684         unsigned Scale = 1;
    685         int UOpc = Opc;
    686         switch (Opc) {
    687         default:
    688           continue;  // Ignore other JT branches
    689         case ARM::t2BR_JT:
    690           T2JumpTables.push_back(I);
    691           continue;   // Does not get an entry in ImmBranches
    692         case ARM::Bcc:
    693           isCond = true;
    694           UOpc = ARM::B;
    695           // Fallthrough
    696         case ARM::B:
    697           Bits = 24;
    698           Scale = 4;
    699           break;
    700         case ARM::tBcc:
    701           isCond = true;
    702           UOpc = ARM::tB;
    703           Bits = 8;
    704           Scale = 2;
    705           break;
    706         case ARM::tB:
    707           Bits = 11;
    708           Scale = 2;
    709           break;
    710         case ARM::t2Bcc:
    711           isCond = true;
    712           UOpc = ARM::t2B;
    713           Bits = 20;
    714           Scale = 2;
    715           break;
    716         case ARM::t2B:
    717           Bits = 24;
    718           Scale = 2;
    719           break;
    720         }
    721 
    722         // Record this immediate branch.
    723         unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
    724         ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc));
    725       }
    726 
    727       if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
    728         PushPopMIs.push_back(I);
    729 
    730       if (Opc == ARM::CONSTPOOL_ENTRY)
    731         continue;
    732 
    733       // Scan the instructions for constant pool operands.
    734       for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
    735         if (I->getOperand(op).isCPI()) {
    736           // We found one.  The addressing mode tells us the max displacement
    737           // from the PC that this instruction permits.
    738 
    739           // Basic size info comes from the TSFlags field.
    740           unsigned Bits = 0;
    741           unsigned Scale = 1;
    742           bool NegOk = false;
    743           bool IsSoImm = false;
    744 
    745           switch (Opc) {
    746           default:
    747             llvm_unreachable("Unknown addressing mode for CP reference!");
    748 
    749           // Taking the address of a CP entry.
    750           case ARM::LEApcrel:
    751             // This takes a SoImm, which is 8 bit immediate rotated. We'll
    752             // pretend the maximum offset is 255 * 4. Since each instruction
    753             // 4 byte wide, this is always correct. We'll check for other
    754             // displacements that fits in a SoImm as well.
    755             Bits = 8;
    756             Scale = 4;
    757             NegOk = true;
    758             IsSoImm = true;
    759             break;
    760           case ARM::t2LEApcrel:
    761             Bits = 12;
    762             NegOk = true;
    763             break;
    764           case ARM::tLEApcrel:
    765             Bits = 8;
    766             Scale = 4;
    767             break;
    768 
    769           case ARM::LDRi12:
    770           case ARM::LDRcp:
    771           case ARM::t2LDRpci:
    772             Bits = 12;  // +-offset_12
    773             NegOk = true;
    774             break;
    775 
    776           case ARM::tLDRpci:
    777             Bits = 8;
    778             Scale = 4;  // +(offset_8*4)
    779             break;
    780 
    781           case ARM::VLDRD:
    782           case ARM::VLDRS:
    783             Bits = 8;
    784             Scale = 4;  // +-(offset_8*4)
    785             NegOk = true;
    786             break;
    787           }
    788 
    789           // Remember that this is a user of a CP entry.
    790           unsigned CPI = I->getOperand(op).getIndex();
    791           MachineInstr *CPEMI = CPEMIs[CPI];
    792           unsigned MaxOffs = ((1 << Bits)-1) * Scale;
    793           CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm));
    794 
    795           // Increment corresponding CPEntry reference count.
    796           CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
    797           assert(CPE && "Cannot find a corresponding CPEntry!");
    798           CPE->RefCount++;
    799 
    800           // Instructions can only use one CP entry, don't bother scanning the
    801           // rest of the operands.
    802           break;
    803         }
    804     }
    805   }
    806 }
    807 
    808 /// computeBlockSize - Compute the size and some alignment information for MBB.
    809 /// This function updates BBInfo directly.
    810 void ARMConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
    811   BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
    812   BBI.Size = 0;
    813   BBI.Unalign = 0;
    814   BBI.PostAlign = 0;
    815 
    816   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
    817        ++I) {
    818     BBI.Size += TII->GetInstSizeInBytes(I);
    819     // For inline asm, GetInstSizeInBytes returns a conservative estimate.
    820     // The actual size may be smaller, but still a multiple of the instr size.
    821     if (I->isInlineAsm())
    822       BBI.Unalign = isThumb ? 1 : 2;
    823     // Also consider instructions that may be shrunk later.
    824     else if (isThumb && mayOptimizeThumb2Instruction(I))
    825       BBI.Unalign = 1;
    826   }
    827 
    828   // tBR_JTr contains a .align 2 directive.
    829   if (!MBB->empty() && MBB->back().getOpcode() == ARM::tBR_JTr) {
    830     BBI.PostAlign = 2;
    831     MBB->getParent()->EnsureAlignment(2);
    832   }
    833 }
    834 
    835 /// getOffsetOf - Return the current offset of the specified machine instruction
    836 /// from the start of the function.  This offset changes as stuff is moved
    837 /// around inside the function.
    838 unsigned ARMConstantIslands::getOffsetOf(MachineInstr *MI) const {
    839   MachineBasicBlock *MBB = MI->getParent();
    840 
    841   // The offset is composed of two things: the sum of the sizes of all MBB's
    842   // before this instruction's block, and the offset from the start of the block
    843   // it is in.
    844   unsigned Offset = BBInfo[MBB->getNumber()].Offset;
    845 
    846   // Sum instructions before MI in MBB.
    847   for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
    848     assert(I != MBB->end() && "Didn't find MI in its own basic block?");
    849     Offset += TII->GetInstSizeInBytes(I);
    850   }
    851   return Offset;
    852 }
    853 
    854 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
    855 /// ID.
    856 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
    857                               const MachineBasicBlock *RHS) {
    858   return LHS->getNumber() < RHS->getNumber();
    859 }
    860 
    861 /// updateForInsertedWaterBlock - When a block is newly inserted into the
    862 /// machine function, it upsets all of the block numbers.  Renumber the blocks
    863 /// and update the arrays that parallel this numbering.
    864 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
    865   // Renumber the MBB's to keep them consecutive.
    866   NewBB->getParent()->RenumberBlocks(NewBB);
    867 
    868   // Insert an entry into BBInfo to align it properly with the (newly
    869   // renumbered) block numbers.
    870   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
    871 
    872   // Next, update WaterList.  Specifically, we need to add NewMBB as having
    873   // available water after it.
    874   water_iterator IP =
    875     std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
    876                      CompareMBBNumbers);
    877   WaterList.insert(IP, NewBB);
    878 }
    879 
    880 
    881 /// Split the basic block containing MI into two blocks, which are joined by
    882 /// an unconditional branch.  Update data structures and renumber blocks to
    883 /// account for this change and returns the newly created block.
    884 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) {
    885   MachineBasicBlock *OrigBB = MI->getParent();
    886 
    887   // Create a new MBB for the code after the OrigBB.
    888   MachineBasicBlock *NewBB =
    889     MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
    890   MachineFunction::iterator MBBI = OrigBB; ++MBBI;
    891   MF->insert(MBBI, NewBB);
    892 
    893   // Splice the instructions starting with MI over to NewBB.
