1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 //===----------------------------------------------------------------------===/ 8 // 9 // This file implements semantic analysis for C++ templates. 10 //===----------------------------------------------------------------------===/ 11 12 #include "clang/Sema/SemaInternal.h" 13 #include "clang/Sema/Lookup.h" 14 #include "clang/Sema/Scope.h" 15 #include "clang/Sema/Template.h" 16 #include "clang/Sema/TemplateDeduction.h" 17 #include "TreeTransform.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/Expr.h" 20 #include "clang/AST/ExprCXX.h" 21 #include "clang/AST/DeclFriend.h" 22 #include "clang/AST/DeclTemplate.h" 23 #include "clang/AST/RecursiveASTVisitor.h" 24 #include "clang/AST/TypeVisitor.h" 25 #include "clang/Sema/DeclSpec.h" 26 #include "clang/Sema/ParsedTemplate.h" 27 #include "clang/Basic/LangOptions.h" 28 #include "clang/Basic/PartialDiagnostic.h" 29 #include "llvm/ADT/SmallBitVector.h" 30 #include "llvm/ADT/SmallString.h" 31 #include "llvm/ADT/StringExtras.h" 32 using namespace clang; 33 using namespace sema; 34 35 // Exported for use by Parser. 36 SourceRange 37 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 38 unsigned N) { 39 if (!N) return SourceRange(); 40 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 41 } 42 43 /// \brief Determine whether the declaration found is acceptable as the name 44 /// of a template and, if so, return that template declaration. Otherwise, 45 /// returns NULL. 46 static NamedDecl *isAcceptableTemplateName(ASTContext &Context, 47 NamedDecl *Orig, 48 bool AllowFunctionTemplates) { 49 NamedDecl *D = Orig->getUnderlyingDecl(); 50 51 if (isa<TemplateDecl>(D)) { 52 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D)) 53 return 0; 54 55 return Orig; 56 } 57 58 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 59 // C++ [temp.local]p1: 60 // Like normal (non-template) classes, class templates have an 61 // injected-class-name (Clause 9). The injected-class-name 62 // can be used with or without a template-argument-list. When 63 // it is used without a template-argument-list, it is 64 // equivalent to the injected-class-name followed by the 65 // template-parameters of the class template enclosed in 66 // <>. When it is used with a template-argument-list, it 67 // refers to the specified class template specialization, 68 // which could be the current specialization or another 69 // specialization. 70 if (Record->isInjectedClassName()) { 71 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 72 if (Record->getDescribedClassTemplate()) 73 return Record->getDescribedClassTemplate(); 74 75 if (ClassTemplateSpecializationDecl *Spec 76 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 77 return Spec->getSpecializedTemplate(); 78 } 79 80 return 0; 81 } 82 83 return 0; 84 } 85 86 void Sema::FilterAcceptableTemplateNames(LookupResult &R, 87 bool AllowFunctionTemplates) { 88 // The set of class templates we've already seen. 89 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 90 LookupResult::Filter filter = R.makeFilter(); 91 while (filter.hasNext()) { 92 NamedDecl *Orig = filter.next(); 93 NamedDecl *Repl = isAcceptableTemplateName(Context, Orig, 94 AllowFunctionTemplates); 95 if (!Repl) 96 filter.erase(); 97 else if (Repl != Orig) { 98 99 // C++ [temp.local]p3: 100 // A lookup that finds an injected-class-name (10.2) can result in an 101 // ambiguity in certain cases (for example, if it is found in more than 102 // one base class). If all of the injected-class-names that are found 103 // refer to specializations of the same class template, and if the name 104 // is used as a template-name, the reference refers to the class 105 // template itself and not a specialization thereof, and is not 106 // ambiguous. 107 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 108 if (!ClassTemplates.insert(ClassTmpl)) { 109 filter.erase(); 110 continue; 111 } 112 113 // FIXME: we promote access to public here as a workaround to 114 // the fact that LookupResult doesn't let us remember that we 115 // found this template through a particular injected class name, 116 // which means we end up doing nasty things to the invariants. 117 // Pretending that access is public is *much* safer. 118 filter.replace(Repl, AS_public); 119 } 120 } 121 filter.done(); 122 } 123 124 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R, 125 bool AllowFunctionTemplates) { 126 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) 127 if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates)) 128 return true; 129 130 return false; 131 } 132 133 TemplateNameKind Sema::isTemplateName(Scope *S, 134 CXXScopeSpec &SS, 135 bool hasTemplateKeyword, 136 UnqualifiedId &Name, 137 ParsedType ObjectTypePtr, 138 bool EnteringContext, 139 TemplateTy &TemplateResult, 140 bool &MemberOfUnknownSpecialization) { 141 assert(getLangOpts().CPlusPlus && "No template names in C!"); 142 143 DeclarationName TName; 144 MemberOfUnknownSpecialization = false; 145 146 switch (Name.getKind()) { 147 case UnqualifiedId::IK_Identifier: 148 TName = DeclarationName(Name.Identifier); 149 break; 150 151 case UnqualifiedId::IK_OperatorFunctionId: 152 TName = Context.DeclarationNames.getCXXOperatorName( 153 Name.OperatorFunctionId.Operator); 154 break; 155 156 case UnqualifiedId::IK_LiteralOperatorId: 157 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 158 break; 159 160 default: 161 return TNK_Non_template; 162 } 163 164 QualType ObjectType = ObjectTypePtr.get(); 165 166 LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName); 167 LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 168 MemberOfUnknownSpecialization); 169 if (R.empty()) return TNK_Non_template; 170 if (R.isAmbiguous()) { 171 // Suppress diagnostics; we'll redo this lookup later. 172 R.suppressDiagnostics(); 173 174 // FIXME: we might have ambiguous templates, in which case we 175 // should at least parse them properly! 176 return TNK_Non_template; 177 } 178 179 TemplateName Template; 180 TemplateNameKind TemplateKind; 181 182 unsigned ResultCount = R.end() - R.begin(); 183 if (ResultCount > 1) { 184 // We assume that we'll preserve the qualifier from a function 185 // template name in other ways. 186 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 187 TemplateKind = TNK_Function_template; 188 189 // We'll do this lookup again later. 190 R.suppressDiagnostics(); 191 } else { 192 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 193 194 if (SS.isSet() && !SS.isInvalid()) { 195 NestedNameSpecifier *Qualifier 196 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 197 Template = Context.getQualifiedTemplateName(Qualifier, 198 hasTemplateKeyword, TD); 199 } else { 200 Template = TemplateName(TD); 201 } 202 203 if (isa<FunctionTemplateDecl>(TD)) { 204 TemplateKind = TNK_Function_template; 205 206 // We'll do this lookup again later. 207 R.suppressDiagnostics(); 208 } else { 209 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || 210 isa<TypeAliasTemplateDecl>(TD)); 211 TemplateKind = TNK_Type_template; 212 } 213 } 214 215 TemplateResult = TemplateTy::make(Template); 216 return TemplateKind; 217 } 218 219 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 220 SourceLocation IILoc, 221 Scope *S, 222 const CXXScopeSpec *SS, 223 TemplateTy &SuggestedTemplate, 224 TemplateNameKind &SuggestedKind) { 225 // We can't recover unless there's a dependent scope specifier preceding the 226 // template name. 227 // FIXME: Typo correction? 228 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 229 computeDeclContext(*SS)) 230 return false; 231 232 // The code is missing a 'template' keyword prior to the dependent template 233 // name. 234 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 235 Diag(IILoc, diag::err_template_kw_missing) 236 << Qualifier << II.getName() 237 << FixItHint::CreateInsertion(IILoc, "template "); 238 SuggestedTemplate 239 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 240 SuggestedKind = TNK_Dependent_template_name; 241 return true; 242 } 243 244 void Sema::LookupTemplateName(LookupResult &Found, 245 Scope *S, CXXScopeSpec &SS, 246 QualType ObjectType, 247 bool EnteringContext, 248 bool &MemberOfUnknownSpecialization) { 249 // Determine where to perform name lookup 250 MemberOfUnknownSpecialization = false; 251 DeclContext *LookupCtx = 0; 252 bool isDependent = false; 253 if (!ObjectType.isNull()) { 254 // This nested-name-specifier occurs in a member access expression, e.g., 255 // x->B::f, and we are looking into the type of the object. 256 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 257 LookupCtx = computeDeclContext(ObjectType); 258 isDependent = ObjectType->isDependentType(); 259 assert((isDependent || !ObjectType->isIncompleteType()) && 260 "Caller should have completed object type"); 261 262 // Template names cannot appear inside an Objective-C class or object type. 263 if (ObjectType->isObjCObjectOrInterfaceType()) { 264 Found.clear(); 265 return; 266 } 267 } else if (SS.isSet()) { 268 // This nested-name-specifier occurs after another nested-name-specifier, 269 // so long into the context associated with the prior nested-name-specifier. 270 LookupCtx = computeDeclContext(SS, EnteringContext); 271 isDependent = isDependentScopeSpecifier(SS); 272 273 // The declaration context must be complete. 274 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 275 return; 276 } 277 278 bool ObjectTypeSearchedInScope = false; 279 bool AllowFunctionTemplatesInLookup = true; 280 if (LookupCtx) { 281 // Perform "qualified" name lookup into the declaration context we 282 // computed, which is either the type of the base of a member access 283 // expression or the declaration context associated with a prior 284 // nested-name-specifier. 285 LookupQualifiedName(Found, LookupCtx); 286 if (!ObjectType.isNull() && Found.empty()) { 287 // C++ [basic.lookup.classref]p1: 288 // In a class member access expression (5.2.5), if the . or -> token is 289 // immediately followed by an identifier followed by a <, the 290 // identifier must be looked up to determine whether the < is the 291 // beginning of a template argument list (14.2) or a less-than operator. 292 // The identifier is first looked up in the class of the object 293 // expression. If the identifier is not found, it is then looked up in 294 // the context of the entire postfix-expression and shall name a class 295 // or function template. 296 if (S) LookupName(Found, S); 297 ObjectTypeSearchedInScope = true; 298 AllowFunctionTemplatesInLookup = false; 299 } 300 } else if (isDependent && (!S || ObjectType.isNull())) { 301 // We cannot look into a dependent object type or nested nme 302 // specifier. 303 MemberOfUnknownSpecialization = true; 304 return; 305 } else { 306 // Perform unqualified name lookup in the current scope. 307 LookupName(Found, S); 308 309 if (!ObjectType.isNull()) 310 AllowFunctionTemplatesInLookup = false; 311 } 312 313 if (Found.empty() && !isDependent) { 314 // If we did not find any names, attempt to correct any typos. 315 DeclarationName Name = Found.getLookupName(); 316 Found.clear(); 317 // Simple filter callback that, for keywords, only accepts the C++ *_cast 318 CorrectionCandidateCallback FilterCCC; 319 FilterCCC.WantTypeSpecifiers = false; 320 FilterCCC.WantExpressionKeywords = false; 321 FilterCCC.WantRemainingKeywords = false; 322 FilterCCC.WantCXXNamedCasts = true; 323 if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(), 324 Found.getLookupKind(), S, &SS, 325 FilterCCC, LookupCtx)) { 326 Found.setLookupName(Corrected.getCorrection()); 327 if (Corrected.getCorrectionDecl()) 328 Found.addDecl(Corrected.getCorrectionDecl()); 329 FilterAcceptableTemplateNames(Found); 330 if (!Found.empty()) { 331 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 332 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts())); 333 if (LookupCtx) 334 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 335 << Name << LookupCtx << CorrectedQuotedStr << SS.getRange() 336 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr); 337 else 338 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 339 << Name << CorrectedQuotedStr 340 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr); 341 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 342 Diag(Template->getLocation(), diag::note_previous_decl) 343 << CorrectedQuotedStr; 344 } 345 } else { 346 Found.setLookupName(Name); 347 } 348 } 349 350 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup); 351 if (Found.empty()) { 352 if (isDependent) 353 MemberOfUnknownSpecialization = true; 354 return; 355 } 356 357 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) { 358 // C++ [basic.lookup.classref]p1: 359 // [...] If the lookup in the class of the object expression finds a 360 // template, the name is also looked up in the context of the entire 361 // postfix-expression and [...] 362 // 363 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 364 LookupOrdinaryName); 365 LookupName(FoundOuter, S); 366 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false); 367 368 if (FoundOuter.empty()) { 369 // - if the name is not found, the name found in the class of the 370 // object expression is used, otherwise 371 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() || 372 FoundOuter.isAmbiguous()) { 373 // - if the name is found in the context of the entire 374 // postfix-expression and does not name a class template, the name 375 // found in the class of the object expression is used, otherwise 376 FoundOuter.clear(); 377 } else if (!Found.isSuppressingDiagnostics()) { 378 // - if the name found is a class template, it must refer to the same 379 // entity as the one found in the class of the object expression, 380 // otherwise the program is ill-formed. 381 if (!Found.isSingleResult() || 382 Found.getFoundDecl()->getCanonicalDecl() 383 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 384 Diag(Found.getNameLoc(), 385 diag::ext_nested_name_member_ref_lookup_ambiguous) 386 << Found.getLookupName() 387 << ObjectType; 388 Diag(Found.getRepresentativeDecl()->getLocation(), 389 diag::note_ambig_member_ref_object_type) 390 << ObjectType; 391 Diag(FoundOuter.getFoundDecl()->getLocation(), 392 diag::note_ambig_member_ref_scope); 393 394 // Recover by taking the template that we found in the object 395 // expression's type. 396 } 397 } 398 } 399 } 400 401 /// ActOnDependentIdExpression - Handle a dependent id-expression that 402 /// was just parsed. This is only possible with an explicit scope 403 /// specifier naming a dependent type. 404 ExprResult 405 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 406 SourceLocation TemplateKWLoc, 407 const DeclarationNameInfo &NameInfo, 408 bool isAddressOfOperand, 409 const TemplateArgumentListInfo *TemplateArgs) { 410 DeclContext *DC = getFunctionLevelDeclContext(); 411 412 if (!isAddressOfOperand && 413 isa<CXXMethodDecl>(DC) && 414 cast<CXXMethodDecl>(DC)->isInstance()) { 415 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); 416 417 // Since the 'this' expression is synthesized, we don't need to 418 // perform the double-lookup check. 419 NamedDecl *FirstQualifierInScope = 0; 420 421 return Owned(CXXDependentScopeMemberExpr::Create(Context, 422 /*This*/ 0, ThisType, 423 /*IsArrow*/ true, 424 /*Op*/ SourceLocation(), 425 SS.getWithLocInContext(Context), 426 TemplateKWLoc, 427 FirstQualifierInScope, 428 NameInfo, 429 TemplateArgs)); 430 } 431 432 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 433 } 434 435 ExprResult 436 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 437 SourceLocation TemplateKWLoc, 438 const DeclarationNameInfo &NameInfo, 439 const TemplateArgumentListInfo *TemplateArgs) { 440 return Owned(DependentScopeDeclRefExpr::Create(Context, 441 SS.getWithLocInContext(Context), 442 TemplateKWLoc, 443 NameInfo, 444 TemplateArgs)); 445 } 446 447 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 448 /// that the template parameter 'PrevDecl' is being shadowed by a new 449 /// declaration at location Loc. Returns true to indicate that this is 450 /// an error, and false otherwise. 451 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 452 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 453 454 // Microsoft Visual C++ permits template parameters to be shadowed. 455 if (getLangOpts().MicrosoftExt) 456 return; 457 458 // C++ [temp.local]p4: 459 // A template-parameter shall not be redeclared within its 460 // scope (including nested scopes). 461 Diag(Loc, diag::err_template_param_shadow) 462 << cast<NamedDecl>(PrevDecl)->getDeclName(); 463 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 464 return; 465 } 466 467 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 468 /// the parameter D to reference the templated declaration and return a pointer 469 /// to the template declaration. Otherwise, do nothing to D and return null. 470 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 471 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 472 D = Temp->getTemplatedDecl(); 473 return Temp; 474 } 475 return 0; 476 } 477 478 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 479 SourceLocation EllipsisLoc) const { 480 assert(Kind == Template && 481 "Only template template arguments can be pack expansions here"); 482 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 483 "Template template argument pack expansion without packs"); 484 ParsedTemplateArgument Result(*this); 485 Result.EllipsisLoc = EllipsisLoc; 486 return Result; 487 } 488 489 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 490 const ParsedTemplateArgument &Arg) { 491 492 switch (Arg.getKind()) { 493 case ParsedTemplateArgument::Type: { 494 TypeSourceInfo *DI; 495 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 496 if (!DI) 497 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 498 return TemplateArgumentLoc(TemplateArgument(T), DI); 499 } 500 501 case ParsedTemplateArgument::NonType: { 502 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 503 return TemplateArgumentLoc(TemplateArgument(E), E); 504 } 505 506 case ParsedTemplateArgument::Template: { 507 TemplateName Template = Arg.getAsTemplate().get(); 508 TemplateArgument TArg; 509 if (Arg.getEllipsisLoc().isValid()) 510 TArg = TemplateArgument(Template, llvm::Optional<unsigned int>()); 511 else 512 TArg = Template; 513 return TemplateArgumentLoc(TArg, 514 Arg.getScopeSpec().getWithLocInContext( 515 SemaRef.Context), 516 Arg.getLocation(), 517 Arg.getEllipsisLoc()); 518 } 519 } 520 521 llvm_unreachable("Unhandled parsed template argument"); 522 } 523 524 /// \brief Translates template arguments as provided by the parser 525 /// into template arguments used by semantic analysis. 526 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 527 TemplateArgumentListInfo &TemplateArgs) { 528 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 529 TemplateArgs.addArgument(translateTemplateArgument(*this, 530 TemplateArgsIn[I])); 531 } 532 533 /// ActOnTypeParameter - Called when a C++ template type parameter 534 /// (e.g., "typename T") has been parsed. Typename specifies whether 535 /// the keyword "typename" was used to declare the type parameter 536 /// (otherwise, "class" was used), and KeyLoc is the location of the 537 /// "class" or "typename" keyword. ParamName is the name of the 538 /// parameter (NULL indicates an unnamed template parameter) and 539 /// ParamNameLoc is the location of the parameter name (if any). 540 /// If the type parameter has a default argument, it will be added 541 /// later via ActOnTypeParameterDefault. 542 Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 543 SourceLocation EllipsisLoc, 544 SourceLocation KeyLoc, 545 IdentifierInfo *ParamName, 546 SourceLocation ParamNameLoc, 547 unsigned Depth, unsigned Position, 548 SourceLocation EqualLoc, 549 ParsedType DefaultArg) { 550 assert(S->isTemplateParamScope() && 551 "Template type parameter not in template parameter scope!"); 552 bool Invalid = false; 553 554 if (ParamName) { 555 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc, 556 LookupOrdinaryName, 557 ForRedeclaration); 558 if (PrevDecl && PrevDecl->isTemplateParameter()) { 559 DiagnoseTemplateParameterShadow(ParamNameLoc, PrevDecl); 560 PrevDecl = 0; 561 } 562 } 563 564 SourceLocation Loc = ParamNameLoc; 565 if (!ParamName) 566 Loc = KeyLoc; 567 568 TemplateTypeParmDecl *Param 569 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 570 KeyLoc, Loc, Depth, Position, ParamName, 571 Typename, Ellipsis); 572 Param->setAccess(AS_public); 573 if (Invalid) 574 Param->setInvalidDecl(); 575 576 if (ParamName) { 577 // Add the template parameter into the current scope. 578 S->AddDecl(Param); 579 IdResolver.AddDecl(Param); 580 } 581 582 // C++0x [temp.param]p9: 583 // A default template-argument may be specified for any kind of 584 // template-parameter that is not a template parameter pack. 585 if (DefaultArg && Ellipsis) { 586 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 587 DefaultArg = ParsedType(); 588 } 589 590 // Handle the default argument, if provided. 591 if (DefaultArg) { 592 TypeSourceInfo *DefaultTInfo; 593 GetTypeFromParser(DefaultArg, &DefaultTInfo); 594 595 assert(DefaultTInfo && "expected source information for type"); 596 597 // Check for unexpanded parameter packs. 