    894   NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
    895 
    896   // Add an unconditional branch from OrigBB to NewBB.
    897   // Note the new unconditional branch is not being recorded.
    898   // There doesn't seem to be meaningful DebugInfo available; this doesn't
    899   // correspond to anything in the source.
    900   unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
    901   if (!isThumb)
    902     BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB);
    903   else
    904     BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB)
    905             .addImm(ARMCC::AL).addReg(0);
    906   ++NumSplit;
    907 
    908   // Update the CFG.  All succs of OrigBB are now succs of NewBB.
    909   NewBB->transferSuccessors(OrigBB);
    910 
    911   // OrigBB branches to NewBB.
    912   OrigBB->addSuccessor(NewBB);
    913 
    914   // Update internal data structures to account for the newly inserted MBB.
    915   // This is almost the same as updateForInsertedWaterBlock, except that
    916   // the Water goes after OrigBB, not NewBB.
    917   MF->RenumberBlocks(NewBB);
    918 
    919   // Insert an entry into BBInfo to align it properly with the (newly
    920   // renumbered) block numbers.
    921   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
    922 
    923   // Next, update WaterList.  Specifically, we need to add OrigMBB as having
    924   // available water after it (but not if it's already there, which happens
    925   // when splitting before a conditional branch that is followed by an
    926   // unconditional branch - in that case we want to insert NewBB).
    927   water_iterator IP =
    928     std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
    929                      CompareMBBNumbers);
    930   MachineBasicBlock* WaterBB = *IP;
    931   if (WaterBB == OrigBB)
    932     WaterList.insert(llvm::next(IP), NewBB);
    933   else
    934     WaterList.insert(IP, OrigBB);
    935   NewWaterList.insert(OrigBB);
    936 
    937   // Figure out how large the OrigBB is.  As the first half of the original
    938   // block, it cannot contain a tablejump.  The size includes
    939   // the new jump we added.  (It should be possible to do this without
    940   // recounting everything, but it's very confusing, and this is rarely
    941   // executed.)
    942   computeBlockSize(OrigBB);
    943 
    944   // Figure out how large the NewMBB is.  As the second half of the original
    945   // block, it may contain a tablejump.
    946   computeBlockSize(NewBB);
    947 
    948   // All BBOffsets following these blocks must be modified.
    949   adjustBBOffsetsAfter(OrigBB);
    950 
    951   return NewBB;
    952 }
    953 
    954 /// getUserOffset - Compute the offset of U.MI as seen by the hardware
    955 /// displacement computation.  Update U.KnownAlignment to match its current
    956 /// basic block location.
    957 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const {
    958   unsigned UserOffset = getOffsetOf(U.MI);
    959   const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()];
    960   unsigned KnownBits = BBI.internalKnownBits();
    961 
    962   // The value read from PC is offset from the actual instruction address.
    963   UserOffset += (isThumb ? 4 : 8);
    964 
    965   // Because of inline assembly, we may not know the alignment (mod 4) of U.MI.
    966   // Make sure U.getMaxDisp() returns a constrained range.
    967   U.KnownAlignment = (KnownBits >= 2);
    968 
    969   // On Thumb, offsets==2 mod 4 are rounded down by the hardware for
    970   // purposes of the displacement computation; compensate for that here.
    971   // For unknown alignments, getMaxDisp() constrains the range instead.
    972   if (isThumb && U.KnownAlignment)
    973     UserOffset &= ~3u;
    974 
    975   return UserOffset;
    976 }
    977 
    978 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
    979 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
    980 /// constant pool entry).
    981 /// UserOffset is computed by getUserOffset above to include PC adjustments. If
    982 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be
    983 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that.
    984 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset,
    985                                          unsigned TrialOffset, unsigned MaxDisp,
    986                                          bool NegativeOK, bool IsSoImm) {
    987   if (UserOffset <= TrialOffset) {
    988     // User before the Trial.
    989     if (TrialOffset - UserOffset <= MaxDisp)
    990       return true;
    991     // FIXME: Make use full range of soimm values.
    992   } else if (NegativeOK) {
    993     if (UserOffset - TrialOffset <= MaxDisp)
    994       return true;
    995     // FIXME: Make use full range of soimm values.
    996   }
    997   return false;
    998 }
    999 
   1000 /// isWaterInRange - Returns true if a CPE placed after the specified
   1001 /// Water (a basic block) will be in range for the specific MI.
   1002 ///
   1003 /// Compute how much the function will grow by inserting a CPE after Water.
   1004 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset,
   1005                                         MachineBasicBlock* Water, CPUser &U,
   1006                                         unsigned &Growth) {
   1007   unsigned CPELogAlign = getCPELogAlign(U.CPEMI);
   1008   unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign);
   1009   unsigned NextBlockOffset, NextBlockAlignment;
   1010   MachineFunction::const_iterator NextBlock = Water;
   1011   if (++NextBlock == MF->end()) {
   1012     NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
   1013     NextBlockAlignment = 0;
   1014   } else {
   1015     NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
   1016     NextBlockAlignment = NextBlock->getAlignment();
   1017   }
   1018   unsigned Size = U.CPEMI->getOperand(2).getImm();
   1019   unsigned CPEEnd = CPEOffset + Size;
   1020 
   1021   // The CPE may be able to hide in the alignment padding before the next
   1022   // block. It may also cause more padding to be required if it is more aligned
   1023   // that the next block.
   1024   if (CPEEnd > NextBlockOffset) {
   1025     Growth = CPEEnd - NextBlockOffset;
   1026     // Compute the padding that would go at the end of the CPE to align the next
   1027     // block.
   1028     Growth += OffsetToAlignment(CPEEnd, 1u << NextBlockAlignment);
   1029 
   1030     // If the CPE is to be inserted before the instruction, that will raise
   1031     // the offset of the instruction. Also account for unknown alignment padding
   1032     // in blocks between CPE and the user.
   1033     if (CPEOffset < UserOffset)
   1034       UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign);
   1035   } else
   1036     // CPE fits in existing padding.
   1037     Growth = 0;
   1038 
   1039   return isOffsetInRange(UserOffset, CPEOffset, U);
   1040 }
   1041 
   1042 /// isCPEntryInRange - Returns true if the distance between specific MI and
   1043 /// specific ConstPool entry instruction can fit in MI's displacement field.
   1044 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
   1045                                       MachineInstr *CPEMI, unsigned MaxDisp,
   1046                                       bool NegOk, bool DoDump) {
   1047   unsigned CPEOffset  = getOffsetOf(CPEMI);
   1048   assert(CPEOffset % 4 == 0 && "Misaligned CPE");
   1049 
   1050   if (DoDump) {
   1051     DEBUG({
   1052       unsigned Block = MI->getParent()->getNumber();
   1053       const BasicBlockInfo &BBI = BBInfo[Block];
   1054       dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
   1055              << " max delta=" << MaxDisp
   1056              << format(" insn address=%#x", UserOffset)
   1057              << " in BB#" << Block << ": "
   1058              << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
   1059              << format("CPE address=%#x offset=%+d: ", CPEOffset,
   1060                        int(CPEOffset-UserOffset));
   1061     });
   1062   }
   1063 
   1064   return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
   1065 }
   1066 
   1067 #ifndef NDEBUG
   1068 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
   1069 /// unconditionally branches to its only successor.
   1070 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
   1071   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
   1072     return false;
   1073 
   1074   MachineBasicBlock *Succ = *MBB->succ_begin();
   1075   MachineBasicBlock *Pred = *MBB->pred_begin();
   1076   MachineInstr *PredMI = &Pred->back();
   1077   if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
   1078       || PredMI->getOpcode() == ARM::t2B)
   1079     return PredMI->getOperand(0).getMBB() == Succ;
   1080   return false;
   1081 }
   1082 #endif // NDEBUG
   1083 
   1084 void ARMConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
   1085   unsigned BBNum = BB->getNumber();
   1086   for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
   1087     // Get the offset and known bits at the end of the layout predecessor.
   1088     // Include the alignment of the current block.
   1089     unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment();
   1090     unsigned Offset = BBInfo[i - 1].postOffset(LogAlign);
   1091     unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign);
   1092 
   1093     // This is where block i begins.  Stop if the offset is already correct,
   1094     // and we have updated 2 blocks.  This is the maximum number of blocks
   1095     // changed before calling this function.
   1096     if (i > BBNum + 2 &&
   1097         BBInfo[i].Offset == Offset &&
   1098         BBInfo[i].KnownBits == KnownBits)
   1099       break;
   1100 
   1101     BBInfo[i].Offset = Offset;
   1102     BBInfo[i].KnownBits = KnownBits;
   1103   }
   1104 }
   1105 
   1106 /// decrementCPEReferenceCount - find the constant pool entry with index CPI
   1107 /// and instruction CPEMI, and decrement its refcount.  If the refcount
   1108 /// becomes 0 remove the entry and instruction.  Returns true if we removed
   1109 /// the entry, false if we didn't.
   1110 
   1111 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI,
   1112                                                     MachineInstr *CPEMI) {
   1113   // Find the old entry. Eliminate it if it is no longer used.
   1114   CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
   1115   assert(CPE && "Unexpected!");
   1116   if (--CPE->RefCount == 0) {
   1117     removeDeadCPEMI(CPEMI);
   1118     CPE->CPEMI = NULL;
   1119     --NumCPEs;
   1120     return true;
   1121   }
   1122   return false;
   1123 }
   1124 
   1125 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
   1126 /// if not, see if an in-range clone of the CPE is in range, and if so,
   1127 /// change the data structures so the user references the clone.  Returns:
   1128 /// 0 = no existing entry found
   1129 /// 1 = entry found, and there were no code insertions or deletions
   1130 /// 2 = entry found, and there were code insertions or deletions
   1131 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset)
   1132 {
   1133   MachineInstr *UserMI = U.MI;
   1134   MachineInstr *CPEMI  = U.CPEMI;
   1135 
   1136   // Check to see if the CPE is already in-range.
   1137   if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
   1138                        true)) {
   1139     DEBUG(dbgs() << "In range\n");
   1140     return 1;
   1141   }
   1142 
   1143   // No.  Look for previously created clones of the CPE that are in range.
   1144   unsigned CPI = CPEMI->getOperand(1).getIndex();
   1145   std::vector<CPEntry> &CPEs = CPEntries[CPI];
   1146   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
   1147     // We already tried this one
   1148     if (CPEs[i].CPEMI == CPEMI)
   1149       continue;
   1150     // Removing CPEs can leave empty entries, skip
   1151     if (CPEs[i].CPEMI == NULL)
   1152       continue;
   1153     if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
   1154                      U.NegOk)) {
   1155       DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
   1156                    << CPEs[i].CPI << "\n");
   1157       // Point the CPUser node to the replacement
   1158       U.CPEMI = CPEs[i].CPEMI;
   1159       // Change the CPI in the instruction operand to refer to the clone.
   1160       for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
   1161         if (UserMI->getOperand(j).isCPI()) {
   1162           UserMI->getOperand(j).setIndex(CPEs[i].CPI);
   1163           break;
   1164         }
   1165       // Adjust the refcount of the clone...
   1166       CPEs[i].RefCount++;
   1167       // ...and the original.  If we didn't remove the old entry, none of the
   1168       // addresses changed, so we don't need another pass.
   1169       return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
   1170     }
   1171   }
   1172   return 0;
   1173 }
   1174 
   1175 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
   1176 /// the specific unconditional branch instruction.
   1177 static inline unsigned getUnconditionalBrDisp(int Opc) {
   1178   switch (Opc) {
   1179   case ARM::tB:
   1180     return ((1<<10)-1)*2;
   1181   case ARM::t2B:
   1182     return ((1<<23)-1)*2;
   1183   default:
   1184     break;
   1185   }
   1186 
   1187   return ((1<<23)-1)*4;
   1188 }
   1189 
   1190 /// findAvailableWater - Look for an existing entry in the WaterList in which
   1191 /// we can place the CPE referenced from U so it's within range of U's MI.
   1192 /// Returns true if found, false if not.  If it returns true, WaterIter
   1193 /// is set to the WaterList entry.  For Thumb, prefer water that will not
   1194 /// introduce padding to water that will.  To ensure that this pass
   1195 /// terminates, the CPE location for a particular CPUser is only allowed to
   1196 /// move to a lower address, so search backward from the end of the list and
   1197 /// prefer the first water that is in range.
   1198 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
   1199                                       water_iterator &WaterIter) {
   1200   if (WaterList.empty())
   1201     return false;
   1202 
   1203   unsigned BestGrowth = ~0u;
   1204   for (water_iterator IP = prior(WaterList.end()), B = WaterList.begin();;
   1205        --IP) {
   1206     MachineBasicBlock* WaterBB = *IP;
   1207     // Check if water is in range and is either at a lower address than the
   1208     // current "high water mark" or a new water block that was created since
   1209     // the previous iteration by inserting an unconditional branch.  In the
   1210     // latter case, we want to allow resetting the high water mark back to
   1211     // this new water since we haven't seen it before.  Inserting branches
   1212     // should be relatively uncommon and when it does happen, we want to be
   1213     // sure to take advantage of it for all the CPEs near that block, so that
   1214     // we don't insert more branches than necessary.
   1215     unsigned Growth;
   1216     if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
   1217         (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
   1218          NewWaterList.count(WaterBB)) && Growth < BestGrowth) {
   1219       // This is the least amount of required padding seen so far.
   1220       BestGrowth = Growth;
   1221       WaterIter = IP;
   1222       DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber()
   1223                    << " Growth=" << Growth << '\n');
   1224 
   1225       // Keep looking unless it is perfect.
   1226       if (BestGrowth == 0)
   1227         return true;
   1228     }
   1229     if (IP == B)
   1230       break;
   1231   }
   1232   return BestGrowth != ~0u;
   1233 }
   1234 
   1235 /// createNewWater - No existing WaterList entry will work for
   1236 /// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the
   1237 /// block is used if in range, and the conditional branch munged so control
   1238 /// flow is correct.  Otherwise the block is split to create a hole with an
   1239 /// unconditional branch around it.  In either case NewMBB is set to a
   1240 /// block following which the new island can be inserted (the WaterList
   1241 /// is not adjusted).