598 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo, 599 UPPC_DefaultArgument)) 600 return Param; 601 602 // Check the template argument itself. 603 if (CheckTemplateArgument(Param, DefaultTInfo)) { 604 Param->setInvalidDecl(); 605 return Param; 606 } 607 608 Param->setDefaultArgument(DefaultTInfo, false); 609 } 610 611 return Param; 612 } 613 614 /// \brief Check that the type of a non-type template parameter is 615 /// well-formed. 616 /// 617 /// \returns the (possibly-promoted) parameter type if valid; 618 /// otherwise, produces a diagnostic and returns a NULL type. 619 QualType 620 Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 621 // We don't allow variably-modified types as the type of non-type template 622 // parameters. 623 if (T->isVariablyModifiedType()) { 624 Diag(Loc, diag::err_variably_modified_nontype_template_param) 625 << T; 626 return QualType(); 627 } 628 629 // C++ [temp.param]p4: 630 // 631 // A non-type template-parameter shall have one of the following 632 // (optionally cv-qualified) types: 633 // 634 // -- integral or enumeration type, 635 if (T->isIntegralOrEnumerationType() || 636 // -- pointer to object or pointer to function, 637 T->isPointerType() || 638 // -- reference to object or reference to function, 639 T->isReferenceType() || 640 // -- pointer to member, 641 T->isMemberPointerType() || 642 // -- std::nullptr_t. 643 T->isNullPtrType() || 644 // If T is a dependent type, we can't do the check now, so we 645 // assume that it is well-formed. 646 T->isDependentType()) { 647 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter 648 // are ignored when determining its type. 649 return T.getUnqualifiedType(); 650 } 651 652 // C++ [temp.param]p8: 653 // 654 // A non-type template-parameter of type "array of T" or 655 // "function returning T" is adjusted to be of type "pointer to 656 // T" or "pointer to function returning T", respectively. 657 else if (T->isArrayType()) 658 // FIXME: Keep the type prior to promotion? 659 return Context.getArrayDecayedType(T); 660 else if (T->isFunctionType()) 661 // FIXME: Keep the type prior to promotion? 662 return Context.getPointerType(T); 663 664 Diag(Loc, diag::err_template_nontype_parm_bad_type) 665 << T; 666 667 return QualType(); 668 } 669 670 Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 671 unsigned Depth, 672 unsigned Position, 673 SourceLocation EqualLoc, 674 Expr *Default) { 675 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 676 QualType T = TInfo->getType(); 677 678 assert(S->isTemplateParamScope() && 679 "Non-type template parameter not in template parameter scope!"); 680 bool Invalid = false; 681 682 IdentifierInfo *ParamName = D.getIdentifier(); 683 if (ParamName) { 684 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(), 685 LookupOrdinaryName, 686 ForRedeclaration); 687 if (PrevDecl && PrevDecl->isTemplateParameter()) { 688 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 689 PrevDecl = 0; 690 } 691 } 692 693 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 694 if (T.isNull()) { 695 T = Context.IntTy; // Recover with an 'int' type. 696 Invalid = true; 697 } 698 699 bool IsParameterPack = D.hasEllipsis(); 700 NonTypeTemplateParmDecl *Param 701 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 702 D.getLocStart(), 703 D.getIdentifierLoc(), 704 Depth, Position, ParamName, T, 705 IsParameterPack, TInfo); 706 Param->setAccess(AS_public); 707 708 if (Invalid) 709 Param->setInvalidDecl(); 710 711 if (D.getIdentifier()) { 712 // Add the template parameter into the current scope. 713 S->AddDecl(Param); 714 IdResolver.AddDecl(Param); 715 } 716 717 // C++0x [temp.param]p9: 718 // A default template-argument may be specified for any kind of 719 // template-parameter that is not a template parameter pack. 720 if (Default && IsParameterPack) { 721 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 722 Default = 0; 723 } 724 725 // Check the well-formedness of the default template argument, if provided. 726 if (Default) { 727 // Check for unexpanded parameter packs. 728 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 729 return Param; 730 731 TemplateArgument Converted; 732 ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted); 733 if (DefaultRes.isInvalid()) { 734 Param->setInvalidDecl(); 735 return Param; 736 } 737 Default = DefaultRes.take(); 738 739 Param->setDefaultArgument(Default, false); 740 } 741 742 return Param; 743 } 744 745 /// ActOnTemplateTemplateParameter - Called when a C++ template template 746 /// parameter (e.g. T in template <template <typename> class T> class array) 747 /// has been parsed. S is the current scope. 748 Decl *Sema::ActOnTemplateTemplateParameter(Scope* S, 749 SourceLocation TmpLoc, 750 TemplateParameterList *Params, 751 SourceLocation EllipsisLoc, 752 IdentifierInfo *Name, 753 SourceLocation NameLoc, 754 unsigned Depth, 755 unsigned Position, 756 SourceLocation EqualLoc, 757 ParsedTemplateArgument Default) { 758 assert(S->isTemplateParamScope() && 759 "Template template parameter not in template parameter scope!"); 760 761 // Construct the parameter object. 762 bool IsParameterPack = EllipsisLoc.isValid(); 763 TemplateTemplateParmDecl *Param = 764 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 765 NameLoc.isInvalid()? TmpLoc : NameLoc, 766 Depth, Position, IsParameterPack, 767 Name, Params); 768 Param->setAccess(AS_public); 769 770 // If the template template parameter has a name, then link the identifier 771 // into the scope and lookup mechanisms. 772 if (Name) { 773 S->AddDecl(Param); 774 IdResolver.AddDecl(Param); 775 } 776 777 if (Params->size() == 0) { 778 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 779 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 780 Param->setInvalidDecl(); 781 } 782 783 // C++0x [temp.param]p9: 784 // A default template-argument may be specified for any kind of 785 // template-parameter that is not a template parameter pack. 786 if (IsParameterPack && !Default.isInvalid()) { 787 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 788 Default = ParsedTemplateArgument(); 789 } 790 791 if (!Default.isInvalid()) { 792 // Check only that we have a template template argument. We don't want to 793 // try to check well-formedness now, because our template template parameter 794 // might have dependent types in its template parameters, which we wouldn't 795 // be able to match now. 796 // 797 // If none of the template template parameter's template arguments mention 798 // other template parameters, we could actually perform more checking here. 799 // However, it isn't worth doing. 800 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 801 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 802 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 803 << DefaultArg.getSourceRange(); 804 return Param; 805 } 806 807 // Check for unexpanded parameter packs. 808 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 809 DefaultArg.getArgument().getAsTemplate(), 810 UPPC_DefaultArgument)) 811 return Param; 812 813 Param->setDefaultArgument(DefaultArg, false); 814 } 815 816 return Param; 817 } 818 819 /// ActOnTemplateParameterList - Builds a TemplateParameterList that 820 /// contains the template parameters in Params/NumParams. 821 TemplateParameterList * 822 Sema::ActOnTemplateParameterList(unsigned Depth, 823 SourceLocation ExportLoc, 824 SourceLocation TemplateLoc, 825 SourceLocation LAngleLoc, 826 Decl **Params, unsigned NumParams, 827 SourceLocation RAngleLoc) { 828 if (ExportLoc.isValid()) 829 Diag(ExportLoc, diag::warn_template_export_unsupported); 830 831 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 832 (NamedDecl**)Params, NumParams, 833 RAngleLoc); 834 } 835 836 static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 837 if (SS.isSet()) 838 T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext())); 839 } 840 841 DeclResult 842 Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 843 SourceLocation KWLoc, CXXScopeSpec &SS, 844 IdentifierInfo *Name, SourceLocation NameLoc, 845 AttributeList *Attr, 846 TemplateParameterList *TemplateParams, 847 AccessSpecifier AS, SourceLocation ModulePrivateLoc, 848 unsigned NumOuterTemplateParamLists, 849 TemplateParameterList** OuterTemplateParamLists) { 850 assert(TemplateParams && TemplateParams->size() > 0 && 851 "No template parameters"); 852 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 853 bool Invalid = false; 854 855 // Check that we can declare a template here. 856 if (CheckTemplateDeclScope(S, TemplateParams)) 857 return true; 858 859 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 860 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 861 862 // There is no such thing as an unnamed class template. 863 if (!Name) { 864 Diag(KWLoc, diag::err_template_unnamed_class); 865 return true; 866 } 867 868 // Find any previous declaration with this name. 869 DeclContext *SemanticContext; 870 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 871 ForRedeclaration); 872 if (SS.isNotEmpty() && !SS.isInvalid()) { 873 SemanticContext = computeDeclContext(SS, true); 874 if (!SemanticContext) { 875 // FIXME: Horrible, horrible hack! We can't currently represent this 876 // in the AST, and historically we have just ignored such friend 877 // class templates, so don't complain here. 878 if (TUK != TUK_Friend) 879 Diag(NameLoc, diag::err_template_qualified_declarator_no_match) 880 << SS.getScopeRep() << SS.getRange(); 881 return true; 882 } 883 884 if (RequireCompleteDeclContext(SS, SemanticContext)) 885 return true; 886 887 // If we're adding a template to a dependent context, we may need to 888 // rebuilding some of the types used within the template parameter list, 889 // now that we know what the current instantiation is. 890 if (SemanticContext->isDependentContext()) { 891 ContextRAII SavedContext(*this, SemanticContext); 892 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) 893 Invalid = true; 894 } else if (TUK != TUK_Friend && TUK != TUK_Reference) 895 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc); 896 897 LookupQualifiedName(Previous, SemanticContext); 898 } else { 899 SemanticContext = CurContext; 900 LookupName(Previous, S); 901 } 902 903 if (Previous.isAmbiguous()) 904 return true; 905 906 NamedDecl *PrevDecl = 0; 907 if (Previous.begin() != Previous.end()) 908 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 909 910 // If there is a previous declaration with the same name, check 911 // whether this is a valid redeclaration. 912 ClassTemplateDecl *PrevClassTemplate 913 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 914 915 // We may have found the injected-class-name of a class template, 916 // class template partial specialization, or class template specialization. 917 // In these cases, grab the template that is being defined or specialized. 918 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 919 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 920 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 921 PrevClassTemplate 922 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 923 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 924 PrevClassTemplate 925 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 926 ->getSpecializedTemplate(); 927 } 928 } 929 930 if (TUK == TUK_Friend) { 931 // C++ [namespace.memdef]p3: 932 // [...] When looking for a prior declaration of a class or a function 933 // declared as a friend, and when the name of the friend class or 934 // function is neither a qualified name nor a template-id, scopes outside 935 // the innermost enclosing namespace scope are not considered. 936 if (!SS.isSet()) { 937 DeclContext *OutermostContext = CurContext; 938 while (!OutermostContext->isFileContext()) 939 OutermostContext = OutermostContext->getLookupParent(); 940 941 if (PrevDecl && 942 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 943 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 944 SemanticContext = PrevDecl->getDeclContext(); 945 } else { 946 // Declarations in outer scopes don't matter. However, the outermost 947 // context we computed is the semantic context for our new 948 // declaration. 949 PrevDecl = PrevClassTemplate = 0; 950 SemanticContext = OutermostContext; 951 } 952 } 953 954 if (CurContext->isDependentContext()) { 955 // If this is a dependent context, we don't want to link the friend 956 // class template to the template in scope, because that would perform 957 // checking of the template parameter lists that can't be performed 958 // until the outer context is instantiated. 959 PrevDecl = PrevClassTemplate = 0; 960 } 961 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 962 PrevDecl = PrevClassTemplate = 0; 963 964 if (PrevClassTemplate) { 965 // Ensure that the template parameter lists are compatible. 966 if (!TemplateParameterListsAreEqual(TemplateParams, 967 PrevClassTemplate->getTemplateParameters(), 968 /*Complain=*/true, 969 TPL_TemplateMatch)) 970 return true; 971 972 // C++ [temp.class]p4: 973 // In a redeclaration, partial specialization, explicit 974 // specialization or explicit instantiation of a class template, 975 // the class-key shall agree in kind with the original class 976 // template declaration (7.1.5.3). 977 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 978 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, 979 TUK == TUK_Definition, KWLoc, *Name)) { 980 Diag(KWLoc, diag::err_use_with_wrong_tag) 981 << Name 982 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 983 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 984 Kind = PrevRecordDecl->getTagKind(); 985 } 986 987 // Check for redefinition of this class template. 988 if (TUK == TUK_Definition) { 989 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 990 Diag(NameLoc, diag::err_redefinition) << Name; 991 Diag(Def->getLocation(), diag::note_previous_definition); 992 // FIXME: Would it make sense to try to "forget" the previous 993 // definition, as part of error recovery? 994 return true; 995 } 996 } 997 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 998 // Maybe we will complain about the shadowed template parameter. 999 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 1000 // Just pretend that we didn't see the previous declaration. 1001 PrevDecl = 0; 1002 } else if (PrevDecl) { 1003 // C++ [temp]p5: 1004 // A class template shall not have the same name as any other 1005 // template, class, function, object, enumeration, enumerator, 1006 // namespace, or type in the same scope (3.3), except as specified 1007 // in (14.5.4). 1008 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 1009 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1010 return true; 1011 } 1012 1013 // Check the template parameter list of this declaration, possibly 1014 // merging in the template parameter list from the previous class 1015 // template declaration. 1016 if (CheckTemplateParameterList(TemplateParams, 1017 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 1018 (SS.isSet() && SemanticContext && 1019 SemanticContext->isRecord() && 1020 SemanticContext->isDependentContext()) 1021 ? TPC_ClassTemplateMember 1022 : TPC_ClassTemplate)) 1023 Invalid = true; 1024 1025 if (SS.isSet()) { 1026 // If the name of the template was qualified, we must be defining the 1027 // template out-of-line. 1028 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate && 1029 !(TUK == TUK_Friend && CurContext->isDependentContext())) { 1030 Diag(NameLoc, diag::err_member_def_does_not_match) 1031 << Name << SemanticContext << SS.getRange(); 1032 Invalid = true; 1033 } 1034 } 1035 1036 CXXRecordDecl *NewClass = 1037 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name, 1038 PrevClassTemplate? 1039 PrevClassTemplate->getTemplatedDecl() : 0, 1040 /*DelayTypeCreation=*/true); 1041 SetNestedNameSpecifier(NewClass, SS); 1042 if (NumOuterTemplateParamLists > 0) 1043 NewClass->setTemplateParameterListsInfo(Context, 1044 NumOuterTemplateParamLists, 1045 OuterTemplateParamLists); 1046 1047 // Add alignment attributes if necessary; these attributes are checked when 1048 // the ASTContext lays out the structure. 1049 AddAlignmentAttributesForRecord(NewClass); 1050 AddMsStructLayoutForRecord(NewClass); 1051 1052 ClassTemplateDecl *NewTemplate 1053 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 1054 DeclarationName(Name), TemplateParams, 1055 NewClass, PrevClassTemplate); 1056 NewClass->setDescribedClassTemplate(NewTemplate); 1057 1058 if (ModulePrivateLoc.isValid()) 1059 NewTemplate->setModulePrivate(); 1060 1061 // Build the type for the class template declaration now. 1062 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 1063 T = Context.getInjectedClassNameType(NewClass, T); 1064 assert(T->isDependentType() && "Class template type is not dependent?"); 1065 (void)T; 1066 1067 // If we are providing an explicit specialization of a member that is a 1068 // class template, make a note of that. 1069 if (PrevClassTemplate && 1070 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 1071 PrevClassTemplate->setMemberSpecialization(); 1072 1073 // Set the access specifier. 1074 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord()) 1075 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 1076 1077 // Set the lexical context of these templates 1078 NewClass->setLexicalDeclContext(CurContext); 1079 NewTemplate->setLexicalDeclContext(CurContext); 1080 1081 if (TUK == TUK_Definition) 1082 NewClass->startDefinition(); 1083 1084 if (Attr) 1085 ProcessDeclAttributeList(S, NewClass, Attr); 1086 1087 if (TUK != TUK_Friend) 1088 PushOnScopeChains(NewTemplate, S); 1089 else { 1090 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 1091 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 1092 NewClass->setAccess(PrevClassTemplate->getAccess()); 1093 } 1094 1095 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 1096 PrevClassTemplate != NULL); 1097 1098 // Friend templates are visible in fairly strange ways. 1099 if (!CurContext->isDependentContext()) { 1100 DeclContext *DC = SemanticContext->getRedeclContext(); 1101 DC->makeDeclVisibleInContext(NewTemplate); 1102 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 1103 PushOnScopeChains(NewTemplate, EnclosingScope, 1104 /* AddToContext = */ false); 1105 } 1106 1107 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 1108 NewClass->getLocation(), 1109 NewTemplate, 1110 /*FIXME:*/NewClass->getLocation()); 1111 Friend->setAccess(AS_public); 1112 CurContext->addDecl(Friend); 1113 } 1114 1115 if (Invalid) { 1116 NewTemplate->setInvalidDecl(); 1117 NewClass->setInvalidDecl(); 1118 } 1119 return NewTemplate; 1120 } 1121 1122 /// \brief Diagnose the presence of a default template argument on a 1123 /// template parameter, which is ill-formed in certain contexts. 1124 /// 1125 /// \returns true if the default template argument should be dropped. 1126 static bool DiagnoseDefaultTemplateArgument(Sema &S, 1127 Sema::TemplateParamListContext TPC, 1128 SourceLocation ParamLoc, 1129 SourceRange DefArgRange) { 1130 switch (TPC) { 1131 case Sema::TPC_ClassTemplate: 1132 case Sema::TPC_TypeAliasTemplate: 1133 return false; 1134 1135 case Sema::TPC_FunctionTemplate: 1136 case Sema::TPC_FriendFunctionTemplateDefinition: 1137 // C++ [temp.param]p9: 1138 // A default template-argument shall not be specified in a 1139 // function template declaration or a function template 1140 // definition [...] 1141 // If a friend function template declaration specifies a default 1142 // template-argument, that declaration shall be a definition and shall be 1143 // the only declaration of the function template in the translation unit. 1144 // (C++98/03 doesn't have this wording; see DR226). 1145 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus0x ? 1146 diag::warn_cxx98_compat_template_parameter_default_in_function_template 1147 : diag::ext_template_parameter_default_in_function_template) 1148 << DefArgRange; 1149 return false; 1150 1151 case Sema::TPC_ClassTemplateMember: 1152 // C++0x [temp.param]p9: 1153 // A default template-argument shall not be specified in the 1154 // template-parameter-lists of the definition of a member of a 1155 // class template that appears outside of the member's class. 1156 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 1157 << DefArgRange; 1158 return true; 1159 1160 case Sema::TPC_FriendFunctionTemplate: 1161 // C++ [temp.param]p9: 1162 // A default template-argument shall not be specified in a 1163 // friend template declaration. 1164 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 1165 << DefArgRange; 1166 return true; 1167 1168 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1169 // for friend function templates if there is only a single 1170 // declaration (and it is a definition). Strange! 1171 } 1172 1173 llvm_unreachable("Invalid TemplateParamListContext!"); 1174 } 1175 1176 /// \brief Check for unexpanded parameter packs within the template parameters 1177 /// of a template template parameter, recursively. 1178 static bool DiagnoseUnexpandedParameterPacks(Sema &S, 1179 TemplateTemplateParmDecl *TTP) { 1180 TemplateParameterList *Params = TTP->getTemplateParameters(); 1181 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 1182 NamedDecl *P = Params->getParam(I); 1183 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 1184 if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 1185 NTTP->getTypeSourceInfo(), 1186 Sema::UPPC_NonTypeTemplateParameterType)) 1187 return true; 1188 1189 continue; 1190 } 1191 1192 if (TemplateTemplateParmDecl *InnerTTP 1193 = dyn_cast<TemplateTemplateParmDecl>(P)) 1194 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 1195 return true; 1196 } 1197 1198 return false; 1199 } 1200 1201 /// \brief Checks the validity of a template parameter list, possibly 1202 /// considering the template parameter list from a previous 1203 /// declaration. 1204 /// 1205 /// If an "old" template parameter list is provided, it must be 1206 /// equivalent (per TemplateParameterListsAreEqual) to the "new" 1207 /// template parameter list. 1208 /// 1209 /// \param NewParams Template parameter list for a new template 1210 /// declaration. This template parameter list will be updated with any 1211 /// default arguments that are carried through from the previous 1212 /// template parameter list. 1213 /// 1214 /// \param OldParams If provided, template parameter list from a 1215 /// previous declaration of the same template. Default template 1216 /// arguments will be merged from the old template parameter list to 1217 /// the new template parameter list. 1218 /// 1219 /// \param TPC Describes the context in which we are checking the given 1220 /// template parameter list. 1221 /// 1222 /// \returns true if an error occurred, false otherwise. 1223 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1224 TemplateParameterList *OldParams, 1225 TemplateParamListContext TPC) { 1226 bool Invalid = false; 1227 1228 // C++ [temp.param]p10: 1229 // The set of default template-arguments available for use with a 1230 // template declaration or definition is obtained by merging the 1231 // default arguments from the definition (if in scope) and all 1232 // declarations in scope in the same way default function 1233 // arguments are (8.3.6). 1234 bool SawDefaultArgument = false; 1235 SourceLocation PreviousDefaultArgLoc; 1236 1237 // Dummy initialization to avoid warnings. 1238 TemplateParameterList::iterator OldParam = NewParams->end(); 1239 if (OldParams) 1240 OldParam = OldParams->begin(); 1241 1242 bool RemoveDefaultArguments = false; 1243 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1244 NewParamEnd = NewParams->end(); 1245 NewParam != NewParamEnd; ++NewParam) { 1246 // Variables used to diagnose redundant default arguments 1247 bool RedundantDefaultArg = false; 1248 SourceLocation OldDefaultLoc; 1249 SourceLocation NewDefaultLoc; 1250 1251 // Variable used to diagnose missing default arguments 1252 bool MissingDefaultArg = false; 1253 1254 // Variable used to diagnose non-final parameter packs 1255 bool SawParameterPack = false; 1256 1257 if (TemplateTypeParmDecl *NewTypeParm 1258 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1259 // Check the presence of a default argument here. 1260 if (NewTypeParm->hasDefaultArgument() && 1261 DiagnoseDefaultTemplateArgument(*this, TPC, 1262 NewTypeParm->getLocation(), 1263 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1264 .getSourceRange())) 1265 NewTypeParm->removeDefaultArgument(); 1266 1267 // Merge default arguments for template type parameters. 1268 TemplateTypeParmDecl *OldTypeParm 1269 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1270 1271 if (NewTypeParm->isParameterPack()) { 1272 assert(!NewTypeParm->hasDefaultArgument() && 1273 "Parameter packs can't have a default argument!"); 1274 SawParameterPack = true; 1275 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1276 NewTypeParm->hasDefaultArgument()) { 1277 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1278 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1279 SawDefaultArgument = true; 1280 RedundantDefaultArg = true; 1281 PreviousDefaultArgLoc = NewDefaultLoc; 1282 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1283 // Merge the default argument from the old declaration to the 1284 // new declaration. 1285 SawDefaultArgument = true; 1286 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1287 true); 1288 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1289 } else if (NewTypeParm->hasDefaultArgument()) { 1290 SawDefaultArgument = true; 1291 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1292 } else if (SawDefaultArgument) 1293 MissingDefaultArg = true; 1294 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1295 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1296 // Check for unexpanded parameter packs. 1297 if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 1298 NewNonTypeParm->getTypeSourceInfo(), 1299 UPPC_NonTypeTemplateParameterType)) { 1300 Invalid = true; 1301 continue; 1302 } 1303 1304 // Check the presence of a default argument here. 1305 if (NewNonTypeParm->hasDefaultArgument() && 1306 DiagnoseDefaultTemplateArgument(*this, TPC, 1307 NewNonTypeParm->getLocation(), 1308 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1309 NewNonTypeParm->removeDefaultArgument(); 1310 } 1311 1312 // Merge default arguments for non-type template parameters 1313 NonTypeTemplateParmDecl *OldNonTypeParm 1314 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1315 if (NewNonTypeParm->isParameterPack()) { 1316 assert(!NewNonTypeParm->hasDefaultArgument() && 1317 "Parameter packs can't have a default argument!"); 1318 SawParameterPack = true; 1319 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1320 NewNonTypeParm->hasDefaultArgument()) { 1321 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1322 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1323 SawDefaultArgument = true; 1324 RedundantDefaultArg = true; 1325 PreviousDefaultArgLoc = NewDefaultLoc; 1326 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1327 // Merge the default argument from the old declaration to the 1328 // new declaration. 1329 SawDefaultArgument = true; 1330 // FIXME: We need to create a new kind of "default argument" 1331 // expression that points to a previous non-type template 1332 // parameter. 1333 NewNonTypeParm->setDefaultArgument( 1334 OldNonTypeParm->getDefaultArgument(), 1335 /*Inherited=*/ true); 1336 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1337 } else if (NewNonTypeParm->hasDefaultArgument()) { 1338 SawDefaultArgument = true; 1339 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1340 } else if (SawDefaultArgument) 1341 MissingDefaultArg = true; 1342 } else { 1343 TemplateTemplateParmDecl *NewTemplateParm 1344 = cast<TemplateTemplateParmDecl>(*NewParam); 1345 1346 // Check for unexpanded parameter packs, recursively. 1347 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 1348 Invalid = true; 1349 continue; 1350 } 1351 1352 // Check the presence of a default argument here. 1353 if (NewTemplateParm->hasDefaultArgument() && 1354 DiagnoseDefaultTemplateArgument(*this, TPC, 1355 NewTemplateParm->getLocation(), 1356 NewTemplateParm->getDefaultArgument().getSourceRange())) 1357 NewTemplateParm->removeDefaultArgument(); 1358 1359 // Merge default arguments for template template parameters 1360 TemplateTemplateParmDecl *OldTemplateParm 1361 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1362 if (NewTemplateParm->isParameterPack()) { 1363 assert(!NewTemplateParm->hasDefaultArgument() && 1364 "Parameter packs can't have a default argument!"); 1365 SawParameterPack = true; 1366 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1367 NewTemplateParm->hasDefaultArgument()) { 1368 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1369 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1370 SawDefaultArgument = true; 1371 RedundantDefaultArg = true; 1372 PreviousDefaultArgLoc = NewDefaultLoc; 1373 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1374 // Merge the default argument from the old declaration to the 1375 // new declaration. 1376 SawDefaultArgument = true; 1377 // FIXME: We need to create a new kind of "default argument" expression 1378 // that points to a previous template template parameter. 1379 NewTemplateParm->setDefaultArgument( 1380 OldTemplateParm->getDefaultArgument(), 1381 /*Inherited=*/ true); 1382 PreviousDefaultArgLoc 1383 = OldTemplateParm->getDefaultArgument().getLocation(); 1384 } else if (NewTemplateParm->hasDefaultArgument()) { 1385 SawDefaultArgument = true; 1386 PreviousDefaultArgLoc 1387 = NewTemplateParm->getDefaultArgument().getLocation(); 1388 } else if (SawDefaultArgument) 1389 MissingDefaultArg = true; 1390 } 1391 1392 // C++0x [temp.param]p11: 1393 // If a template parameter of a primary class template or alias template 1394 // is a template parameter pack, it shall be the last template parameter. 1395 if (SawParameterPack && (NewParam + 1) != NewParamEnd && 1396 (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) { 1397 Diag((*NewParam)->getLocation(), 1398 diag::err_template_param_pack_must_be_last_template_parameter); 1399 Invalid = true; 1400 } 1401 1402 if (RedundantDefaultArg) { 1403 // C++ [temp.param]p12: 1404 // A template-parameter shall not be given default arguments 1405 // by two different declarations in the same scope. 1406 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1407 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1408 Invalid = true; 1409 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) { 1410 // C++ [temp.param]p11: 1411 // If a template-parameter of a class template has a default 1412 // template-argument, each subsequent template-parameter shall either 1413 // have a default template-argument supplied or be a template parameter 1414 // pack. 1415 Diag((*NewParam)->getLocation(), 1416 diag::err_template_param_default_arg_missing); 1417 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1418 Invalid = true; 1419 RemoveDefaultArguments = true; 1420 } 1421 1422 // If we have an old template parameter list that we're merging 1423 // in, move on to the next parameter. 1424 if (OldParams) 1425 ++OldParam; 1426 } 1427 1428 // We were missing some default arguments at the end of the list, so remove 1429 // all of the default arguments. 1430 if (RemoveDefaultArguments) { 1431 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1432 NewParamEnd = NewParams->end(); 1433 NewParam != NewParamEnd; ++NewParam) { 1434 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) 1435 TTP->removeDefaultArgument(); 1436 else if (NonTypeTemplateParmDecl *NTTP 1437 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) 1438 NTTP->removeDefaultArgument(); 1439 else 1440 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); 1441 } 1442 } 1443 1444 return Invalid; 1445 } 1446 1447 namespace { 1448 1449 /// A class which looks for a use of a certain level of template 1450 /// parameter. 1451 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 1452 typedef RecursiveASTVisitor<DependencyChecker> super; 1453 1454 unsigned Depth; 1455 bool Match; 1456 1457 DependencyChecker(TemplateParameterList *Params) : Match(false) { 1458 NamedDecl *ND = Params->getParam(0); 1459 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 1460 Depth = PD->getDepth(); 1461 } else if (NonTypeTemplateParmDecl *PD = 1462 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 1463 Depth = PD->getDepth(); 1464 } else { 1465 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 1466 } 1467 } 1468 1469 bool Matches(unsigned ParmDepth) { 1470 if (ParmDepth >= Depth) { 1471 Match = true; 1472 return true; 1473 } 1474 return false; 1475 } 1476 1477 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 1478 return !Matches(T->getDepth()); 1479 } 1480 1481 bool TraverseTemplateName(TemplateName N) { 1482 if (TemplateTemplateParmDecl *PD = 1483 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 1484 if (Matches(PD->getDepth())) return false; 1485 return super::TraverseTemplateName(N); 1486 } 1487 1488 bool VisitDeclRefExpr(DeclRefExpr *E) { 1489 if (NonTypeTemplateParmDecl *PD = 1490 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) { 1491 if (PD->getDepth() == Depth) { 1492 Match = true; 1493 return false; 1494 } 1495 } 1496 return super::VisitDeclRefExpr(E); 1497 } 1498 1499 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) { 1500 return TraverseType(T->getInjectedSpecializationType()); 1501 } 1502 }; 1503 } 1504 1505 /// Determines whether a given type depends on the given parameter 1506 /// list. 1507 static bool 1508 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { 1509 DependencyChecker Checker(Params); 1510 Checker.TraverseType(T); 1511 return Checker.Match; 1512 } 1513 1514 // Find the source range corresponding to the named type in the given 1515 // nested-name-specifier, if any. 1516 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, 1517 QualType T, 1518 const CXXScopeSpec &SS) { 1519 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); 1520 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { 1521 if (const Type *CurType = NNS->getAsType()) { 1522 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0))) 1523 return NNSLoc.getTypeLoc().getSourceRange(); 1524 } else 1525 break; 1526 1527 NNSLoc = NNSLoc.getPrefix(); 1528 } 1529 1530 return SourceRange(); 1531 } 1532 1533 /// \brief Match the given template parameter lists to the given scope 1534 /// specifier, returning the template parameter list that applies to the 1535 /// name. 1536 /// 1537 /// \param DeclStartLoc the start of the declaration that has a scope 1538 /// specifier or a template parameter list. 1539 /// 1540 /// \param DeclLoc The location of the declaration itself. 1541 /// 1542 /// \param SS the scope specifier that will be matched to the given template 1543 /// parameter lists. This scope specifier precedes a qualified name that is 1544 /// being declared. 1545 /// 1546 /// \param ParamLists the template parameter lists, from the outermost to the 1547 /// innermost template parameter lists. 1548 /// 1549 /// \param NumParamLists the number of template parameter lists in ParamLists. 1550 /// 1551 /// \param IsFriend Whether to apply the slightly different rules for 1552 /// matching template parameters to scope specifiers in friend 1553 /// declarations. 1554 /// 1555 /// \param IsExplicitSpecialization will be set true if the entity being 1556 /// declared is an explicit specialization, false otherwise. 1557 /// 1558 /// \returns the template parameter list, if any, that corresponds to the 1559 /// name that is preceded by the scope specifier @p SS. This template 1560 /// parameter list may have template parameters (if we're declaring a 1561 /// template) or may have no template parameters (if we're declaring a 1562 /// template specialization), or may be NULL (if what we're declaring isn't 1563 /// itself a template). 1564 TemplateParameterList * 1565 Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1566 SourceLocation DeclLoc, 1567 const CXXScopeSpec &SS, 1568 TemplateParameterList **ParamLists, 1569 unsigned NumParamLists, 1570 bool IsFriend, 1571 bool &IsExplicitSpecialization, 1572 bool &Invalid) { 1573 IsExplicitSpecialization = false; 1574 Invalid = false; 1575 1576 // The sequence of nested types to which we will match up the template 1577 // parameter lists. We first build this list by starting with the type named 1578 // by the nested-name-specifier and walking out until we run out of types. 1579 SmallVector<QualType, 4> NestedTypes; 1580 QualType T; 1581 if (SS.getScopeRep()) { 1582 if (CXXRecordDecl *Record 1583 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true))) 1584 T = Context.getTypeDeclType(Record); 1585 else 1586 T = QualType(SS.getScopeRep()->getAsType(), 0); 1587 } 1588 1589 // If we found an explicit specialization that prevents us from needing 1590 // 'template<>' headers, this will be set to the location of that 1591 // explicit specialization. 1592 SourceLocation ExplicitSpecLoc; 1593 1594 while (!T.isNull()) { 1595 NestedTypes.push_back(T); 1596 1597 // Retrieve the parent of a record type. 1598 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1599 // If this type is an explicit specialization, we're done. 1600 if (ClassTemplateSpecializationDecl *Spec 1601 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1602 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) && 1603 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { 1604 ExplicitSpecLoc = Spec->getLocation(); 1605 break; 1606 } 1607 } else if (Record->getTemplateSpecializationKind() 1608 == TSK_ExplicitSpecialization) { 1609 ExplicitSpecLoc = Record->getLocation(); 1610 break; 1611 } 1612 1613 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) 1614 T = Context.getTypeDeclType(Parent); 1615 else 1616 T = QualType(); 1617 continue; 1618 } 1619 1620 if (const TemplateSpecializationType *TST 1621 = T->getAs<TemplateSpecializationType>()) { 1622 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1623 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) 1624 T = Context.getTypeDeclType(Parent); 1625 else 1626 T = QualType(); 1627 continue; 1628 } 1629 } 1630 1631 // Look one step prior in a dependent template specialization type. 1632 if (const DependentTemplateSpecializationType *DependentTST 1633 = T->getAs<DependentTemplateSpecializationType>()) { 1634 if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) 1635 T = QualType(NNS->getAsType(), 0); 1636 else 1637 T = QualType(); 1638 continue; 1639 } 1640 1641 // Look one step prior in a dependent name type. 1642 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ 1643 if (NestedNameSpecifier *NNS = DependentName->getQualifier()) 1644 T = QualType(NNS->getAsType(), 0); 1645 else 1646 T = QualType(); 1647 continue; 1648 } 1649 1650 // Retrieve the parent of an enumeration type. 1651 if (const EnumType *EnumT = T->getAs<EnumType>()) { 1652 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization 1653 // check here. 1654 EnumDecl *Enum = EnumT->getDecl(); 1655 1656 // Get to the parent type. 1657 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) 1658 T = Context.getTypeDeclType(Parent); 1659 else 1660 T = QualType(); 1661 continue; 1662 } 1663 1664 T = QualType(); 1665 } 1666 // Reverse the nested types list, since we want to traverse from the outermost 1667 // to the innermost while checking template-parameter-lists. 1668 std::reverse(NestedTypes.begin(), NestedTypes.end()); 1669 1670 // C++0x [temp.expl.spec]p17: 1671 // A member or a member template may be nested within many 1672 // enclosing class templates. In an explicit specialization for 1673 // such a member, the member declaration shall be preceded by a 1674 // template<> for each enclosing class template that is 1675 // explicitly specialized. 1676 bool SawNonEmptyTemplateParameterList = false; 1677 unsigned ParamIdx = 0; 1678 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; 1679 ++TypeIdx) { 1680 T = NestedTypes[TypeIdx]; 1681 1682 // Whether we expect a 'template<>' header. 1683 bool NeedEmptyTemplateHeader = false; 1684 1685 // Whether we expect a template header with parameters. 1686 bool NeedNonemptyTemplateHeader = false; 1687 1688 // For a dependent type, the set of template parameters that we 1689 // expect to see. 1690 TemplateParameterList *ExpectedTemplateParams = 0; 1691 1692 // C++0x [temp.expl.spec]p15: 1693 // A member or a member template may be nested within many enclosing 1694 // class templates. In an explicit specialization for such a member, the 1695 // member declaration shall be preceded by a template<> for each 1696 // enclosing class template that is explicitly specialized. 1697 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1698 if (ClassTemplatePartialSpecializationDecl *Partial 1699 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) { 1700 ExpectedTemplateParams = Partial->getTemplateParameters(); 1701 NeedNonemptyTemplateHeader = true; 1702 } else if (Record->isDependentType()) { 1703 if (Record->getDescribedClassTemplate()) { 1704 ExpectedTemplateParams = Record->getDescribedClassTemplate() 1705 ->getTemplateParameters(); 1706 NeedNonemptyTemplateHeader = true; 1707 } 1708 } else if (ClassTemplateSpecializationDecl *Spec 1709 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1710 // C++0x [temp.expl.spec]p4: 1711 // Members of an explicitly specialized class template are defined 1712 // in the same manner as members of normal classes, and not using 1713 // the template<> syntax. 1714 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) 1715 NeedEmptyTemplateHeader = true; 1716 else 1717 continue; 1718 } else if (Record->getTemplateSpecializationKind()) { 1719 if (Record->getTemplateSpecializationKind() 1720 != TSK_ExplicitSpecialization && 1721 TypeIdx == NumTypes - 1) 1722 IsExplicitSpecialization = true; 1723 1724 continue; 1725 } 1726 } else if (const TemplateSpecializationType *TST 1727 = T->getAs<TemplateSpecializationType>()) { 1728 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1729 ExpectedTemplateParams = Template->getTemplateParameters(); 1730 NeedNonemptyTemplateHeader = true; 1731 } 1732 } else if (T->getAs<DependentTemplateSpecializationType>()) { 1733 // FIXME: We actually could/should check the template arguments here 1734 // against the corresponding template parameter list. 1735 NeedNonemptyTemplateHeader = false; 1736 } 1737 1738 // C++ [temp.expl.spec]p16: 1739 // In an explicit specialization declaration for a member of a class 1740 // template or a member template that ap- pears in namespace scope, the 1741 // member template and some of its enclosing class templates may remain 1742 // unspecialized, except that the declaration shall not explicitly 1743 // specialize a class member template if its en- closing class templates 1744 // are not explicitly specialized as well. 1745 if (ParamIdx < NumParamLists) { 1746 if (ParamLists[ParamIdx]->size() == 0) { 1747 if (SawNonEmptyTemplateParameterList) { 1748 Diag(DeclLoc, diag::err_specialize_member_of_template) 1749 << ParamLists[ParamIdx]->getSourceRange(); 1750 Invalid = true; 1751 IsExplicitSpecialization = false; 1752 return 0; 1753 } 1754 } else 1755 SawNonEmptyTemplateParameterList = true; 1756 } 1757 1758 if (NeedEmptyTemplateHeader) { 1759 // If we're on the last of the types, and we need a 'template<>' header 1760 // here, then it's an explicit specialization. 