   1242 void ARMConstantIslands::createNewWater(unsigned CPUserIndex,
   1243                                         unsigned UserOffset,
   1244                                         MachineBasicBlock *&NewMBB) {
   1245   CPUser &U = CPUsers[CPUserIndex];
   1246   MachineInstr *UserMI = U.MI;
   1247   MachineInstr *CPEMI  = U.CPEMI;
   1248   unsigned CPELogAlign = getCPELogAlign(CPEMI);
   1249   MachineBasicBlock *UserMBB = UserMI->getParent();
   1250   const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
   1251 
   1252   // If the block does not end in an unconditional branch already, and if the
   1253   // end of the block is within range, make new water there.  (The addition
   1254   // below is for the unconditional branch we will be adding: 4 bytes on ARM +
   1255   // Thumb2, 2 on Thumb1.
   1256   if (BBHasFallthrough(UserMBB)) {
   1257     // Size of branch to insert.
   1258     unsigned Delta = isThumb1 ? 2 : 4;
   1259     // End of UserBlock after adding a branch.
   1260     unsigned UserBlockEnd = UserBBI.postOffset() + Delta;
   1261     // Compute the offset where the CPE will begin.
   1262     unsigned CPEOffset = WorstCaseAlign(UserBlockEnd, CPELogAlign,
   1263                                         UserBBI.postKnownBits());
   1264 
   1265     if (isOffsetInRange(UserOffset, CPEOffset, U)) {
   1266       DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber()
   1267             << format(", expected CPE offset %#x\n", CPEOffset));
   1268       NewMBB = llvm::next(MachineFunction::iterator(UserMBB));
   1269       // Add an unconditional branch from UserMBB to fallthrough block.  Record
   1270       // it for branch lengthening; this new branch will not get out of range,
   1271       // but if the preceding conditional branch is out of range, the targets
   1272       // will be exchanged, and the altered branch may be out of range, so the
   1273       // machinery has to know about it.
   1274       int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
   1275       if (!isThumb)
   1276         BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
   1277       else
   1278         BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB)
   1279           .addImm(ARMCC::AL).addReg(0);
   1280       unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
   1281       ImmBranches.push_back(ImmBranch(&UserMBB->back(),
   1282                                       MaxDisp, false, UncondBr));
   1283       BBInfo[UserMBB->getNumber()].Size += Delta;
   1284       adjustBBOffsetsAfter(UserMBB);
   1285       return;
   1286     }
   1287   }
   1288 
   1289   // What a big block.  Find a place within the block to split it.  This is a
   1290   // little tricky on Thumb1 since instructions are 2 bytes and constant pool
   1291   // entries are 4 bytes: if instruction I references island CPE, and
   1292   // instruction I+1 references CPE', it will not work well to put CPE as far
   1293   // forward as possible, since then CPE' cannot immediately follow it (that
   1294   // location is 2 bytes farther away from I+1 than CPE was from I) and we'd
   1295   // need to create a new island.  So, we make a first guess, then walk through
   1296   // the instructions between the one currently being looked at and the
   1297   // possible insertion point, and make sure any other instructions that
   1298   // reference CPEs will be able to use the same island area; if not, we back
   1299   // up the insertion point.
   1300 
   1301   // Try to split the block so it's fully aligned.  Compute the latest split
   1302   // point where we can add a 4-byte branch instruction, and then
   1303   // WorstCaseAlign to LogAlign.
   1304   unsigned LogAlign = MF->getAlignment();
   1305   assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry");
   1306   unsigned KnownBits = UserBBI.internalKnownBits();
   1307   unsigned UPad = UnknownPadding(LogAlign, KnownBits);
   1308   unsigned BaseInsertOffset = UserOffset + U.getMaxDisp();
   1309   DEBUG(dbgs() << format("Split in middle of big block before %#x",
   1310                          BaseInsertOffset));
   1311 
   1312   // Account for alignment and unknown padding.
   1313   BaseInsertOffset &= ~((1u << LogAlign) - 1);
   1314   BaseInsertOffset -= UPad;
   1315 
   1316   // The 4 in the following is for the unconditional branch we'll be inserting
   1317   // (allows for long branch on Thumb1).  Alignment of the island is handled
   1318   // inside isOffsetInRange.
   1319   BaseInsertOffset -= 4;
   1320 
   1321   DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
   1322                << " la=" << LogAlign
   1323                << " kb=" << KnownBits
   1324                << " up=" << UPad << '\n');
   1325 
   1326   // This could point off the end of the block if we've already got constant
   1327   // pool entries following this block; only the last one is in the water list.
   1328   // Back past any possible branches (allow for a conditional and a maximally
   1329   // long unconditional).
   1330   if (BaseInsertOffset >= BBInfo[UserMBB->getNumber()+1].Offset)
   1331     BaseInsertOffset = BBInfo[UserMBB->getNumber()+1].Offset -
   1332       (isThumb1 ? 6 : 8);
   1333   unsigned EndInsertOffset =
   1334     WorstCaseAlign(BaseInsertOffset + 4, LogAlign, KnownBits) +
   1335     CPEMI->getOperand(2).getImm();
   1336   MachineBasicBlock::iterator MI = UserMI;
   1337   ++MI;
   1338   unsigned CPUIndex = CPUserIndex+1;
   1339   unsigned NumCPUsers = CPUsers.size();
   1340   MachineInstr *LastIT = 0;
   1341   for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI);
   1342        Offset < BaseInsertOffset;
   1343        Offset += TII->GetInstSizeInBytes(MI),
   1344        MI = llvm::next(MI)) {
   1345     if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
   1346       CPUser &U = CPUsers[CPUIndex];
   1347       if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
   1348         // Shift intertion point by one unit of alignment so it is within reach.
   1349         BaseInsertOffset -= 1u << LogAlign;
   1350         EndInsertOffset  -= 1u << LogAlign;
   1351       }
   1352       // This is overly conservative, as we don't account for CPEMIs being
   1353       // reused within the block, but it doesn't matter much.  Also assume CPEs
   1354       // are added in order with alignment padding.  We may eventually be able
   1355       // to pack the aligned CPEs better.
   1356       EndInsertOffset = RoundUpToAlignment(EndInsertOffset,
   1357                                            1u << getCPELogAlign(U.CPEMI)) +
   1358         U.CPEMI->getOperand(2).getImm();
   1359       CPUIndex++;
   1360     }
   1361 
   1362     // Remember the last IT instruction.
   1363     if (MI->getOpcode() == ARM::t2IT)
   1364       LastIT = MI;
   1365   }
   1366 
   1367   --MI;
   1368 
   1369   // Avoid splitting an IT block.
   1370   if (LastIT) {
   1371     unsigned PredReg = 0;
   1372     ARMCC::CondCodes CC = getITInstrPredicate(MI, PredReg);
   1373     if (CC != ARMCC::AL)
   1374       MI = LastIT;
   1375   }
   1376   NewMBB = splitBlockBeforeInstr(MI);
   1377 }
   1378 
   1379 /// handleConstantPoolUser - Analyze the specified user, checking to see if it
   1380 /// is out-of-range.  If so, pick up the constant pool value and move it some
   1381 /// place in-range.  Return true if we changed any addresses (thus must run
   1382 /// another pass of branch lengthening), false otherwise.
   1383 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) {
   1384   CPUser &U = CPUsers[CPUserIndex];
   1385   MachineInstr *UserMI = U.MI;
   1386   MachineInstr *CPEMI  = U.CPEMI;
   1387   unsigned CPI = CPEMI->getOperand(1).getIndex();
   1388   unsigned Size = CPEMI->getOperand(2).getImm();
   1389   // Compute this only once, it's expensive.