1761 if (TypeIdx == NumTypes - 1) 1762 IsExplicitSpecialization = true; 1763 1764 if (ParamIdx < NumParamLists) { 1765 if (ParamLists[ParamIdx]->size() > 0) { 1766 // The header has template parameters when it shouldn't. Complain. 1767 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1768 diag::err_template_param_list_matches_nontemplate) 1769 << T 1770 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), 1771 ParamLists[ParamIdx]->getRAngleLoc()) 1772 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1773 Invalid = true; 1774 return 0; 1775 } 1776 1777 // Consume this template header. 1778 ++ParamIdx; 1779 continue; 1780 } 1781 1782 if (!IsFriend) { 1783 // We don't have a template header, but we should. 1784 SourceLocation ExpectedTemplateLoc; 1785 if (NumParamLists > 0) 1786 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); 1787 else 1788 ExpectedTemplateLoc = DeclStartLoc; 1789 1790 Diag(DeclLoc, diag::err_template_spec_needs_header) 1791 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS) 1792 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> "); 1793 } 1794 1795 continue; 1796 } 1797 1798 if (NeedNonemptyTemplateHeader) { 1799 // In friend declarations we can have template-ids which don't 1800 // depend on the corresponding template parameter lists. But 1801 // assume that empty parameter lists are supposed to match this 1802 // template-id. 1803 if (IsFriend && T->isDependentType()) { 1804 if (ParamIdx < NumParamLists && 1805 DependsOnTemplateParameters(T, ParamLists[ParamIdx])) 1806 ExpectedTemplateParams = 0; 1807 else 1808 continue; 1809 } 1810 1811 if (ParamIdx < NumParamLists) { 1812 // Check the template parameter list, if we can. 1813 if (ExpectedTemplateParams && 1814 !TemplateParameterListsAreEqual(ParamLists[ParamIdx], 1815 ExpectedTemplateParams, 1816 true, TPL_TemplateMatch)) 1817 Invalid = true; 1818 1819 if (!Invalid && 1820 CheckTemplateParameterList(ParamLists[ParamIdx], 0, 1821 TPC_ClassTemplateMember)) 1822 Invalid = true; 1823 1824 ++ParamIdx; 1825 continue; 1826 } 1827 1828 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) 1829 << T 1830 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1831 Invalid = true; 1832 continue; 1833 } 1834 } 1835 1836 // If there were at least as many template-ids as there were template 1837 // parameter lists, then there are no template parameter lists remaining for 1838 // the declaration itself. 1839 if (ParamIdx >= NumParamLists) 1840 return 0; 1841 1842 // If there were too many template parameter lists, complain about that now. 1843 if (ParamIdx < NumParamLists - 1) { 1844 bool HasAnyExplicitSpecHeader = false; 1845 bool AllExplicitSpecHeaders = true; 1846 for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) { 1847 if (ParamLists[I]->size() == 0) 1848 HasAnyExplicitSpecHeader = true; 1849 else 1850 AllExplicitSpecHeaders = false; 1851 } 1852 1853 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1854 AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers 1855 : diag::err_template_spec_extra_headers) 1856 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 1857 ParamLists[NumParamLists - 2]->getRAngleLoc()); 1858 1859 // If there was a specialization somewhere, such that 'template<>' is 1860 // not required, and there were any 'template<>' headers, note where the 1861 // specialization occurred. 1862 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader) 1863 Diag(ExplicitSpecLoc, 1864 diag::note_explicit_template_spec_does_not_need_header) 1865 << NestedTypes.back(); 1866 1867 // We have a template parameter list with no corresponding scope, which 1868 // means that the resulting template declaration can't be instantiated 1869 // properly (we'll end up with dependent nodes when we shouldn't). 1870 if (!AllExplicitSpecHeaders) 1871 Invalid = true; 1872 } 1873 1874 // C++ [temp.expl.spec]p16: 1875 // In an explicit specialization declaration for a member of a class 1876 // template or a member template that ap- pears in namespace scope, the 1877 // member template and some of its enclosing class templates may remain 1878 // unspecialized, except that the declaration shall not explicitly 1879 // specialize a class member template if its en- closing class templates 1880 // are not explicitly specialized as well. 1881 if (ParamLists[NumParamLists - 1]->size() == 0 && 1882 SawNonEmptyTemplateParameterList) { 1883 Diag(DeclLoc, diag::err_specialize_member_of_template) 1884 << ParamLists[ParamIdx]->getSourceRange(); 1885 Invalid = true; 1886 IsExplicitSpecialization = false; 1887 return 0; 1888 } 1889 1890 // Return the last template parameter list, which corresponds to the 1891 // entity being declared. 1892 return ParamLists[NumParamLists - 1]; 1893 } 1894 1895 void Sema::NoteAllFoundTemplates(TemplateName Name) { 1896 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 1897 Diag(Template->getLocation(), diag::note_template_declared_here) 1898 << (isa<FunctionTemplateDecl>(Template)? 0 1899 : isa<ClassTemplateDecl>(Template)? 1 1900 : isa<TypeAliasTemplateDecl>(Template)? 2 1901 : 3) 1902 << Template->getDeclName(); 1903 return; 1904 } 1905 1906 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { 1907 for (OverloadedTemplateStorage::iterator I = OST->begin(), 1908 IEnd = OST->end(); 1909 I != IEnd; ++I) 1910 Diag((*I)->getLocation(), diag::note_template_declared_here) 1911 << 0 << (*I)->getDeclName(); 1912 1913 return; 1914 } 1915 } 1916 1917 QualType Sema::CheckTemplateIdType(TemplateName Name, 1918 SourceLocation TemplateLoc, 1919 TemplateArgumentListInfo &TemplateArgs) { 1920 DependentTemplateName *DTN 1921 = Name.getUnderlying().getAsDependentTemplateName(); 1922 if (DTN && DTN->isIdentifier()) 1923 // When building a template-id where the template-name is dependent, 1924 // assume the template is a type template. Either our assumption is 1925 // correct, or the code is ill-formed and will be diagnosed when the 1926 // dependent name is substituted. 1927 return Context.getDependentTemplateSpecializationType(ETK_None, 1928 DTN->getQualifier(), 1929 DTN->getIdentifier(), 1930 TemplateArgs); 1931 1932 TemplateDecl *Template = Name.getAsTemplateDecl(); 1933 if (!Template || isa<FunctionTemplateDecl>(Template)) { 1934 // We might have a substituted template template parameter pack. If so, 1935 // build a template specialization type for it. 1936 if (Name.getAsSubstTemplateTemplateParmPack()) 1937 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1938 1939 Diag(TemplateLoc, diag::err_template_id_not_a_type) 1940 << Name; 1941 NoteAllFoundTemplates(Name); 1942 return QualType(); 1943 } 1944 1945 // Check that the template argument list is well-formed for this 1946 // template. 1947 SmallVector<TemplateArgument, 4> Converted; 1948 bool ExpansionIntoFixedList = false; 1949 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1950 false, Converted, &ExpansionIntoFixedList)) 1951 return QualType(); 1952 1953 QualType CanonType; 1954 1955 bool InstantiationDependent = false; 1956 TypeAliasTemplateDecl *AliasTemplate = 0; 1957 if (!ExpansionIntoFixedList && 1958 (AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Template))) { 1959 // Find the canonical type for this type alias template specialization. 1960 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); 1961 if (Pattern->isInvalidDecl()) 1962 return QualType(); 1963 1964 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 1965 Converted.data(), Converted.size()); 1966 1967 // Only substitute for the innermost template argument list. 1968 MultiLevelTemplateArgumentList TemplateArgLists; 1969 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 1970 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth(); 1971 for (unsigned I = 0; I < Depth; ++I) 1972 TemplateArgLists.addOuterTemplateArguments(0, 0); 1973 1974 InstantiatingTemplate Inst(*this, TemplateLoc, Template); 1975 CanonType = SubstType(Pattern->getUnderlyingType(), 1976 TemplateArgLists, AliasTemplate->getLocation(), 1977 AliasTemplate->getDeclName()); 1978 if (CanonType.isNull()) 1979 return QualType(); 1980 } else if (Name.isDependent() || 1981 TemplateSpecializationType::anyDependentTemplateArguments( 1982 TemplateArgs, InstantiationDependent)) { 1983 // This class template specialization is a dependent 1984 // type. Therefore, its canonical type is another class template 1985 // specialization type that contains all of the converted 1986 // arguments in canonical form. This ensures that, e.g., A<T> and 1987 // A<T, T> have identical types when A is declared as: 1988 // 1989 // template<typename T, typename U = T> struct A; 1990 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1991 CanonType = Context.getTemplateSpecializationType(CanonName, 1992 Converted.data(), 1993 Converted.size()); 1994 1995 // FIXME: CanonType is not actually the canonical type, and unfortunately 1996 // it is a TemplateSpecializationType that we will never use again. 1997 // In the future, we need to teach getTemplateSpecializationType to only 1998 // build the canonical type and return that to us. 1999 CanonType = Context.getCanonicalType(CanonType); 2000 2001 // This might work out to be a current instantiation, in which 2002 // case the canonical type needs to be the InjectedClassNameType. 2003 // 2004 // TODO: in theory this could be a simple hashtable lookup; most 2005 // changes to CurContext don't change the set of current 2006 // instantiations. 2007 if (isa<ClassTemplateDecl>(Template)) { 2008 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 2009 // If we get out to a namespace, we're done. 2010 if (Ctx->isFileContext()) break; 2011 2012 // If this isn't a record, keep looking. 2013 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 2014 if (!Record) continue; 2015 2016 // Look for one of the two cases with InjectedClassNameTypes 2017 // and check whether it's the same template. 2018 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 2019 !Record->getDescribedClassTemplate()) 2020 continue; 2021 2022 // Fetch the injected class name type and check whether its 2023 // injected type is equal to the type we just built. 2024 QualType ICNT = Context.getTypeDeclType(Record); 2025 QualType Injected = cast<InjectedClassNameType>(ICNT) 2026 ->getInjectedSpecializationType(); 2027 2028 if (CanonType != Injected->getCanonicalTypeInternal()) 2029 continue; 2030 2031 // If so, the canonical type of this TST is the injected 2032 // class name type of the record we just found. 2033 assert(ICNT.isCanonical()); 2034 CanonType = ICNT; 2035 break; 2036 } 2037 } 2038 } else if (ClassTemplateDecl *ClassTemplate 2039 = dyn_cast<ClassTemplateDecl>(Template)) { 2040 // Find the class template specialization declaration that 2041 // corresponds to these arguments. 2042 void *InsertPos = 0; 2043 ClassTemplateSpecializationDecl *Decl 2044 = ClassTemplate->findSpecialization(Converted.data(), Converted.size(), 2045 InsertPos); 2046 if (!Decl) { 2047 // This is the first time we have referenced this class template 2048 // specialization. Create the canonical declaration and add it to 2049 // the set of specializations. 2050 Decl = ClassTemplateSpecializationDecl::Create(Context, 2051 ClassTemplate->getTemplatedDecl()->getTagKind(), 2052 ClassTemplate->getDeclContext(), 2053 ClassTemplate->getTemplatedDecl()->getLocStart(), 2054 ClassTemplate->getLocation(), 2055 ClassTemplate, 2056 Converted.data(), 2057 Converted.size(), 0); 2058 ClassTemplate->AddSpecialization(Decl, InsertPos); 2059 Decl->setLexicalDeclContext(CurContext); 2060 } 2061 2062 CanonType = Context.getTypeDeclType(Decl); 2063 assert(isa<RecordType>(CanonType) && 2064 "type of non-dependent specialization is not a RecordType"); 2065 } 2066 2067 // Build the fully-sugared type for this class template 2068 // specialization, which refers back to the class template 2069 // specialization we created or found. 2070 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 2071 } 2072 2073 TypeResult 2074 Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc, 2075 TemplateTy TemplateD, SourceLocation TemplateLoc, 2076 SourceLocation LAngleLoc, 2077 ASTTemplateArgsPtr TemplateArgsIn, 2078 SourceLocation RAngleLoc, 2079 bool IsCtorOrDtorName) { 2080 if (SS.isInvalid()) 2081 return true; 2082 2083 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 2084 2085 // Translate the parser's template argument list in our AST format. 2086 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2087 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2088 2089 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2090 QualType T 2091 = Context.getDependentTemplateSpecializationType(ETK_None, 2092 DTN->getQualifier(), 2093 DTN->getIdentifier(), 2094 TemplateArgs); 2095 // Build type-source information. 2096 TypeLocBuilder TLB; 2097 DependentTemplateSpecializationTypeLoc SpecTL 2098 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2099 SpecTL.setElaboratedKeywordLoc(SourceLocation()); 2100 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2101 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2102 SpecTL.setTemplateNameLoc(TemplateLoc); 2103 SpecTL.setLAngleLoc(LAngleLoc); 2104 SpecTL.setRAngleLoc(RAngleLoc); 2105 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2106 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2107 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2108 } 2109 2110 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2111 TemplateArgsIn.release(); 2112 2113 if (Result.isNull()) 2114 return true; 2115 2116 // Build type-source information. 2117 TypeLocBuilder TLB; 2118 TemplateSpecializationTypeLoc SpecTL 2119 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2120 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2121 SpecTL.setTemplateNameLoc(TemplateLoc); 2122 SpecTL.setLAngleLoc(LAngleLoc); 2123 SpecTL.setRAngleLoc(RAngleLoc); 2124 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2125 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2126 2127 // NOTE: avoid constructing an ElaboratedTypeLoc if this is a 2128 // constructor or destructor name (in such a case, the scope specifier 2129 // will be attached to the enclosing Decl or Expr node). 2130 if (SS.isNotEmpty() && !IsCtorOrDtorName) { 2131 // Create an elaborated-type-specifier containing the nested-name-specifier. 2132 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result); 2133 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2134 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 2135 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2136 } 2137 2138 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2139 } 2140 2141 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, 2142 TypeSpecifierType TagSpec, 2143 SourceLocation TagLoc, 2144 CXXScopeSpec &SS, 2145 SourceLocation TemplateKWLoc, 2146 TemplateTy TemplateD, 2147 SourceLocation TemplateLoc, 2148 SourceLocation LAngleLoc, 2149 ASTTemplateArgsPtr TemplateArgsIn, 2150 SourceLocation RAngleLoc) { 2151 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 2152 2153 // Translate the parser's template argument list in our AST format. 2154 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2155 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2156 2157 // Determine the tag kind 2158 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 2159 ElaboratedTypeKeyword Keyword 2160 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 2161 2162 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2163 QualType T = Context.getDependentTemplateSpecializationType(Keyword, 2164 DTN->getQualifier(), 2165 DTN->getIdentifier(), 2166 TemplateArgs); 2167 2168 // Build type-source information. 2169 TypeLocBuilder TLB; 2170 DependentTemplateSpecializationTypeLoc SpecTL 2171 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2172 SpecTL.setElaboratedKeywordLoc(TagLoc); 2173 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2174 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2175 SpecTL.setTemplateNameLoc(TemplateLoc); 2176 SpecTL.setLAngleLoc(LAngleLoc); 2177 SpecTL.setRAngleLoc(RAngleLoc); 2178 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2179 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2180 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2181 } 2182 2183 if (TypeAliasTemplateDecl *TAT = 2184 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) { 2185 // C++0x [dcl.type.elab]p2: 2186 // If the identifier resolves to a typedef-name or the simple-template-id 2187 // resolves to an alias template specialization, the 2188 // elaborated-type-specifier is ill-formed. 2189 Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4; 2190 Diag(TAT->getLocation(), diag::note_declared_at); 2191 } 2192 2193 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2194 if (Result.isNull()) 2195 return TypeResult(true); 2196 2197 // Check the tag kind 2198 if (const RecordType *RT = Result->getAs<RecordType>()) { 2199 RecordDecl *D = RT->getDecl(); 2200 2201 IdentifierInfo *Id = D->getIdentifier(); 2202 assert(Id && "templated class must have an identifier"); 2203 2204 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition, 2205 TagLoc, *Id)) { 2206 Diag(TagLoc, diag::err_use_with_wrong_tag) 2207 << Result 2208 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 2209 Diag(D->getLocation(), diag::note_previous_use); 2210 } 2211 } 2212 2213 // Provide source-location information for the template specialization. 2214 TypeLocBuilder TLB; 2215 TemplateSpecializationTypeLoc SpecTL 2216 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2217 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2218 SpecTL.setTemplateNameLoc(TemplateLoc); 2219 SpecTL.setLAngleLoc(LAngleLoc); 2220 SpecTL.setRAngleLoc(RAngleLoc); 2221 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2222 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2223 2224 // Construct an elaborated type containing the nested-name-specifier (if any) 2225 // and tag keyword. 2226 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result); 2227 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2228 ElabTL.setElaboratedKeywordLoc(TagLoc); 2229 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2230 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2231 } 2232 2233 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 2234 SourceLocation TemplateKWLoc, 2235 LookupResult &R, 2236 bool RequiresADL, 2237 const TemplateArgumentListInfo *TemplateArgs) { 2238 // FIXME: Can we do any checking at this point? I guess we could check the 2239 // template arguments that we have against the template name, if the template 2240 // name refers to a single template. That's not a terribly common case, 2241 // though. 2242 // foo<int> could identify a single function unambiguously 2243 // This approach does NOT work, since f<int>(1); 2244 // gets resolved prior to resorting to overload resolution 2245 // i.e., template<class T> void f(double); 2246 // vs template<class T, class U> void f(U); 2247 2248 // These should be filtered out by our callers. 2249 assert(!R.empty() && "empty lookup results when building templateid"); 2250 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 2251 2252 // We don't want lookup warnings at this point. 2253 R.suppressDiagnostics(); 2254 2255 UnresolvedLookupExpr *ULE 2256 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), 2257 SS.getWithLocInContext(Context), 2258 TemplateKWLoc, 2259 R.getLookupNameInfo(), 2260 RequiresADL, TemplateArgs, 2261 R.begin(), R.end()); 2262 2263 return Owned(ULE); 2264 } 2265 2266 // We actually only call this from template instantiation. 2267 ExprResult 2268 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 2269 SourceLocation TemplateKWLoc, 2270 const DeclarationNameInfo &NameInfo, 2271 const TemplateArgumentListInfo *TemplateArgs) { 2272 assert(TemplateArgs || TemplateKWLoc.isValid()); 2273 DeclContext *DC; 2274 if (!(DC = computeDeclContext(SS, false)) || 2275 DC->isDependentContext() || 2276 RequireCompleteDeclContext(SS, DC)) 2277 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 2278 2279 bool MemberOfUnknownSpecialization; 2280 LookupResult R(*this, NameInfo, LookupOrdinaryName); 2281 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false, 2282 MemberOfUnknownSpecialization); 2283 2284 if (R.isAmbiguous()) 2285 return ExprError(); 2286 2287 if (R.empty()) { 2288 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template) 2289 << NameInfo.getName() << SS.getRange(); 2290 return ExprError(); 2291 } 2292 2293 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 2294 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 2295 << (NestedNameSpecifier*) SS.getScopeRep() 2296 << NameInfo.getName() << SS.getRange(); 2297 Diag(Temp->getLocation(), diag::note_referenced_class_template); 2298 return ExprError(); 2299 } 2300 2301 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs); 2302 } 2303 2304 /// \brief Form a dependent template name. 2305 /// 2306 /// This action forms a dependent template name given the template 2307 /// name and its (presumably dependent) scope specifier. For 2308 /// example, given "MetaFun::template apply", the scope specifier \p 2309 /// SS will be "MetaFun::", \p TemplateKWLoc contains the location 2310 /// of the "template" keyword, and "apply" is the \p Name. 2311 TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, 2312 CXXScopeSpec &SS, 2313 SourceLocation TemplateKWLoc, 2314 UnqualifiedId &Name, 2315 ParsedType ObjectType, 2316 bool EnteringContext, 2317 TemplateTy &Result) { 2318 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent()) 2319 Diag(TemplateKWLoc, 2320 getLangOpts().CPlusPlus0x ? 2321 diag::warn_cxx98_compat_template_outside_of_template : 2322 diag::ext_template_outside_of_template) 2323 << FixItHint::CreateRemoval(TemplateKWLoc); 2324 2325 DeclContext *LookupCtx = 0; 2326 if (SS.isSet()) 2327 LookupCtx = computeDeclContext(SS, EnteringContext); 2328 if (!LookupCtx && ObjectType) 2329 LookupCtx = computeDeclContext(ObjectType.get()); 2330 if (LookupCtx) { 2331 // C++0x [temp.names]p5: 2332 // If a name prefixed by the keyword template is not the name of 2333 // a template, the program is ill-formed. [Note: the keyword 2334 // template may not be applied to non-template members of class 2335 // templates. -end note ] [ Note: as is the case with the 2336 // typename prefix, the template prefix is allowed in cases 2337 // where it is not strictly necessary; i.e., when the 2338 // nested-name-specifier or the expression on the left of the -> 2339 // or . is not dependent on a template-parameter, or the use 2340 // does not appear in the scope of a template. -end note] 2341 // 2342 // Note: C++03 was more strict here, because it banned the use of 2343 // the "template" keyword prior to a template-name that was not a 2344 // dependent name. C++ DR468 relaxed this requirement (the 2345 // "template" keyword is now permitted). We follow the C++0x 2346 // rules, even in C++03 mode with a warning, retroactively applying the DR. 2347 bool MemberOfUnknownSpecialization; 2348 TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name, 2349 ObjectType, EnteringContext, Result, 2350 MemberOfUnknownSpecialization); 2351 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 2352 isa<CXXRecordDecl>(LookupCtx) && 2353 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() || 2354 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) { 2355 // This is a dependent template. Handle it below. 2356 } else if (TNK == TNK_Non_template) { 2357 Diag(Name.getLocStart(), 2358 diag::err_template_kw_refers_to_non_template) 2359 << GetNameFromUnqualifiedId(Name).getName() 2360 << Name.getSourceRange() 2361 << TemplateKWLoc; 2362 return TNK_Non_template; 2363 } else { 2364 // We found something; return it. 2365 return TNK; 2366 } 2367 } 2368 2369 NestedNameSpecifier *Qualifier 2370 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 2371 2372 switch (Name.getKind()) { 2373 case UnqualifiedId::IK_Identifier: 2374 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2375 Name.Identifier)); 2376 return TNK_Dependent_template_name; 2377 2378 case UnqualifiedId::IK_OperatorFunctionId: 2379 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2380 Name.OperatorFunctionId.Operator)); 2381 return TNK_Dependent_template_name; 2382 2383 case UnqualifiedId::IK_LiteralOperatorId: 2384 llvm_unreachable( 2385 "We don't support these; Parse shouldn't have allowed propagation"); 2386 2387 default: 2388 break; 2389 } 2390 2391 Diag(Name.getLocStart(), 2392 diag::err_template_kw_refers_to_non_template) 2393 << GetNameFromUnqualifiedId(Name).getName() 2394 << Name.getSourceRange() 2395 << TemplateKWLoc; 2396 return TNK_Non_template; 2397 } 2398 2399 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 2400 const TemplateArgumentLoc &AL, 2401 SmallVectorImpl<TemplateArgument> &Converted) { 2402 const TemplateArgument &Arg = AL.getArgument(); 2403 2404 // Check template type parameter. 2405 switch(Arg.getKind()) { 2406 case TemplateArgument::Type: 2407 // C++ [temp.arg.type]p1: 2408 // A template-argument for a template-parameter which is a 2409 // type shall be a type-id. 2410 break; 2411 case TemplateArgument::Template: { 2412 // We have a template type parameter but the template argument 2413 // is a template without any arguments. 2414 SourceRange SR = AL.getSourceRange(); 2415 TemplateName Name = Arg.getAsTemplate(); 2416 Diag(SR.getBegin(), diag::err_template_missing_args) 2417 << Name << SR; 2418 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 2419 Diag(Decl->getLocation(), diag::note_template_decl_here); 2420 2421 return true; 2422 } 2423 default: { 2424 // We have a template type parameter but the template argument 2425 // is not a type. 2426 SourceRange SR = AL.getSourceRange(); 2427 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 2428 Diag(Param->getLocation(), diag::note_template_param_here); 2429 2430 return true; 2431 } 2432 } 2433 2434 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 2435 return true; 2436 2437 // Add the converted template type argument. 2438 QualType ArgType = Context.getCanonicalType(Arg.getAsType()); 2439 2440 // Objective-C ARC: 2441 // If an explicitly-specified template argument type is a lifetime type 2442 // with no lifetime qualifier, the __strong lifetime qualifier is inferred. 2443 if (getLangOpts().ObjCAutoRefCount && 2444 ArgType->isObjCLifetimeType() && 2445 !ArgType.getObjCLifetime()) { 2446 Qualifiers Qs; 2447 Qs.setObjCLifetime(Qualifiers::OCL_Strong); 2448 ArgType = Context.getQualifiedType(ArgType, Qs); 2449 } 2450 2451 Converted.push_back(TemplateArgument(ArgType)); 2452 return false; 2453 } 2454 2455 /// \brief Substitute template arguments into the default template argument for 2456 /// the given template type parameter. 2457 /// 2458 /// \param SemaRef the semantic analysis object for which we are performing 2459 /// the substitution. 2460 /// 2461 /// \param Template the template that we are synthesizing template arguments 2462 /// for. 2463 /// 2464 /// \param TemplateLoc the location of the template name that started the 2465 /// template-id we are checking. 2466 /// 2467 /// \param RAngleLoc the location of the right angle bracket ('>') that 2468 /// terminates the template-id. 2469 /// 2470 /// \param Param the template template parameter whose default we are 2471 /// substituting into. 2472 /// 2473 /// \param Converted the list of template arguments provided for template 2474 /// parameters that precede \p Param in the template parameter list. 2475 /// \returns the substituted template argument, or NULL if an error occurred. 2476 static TypeSourceInfo * 2477 SubstDefaultTemplateArgument(Sema &SemaRef, 2478 TemplateDecl *Template, 2479 SourceLocation TemplateLoc, 2480 SourceLocation RAngleLoc, 2481 TemplateTypeParmDecl *Param, 2482 SmallVectorImpl<TemplateArgument> &Converted) { 2483 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 2484 2485 // If the argument type is dependent, instantiate it now based 2486 // on the previously-computed template arguments. 2487 if (ArgType->getType()->isDependentType()) { 2488 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2489 Converted.data(), Converted.size()); 2490 2491 MultiLevelTemplateArgumentList AllTemplateArgs 2492 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2493 2494 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2495 Template, Converted.data(), 2496 Converted.size(), 2497 SourceRange(TemplateLoc, RAngleLoc)); 2498 2499 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 2500 Param->getDefaultArgumentLoc(), 2501 Param->getDeclName()); 2502 } 2503 2504 return ArgType; 2505 } 2506 2507 /// \brief Substitute template arguments into the default template argument for 2508 /// the given non-type template parameter. 2509 /// 2510 /// \param SemaRef the semantic analysis object for which we are performing 2511 /// the substitution. 2512 /// 2513 /// \param Template the template that we are synthesizing template arguments 2514 /// for. 2515 /// 2516 /// \param TemplateLoc the location of the template name that started the 2517 /// template-id we are checking. 2518 /// 2519 /// \param RAngleLoc the location of the right angle bracket ('>') that 2520 /// terminates the template-id. 2521 /// 2522 /// \param Param the non-type template parameter whose default we are 2523 /// substituting into. 2524 /// 2525 /// \param Converted the list of template arguments provided for template 2526 /// parameters that precede \p Param in the template parameter list. 2527 /// 2528 /// \returns the substituted template argument, or NULL if an error occurred. 2529 static ExprResult 2530 SubstDefaultTemplateArgument(Sema &SemaRef, 2531 TemplateDecl *Template, 2532 SourceLocation TemplateLoc, 2533 SourceLocation RAngleLoc, 2534 NonTypeTemplateParmDecl *Param, 2535 SmallVectorImpl<TemplateArgument> &Converted) { 2536 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2537 Converted.data(), Converted.size()); 2538 2539 MultiLevelTemplateArgumentList AllTemplateArgs 2540 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2541 2542 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2543 Template, Converted.data(), 2544 Converted.size(), 2545 SourceRange(TemplateLoc, RAngleLoc)); 2546 2547 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 2548 } 2549 2550 /// \brief Substitute template arguments into the default template argument for 2551 /// the given template template parameter. 2552 /// 2553 /// \param SemaRef the semantic analysis object for which we are performing 2554 /// the substitution. 2555 /// 2556 /// \param Template the template that we are synthesizing template arguments 2557 /// for. 2558 /// 2559 /// \param TemplateLoc the location of the template name that started the 2560 /// template-id we are checking. 2561 /// 2562 /// \param RAngleLoc the location of the right angle bracket ('>') that 2563 /// terminates the template-id. 2564 /// 2565 /// \param Param the template template parameter whose default we are 2566 /// substituting into. 2567 /// 2568 /// \param Converted the list of template arguments provided for template 2569 /// parameters that precede \p Param in the template parameter list. 2570 /// 2571 /// \param QualifierLoc Will be set to the nested-name-specifier (with 2572 /// source-location information) that precedes the template name. 2573 /// 2574 /// \returns the substituted template argument, or NULL if an error occurred. 2575 static TemplateName 2576 SubstDefaultTemplateArgument(Sema &SemaRef, 2577 TemplateDecl *Template, 2578 SourceLocation TemplateLoc, 2579 SourceLocation RAngleLoc, 2580 TemplateTemplateParmDecl *Param, 2581 SmallVectorImpl<TemplateArgument> &Converted, 2582 NestedNameSpecifierLoc &QualifierLoc) { 2583 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2584 Converted.data(), Converted.size()); 2585 2586 MultiLevelTemplateArgumentList AllTemplateArgs 2587 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2588 2589 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2590 Template, Converted.data(), 2591 Converted.size(), 2592 SourceRange(TemplateLoc, RAngleLoc)); 2593 2594 // Substitute into the nested-name-specifier first, 2595 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); 2596 if (QualifierLoc) { 2597 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 2598 AllTemplateArgs); 2599 if (!QualifierLoc) 2600 return TemplateName(); 2601 } 2602 2603 return SemaRef.SubstTemplateName(QualifierLoc, 2604 Param->getDefaultArgument().getArgument().getAsTemplate(), 2605 Param->getDefaultArgument().getTemplateNameLoc(), 2606 AllTemplateArgs); 2607 } 2608 2609 /// \brief If the given template parameter has a default template 2610 /// argument, substitute into that default template argument and 2611 /// return the corresponding template argument. 2612 TemplateArgumentLoc 2613 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 2614 SourceLocation TemplateLoc, 2615 SourceLocation RAngleLoc, 2616 Decl *Param, 2617 SmallVectorImpl<TemplateArgument> &Converted) { 2618 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 2619 if (!TypeParm->hasDefaultArgument()) 2620 return TemplateArgumentLoc(); 2621 2622 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 2623 TemplateLoc, 2624 RAngleLoc, 2625 TypeParm, 2626 Converted); 2627 if (DI) 2628 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 2629 2630 return TemplateArgumentLoc(); 2631 } 2632 2633 if (NonTypeTemplateParmDecl *NonTypeParm 2634 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2635 if (!NonTypeParm->hasDefaultArgument()) 2636 return TemplateArgumentLoc(); 2637 2638 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 2639 TemplateLoc, 2640 RAngleLoc, 2641 NonTypeParm, 2642 Converted); 2643 if (Arg.isInvalid()) 2644 return TemplateArgumentLoc(); 2645 2646 Expr *ArgE = Arg.takeAs<Expr>(); 2647 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 2648 } 2649 2650 TemplateTemplateParmDecl *TempTempParm 2651 = cast<TemplateTemplateParmDecl>(Param); 2652 if (!TempTempParm->hasDefaultArgument()) 2653 return TemplateArgumentLoc(); 2654 2655 2656 NestedNameSpecifierLoc QualifierLoc; 2657 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 2658 TemplateLoc, 2659 RAngleLoc, 2660 TempTempParm, 2661 Converted, 2662 QualifierLoc); 2663 if (TName.isNull()) 2664 return TemplateArgumentLoc(); 2665 2666 return TemplateArgumentLoc(TemplateArgument(TName), 2667 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), 2668 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 2669 } 2670 2671 /// \brief Check that the given template argument corresponds to the given 2672 /// template parameter. 2673 /// 2674 /// \param Param The template parameter against which the argument will be 2675 /// checked. 2676 /// 2677 /// \param Arg The template argument. 2678 /// 2679 /// \param Template The template in which the template argument resides. 2680 /// 2681 /// \param TemplateLoc The location of the template name for the template 2682 /// whose argument list we're matching. 2683 /// 2684 /// \param RAngleLoc The location of the right angle bracket ('>') that closes 2685 /// the template argument list. 2686 /// 2687 /// \param ArgumentPackIndex The index into the argument pack where this 2688 /// argument will be placed. Only valid if the parameter is a parameter pack. 2689 /// 2690 /// \param Converted The checked, converted argument will be added to the 2691 /// end of this small vector. 2692 /// 2693 /// \param CTAK Describes how we arrived at this particular template argument: 2694 /// explicitly written, deduced, etc. 2695 /// 2696 /// \returns true on error, false otherwise. 2697 bool Sema::CheckTemplateArgument(NamedDecl *Param, 2698 const TemplateArgumentLoc &Arg, 2699 NamedDecl *Template, 2700 SourceLocation TemplateLoc, 2701 SourceLocation RAngleLoc, 2702 unsigned ArgumentPackIndex, 2703 SmallVectorImpl<TemplateArgument> &Converted, 2704 CheckTemplateArgumentKind CTAK) { 2705 // Check template type parameters. 2706 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 2707 return CheckTemplateTypeArgument(TTP, Arg, Converted); 2708 2709 // Check non-type template parameters. 2710 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2711 // Do substitution on the type of the non-type template parameter 2712 // with the template arguments we've seen thus far. But if the 2713 // template has a dependent context then we cannot substitute yet. 2714 QualType NTTPType = NTTP->getType(); 2715 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) 2716 NTTPType = NTTP->getExpansionType(ArgumentPackIndex); 2717 2718 if (NTTPType->isDependentType() && 2719 !isa<TemplateTemplateParmDecl>(Template) && 2720 !Template->getDeclContext()->isDependentContext()) { 2721 // Do substitution on the type of the non-type template parameter. 2722 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2723 NTTP, Converted.data(), Converted.size(), 2724 SourceRange(TemplateLoc, RAngleLoc)); 2725 2726 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2727 Converted.data(), Converted.size()); 2728 NTTPType = SubstType(NTTPType, 2729 MultiLevelTemplateArgumentList(TemplateArgs), 2730 NTTP->getLocation(), 2731 NTTP->getDeclName()); 2732 // If that worked, check the non-type template parameter type 2733 // for validity. 2734 if (!NTTPType.isNull()) 2735 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 2736 NTTP->getLocation()); 2737 if (NTTPType.isNull()) 2738 return true; 2739 } 2740 2741 switch (Arg.getArgument().getKind()) { 2742 case TemplateArgument::Null: 2743 llvm_unreachable("Should never see a NULL template argument here"); 2744 2745 case TemplateArgument::Expression: { 2746 TemplateArgument Result; 2747 ExprResult Res = 2748 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(), 2749 Result, CTAK); 2750 if (Res.isInvalid()) 2751 return true; 2752 2753 Converted.push_back(Result); 2754 break; 2755 } 2756 2757 case TemplateArgument::Declaration: 2758 case TemplateArgument::Integral: 2759 // We've already checked this template argument, so just copy 2760 // it to the list of converted arguments. 2761 Converted.push_back(Arg.getArgument()); 2762 break; 2763 2764 case TemplateArgument::Template: 2765 case TemplateArgument::TemplateExpansion: 2766 // We were given a template template argument. It may not be ill-formed; 2767 // see below. 2768 if (DependentTemplateName *DTN 2769 = Arg.getArgument().getAsTemplateOrTemplatePattern() 2770 .getAsDependentTemplateName()) { 2771 // We have a template argument such as \c T::template X, which we 2772 // parsed as a template template argument. However, since we now 2773 // know that we need a non-type template argument, convert this 2774 // template name into an expression. 2775 2776 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 2777 Arg.getTemplateNameLoc()); 2778 2779 CXXScopeSpec SS; 2780 SS.Adopt(Arg.getTemplateQualifierLoc()); 2781 // FIXME: the template-template arg was a DependentTemplateName, 2782 // so it was provided with a template keyword. However, its source 2783 // location is not stored in the template argument structure. 2784 SourceLocation TemplateKWLoc; 2785 ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context, 2786 SS.getWithLocInContext(Context), 2787 TemplateKWLoc, 2788 NameInfo, 0)); 2789 2790 // If we parsed the template argument as a pack expansion, create a 2791 // pack expansion expression. 2792 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 2793 E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc()); 2794 if (E.isInvalid()) 2795 return true; 2796 } 2797 2798 TemplateArgument Result; 2799 E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result); 2800 if (E.isInvalid()) 2801 return true; 2802 2803 Converted.push_back(Result); 2804 break; 2805 } 2806 2807 // We have a template argument that actually does refer to a class 2808 // template, alias template, or template template parameter, and 2809 // therefore cannot be a non-type template argument. 2810 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 2811 << Arg.getSourceRange(); 2812 2813 Diag(Param->getLocation(), diag::note_template_param_here); 2814 return true; 2815 2816 case TemplateArgument::Type: { 2817 // We have a non-type template parameter but the template 2818 // argument is a type. 2819 2820 // C++ [temp.arg]p2: 2821 // In a template-argument, an ambiguity between a type-id and 2822 // an expression is resolved to a type-id, regardless of the 2823 // form of the corresponding template-parameter. 2824 // 2825 // We warn specifically about this case, since it can be rather 2826 // confusing for users. 2827 QualType T = Arg.getArgument().getAsType(); 2828 SourceRange SR = Arg.getSourceRange(); 2829 if (T->isFunctionType()) 2830 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2831 else 2832 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2833 Diag(Param->getLocation(), diag::note_template_param_here); 2834 return true; 2835 } 2836 2837 case TemplateArgument::Pack: 2838 llvm_unreachable("Caller must expand template argument packs"); 2839 } 2840 2841 return false; 2842 } 2843 2844 2845 // Check template template parameters. 2846 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2847 2848 // Substitute into the template parameter list of the template 2849 // template parameter, since previously-supplied template arguments 2850 // may appear within the template template parameter. 2851 { 2852 // Set up a template instantiation context. 