   1390   unsigned UserOffset = getUserOffset(U);
   1391 
   1392   // See if the current entry is within range, or there is a clone of it
   1393   // in range.
   1394   int result = findInRangeCPEntry(U, UserOffset);
   1395   if (result==1) return false;
   1396   else if (result==2) return true;
   1397 
   1398   // No existing clone of this CPE is within range.
   1399   // We will be generating a new clone.  Get a UID for it.
   1400   unsigned ID = AFI->createPICLabelUId();
   1401 
   1402   // Look for water where we can place this CPE.
   1403   MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
   1404   MachineBasicBlock *NewMBB;
   1405   water_iterator IP;
   1406   if (findAvailableWater(U, UserOffset, IP)) {
   1407     DEBUG(dbgs() << "Found water in range\n");
   1408     MachineBasicBlock *WaterBB = *IP;
   1409 
   1410     // If the original WaterList entry was "new water" on this iteration,
   1411     // propagate that to the new island.  This is just keeping NewWaterList
   1412     // updated to match the WaterList, which will be updated below.
   1413     if (NewWaterList.count(WaterBB)) {
   1414       NewWaterList.erase(WaterBB);
   1415       NewWaterList.insert(NewIsland);
   1416     }
   1417     // The new CPE goes before the following block (NewMBB).
   1418     NewMBB = llvm::next(MachineFunction::iterator(WaterBB));
   1419 
   1420   } else {
   1421     // No water found.
   1422     DEBUG(dbgs() << "No water found\n");
   1423     createNewWater(CPUserIndex, UserOffset, NewMBB);
   1424 
   1425     // splitBlockBeforeInstr adds to WaterList, which is important when it is
   1426     // called while handling branches so that the water will be seen on the
   1427     // next iteration for constant pools, but in this context, we don't want
   1428     // it.  Check for this so it will be removed from the WaterList.
   1429     // Also remove any entry from NewWaterList.
   1430     MachineBasicBlock *WaterBB = prior(MachineFunction::iterator(NewMBB));
   1431     IP = std::find(WaterList.begin(), WaterList.end(), WaterBB);
   1432     if (IP != WaterList.end())
   1433       NewWaterList.erase(WaterBB);
   1434 
   1435     // We are adding new water.  Update NewWaterList.
   1436     NewWaterList.insert(NewIsland);
   1437   }
   1438 
   1439   // Remove the original WaterList entry; we want subsequent insertions in
   1440   // this vicinity to go after the one we're about to insert.  This
   1441   // considerably reduces the number of times we have to move the same CPE
   1442   // more than once and is also important to ensure the algorithm terminates.
   1443   if (IP != WaterList.end())
   1444     WaterList.erase(IP);
   1445 
   1446   // Okay, we know we can put an island before NewMBB now, do it!
   1447   MF->insert(NewMBB, NewIsland);
   1448 
   1449   // Update internal data structures to account for the newly inserted MBB.
   1450   updateForInsertedWaterBlock(NewIsland);
   1451 
   1452   // Decrement the old entry, and remove it if refcount becomes 0.
   1453   decrementCPEReferenceCount(CPI, CPEMI);
   1454 
   1455   // Now that we have an island to add the CPE to, clone the original CPE and
   1456   // add it to the island.
   1457   U.HighWaterMark = NewIsland;
   1458   U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
   1459                 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
   1460   CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
   1461   ++NumCPEs;
   1462 
   1463   // Mark the basic block as aligned as required by the const-pool entry.
   1464   NewIsland->setAlignment(getCPELogAlign(U.CPEMI));
   1465 
   1466   // Increase the size of the island block to account for the new entry.
   1467   BBInfo[NewIsland->getNumber()].Size += Size;
   1468   adjustBBOffsetsAfter(llvm::prior(MachineFunction::iterator(NewIsland)));
   1469 
   1470   // Finally, change the CPI in the instruction operand to be ID.
   1471   for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
   1472     if (UserMI->getOperand(i).isCPI()) {
   1473       UserMI->getOperand(i).setIndex(ID);
   1474       break;
   1475     }
   1476 
   1477   DEBUG(dbgs() << "  Moved CPE to #" << ID << " CPI=" << CPI
   1478         << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
   1479 
   1480   return true;
   1481 }
   1482 
   1483 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
   1484 /// sizes and offsets of impacted basic blocks.
   1485 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
   1486   MachineBasicBlock *CPEBB = CPEMI->getParent();
   1487   unsigned Size = CPEMI->getOperand(2).getImm();
   1488   CPEMI->eraseFromParent();
   1489   BBInfo[CPEBB->getNumber()].Size -= Size;
   1490   // All succeeding offsets have the current size value added in, fix this.
   1491   if (CPEBB->empty()) {
   1492     BBInfo[CPEBB->getNumber()].Size = 0;
   1493 
   1494     // This block no longer needs to be aligned. <rdar://problem/10534709>.
   1495     CPEBB->setAlignment(0);
   1496   } else
   1497     // Entries are sorted by descending alignment, so realign from the front.
   1498     CPEBB->setAlignment(getCPELogAlign(CPEBB->begin()));
   1499 
   1500   adjustBBOffsetsAfter(CPEBB);
   1501   // An island has only one predecessor BB and one successor BB. Check if
   1502   // this BB's predecessor jumps directly to this BB's successor. This
   1503   // shouldn't happen currently.
   1504   assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
   1505   // FIXME: remove the empty blocks after all the work is done?
   1506 }
   1507 
   1508 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
   1509 /// are zero.
   1510 bool ARMConstantIslands::removeUnusedCPEntries() {
   1511   unsigned MadeChange = false;
   1512   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
   1513       std::vector<CPEntry> &CPEs = CPEntries[i];
   1514       for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
   1515         if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
   1516           removeDeadCPEMI(CPEs[j].CPEMI);
   1517           CPEs[j].CPEMI = NULL;
   1518           MadeChange = true;
   1519         }
   1520       }
   1521   }
   1522   return MadeChange;
   1523 }
   1524 
   1525 /// isBBInRange - Returns true if the distance between specific MI and
   1526 /// specific BB can fit in MI's displacement field.
   1527 bool ARMConstantIslands::isBBInRange(MachineInstr *MI,MachineBasicBlock *DestBB,
   1528                                      unsigned MaxDisp) {
   1529   unsigned PCAdj      = isThumb ? 4 : 8;
   1530   unsigned BrOffset   = getOffsetOf(MI) + PCAdj;
   1531   unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
   1532 
   1533   DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber()
   1534                << " from BB#" << MI->getParent()->getNumber()
   1535                << " max delta=" << MaxDisp
   1536                << " from " << getOffsetOf(MI) << " to " << DestOffset
   1537                << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
   1538 
   1539   if (BrOffset <= DestOffset) {
   1540     // Branch before the Dest.
   1541     if (DestOffset-BrOffset <= MaxDisp)
   1542       return true;
   1543   } else {
   1544     if (BrOffset-DestOffset <= MaxDisp)
   1545       return true;
   1546   }
   1547   return false;
   1548 }
   1549 
   1550 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
   1551 /// away to fit in its displacement field.
   1552 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) {
   1553   MachineInstr *MI = Br.MI;
   1554   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
   1555 
   1556   // Check to see if the DestBB is already in-range.