2853 LocalInstantiationScope Scope(*this); 2854 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2855 TempParm, Converted.data(), Converted.size(), 2856 SourceRange(TemplateLoc, RAngleLoc)); 2857 2858 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2859 Converted.data(), Converted.size()); 2860 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2861 SubstDecl(TempParm, CurContext, 2862 MultiLevelTemplateArgumentList(TemplateArgs))); 2863 if (!TempParm) 2864 return true; 2865 } 2866 2867 switch (Arg.getArgument().getKind()) { 2868 case TemplateArgument::Null: 2869 llvm_unreachable("Should never see a NULL template argument here"); 2870 2871 case TemplateArgument::Template: 2872 case TemplateArgument::TemplateExpansion: 2873 if (CheckTemplateArgument(TempParm, Arg)) 2874 return true; 2875 2876 Converted.push_back(Arg.getArgument()); 2877 break; 2878 2879 case TemplateArgument::Expression: 2880 case TemplateArgument::Type: 2881 // We have a template template parameter but the template 2882 // argument does not refer to a template. 2883 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template) 2884 << getLangOpts().CPlusPlus0x; 2885 return true; 2886 2887 case TemplateArgument::Declaration: 2888 llvm_unreachable("Declaration argument with template template parameter"); 2889 case TemplateArgument::Integral: 2890 llvm_unreachable("Integral argument with template template parameter"); 2891 2892 case TemplateArgument::Pack: 2893 llvm_unreachable("Caller must expand template argument packs"); 2894 } 2895 2896 return false; 2897 } 2898 2899 /// \brief Diagnose an arity mismatch in the 2900 static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template, 2901 SourceLocation TemplateLoc, 2902 TemplateArgumentListInfo &TemplateArgs) { 2903 TemplateParameterList *Params = Template->getTemplateParameters(); 2904 unsigned NumParams = Params->size(); 2905 unsigned NumArgs = TemplateArgs.size(); 2906 2907 SourceRange Range; 2908 if (NumArgs > NumParams) 2909 Range = SourceRange(TemplateArgs[NumParams].getLocation(), 2910 TemplateArgs.getRAngleLoc()); 2911 S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2912 << (NumArgs > NumParams) 2913 << (isa<ClassTemplateDecl>(Template)? 0 : 2914 isa<FunctionTemplateDecl>(Template)? 1 : 2915 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2916 << Template << Range; 2917 S.Diag(Template->getLocation(), diag::note_template_decl_here) 2918 << Params->getSourceRange(); 2919 return true; 2920 } 2921 2922 /// \brief Check that the given template argument list is well-formed 2923 /// for specializing the given template. 2924 bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 2925 SourceLocation TemplateLoc, 2926 TemplateArgumentListInfo &TemplateArgs, 2927 bool PartialTemplateArgs, 2928 SmallVectorImpl<TemplateArgument> &Converted, 2929 bool *ExpansionIntoFixedList) { 2930 if (ExpansionIntoFixedList) 2931 *ExpansionIntoFixedList = false; 2932 2933 TemplateParameterList *Params = Template->getTemplateParameters(); 2934 unsigned NumParams = Params->size(); 2935 unsigned NumArgs = TemplateArgs.size(); 2936 bool Invalid = false; 2937 2938 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 2939 2940 bool HasParameterPack = 2941 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 2942 2943 // C++ [temp.arg]p1: 2944 // [...] The type and form of each template-argument specified in 2945 // a template-id shall match the type and form specified for the 2946 // corresponding parameter declared by the template in its 2947 // template-parameter-list. 2948 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template); 2949 SmallVector<TemplateArgument, 2> ArgumentPack; 2950 TemplateParameterList::iterator Param = Params->begin(), 2951 ParamEnd = Params->end(); 2952 unsigned ArgIdx = 0; 2953 LocalInstantiationScope InstScope(*this, true); 2954 bool SawPackExpansion = false; 2955 while (Param != ParamEnd) { 2956 if (ArgIdx < NumArgs) { 2957 // If we have an expanded parameter pack, make sure we don't have too 2958 // many arguments. 2959 // FIXME: This really should fall out from the normal arity checking. 2960 if (NonTypeTemplateParmDecl *NTTP 2961 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2962 if (NTTP->isExpandedParameterPack() && 2963 ArgumentPack.size() >= NTTP->getNumExpansionTypes()) { 2964 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2965 << true 2966 << (isa<ClassTemplateDecl>(Template)? 0 : 2967 isa<FunctionTemplateDecl>(Template)? 1 : 2968 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2969 << Template; 2970 Diag(Template->getLocation(), diag::note_template_decl_here) 2971 << Params->getSourceRange(); 2972 return true; 2973 } 2974 } 2975 2976 // Check the template argument we were given. 2977 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2978 TemplateLoc, RAngleLoc, 2979 ArgumentPack.size(), Converted)) 2980 return true; 2981 2982 if ((*Param)->isTemplateParameterPack()) { 2983 // The template parameter was a template parameter pack, so take the 2984 // deduced argument and place it on the argument pack. Note that we 2985 // stay on the same template parameter so that we can deduce more 2986 // arguments. 2987 ArgumentPack.push_back(Converted.back()); 2988 Converted.pop_back(); 2989 } else { 2990 // Move to the next template parameter. 2991 ++Param; 2992 } 2993 2994 // If this template argument is a pack expansion, record that fact 2995 // and break out; we can't actually check any more. 2996 if (TemplateArgs[ArgIdx].getArgument().isPackExpansion()) { 2997 SawPackExpansion = true; 2998 ++ArgIdx; 2999 break; 3000 } 3001 3002 ++ArgIdx; 3003 continue; 3004 } 3005 3006 // If we're checking a partial template argument list, we're done. 3007 if (PartialTemplateArgs) { 3008 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty()) 3009 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 3010 ArgumentPack.data(), 3011 ArgumentPack.size())); 3012 3013 return Invalid; 3014 } 3015 3016 // If we have a template parameter pack with no more corresponding 3017 // arguments, just break out now and we'll fill in the argument pack below. 3018 if ((*Param)->isTemplateParameterPack()) 3019 break; 3020 3021 // Check whether we have a default argument. 3022 TemplateArgumentLoc Arg; 3023 3024 // Retrieve the default template argument from the template 3025 // parameter. For each kind of template parameter, we substitute the 3026 // template arguments provided thus far and any "outer" template arguments 3027 // (when the template parameter was part of a nested template) into 3028 // the default argument. 3029 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 3030 if (!TTP->hasDefaultArgument()) 3031 return diagnoseArityMismatch(*this, Template, TemplateLoc, 3032 TemplateArgs); 3033 3034 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 3035 Template, 3036 TemplateLoc, 3037 RAngleLoc, 3038 TTP, 3039 Converted); 3040 if (!ArgType) 3041 return true; 3042 3043 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 3044 ArgType); 3045 } else if (NonTypeTemplateParmDecl *NTTP 3046 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 3047 if (!NTTP->hasDefaultArgument()) 3048 return diagnoseArityMismatch(*this, Template, TemplateLoc, 3049 TemplateArgs); 3050 3051 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 3052 TemplateLoc, 3053 RAngleLoc, 3054 NTTP, 3055 Converted); 3056 if (E.isInvalid()) 3057 return true; 3058 3059 Expr *Ex = E.takeAs<Expr>(); 3060 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 3061 } else { 3062 TemplateTemplateParmDecl *TempParm 3063 = cast<TemplateTemplateParmDecl>(*Param); 3064 3065 if (!TempParm->hasDefaultArgument()) 3066 return diagnoseArityMismatch(*this, Template, TemplateLoc, 3067 TemplateArgs); 3068 3069 NestedNameSpecifierLoc QualifierLoc; 3070 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 3071 TemplateLoc, 3072 RAngleLoc, 3073 TempParm, 3074 Converted, 3075 QualifierLoc); 3076 if (Name.isNull()) 3077 return true; 3078 3079 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc, 3080 TempParm->getDefaultArgument().getTemplateNameLoc()); 3081 } 3082 3083 // Introduce an instantiation record that describes where we are using 3084 // the default template argument. 3085 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param, 3086 Converted.data(), Converted.size(), 3087 SourceRange(TemplateLoc, RAngleLoc)); 3088 3089 // Check the default template argument. 3090 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 3091 RAngleLoc, 0, Converted)) 3092 return true; 3093 3094 // Core issue 150 (assumed resolution): if this is a template template 3095 // parameter, keep track of the default template arguments from the 3096 // template definition. 3097 if (isTemplateTemplateParameter) 3098 TemplateArgs.addArgument(Arg); 3099 3100 // Move to the next template parameter and argument. 3101 ++Param; 3102 ++ArgIdx; 3103 } 3104 3105 // If we saw a pack expansion, then directly convert the remaining arguments, 3106 // because we don't know what parameters they'll match up with. 3107 if (SawPackExpansion) { 3108 bool AddToArgumentPack 3109 = Param != ParamEnd && (*Param)->isTemplateParameterPack(); 3110 while (ArgIdx < NumArgs) { 3111 if (AddToArgumentPack) 3112 ArgumentPack.push_back(TemplateArgs[ArgIdx].getArgument()); 3113 else 3114 Converted.push_back(TemplateArgs[ArgIdx].getArgument()); 3115 ++ArgIdx; 3116 } 3117 3118 // Push the argument pack onto the list of converted arguments. 3119 if (AddToArgumentPack) { 3120 if (ArgumentPack.empty()) 3121 Converted.push_back(TemplateArgument(0, 0)); 3122 else { 3123 Converted.push_back( 3124 TemplateArgument::CreatePackCopy(Context, 3125 ArgumentPack.data(), 3126 ArgumentPack.size())); 3127 ArgumentPack.clear(); 3128 } 3129 } else if (ExpansionIntoFixedList) { 3130 // We have expanded a pack into a fixed list. 3131 *ExpansionIntoFixedList = true; 3132 } 3133 3134 return Invalid; 3135 } 3136 3137 // If we have any leftover arguments, then there were too many arguments. 3138 // Complain and fail. 3139 if (ArgIdx < NumArgs) 3140 return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs); 3141 3142 // If we have an expanded parameter pack, make sure we don't have too 3143 // many arguments. 3144 // FIXME: This really should fall out from the normal arity checking. 3145 if (Param != ParamEnd) { 3146 if (NonTypeTemplateParmDecl *NTTP 3147 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 3148 if (NTTP->isExpandedParameterPack() && 3149 ArgumentPack.size() < NTTP->getNumExpansionTypes()) { 3150 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 3151 << false 3152 << (isa<ClassTemplateDecl>(Template)? 0 : 3153 isa<FunctionTemplateDecl>(Template)? 1 : 3154 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 3155 << Template; 3156 Diag(Template->getLocation(), diag::note_template_decl_here) 3157 << Params->getSourceRange(); 3158 return true; 3159 } 3160 } 3161 } 3162 3163 // Form argument packs for each of the parameter packs remaining. 3164 while (Param != ParamEnd) { 3165 // If we're checking a partial list of template arguments, don't fill 3166 // in arguments for non-template parameter packs. 3167 if ((*Param)->isTemplateParameterPack()) { 3168 if (!HasParameterPack) 3169 return true; 3170 if (ArgumentPack.empty()) 3171 Converted.push_back(TemplateArgument(0, 0)); 3172 else { 3173 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 3174 ArgumentPack.data(), 3175 ArgumentPack.size())); 3176 ArgumentPack.clear(); 3177 } 3178 } else if (!PartialTemplateArgs) 3179 return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs); 3180 3181 ++Param; 3182 } 3183 3184 return Invalid; 3185 } 3186 3187 namespace { 3188 class UnnamedLocalNoLinkageFinder 3189 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 3190 { 3191 Sema &S; 3192 SourceRange SR; 3193 3194 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 3195 3196 public: 3197 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 3198 3199 bool Visit(QualType T) { 3200 return inherited::Visit(T.getTypePtr()); 3201 } 3202 3203 #define TYPE(Class, Parent) \ 3204 bool Visit##Class##Type(const Class##Type *); 3205 #define ABSTRACT_TYPE(Class, Parent) \ 3206 bool Visit##Class##Type(const Class##Type *) { return false; } 3207 #define NON_CANONICAL_TYPE(Class, Parent) \ 3208 bool Visit##Class##Type(const Class##Type *) { return false; } 3209 #include "clang/AST/TypeNodes.def" 3210 3211 bool VisitTagDecl(const TagDecl *Tag); 3212 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 3213 }; 3214 } 3215 3216 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 3217 return false; 3218 } 3219 3220 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 3221 return Visit(T->getElementType()); 3222 } 3223 3224 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 3225 return Visit(T->getPointeeType()); 3226 } 3227 3228 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 3229 const BlockPointerType* T) { 3230 return Visit(T->getPointeeType()); 3231 } 3232 3233 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 3234 const LValueReferenceType* T) { 3235 return Visit(T->getPointeeType()); 3236 } 3237 3238 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 3239 const RValueReferenceType* T) { 3240 return Visit(T->getPointeeType()); 3241 } 3242 3243 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 3244 const MemberPointerType* T) { 3245 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 3246 } 3247 3248 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 3249 const ConstantArrayType* T) { 3250 return Visit(T->getElementType()); 3251 } 3252 3253 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 3254 const IncompleteArrayType* T) { 3255 return Visit(T->getElementType()); 3256 } 3257 3258 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 3259 const VariableArrayType* T) { 3260 return Visit(T->getElementType()); 3261 } 3262 3263 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 3264 const DependentSizedArrayType* T) { 3265 return Visit(T->getElementType()); 3266 } 3267 3268 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 3269 const DependentSizedExtVectorType* T) { 3270 return Visit(T->getElementType()); 3271 } 3272 3273 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 3274 return Visit(T->getElementType()); 3275 } 3276 3277 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 3278 return Visit(T->getElementType()); 3279 } 3280 3281 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 3282 const FunctionProtoType* T) { 3283 for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(), 3284 AEnd = T->arg_type_end(); 3285 A != AEnd; ++A) { 3286 if (Visit(*A)) 3287 return true; 3288 } 3289 3290 return Visit(T->getResultType()); 3291 } 3292 3293 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 3294 const FunctionNoProtoType* T) { 3295 return Visit(T->getResultType()); 3296 } 3297 3298 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 3299 const UnresolvedUsingType*) { 3300 return false; 3301 } 3302 3303 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 3304 return false; 3305 } 3306 3307 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 3308 return Visit(T->getUnderlyingType()); 3309 } 3310 3311 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 3312 return false; 3313 } 3314 3315 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( 3316 const UnaryTransformType*) { 3317 return false; 3318 } 3319 3320 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { 3321 return Visit(T->getDeducedType()); 3322 } 3323 3324 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 3325 return VisitTagDecl(T->getDecl()); 3326 } 3327 3328 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 3329 return VisitTagDecl(T->getDecl()); 3330 } 3331 3332 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 3333 const TemplateTypeParmType*) { 3334 return false; 3335 } 3336 3337 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( 3338 const SubstTemplateTypeParmPackType *) { 3339 return false; 3340 } 3341 3342 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 3343 const TemplateSpecializationType*) { 3344 return false; 3345 } 3346 3347 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 3348 const InjectedClassNameType* T) { 3349 return VisitTagDecl(T->getDecl()); 3350 } 3351 3352 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 3353 const DependentNameType* T) { 3354 return VisitNestedNameSpecifier(T->getQualifier()); 3355 } 3356 3357 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 3358 const DependentTemplateSpecializationType* T) { 3359 return VisitNestedNameSpecifier(T->getQualifier()); 3360 } 3361 3362 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 3363 const PackExpansionType* T) { 3364 return Visit(T->getPattern()); 3365 } 3366 3367 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 3368 return false; 3369 } 3370 3371 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 3372 const ObjCInterfaceType *) { 3373 return false; 3374 } 3375 3376 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 3377 const ObjCObjectPointerType *) { 3378 return false; 3379 } 3380 3381 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) { 3382 return Visit(T->getValueType()); 3383 } 3384 3385 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 3386 if (Tag->getDeclContext()->isFunctionOrMethod()) { 3387 S.Diag(SR.getBegin(), 3388 S.getLangOpts().CPlusPlus0x ? 3389 diag::warn_cxx98_compat_template_arg_local_type : 3390 diag::ext_template_arg_local_type) 3391 << S.Context.getTypeDeclType(Tag) << SR; 3392 return true; 3393 } 3394 3395 if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) { 3396 S.Diag(SR.getBegin(), 3397 S.getLangOpts().CPlusPlus0x ? 3398 diag::warn_cxx98_compat_template_arg_unnamed_type : 3399 diag::ext_template_arg_unnamed_type) << SR; 3400 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 3401 return true; 3402 } 3403 3404 return false; 3405 } 3406 3407 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 3408 NestedNameSpecifier *NNS) { 3409 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 3410 return true; 3411 3412 switch (NNS->getKind()) { 3413 case NestedNameSpecifier::Identifier: 3414 case NestedNameSpecifier::Namespace: 3415 case NestedNameSpecifier::NamespaceAlias: 3416 case NestedNameSpecifier::Global: 3417 return false; 3418 3419 case NestedNameSpecifier::TypeSpec: 3420 case NestedNameSpecifier::TypeSpecWithTemplate: 3421 return Visit(QualType(NNS->getAsType(), 0)); 3422 } 3423 llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); 3424 } 3425 3426 3427 /// \brief Check a template argument against its corresponding 3428 /// template type parameter. 3429 /// 3430 /// This routine implements the semantics of C++ [temp.arg.type]. It 3431 /// returns true if an error occurred, and false otherwise. 3432 bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 3433 TypeSourceInfo *ArgInfo) { 3434 assert(ArgInfo && "invalid TypeSourceInfo"); 3435 QualType Arg = ArgInfo->getType(); 3436 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 3437 3438 if (Arg->isVariablyModifiedType()) { 3439 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 3440 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 3441 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 3442 } 3443 3444 // C++03 [temp.arg.type]p2: 3445 // A local type, a type with no linkage, an unnamed type or a type 3446 // compounded from any of these types shall not be used as a 3447 // template-argument for a template type-parameter. 3448 // 3449 // C++11 allows these, and even in C++03 we allow them as an extension with 3450 // a warning. 3451 if (LangOpts.CPlusPlus0x ? 3452 Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type, 3453 SR.getBegin()) != DiagnosticsEngine::Ignored || 3454 Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type, 3455 SR.getBegin()) != DiagnosticsEngine::Ignored : 3456 Arg->hasUnnamedOrLocalType()) { 3457 UnnamedLocalNoLinkageFinder Finder(*this, SR); 3458 (void)Finder.Visit(Context.getCanonicalType(Arg)); 3459 } 3460 3461 return false; 3462 } 3463 3464 enum NullPointerValueKind { 3465 NPV_NotNullPointer, 3466 NPV_NullPointer, 3467 NPV_Error 3468 }; 3469 3470 /// \brief Determine whether the given template argument is a null pointer 3471 /// value of the appropriate type. 3472 static NullPointerValueKind 3473 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param, 3474 QualType ParamType, Expr *Arg) { 3475 if (Arg->isValueDependent() || Arg->isTypeDependent()) 3476 return NPV_NotNullPointer; 3477 3478 if (!S.getLangOpts().CPlusPlus0x) 3479 return NPV_NotNullPointer; 3480 3481 // Determine whether we have a constant expression. 3482 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg); 3483 if (ArgRV.isInvalid()) 3484 return NPV_Error; 3485 Arg = ArgRV.take(); 3486 3487 Expr::EvalResult EvalResult; 3488 llvm::SmallVector<PartialDiagnosticAt, 8> Notes; 3489 EvalResult.Diag = &Notes; 3490 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) || 3491 EvalResult.HasSideEffects) { 3492 SourceLocation DiagLoc = Arg->getExprLoc(); 3493 3494 // If our only note is the usual "invalid subexpression" note, just point 3495 // the caret at its location rather than producing an essentially 3496 // redundant note. 3497 if (Notes.size() == 1 && Notes[0].second.getDiagID() == 3498 diag::note_invalid_subexpr_in_const_expr) { 3499 DiagLoc = Notes[0].first; 3500 Notes.clear(); 3501 } 3502 3503 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant) 3504 << Arg->getType() << Arg->getSourceRange(); 3505 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 3506 S.Diag(Notes[I].first, Notes[I].second); 3507 3508 S.Diag(Param->getLocation(), diag::note_template_param_here); 3509 return NPV_Error; 3510 } 3511 3512 // C++11 [temp.arg.nontype]p1: 3513 // - an address constant expression of type std::nullptr_t 3514 if (Arg->getType()->isNullPtrType()) 3515 return NPV_NullPointer; 3516 3517 // - a constant expression that evaluates to a null pointer value (4.10); or 3518 // - a constant expression that evaluates to a null member pointer value 3519 // (4.11); or 3520 if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) || 3521 (EvalResult.Val.isMemberPointer() && 3522 !EvalResult.Val.getMemberPointerDecl())) { 3523 // If our expression has an appropriate type, we've succeeded. 