   1557   if (isBBInRange(MI, DestBB, Br.MaxDisp))
   1558     return false;
   1559 
   1560   if (!Br.isCond)
   1561     return fixupUnconditionalBr(Br);
   1562   return fixupConditionalBr(Br);
   1563 }
   1564 
   1565 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
   1566 /// too far away to fit in its displacement field. If the LR register has been
   1567 /// spilled in the epilogue, then we can use BL to implement a far jump.
   1568 /// Otherwise, add an intermediate branch instruction to a branch.
   1569 bool
   1570 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
   1571   MachineInstr *MI = Br.MI;
   1572   MachineBasicBlock *MBB = MI->getParent();
   1573   if (!isThumb1)
   1574     llvm_unreachable("fixupUnconditionalBr is Thumb1 only!");
   1575 
   1576   // Use BL to implement far jump.
   1577   Br.MaxDisp = (1 << 21) * 2;
   1578   MI->setDesc(TII->get(ARM::tBfar));
   1579   BBInfo[MBB->getNumber()].Size += 2;
   1580   adjustBBOffsetsAfter(MBB);
   1581   HasFarJump = true;
   1582   ++NumUBrFixed;
   1583 
   1584   DEBUG(dbgs() << "  Changed B to long jump " << *MI);
   1585 
   1586   return true;
   1587 }
   1588 
   1589 /// fixupConditionalBr - Fix up a conditional branch whose destination is too
   1590 /// far away to fit in its displacement field. It is converted to an inverse
   1591 /// conditional branch + an unconditional branch to the destination.
   1592 bool
   1593 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) {
   1594   MachineInstr *MI = Br.MI;
   1595   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
   1596 
   1597   // Add an unconditional branch to the destination and invert the branch
   1598   // condition to jump over it:
   1599   // blt L1
   1600   // =>
   1601   // bge L2
   1602   // b   L1
   1603   // L2:
   1604   ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
   1605   CC = ARMCC::getOppositeCondition(CC);
   1606   unsigned CCReg = MI->getOperand(2).getReg();
   1607 
   1608   // If the branch is at the end of its MBB and that has a fall-through block,
   1609   // direct the updated conditional branch to the fall-through block. Otherwise,
   1610   // split the MBB before the next instruction.
   1611   MachineBasicBlock *MBB = MI->getParent();
   1612   MachineInstr *BMI = &MBB->back();
   1613   bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
   1614 
   1615   ++NumCBrFixed;
   1616   if (BMI != MI) {
   1617     if (llvm::next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) &&
   1618         BMI->getOpcode() == Br.UncondBr) {
   1619       // Last MI in the BB is an unconditional branch. Can we simply invert the
   1620       // condition and swap destinations:
   1621       // beq L1
   1622       // b   L2
   1623       // =>
   1624       // bne L2
   1625       // b   L1
   1626       MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
   1627       if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
   1628         DEBUG(dbgs() << "  Invert Bcc condition and swap its destination with "
   1629                      << *BMI);
   1630         BMI->getOperand(0).setMBB(DestBB);
   1631         MI->getOperand(0).setMBB(NewDest);
   1632         MI->getOperand(1).setImm(CC);
   1633         return true;
   1634       }
   1635     }
   1636   }
   1637 
   1638   if (NeedSplit) {
   1639     splitBlockBeforeInstr(MI);
   1640     // No need for the branch to the next block. We're adding an unconditional
   1641     // branch to the destination.
   1642     int delta = TII->GetInstSizeInBytes(&MBB->back());
   1643     BBInfo[MBB->getNumber()].Size -= delta;
   1644     MBB->back().eraseFromParent();
   1645     // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
   1646   }
   1647   MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(MBB));
   1648 
   1649   DEBUG(dbgs() << "  Insert B to BB#" << DestBB->getNumber()
   1650                << " also invert condition and change dest. to BB#"
   1651                << NextBB->getNumber() << "\n");
   1652 
   1653   // Insert a new conditional branch and a new unconditional branch.
   1654   // Also update the ImmBranch as well as adding a new entry for the new branch.
   1655   BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode()))
   1656     .addMBB(NextBB).addImm(CC).addReg(CCReg);
   1657   Br.MI = &MBB->back();
   1658   BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
   1659   if (isThumb)
   1660     BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB)
   1661             .addImm(ARMCC::AL).addReg(0);
   1662   else
   1663     BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
   1664   BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
   1665   unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
   1666   ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
   1667 
   1668   // Remove the old conditional branch.  It may or may not still be in MBB.
   1669   BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(MI);
   1670   MI->eraseFromParent();
   1671   adjustBBOffsetsAfter(MBB);
   1672   return true;
   1673 }
   1674 
   1675 /// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills
   1676 /// LR / restores LR to pc. FIXME: This is done here because it's only possible
   1677 /// to do this if tBfar is not used.
   1678 bool ARMConstantIslands::undoLRSpillRestore() {
   1679   bool MadeChange = false;
   1680   for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) {
   1681     MachineInstr *MI = PushPopMIs[i];
   1682     // First two operands are predicates.
   1683     if (MI->getOpcode() == ARM::tPOP_RET &&
   1684         MI->getOperand(2).getReg() == ARM::PC &&
   1685         MI->getNumExplicitOperands() == 3) {
   1686       // Create the new insn and copy the predicate from the old.
   1687       BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET))
   1688         .addOperand(MI->getOperand(0))
   1689         .addOperand(MI->getOperand(1));
   1690       MI->eraseFromParent();
   1691       MadeChange = true;
   1692     }
   1693   }
   1694   return MadeChange;
   1695 }
   1696 
   1697 // mayOptimizeThumb2Instruction - Returns true if optimizeThumb2Instructions
   1698 // below may shrink MI.
   1699 bool
   1700 ARMConstantIslands::mayOptimizeThumb2Instruction(const MachineInstr *MI) const {
   1701   switch(MI->getOpcode()) {
   1702     // optimizeThumb2Instructions.
   1703     case ARM::t2LEApcrel:
   1704     case ARM::t2LDRpci:
   1705     // optimizeThumb2Branches.
   1706     case ARM::t2B:
   1707     case ARM::t2Bcc:
   1708     case ARM::tBcc:
   1709     // optimizeThumb2JumpTables.
   1710     case ARM::t2BR_JT:
   1711       return true;
   1712   }
   1713   return false;
   1714 }
   1715 
   1716 bool ARMConstantIslands::optimizeThumb2Instructions() {
   1717   bool MadeChange = false;
   1718 
   1719   // Shrink ADR and LDR from constantpool.
   1720   for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
   1721     CPUser &U = CPUsers[i];
   1722     unsigned Opcode = U.MI->getOpcode();
   1723     unsigned NewOpc = 0;
   1724     unsigned Scale = 1;
   1725     unsigned Bits = 0;
   1726     switch (Opcode) {
   1727     default: break;
   1728     case ARM::t2LEApcrel:
   1729       if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
   1730         NewOpc = ARM::tLEApcrel;
   1731         Bits = 8;
   1732         Scale = 4;
   1733       }
   1734       break;
   1735     case ARM::t2LDRpci:
   1736       if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
   1737         NewOpc = ARM::tLDRpci;
   1738         Bits = 8;
   1739         Scale = 4;
   1740       }
   1741       break;
   1742     }
   1743 
   1744     if (!NewOpc)
   1745       continue;
   1746 
   1747     unsigned UserOffset = getUserOffset(U);
   1748     unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
   1749 
   1750     // Be conservative with inline asm.