3524 bool ObjCLifetimeConversion; 3525 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) || 3526 S.IsQualificationConversion(Arg->getType(), ParamType, false, 3527 ObjCLifetimeConversion)) 3528 return NPV_NullPointer; 3529 3530 // The types didn't match, but we know we got a null pointer; complain, 3531 // then recover as if the types were correct. 3532 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant) 3533 << Arg->getType() << ParamType << Arg->getSourceRange(); 3534 S.Diag(Param->getLocation(), diag::note_template_param_here); 3535 return NPV_NullPointer; 3536 } 3537 3538 // If we don't have a null pointer value, but we do have a NULL pointer 3539 // constant, suggest a cast to the appropriate type. 3540 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) { 3541 std::string Code = "static_cast<" + ParamType.getAsString() + ">("; 3542 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant) 3543 << ParamType 3544 << FixItHint::CreateInsertion(Arg->getLocStart(), Code) 3545 << FixItHint::CreateInsertion(S.PP.getLocForEndOfToken(Arg->getLocEnd()), 3546 ")"); 3547 S.Diag(Param->getLocation(), diag::note_template_param_here); 3548 return NPV_NullPointer; 3549 } 3550 3551 // FIXME: If we ever want to support general, address-constant expressions 3552 // as non-type template arguments, we should return the ExprResult here to 3553 // be interpreted by the caller. 3554 return NPV_NotNullPointer; 3555 } 3556 3557 /// \brief Checks whether the given template argument is the address 3558 /// of an object or function according to C++ [temp.arg.nontype]p1. 3559 static bool 3560 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 3561 NonTypeTemplateParmDecl *Param, 3562 QualType ParamType, 3563 Expr *ArgIn, 3564 TemplateArgument &Converted) { 3565 bool Invalid = false; 3566 Expr *Arg = ArgIn; 3567 QualType ArgType = Arg->getType(); 3568 3569 // If our parameter has pointer type, check for a null template value. 3570 if (ParamType->isPointerType() || ParamType->isNullPtrType()) { 3571 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) { 3572 case NPV_NullPointer: 3573 Converted = TemplateArgument((Decl *)0); 3574 return false; 3575 3576 case NPV_Error: 3577 return true; 3578 3579 case NPV_NotNullPointer: 3580 break; 3581 } 3582 } 3583 3584 // See through any implicit casts we added to fix the type. 3585 Arg = Arg->IgnoreImpCasts(); 3586 3587 // C++ [temp.arg.nontype]p1: 3588 // 3589 // A template-argument for a non-type, non-template 3590 // template-parameter shall be one of: [...] 3591 // 3592 // -- the address of an object or function with external 3593 // linkage, including function templates and function 3594 // template-ids but excluding non-static class members, 3595 // expressed as & id-expression where the & is optional if 3596 // the name refers to a function or array, or if the 3597 // corresponding template-parameter is a reference; or 3598 3599 // In C++98/03 mode, give an extension warning on any extra parentheses. 3600 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3601 bool ExtraParens = false; 3602 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3603 if (!Invalid && !ExtraParens) { 3604 S.Diag(Arg->getLocStart(), 3605 S.getLangOpts().CPlusPlus0x ? 3606 diag::warn_cxx98_compat_template_arg_extra_parens : 3607 diag::ext_template_arg_extra_parens) 3608 << Arg->getSourceRange(); 3609 ExtraParens = true; 3610 } 3611 3612 Arg = Parens->getSubExpr(); 3613 } 3614 3615 while (SubstNonTypeTemplateParmExpr *subst = 3616 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 3617 Arg = subst->getReplacement()->IgnoreImpCasts(); 3618 3619 bool AddressTaken = false; 3620 SourceLocation AddrOpLoc; 3621 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 3622 if (UnOp->getOpcode() == UO_AddrOf) { 3623 Arg = UnOp->getSubExpr(); 3624 AddressTaken = true; 3625 AddrOpLoc = UnOp->getOperatorLoc(); 3626 } 3627 } 3628 3629 if (S.getLangOpts().MicrosoftExt && isa<CXXUuidofExpr>(Arg)) { 3630 Converted = TemplateArgument(ArgIn); 3631 return false; 3632 } 3633 3634 while (SubstNonTypeTemplateParmExpr *subst = 3635 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 3636 Arg = subst->getReplacement()->IgnoreImpCasts(); 3637 3638 // Stop checking the precise nature of the argument if it is value dependent, 3639 // it should be checked when instantiated. 3640 if (Arg->isValueDependent()) { 3641 Converted = TemplateArgument(ArgIn); 3642 return false; 3643 } 3644 3645 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg); 3646 if (!DRE) { 3647 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 3648 << Arg->getSourceRange(); 3649 S.Diag(Param->getLocation(), diag::note_template_param_here); 3650 return true; 3651 } 3652 3653 if (!isa<ValueDecl>(DRE->getDecl())) { 3654 S.Diag(Arg->getLocStart(), 3655 diag::err_template_arg_not_object_or_func_form) 3656 << Arg->getSourceRange(); 3657 S.Diag(Param->getLocation(), diag::note_template_param_here); 3658 return true; 3659 } 3660 3661 NamedDecl *Entity = DRE->getDecl(); 3662 3663 // Cannot refer to non-static data members 3664 if (FieldDecl *Field = dyn_cast<FieldDecl>(Entity)) { 3665 S.Diag(Arg->getLocStart(), diag::err_template_arg_field) 3666 << Field << Arg->getSourceRange(); 3667 S.Diag(Param->getLocation(), diag::note_template_param_here); 3668 return true; 3669 } 3670 3671 // Cannot refer to non-static member functions 3672 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) { 3673 if (!Method->isStatic()) { 3674 S.Diag(Arg->getLocStart(), diag::err_template_arg_method) 3675 << Method << Arg->getSourceRange(); 3676 S.Diag(Param->getLocation(), diag::note_template_param_here); 3677 return true; 3678 } 3679 } 3680 3681 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity); 3682 VarDecl *Var = dyn_cast<VarDecl>(Entity); 3683 3684 // A non-type template argument must refer to an object or function. 3685 if (!Func && !Var) { 3686 // We found something, but we don't know specifically what it is. 3687 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func) 3688 << Arg->getSourceRange(); 3689 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 3690 return true; 3691 } 3692 3693 // Address / reference template args must have external linkage in C++98. 3694 if (Entity->getLinkage() == InternalLinkage) { 3695 S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus0x ? 3696 diag::warn_cxx98_compat_template_arg_object_internal : 3697 diag::ext_template_arg_object_internal) 3698 << !Func << Entity << Arg->getSourceRange(); 3699 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 3700 << !Func; 3701 } else if (Entity->getLinkage() == NoLinkage) { 3702 S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage) 3703 << !Func << Entity << Arg->getSourceRange(); 3704 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 3705 << !Func; 3706 return true; 3707 } 3708 3709 if (Func) { 3710 // If the template parameter has pointer type, the function decays. 3711 if (ParamType->isPointerType() && !AddressTaken) 3712 ArgType = S.Context.getPointerType(Func->getType()); 3713 else if (AddressTaken && ParamType->isReferenceType()) { 3714 // If we originally had an address-of operator, but the 3715 // parameter has reference type, complain and (if things look 3716 // like they will work) drop the address-of operator. 3717 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 3718 ParamType.getNonReferenceType())) { 3719 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3720 << ParamType; 3721 S.Diag(Param->getLocation(), diag::note_template_param_here); 3722 return true; 3723 } 3724 3725 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3726 << ParamType 3727 << FixItHint::CreateRemoval(AddrOpLoc); 3728 S.Diag(Param->getLocation(), diag::note_template_param_here); 3729 3730 ArgType = Func->getType(); 3731 } 3732 } else { 3733 // A value of reference type is not an object. 3734 if (Var->getType()->isReferenceType()) { 3735 S.Diag(Arg->getLocStart(), 3736 diag::err_template_arg_reference_var) 3737 << Var->getType() << Arg->getSourceRange(); 3738 S.Diag(Param->getLocation(), diag::note_template_param_here); 3739 return true; 3740 } 3741 3742 // A template argument must have static storage duration. 3743 // FIXME: Ensure this works for thread_local as well as __thread. 3744 if (Var->isThreadSpecified()) { 3745 S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local) 3746 << Arg->getSourceRange(); 3747 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here); 3748 return true; 3749 } 3750 3751 // If the template parameter has pointer type, we must have taken 3752 // the address of this object. 3753 if (ParamType->isReferenceType()) { 3754 if (AddressTaken) { 3755 // If we originally had an address-of operator, but the 3756 // parameter has reference type, complain and (if things look 3757 // like they will work) drop the address-of operator. 3758 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 3759 ParamType.getNonReferenceType())) { 3760 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3761 << ParamType; 3762 S.Diag(Param->getLocation(), diag::note_template_param_here); 3763 return true; 3764 } 3765 3766 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3767 << ParamType 3768 << FixItHint::CreateRemoval(AddrOpLoc); 3769 S.Diag(Param->getLocation(), diag::note_template_param_here); 3770 3771 ArgType = Var->getType(); 3772 } 3773 } else if (!AddressTaken && ParamType->isPointerType()) { 3774 if (Var->getType()->isArrayType()) { 3775 // Array-to-pointer decay. 3776 ArgType = S.Context.getArrayDecayedType(Var->getType()); 3777 } else { 3778 // If the template parameter has pointer type but the address of 3779 // this object was not taken, complain and (possibly) recover by 3780 // taking the address of the entity. 3781 ArgType = S.Context.getPointerType(Var->getType()); 3782 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 3783 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3784 << ParamType; 3785 S.Diag(Param->getLocation(), diag::note_template_param_here); 3786 return true; 3787 } 3788 3789 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3790 << ParamType 3791 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 3792 3793 S.Diag(Param->getLocation(), diag::note_template_param_here); 3794 } 3795 } 3796 } 3797 3798 bool ObjCLifetimeConversion; 3799 if (ParamType->isPointerType() && 3800 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 3801 S.IsQualificationConversion(ArgType, ParamType, false, 3802 ObjCLifetimeConversion)) { 3803 // For pointer-to-object types, qualification conversions are 3804 // permitted. 3805 } else { 3806 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 3807 if (!ParamRef->getPointeeType()->isFunctionType()) { 3808 // C++ [temp.arg.nontype]p5b3: 3809 // For a non-type template-parameter of type reference to 3810 // object, no conversions apply. The type referred to by the 3811 // reference may be more cv-qualified than the (otherwise 3812 // identical) type of the template- argument. The 3813 // template-parameter is bound directly to the 3814 // template-argument, which shall be an lvalue. 3815 3816 // FIXME: Other qualifiers? 3817 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 3818 unsigned ArgQuals = ArgType.getCVRQualifiers(); 3819 3820 if ((ParamQuals | ArgQuals) != ParamQuals) { 3821 S.Diag(Arg->getLocStart(), 3822 diag::err_template_arg_ref_bind_ignores_quals) 3823 << ParamType << Arg->getType() 3824 << Arg->getSourceRange(); 3825 S.Diag(Param->getLocation(), diag::note_template_param_here); 3826 return true; 3827 } 3828 } 3829 } 3830 3831 // At this point, the template argument refers to an object or 3832 // function with external linkage. We now need to check whether the 3833 // argument and parameter types are compatible. 3834 if (!S.Context.hasSameUnqualifiedType(ArgType, 3835 ParamType.getNonReferenceType())) { 3836 // We can't perform this conversion or binding. 3837 if (ParamType->isReferenceType()) 3838 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 3839 << ParamType << ArgIn->getType() << Arg->getSourceRange(); 3840 else 3841 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 3842 << ArgIn->getType() << ParamType << Arg->getSourceRange(); 3843 S.Diag(Param->getLocation(), diag::note_template_param_here); 3844 return true; 3845 } 3846 } 3847 3848 // Create the template argument. 3849 Converted = TemplateArgument(Entity->getCanonicalDecl()); 3850 S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity); 3851 return false; 3852 } 3853 3854 /// \brief Checks whether the given template argument is a pointer to 3855 /// member constant according to C++ [temp.arg.nontype]p1. 3856 static bool CheckTemplateArgumentPointerToMember(Sema &S, 3857 NonTypeTemplateParmDecl *Param, 3858 QualType ParamType, 3859 Expr *&ResultArg, 3860 TemplateArgument &Converted) { 3861 bool Invalid = false; 3862 3863 // Check for a null pointer value. 3864 Expr *Arg = ResultArg; 3865 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) { 3866 case NPV_Error: 3867 return true; 3868 case NPV_NullPointer: 3869 Converted = TemplateArgument((Decl *)0); 3870 return false; 3871 case NPV_NotNullPointer: 3872 break; 3873 } 3874 3875 bool ObjCLifetimeConversion; 3876 if (S.IsQualificationConversion(Arg->getType(), 3877 ParamType.getNonReferenceType(), 3878 false, ObjCLifetimeConversion)) { 3879 Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp, 3880 Arg->getValueKind()).take(); 3881 ResultArg = Arg; 3882 } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(), 3883 ParamType.getNonReferenceType())) { 3884 // We can't perform this conversion. 3885 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 3886 << Arg->getType() << ParamType << Arg->getSourceRange(); 3887 S.Diag(Param->getLocation(), diag::note_template_param_here); 3888 return true; 3889 } 3890 3891 // See through any implicit casts we added to fix the type. 3892 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 3893 Arg = Cast->getSubExpr(); 3894 3895 // C++ [temp.arg.nontype]p1: 3896 // 3897 // A template-argument for a non-type, non-template 3898 // template-parameter shall be one of: [...] 3899 // 3900 // -- a pointer to member expressed as described in 5.3.1. 3901 DeclRefExpr *DRE = 0; 3902 3903 // In C++98/03 mode, give an extension warning on any extra parentheses. 3904 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3905 bool ExtraParens = false; 3906 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3907 if (!Invalid && !ExtraParens) { 3908 S.Diag(Arg->getLocStart(), 3909 S.getLangOpts().CPlusPlus0x ? 3910 diag::warn_cxx98_compat_template_arg_extra_parens : 3911 diag::ext_template_arg_extra_parens) 3912 << Arg->getSourceRange(); 3913 ExtraParens = true; 3914 } 3915 3916 Arg = Parens->getSubExpr(); 3917 } 3918 3919 while (SubstNonTypeTemplateParmExpr *subst = 3920 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 3921 Arg = subst->getReplacement()->IgnoreImpCasts(); 3922 3923 // A pointer-to-member constant written &Class::member. 3924 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 3925 if (UnOp->getOpcode() == UO_AddrOf) { 3926 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 3927 if (DRE && !DRE->getQualifier()) 3928 DRE = 0; 3929 } 3930 } 3931 // A constant of pointer-to-member type. 3932 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 3933 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 3934 if (VD->getType()->isMemberPointerType()) { 3935 if (isa<NonTypeTemplateParmDecl>(VD) || 3936 (isa<VarDecl>(VD) && 3937 S.Context.getCanonicalType(VD->getType()).isConstQualified())) { 3938 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3939 Converted = TemplateArgument(Arg); 3940 else 3941 Converted = TemplateArgument(VD->getCanonicalDecl()); 3942 return Invalid; 3943 } 3944 } 3945 } 3946 3947 DRE = 0; 3948 } 3949 3950 if (!DRE) 3951 return S.Diag(Arg->getLocStart(), 3952 diag::err_template_arg_not_pointer_to_member_form) 3953 << Arg->getSourceRange(); 3954 3955 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 3956 assert((isa<FieldDecl>(DRE->getDecl()) || 3957 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 3958 "Only non-static member pointers can make it here"); 3959 3960 // Okay: this is the address of a non-static member, and therefore 3961 // a member pointer constant. 3962 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3963 Converted = TemplateArgument(Arg); 3964 else 3965 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 3966 return Invalid; 3967 } 3968 3969 // We found something else, but we don't know specifically what it is. 3970 S.Diag(Arg->getLocStart(), 3971 diag::err_template_arg_not_pointer_to_member_form) 3972 << Arg->getSourceRange(); 3973 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 3974 return true; 3975 } 3976 3977 /// \brief Check a template argument against its corresponding 3978 /// non-type template parameter. 3979 /// 3980 /// This routine implements the semantics of C++ [temp.arg.nontype]. 3981 /// If an error occurred, it returns ExprError(); otherwise, it 3982 /// returns the converted template argument. \p 3983 /// InstantiatedParamType is the type of the non-type template 3984 /// parameter after it has been instantiated. 3985 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 3986 QualType InstantiatedParamType, Expr *Arg, 3987 TemplateArgument &Converted, 3988 CheckTemplateArgumentKind CTAK) { 3989 SourceLocation StartLoc = Arg->getLocStart(); 3990 3991 // If either the parameter has a dependent type or the argument is 3992 // type-dependent, there's nothing we can check now. 3993 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 3994 // FIXME: Produce a cloned, canonical expression? 3995 Converted = TemplateArgument(Arg); 3996 return Owned(Arg); 3997 } 3998 3999 // C++ [temp.arg.nontype]p5: 4000 // The following conversions are performed on each expression used 4001 // as a non-type template-argument. If a non-type 4002 // template-argument cannot be converted to the type of the 4003 // corresponding template-parameter then the program is 4004 // ill-formed. 4005 QualType ParamType = InstantiatedParamType; 4006 if (ParamType->isIntegralOrEnumerationType()) { 4007 // C++11: 4008 // -- for a non-type template-parameter of integral or 4009 // enumeration type, conversions permitted in a converted 4010 // constant expression are applied. 4011 // 4012 // C++98: 4013 // -- for a non-type template-parameter of integral or 4014 // enumeration type, integral promotions (4.5) and integral 4015 // conversions (4.7) are applied. 4016 4017 if (CTAK == CTAK_Deduced && 4018 !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) { 4019 // C++ [temp.deduct.type]p17: 4020 // If, in the declaration of a function template with a non-type 4021 // template-parameter, the non-type template-parameter is used 4022 // in an expression in the function parameter-list and, if the 4023 // corresponding template-argument is deduced, the 4024 // template-argument type shall match the type of the 4025 // template-parameter exactly, except that a template-argument 4026 // deduced from an array bound may be of any integral type. 4027 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 4028 << Arg->getType().getUnqualifiedType() 4029 << ParamType.getUnqualifiedType(); 4030 Diag(Param->getLocation(), diag::note_template_param_here); 4031 return ExprError(); 4032 } 4033 4034 if (getLangOpts().CPlusPlus0x) { 4035 // We can't check arbitrary value-dependent arguments. 4036 // FIXME: If there's no viable conversion to the template parameter type, 4037 // we should be able to diagnose that prior to instantiation. 4038 if (Arg->isValueDependent()) { 4039 Converted = TemplateArgument(Arg); 4040 return Owned(Arg); 4041 } 4042 4043 // C++ [temp.arg.nontype]p1: 4044 // A template-argument for a non-type, non-template template-parameter 4045 // shall be one of: 4046 // 4047 // -- for a non-type template-parameter of integral or enumeration 4048 // type, a converted constant expression of the type of the 4049 // template-parameter; or 4050 llvm::APSInt Value; 4051 ExprResult ArgResult = 4052 CheckConvertedConstantExpression(Arg, ParamType, Value, 4053 CCEK_TemplateArg); 4054 if (ArgResult.isInvalid()) 4055 return ExprError(); 4056 4057 // Widen the argument value to sizeof(parameter type). This is almost 4058 // always a no-op, except when the parameter type is bool. In 4059 // that case, this may extend the argument from 1 bit to 8 bits. 4060 QualType IntegerType = ParamType; 4061 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 4062 IntegerType = Enum->getDecl()->getIntegerType(); 4063 Value = Value.extOrTrunc(Context.getTypeSize(IntegerType)); 4064 4065 Converted = TemplateArgument(Value, Context.getCanonicalType(ParamType)); 4066 return ArgResult; 4067 } 4068 4069 ExprResult ArgResult = DefaultLvalueConversion(Arg); 4070 if (ArgResult.isInvalid()) 4071 return ExprError(); 4072 Arg = ArgResult.take(); 4073 4074 QualType ArgType = Arg->getType(); 4075 4076 // C++ [temp.arg.nontype]p1: 4077 // A template-argument for a non-type, non-template 4078 // template-parameter shall be one of: 4079 // 4080 // -- an integral constant-expression of integral or enumeration 4081 // type; or 4082 // -- the name of a non-type template-parameter; or 4083 SourceLocation NonConstantLoc; 4084 llvm::APSInt Value; 4085 if (!ArgType->isIntegralOrEnumerationType()) { 4086 Diag(Arg->getLocStart(), 4087 diag::err_template_arg_not_integral_or_enumeral) 4088 << ArgType << Arg->getSourceRange(); 4089 Diag(Param->getLocation(), diag::note_template_param_here); 4090 return ExprError(); 4091 } else if (!Arg->isValueDependent()) { 4092 Arg = VerifyIntegerConstantExpression(Arg, &Value, 4093 PDiag(diag::err_template_arg_not_ice) << ArgType, false).take(); 4094 if (!Arg) 4095 return ExprError(); 4096 } 4097 4098 // From here on out, all we care about are the unqualified forms 4099 // of the parameter and argument types. 