   1751     if (!U.KnownAlignment)
   1752       MaxOffs -= 2;
   1753 
   1754     // FIXME: Check if offset is multiple of scale if scale is not 4.
   1755     if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
   1756       DEBUG(dbgs() << "Shrink: " << *U.MI);
   1757       U.MI->setDesc(TII->get(NewOpc));
   1758       MachineBasicBlock *MBB = U.MI->getParent();
   1759       BBInfo[MBB->getNumber()].Size -= 2;
   1760       adjustBBOffsetsAfter(MBB);
   1761       ++NumT2CPShrunk;
   1762       MadeChange = true;
   1763     }
   1764   }
   1765 
   1766   MadeChange |= optimizeThumb2Branches();
   1767   MadeChange |= optimizeThumb2JumpTables();
   1768   return MadeChange;
   1769 }
   1770 
   1771 bool ARMConstantIslands::optimizeThumb2Branches() {
   1772   bool MadeChange = false;
   1773 
   1774   for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) {
   1775     ImmBranch &Br = ImmBranches[i];
   1776     unsigned Opcode = Br.MI->getOpcode();
   1777     unsigned NewOpc = 0;
   1778     unsigned Scale = 1;
   1779     unsigned Bits = 0;
   1780     switch (Opcode) {
   1781     default: break;
   1782     case ARM::t2B:
   1783       NewOpc = ARM::tB;
   1784       Bits = 11;
   1785       Scale = 2;
   1786       break;
   1787     case ARM::t2Bcc: {
   1788       NewOpc = ARM::tBcc;
   1789       Bits = 8;
   1790       Scale = 2;
   1791       break;
   1792     }
   1793     }
   1794     if (NewOpc) {
   1795       unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
   1796       MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
   1797       if (isBBInRange(Br.MI, DestBB, MaxOffs)) {
   1798         DEBUG(dbgs() << "Shrink branch: " << *Br.MI);
   1799         Br.MI->setDesc(TII->get(NewOpc));
   1800         MachineBasicBlock *MBB = Br.MI->getParent();
   1801         BBInfo[MBB->getNumber()].Size -= 2;
   1802         adjustBBOffsetsAfter(MBB);
   1803         ++NumT2BrShrunk;
   1804         MadeChange = true;
   1805       }
   1806     }
   1807 
   1808     Opcode = Br.MI->getOpcode();
   1809     if (Opcode != ARM::tBcc)
   1810       continue;
   1811 
   1812     // If the conditional branch doesn't kill CPSR, then CPSR can be liveout
   1813     // so this transformation is not safe.
   1814     if (!Br.MI->killsRegister(ARM::CPSR))
   1815       continue;
   1816 
   1817     NewOpc = 0;
   1818     unsigned PredReg = 0;
   1819     ARMCC::CondCodes Pred = getInstrPredicate(Br.MI, PredReg);
   1820     if (Pred == ARMCC::EQ)
   1821       NewOpc = ARM::tCBZ;
   1822     else if (Pred == ARMCC::NE)
   1823       NewOpc = ARM::tCBNZ;
   1824     if (!NewOpc)
   1825       continue;
   1826     MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
   1827     // Check if the distance is within 126. Subtract starting offset by 2
   1828     // because the cmp will be eliminated.
   1829     unsigned BrOffset = getOffsetOf(Br.MI) + 4 - 2;
   1830     unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
   1831     if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) {
   1832       MachineBasicBlock::iterator CmpMI = Br.MI;
   1833       if (CmpMI != Br.MI->getParent()->begin()) {
   1834         --CmpMI;
   1835         if (CmpMI->getOpcode() == ARM::tCMPi8) {
   1836           unsigned Reg = CmpMI->getOperand(0).getReg();
   1837           Pred = getInstrPredicate(CmpMI, PredReg);
   1838           if (Pred == ARMCC::AL &&
   1839               CmpMI->getOperand(1).getImm() == 0 &&
   1840               isARMLowRegister(Reg)) {
   1841             MachineBasicBlock *MBB = Br.MI->getParent();
   1842             DEBUG(dbgs() << "Fold: " << *CmpMI << " and: " << *Br.MI);
   1843             MachineInstr *NewBR =
   1844               BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc))
   1845               .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags());
   1846             CmpMI->eraseFromParent();
   1847             Br.MI->eraseFromParent();
   1848             Br.MI = NewBR;
   1849             BBInfo[MBB->getNumber()].Size -= 2;
   1850             adjustBBOffsetsAfter(MBB);
   1851             ++NumCBZ;
   1852             MadeChange = true;
   1853           }
   1854         }
   1855       }
   1856     }
   1857   }
   1858 
   1859   return MadeChange;
   1860 }
   1861 
   1862 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
   1863 /// jumptables when it's possible.
   1864 bool ARMConstantIslands::optimizeThumb2JumpTables() {
   1865   bool MadeChange = false;
   1866 
   1867   // FIXME: After the tables are shrunk, can we get rid some of the
   1868   // constantpool tables?
   1869   MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
   1870   if (MJTI == 0) return false;
   1871 
   1872   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
   1873   for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
   1874     MachineInstr *MI = T2JumpTables[i];
   1875     const MCInstrDesc &MCID = MI->getDesc();
   1876     unsigned NumOps = MCID.getNumOperands();
   1877     unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 3 : 2);
   1878     MachineOperand JTOP = MI->getOperand(JTOpIdx);
   1879     unsigned JTI = JTOP.getIndex();
   1880     assert(JTI < JT.size());
   1881 
   1882     bool ByteOk = true;
   1883     bool HalfWordOk = true;
   1884     unsigned JTOffset = getOffsetOf(MI) + 4;
   1885     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
   1886     for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
   1887       MachineBasicBlock *MBB = JTBBs[j];
   1888       unsigned DstOffset = BBInfo[MBB->getNumber()].Offset;
   1889       // Negative offset is not ok. FIXME: We should change BB layout to make
   1890       // sure all the branches are forward.
   1891       if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
   1892         ByteOk = false;
   1893       unsigned TBHLimit = ((1<<16)-1)*2;
   1894       if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
   1895         HalfWordOk = false;
   1896       if (!ByteOk && !HalfWordOk)
   1897         break;
   1898     }
   1899 
   1900     if (ByteOk || HalfWordOk) {
   1901       MachineBasicBlock *MBB = MI->getParent();
   1902       unsigned BaseReg = MI->getOperand(0).getReg();
   1903       bool BaseRegKill = MI->getOperand(0).isKill();
   1904       if (!BaseRegKill)
   1905         continue;
   1906       unsigned IdxReg = MI->getOperand(1).getReg();
   1907       bool IdxRegKill = MI->getOperand(1).isKill();
   1908 
   1909       // Scan backwards to find the instruction that defines the base
   1910       // register. Due to post-RA scheduling, we can't count on it
   1911       // immediately preceding the branch instruction.
   1912       MachineBasicBlock::iterator PrevI = MI;
   1913       MachineBasicBlock::iterator B = MBB->begin();
   1914       while (PrevI != B && !PrevI->definesRegister(BaseReg))
   1915         --PrevI;
   1916 
   1917       // If for some reason we didn't find it, we can't do anything, so
   1918       // just skip this one.
   1919       if (!PrevI->definesRegister(BaseReg))
   1920         continue;
   1921 
   1922       MachineInstr *AddrMI = PrevI;
   1923       bool OptOk = true;
   1924       // Examine the instruction that calculates the jumptable entry address.
   1925       // Make sure it only defines the base register and kills any uses
   1926       // other than the index register.
   1927       for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) {
   1928         const MachineOperand &MO = AddrMI->getOperand(k);
   1929         if (!MO.isReg() || !MO.getReg())
   1930           continue;
   1931         if (MO.isDef() && MO.getReg() != BaseReg) {
   1932           OptOk = false;
   1933           break;
   1934         }
   1935         if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) {
   1936           OptOk = false;
   1937           break;
   1938         }
   1939       }
   1940       if (!OptOk)
   1941         continue;
   1942 
   1943       // Now scan back again to find the tLEApcrel or t2LEApcrelJT instruction
   1944       // that gave us the initial base register definition.
   1945       for (--PrevI; PrevI != B && !PrevI->definesRegister(BaseReg); --PrevI)
   1946         ;
   1947 
   1948       // The instruction should be a tLEApcrel or t2LEApcrelJT; we want
   1949       // to delete it as well.
   1950       MachineInstr *LeaMI = PrevI;
   1951       if ((LeaMI->getOpcode() != ARM::tLEApcrelJT &&
   1952            LeaMI->getOpcode() != ARM::t2LEApcrelJT) ||
   1953           LeaMI->getOperand(0).getReg() != BaseReg)
   1954         OptOk = false;
   1955 
   1956       if (!OptOk)
   1957         continue;
   1958 
   1959       DEBUG(dbgs() << "Shrink JT: " << *MI << "     addr: " << *AddrMI
   1960                    << "      lea: " << *LeaMI);
   1961       unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT;
   1962       MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc))
   1963         .addReg(IdxReg, getKillRegState(IdxRegKill))
   1964         .addJumpTableIndex(JTI, JTOP.getTargetFlags())
   1965         .addImm(MI->getOperand(JTOpIdx+1).getImm());
   1966       DEBUG(dbgs() << "BB#" << MBB->getNumber() << ": " << *NewJTMI);
   1967       // FIXME: Insert an "ALIGN" instruction to ensure the next instruction
   1968       // is 2-byte aligned. For now, asm printer will fix it up.
   1969       unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI);
   1970       unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI);
   1971       OrigSize += TII->GetInstSizeInBytes(LeaMI);
   1972       OrigSize += TII->GetInstSizeInBytes(MI);
   1973 
   1974       AddrMI->eraseFromParent();
   1975       LeaMI->eraseFromParent();
   1976       MI->eraseFromParent();
   1977 
   1978       int delta = OrigSize - NewSize;
   1979       BBInfo[MBB->getNumber()].Size -= delta;
   1980       adjustBBOffsetsAfter(MBB);
   1981 
   1982       ++NumTBs;
   1983       MadeChange = true;
   1984     }
   1985   }
   1986 
   1987   return MadeChange;
   1988 }
   1989 
   1990 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that
   1991 /// jump tables always branch forwards, since that's what tbb and tbh need.
   1992 bool ARMConstantIslands::reorderThumb2JumpTables() {
   1993   bool MadeChange = false;
   1994 
   1995   MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
   1996   if (MJTI == 0) return false;
   1997 
   1998   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
   1999   for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
   2000     MachineInstr *MI = T2JumpTables[i];
   2001     const MCInstrDesc &MCID = MI->getDesc();
   2002     unsigned NumOps = MCID.getNumOperands();
   2003     unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 3 : 2);
   2004     MachineOperand JTOP = MI->getOperand(JTOpIdx);
   2005     unsigned JTI = JTOP.getIndex();
   2006     assert(JTI < JT.size());
   2007 
   2008     // We prefer if target blocks for the jump table come after the jump
   2009     // instruction so we can use TB[BH]. Loop through the target blocks
   2010     // and try to adjust them such that that's true.
   2011     int JTNumber = MI->getParent()->getNumber();
   2012     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
   2013     for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
   2014       MachineBasicBlock *MBB = JTBBs[j];
   2015       int DTNumber = MBB->getNumber();
   2016 
   2017       if (DTNumber < JTNumber) {
   2018         // The destination precedes the switch. Try to move the block forward
   2019         // so we have a positive offset.
   2020         MachineBasicBlock *NewBB =
   2021           adjustJTTargetBlockForward(MBB, MI->getParent());
   2022         if (NewBB)
   2023           MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB);
   2024         MadeChange = true;
   2025       }
   2026     }
   2027   }
   2028 
   2029   return MadeChange;
   2030 }
   2031 
   2032 MachineBasicBlock *ARMConstantIslands::
   2033 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) {
   2034   // If the destination block is terminated by an unconditional branch,
   2035   // try to move it; otherwise, create a new block following the jump
   2036   // table that branches back to the actual target. This is a very simple
   2037   // heuristic. FIXME: We can definitely improve it.
   2038   MachineBasicBlock *TBB = 0, *FBB = 0;
   2039   SmallVector<MachineOperand, 4> Cond;
   2040   SmallVector<MachineOperand, 4> CondPrior;
   2041   MachineFunction::iterator BBi = BB;
   2042   MachineFunction::iterator OldPrior = prior(BBi);
   2043 
   2044   // If the block terminator isn't analyzable, don't try to move the block
   2045   bool B = TII->AnalyzeBranch(*BB, TBB, FBB, Cond);
   2046 
   2047   // If the block ends in an unconditional branch, move it. The prior block
   2048   // has to have an analyzable terminator for us to move this one. Be paranoid
   2049   // and make sure we're not trying to move the entry block of the function.
   2050   if (!B && Cond.empty() && BB != MF->begin() &&
   2051       !TII->AnalyzeBranch(*OldPrior, TBB, FBB, CondPrior)) {
   2052     BB->moveAfter(JTBB);
   2053     OldPrior->updateTerminator();
   2054     BB->updateTerminator();
   2055     // Update numbering to account for the block being moved.
   2056     MF->RenumberBlocks();
   2057     ++NumJTMoved;
   2058     return NULL;
   2059   }
   2060 
   2061   // Create a new MBB for the code after the jump BB.
   2062   MachineBasicBlock *NewBB =
   2063     MF->CreateMachineBasicBlock(JTBB->getBasicBlock());
   2064   MachineFunction::iterator MBBI = JTBB; ++MBBI;
   2065   MF->insert(MBBI, NewBB);
   2066 
   2067   // Add an unconditional branch from NewBB to BB.
   2068   // There doesn't seem to be meaningful DebugInfo available; this doesn't
   2069   // correspond directly to anything in the source.
   2070   assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?");
   2071   BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)).addMBB(BB)
   2072           .addImm(ARMCC::AL).addReg(0);
   2073 
   2074   // Update internal data structures to account for the newly inserted MBB.
   2075   MF->RenumberBlocks(NewBB);
   2076 
   2077   // Update the CFG.
   2078   NewBB->addSuccessor(BB);
   2079   JTBB->removeSuccessor(BB);
   2080   JTBB->addSuccessor(NewBB);
   2081 
   2082   ++NumJTInserted;
   2083   return NewBB;
   2084 }
   2085