4100 ParamType = ParamType.getUnqualifiedType(); 4101 ArgType = ArgType.getUnqualifiedType(); 4102 4103 // Try to convert the argument to the parameter's type. 4104 if (Context.hasSameType(ParamType, ArgType)) { 4105 // Okay: no conversion necessary 4106 } else if (ParamType->isBooleanType()) { 4107 // This is an integral-to-boolean conversion. 4108 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take(); 4109 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 4110 !ParamType->isEnumeralType()) { 4111 // This is an integral promotion or conversion. 4112 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take(); 4113 } else { 4114 // We can't perform this conversion. 4115 Diag(Arg->getLocStart(), 4116 diag::err_template_arg_not_convertible) 4117 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 4118 Diag(Param->getLocation(), diag::note_template_param_here); 4119 return ExprError(); 4120 } 4121 4122 // Add the value of this argument to the list of converted 4123 // arguments. We use the bitwidth and signedness of the template 4124 // parameter. 4125 if (Arg->isValueDependent()) { 4126 // The argument is value-dependent. Create a new 4127 // TemplateArgument with the converted expression. 4128 Converted = TemplateArgument(Arg); 4129 return Owned(Arg); 4130 } 4131 4132 QualType IntegerType = Context.getCanonicalType(ParamType); 4133 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 4134 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 4135 4136 if (ParamType->isBooleanType()) { 4137 // Value must be zero or one. 4138 Value = Value != 0; 4139 unsigned AllowedBits = Context.getTypeSize(IntegerType); 4140 if (Value.getBitWidth() != AllowedBits) 4141 Value = Value.extOrTrunc(AllowedBits); 4142 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 4143 } else { 4144 llvm::APSInt OldValue = Value; 4145 4146 // Coerce the template argument's value to the value it will have 4147 // based on the template parameter's type. 4148 unsigned AllowedBits = Context.getTypeSize(IntegerType); 4149 if (Value.getBitWidth() != AllowedBits) 4150 Value = Value.extOrTrunc(AllowedBits); 4151 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 4152 4153 // Complain if an unsigned parameter received a negative value. 4154 if (IntegerType->isUnsignedIntegerOrEnumerationType() 4155 && (OldValue.isSigned() && OldValue.isNegative())) { 4156 Diag(Arg->getLocStart(), diag::warn_template_arg_negative) 4157 << OldValue.toString(10) << Value.toString(10) << Param->getType() 4158 << Arg->getSourceRange(); 4159 Diag(Param->getLocation(), diag::note_template_param_here); 4160 } 4161 4162 // Complain if we overflowed the template parameter's type. 4163 unsigned RequiredBits; 4164 if (IntegerType->isUnsignedIntegerOrEnumerationType()) 4165 RequiredBits = OldValue.getActiveBits(); 4166 else if (OldValue.isUnsigned()) 4167 RequiredBits = OldValue.getActiveBits() + 1; 4168 else 4169 RequiredBits = OldValue.getMinSignedBits(); 4170 if (RequiredBits > AllowedBits) { 4171 Diag(Arg->getLocStart(), 4172 diag::warn_template_arg_too_large) 4173 << OldValue.toString(10) << Value.toString(10) << Param->getType() 4174 << Arg->getSourceRange(); 4175 Diag(Param->getLocation(), diag::note_template_param_here); 4176 } 4177 } 4178 4179 Converted = TemplateArgument(Value, 4180 ParamType->isEnumeralType() 4181 ? Context.getCanonicalType(ParamType) 4182 : IntegerType); 4183 return Owned(Arg); 4184 } 4185 4186 QualType ArgType = Arg->getType(); 4187 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 4188 4189 // Handle pointer-to-function, reference-to-function, and 4190 // pointer-to-member-function all in (roughly) the same way. 4191 if (// -- For a non-type template-parameter of type pointer to 4192 // function, only the function-to-pointer conversion (4.3) is 4193 // applied. If the template-argument represents a set of 4194 // overloaded functions (or a pointer to such), the matching 4195 // function is selected from the set (13.4). 4196 (ParamType->isPointerType() && 4197 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 4198 // -- For a non-type template-parameter of type reference to 4199 // function, no conversions apply. If the template-argument 4200 // represents a set of overloaded functions, the matching 4201 // function is selected from the set (13.4). 4202 (ParamType->isReferenceType() && 4203 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 4204 // -- For a non-type template-parameter of type pointer to 4205 // member function, no conversions apply. If the 4206 // template-argument represents a set of overloaded member 4207 // functions, the matching member function is selected from 4208 // the set (13.4). 4209 (ParamType->isMemberPointerType() && 4210 ParamType->getAs<MemberPointerType>()->getPointeeType() 4211 ->isFunctionType())) { 4212 4213 if (Arg->getType() == Context.OverloadTy) { 4214 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 4215 true, 4216 FoundResult)) { 4217 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart())) 4218 return ExprError(); 4219 4220 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 4221 ArgType = Arg->getType(); 4222 } else 4223 return ExprError(); 4224 } 4225 4226 if (!ParamType->isMemberPointerType()) { 4227 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 4228 ParamType, 4229 Arg, Converted)) 4230 return ExprError(); 4231 return Owned(Arg); 4232 } 4233 4234 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, 4235 Converted)) 4236 return ExprError(); 4237 return Owned(Arg); 4238 } 4239 4240 if (ParamType->isPointerType()) { 4241 // -- for a non-type template-parameter of type pointer to 4242 // object, qualification conversions (4.4) and the 4243 // array-to-pointer conversion (4.2) are applied. 4244 // C++0x also allows a value of std::nullptr_t. 4245 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 4246 "Only object pointers allowed here"); 4247 4248 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 4249 ParamType, 4250 Arg, Converted)) 4251 return ExprError(); 4252 return Owned(Arg); 4253 } 4254 4255 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 4256 // -- For a non-type template-parameter of type reference to 4257 // object, no conversions apply. The type referred to by the 4258 // reference may be more cv-qualified than the (otherwise 4259 // identical) type of the template-argument. The 4260 // template-parameter is bound directly to the 4261 // template-argument, which must be an lvalue. 4262 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 4263 "Only object references allowed here"); 4264 4265 if (Arg->getType() == Context.OverloadTy) { 4266 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 4267 ParamRefType->getPointeeType(), 4268 true, 4269 FoundResult)) { 4270 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart())) 4271 return ExprError(); 4272 4273 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 4274 ArgType = Arg->getType(); 4275 } else 4276 return ExprError(); 4277 } 4278 4279 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 4280 ParamType, 4281 Arg, Converted)) 4282 return ExprError(); 4283 return Owned(Arg); 4284 } 4285 4286 // Deal with parameters of type std::nullptr_t. 4287 if (ParamType->isNullPtrType()) { 4288 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 4289 Converted = TemplateArgument(Arg); 4290 return Owned(Arg); 4291 } 4292 4293 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) { 4294 case NPV_NotNullPointer: 4295 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible) 4296 << Arg->getType() << ParamType; 4297 Diag(Param->getLocation(), diag::note_template_param_here); 4298 return ExprError(); 4299 4300 case NPV_Error: 4301 return ExprError(); 4302 4303 case NPV_NullPointer: 4304 Converted = TemplateArgument((Decl *)0); 4305 return Owned(Arg);; 4306 } 4307 } 4308 4309 // -- For a non-type template-parameter of type pointer to data 4310 // member, qualification conversions (4.4) are applied. 4311 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 4312 4313 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, 4314 Converted)) 4315 return ExprError(); 4316 return Owned(Arg); 4317 } 4318 4319 /// \brief Check a template argument against its corresponding 4320 /// template template parameter. 4321 /// 4322 /// This routine implements the semantics of C++ [temp.arg.template]. 4323 /// It returns true if an error occurred, and false otherwise. 4324 bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 4325 const TemplateArgumentLoc &Arg) { 4326 TemplateName Name = Arg.getArgument().getAsTemplate(); 4327 TemplateDecl *Template = Name.getAsTemplateDecl(); 4328 if (!Template) { 4329 // Any dependent template name is fine. 4330 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 4331 return false; 4332 } 4333 4334 // C++0x [temp.arg.template]p1: 4335 // A template-argument for a template template-parameter shall be 4336 // the name of a class template or an alias template, expressed as an 4337 // id-expression. When the template-argument names a class template, only 4338 // primary class templates are considered when matching the 4339 // template template argument with the corresponding parameter; 4340 // partial specializations are not considered even if their 4341 // parameter lists match that of the template template parameter. 4342 // 4343 // Note that we also allow template template parameters here, which 4344 // will happen when we are dealing with, e.g., class template 4345 // partial specializations. 4346 if (!isa<ClassTemplateDecl>(Template) && 4347 !isa<TemplateTemplateParmDecl>(Template) && 4348 !isa<TypeAliasTemplateDecl>(Template)) { 4349 assert(isa<FunctionTemplateDecl>(Template) && 4350 "Only function templates are possible here"); 4351 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 4352 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 4353 << Template; 4354 } 4355 4356 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 4357 Param->getTemplateParameters(), 4358 true, 4359 TPL_TemplateTemplateArgumentMatch, 4360 Arg.getLocation()); 4361 } 4362 4363 /// \brief Given a non-type template argument that refers to a 4364 /// declaration and the type of its corresponding non-type template 4365 /// parameter, produce an expression that properly refers to that 4366 /// declaration. 4367 ExprResult 4368 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 4369 QualType ParamType, 4370 SourceLocation Loc) { 4371 assert(Arg.getKind() == TemplateArgument::Declaration && 4372 "Only declaration template arguments permitted here"); 4373 4374 // For a NULL non-type template argument, return nullptr casted to the 4375 // parameter's type. 4376 if (!Arg.getAsDecl()) { 4377 return ImpCastExprToType( 4378 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc), 4379 ParamType, 4380 ParamType->getAs<MemberPointerType>() 4381 ? CK_NullToMemberPointer 4382 : CK_NullToPointer); 4383 } 4384 4385 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 4386 4387 if (VD->getDeclContext()->isRecord() && 4388 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 4389 // If the value is a class member, we might have a pointer-to-member. 4390 // Determine whether the non-type template template parameter is of 4391 // pointer-to-member type. If so, we need to build an appropriate 4392 // expression for a pointer-to-member, since a "normal" DeclRefExpr 4393 // would refer to the member itself. 4394 if (ParamType->isMemberPointerType()) { 4395 QualType ClassType 4396 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 4397 NestedNameSpecifier *Qualifier 4398 = NestedNameSpecifier::Create(Context, 0, false, 4399 ClassType.getTypePtr()); 4400 CXXScopeSpec SS; 4401 SS.MakeTrivial(Context, Qualifier, Loc); 4402 4403 // The actual value-ness of this is unimportant, but for 4404 // internal consistency's sake, references to instance methods 4405 // are r-values. 4406 ExprValueKind VK = VK_LValue; 4407 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance()) 4408 VK = VK_RValue; 4409 4410 ExprResult RefExpr = BuildDeclRefExpr(VD, 4411 VD->getType().getNonReferenceType(), 4412 VK, 4413 Loc, 4414 &SS); 4415 if (RefExpr.isInvalid()) 4416 return ExprError(); 4417 4418 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 4419 4420 // We might need to perform a trailing qualification conversion, since 4421 // the element type on the parameter could be more qualified than the 4422 // element type in the expression we constructed. 4423 bool ObjCLifetimeConversion; 4424 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 4425 ParamType.getUnqualifiedType(), false, 4426 ObjCLifetimeConversion)) 4427 RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp); 4428 4429 assert(!RefExpr.isInvalid() && 4430 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 4431 ParamType.getUnqualifiedType())); 4432 return move(RefExpr); 4433 } 4434 } 4435 4436 QualType T = VD->getType().getNonReferenceType(); 4437 if (ParamType->isPointerType()) { 4438 // When the non-type template parameter is a pointer, take the 4439 // address of the declaration. 4440 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc); 4441 if (RefExpr.isInvalid()) 4442 return ExprError(); 4443 4444 if (T->isFunctionType() || T->isArrayType()) { 4445 // Decay functions and arrays. 4446 RefExpr = DefaultFunctionArrayConversion(RefExpr.take()); 4447 if (RefExpr.isInvalid()) 4448 return ExprError(); 4449 4450 return move(RefExpr); 4451 } 4452 4453 // Take the address of everything else 4454 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 4455 } 4456 4457 ExprValueKind VK = VK_RValue; 4458 4459 // If the non-type template parameter has reference type, qualify the 4460 // resulting declaration reference with the extra qualifiers on the 4461 // type that the reference refers to. 4462 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) { 4463 VK = VK_LValue; 4464 T = Context.getQualifiedType(T, 4465 TargetRef->getPointeeType().getQualifiers()); 4466 } 4467 4468 return BuildDeclRefExpr(VD, T, VK, Loc); 4469 } 4470 4471 /// \brief Construct a new expression that refers to the given 4472 /// integral template argument with the given source-location 4473 /// information. 4474 /// 4475 /// This routine takes care of the mapping from an integral template 4476 /// argument (which may have any integral type) to the appropriate 4477 /// literal value. 4478 ExprResult 4479 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 4480 SourceLocation Loc) { 4481 assert(Arg.getKind() == TemplateArgument::Integral && 4482 "Operation is only valid for integral template arguments"); 4483 QualType T = Arg.getIntegralType(); 4484 if (T->isAnyCharacterType()) { 4485 CharacterLiteral::CharacterKind Kind; 4486 if (T->isWideCharType()) 4487 Kind = CharacterLiteral::Wide; 4488 else if (T->isChar16Type()) 4489 Kind = CharacterLiteral::UTF16; 4490 else if (T->isChar32Type()) 4491 Kind = CharacterLiteral::UTF32; 4492 else 4493 Kind = CharacterLiteral::Ascii; 4494 4495 return Owned(new (Context) CharacterLiteral( 4496 Arg.getAsIntegral()->getZExtValue(), 4497 Kind, T, Loc)); 4498 } 4499 4500 if (T->isBooleanType()) 4501 return Owned(new (Context) CXXBoolLiteralExpr( 4502 Arg.getAsIntegral()->getBoolValue(), 4503 T, Loc)); 4504 4505 if (T->isNullPtrType()) 4506 return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc)); 4507 4508 // If this is an enum type that we're instantiating, we need to use an integer 4509 // type the same size as the enumerator. We don't want to build an 4510 // IntegerLiteral with enum type. 4511 QualType BT; 4512 if (const EnumType *ET = T->getAs<EnumType>()) 4513 BT = ET->getDecl()->getIntegerType(); 4514 else 4515 BT = T; 4516 4517 Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc); 4518 if (T->isEnumeralType()) { 4519 // FIXME: This is a hack. We need a better way to handle substituted 4520 // non-type template parameters. 4521 E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0, 4522 Context.getTrivialTypeSourceInfo(T, Loc), 4523 Loc, Loc); 4524 } 4525 4526 return Owned(E); 4527 } 4528 4529 /// \brief Match two template parameters within template parameter lists. 4530 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old, 4531 bool Complain, 4532 Sema::TemplateParameterListEqualKind Kind, 4533 SourceLocation TemplateArgLoc) { 4534 // Check the actual kind (type, non-type, template). 4535 if (Old->getKind() != New->getKind()) { 4536 if (Complain) { 4537 unsigned NextDiag = diag::err_template_param_different_kind; 4538 if (TemplateArgLoc.isValid()) { 4539 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 4540 NextDiag = diag::note_template_param_different_kind; 4541 } 4542 S.Diag(New->getLocation(), NextDiag) 4543 << (Kind != Sema::TPL_TemplateMatch); 4544 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 4545 << (Kind != Sema::TPL_TemplateMatch); 4546 } 4547 4548 return false; 4549 } 4550 4551 // Check that both are parameter packs are neither are parameter packs. 4552 // However, if we are matching a template template argument to a 4553 // template template parameter, the template template parameter can have 4554 // a parameter pack where the template template argument does not. 4555 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && 4556 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && 4557 Old->isTemplateParameterPack())) { 4558 if (Complain) { 4559 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 4560 if (TemplateArgLoc.isValid()) { 4561 S.Diag(TemplateArgLoc, 4562 diag::err_template_arg_template_params_mismatch); 4563 NextDiag = diag::note_template_parameter_pack_non_pack; 4564 } 4565 4566 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 4567 : isa<NonTypeTemplateParmDecl>(New)? 1 4568 : 2; 4569 S.Diag(New->getLocation(), NextDiag) 4570 << ParamKind << New->isParameterPack(); 4571 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 4572 << ParamKind << Old->isParameterPack(); 4573 } 4574 4575 return false; 4576 } 4577 4578 // For non-type template parameters, check the type of the parameter. 4579 if (NonTypeTemplateParmDecl *OldNTTP 4580 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 4581 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 4582 4583 // If we are matching a template template argument to a template 4584 // template parameter and one of the non-type template parameter types 4585 // is dependent, then we must wait until template instantiation time 4586 // to actually compare the arguments. 4587 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch && 4588 (OldNTTP->getType()->isDependentType() || 4589 NewNTTP->getType()->isDependentType())) 4590 return true; 4591 4592 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { 4593 if (Complain) { 4594 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 4595 if (TemplateArgLoc.isValid()) { 4596 S.Diag(TemplateArgLoc, 4597 diag::err_template_arg_template_params_mismatch); 4598 NextDiag = diag::note_template_nontype_parm_different_type; 4599 } 4600 S.Diag(NewNTTP->getLocation(), NextDiag) 4601 << NewNTTP->getType() 4602 << (Kind != Sema::TPL_TemplateMatch); 4603 S.Diag(OldNTTP->getLocation(), 4604 diag::note_template_nontype_parm_prev_declaration) 4605 << OldNTTP->getType(); 4606 } 4607 4608 return false; 4609 } 4610 4611 return true; 4612 } 4613 4614 // For template template parameters, check the template parameter types. 4615 // The template parameter lists of template template 4616 // parameters must agree. 4617 if (TemplateTemplateParmDecl *OldTTP 4618 = dyn_cast<TemplateTemplateParmDecl>(Old)) { 4619 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 4620 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 4621 OldTTP->getTemplateParameters(), 4622 Complain, 4623 (Kind == Sema::TPL_TemplateMatch 4624 ? Sema::TPL_TemplateTemplateParmMatch 4625 : Kind), 4626 TemplateArgLoc); 4627 } 4628 4629 return true; 4630 } 4631 4632 /// \brief Diagnose a known arity mismatch when comparing template argument 4633 /// lists. 4634 static 4635 void DiagnoseTemplateParameterListArityMismatch(Sema &S, 4636 TemplateParameterList *New, 4637 TemplateParameterList *Old, 4638 Sema::TemplateParameterListEqualKind Kind, 4639 SourceLocation TemplateArgLoc) { 4640 unsigned NextDiag = diag::err_template_param_list_different_arity; 4641 if (TemplateArgLoc.isValid()) { 4642 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 4643 NextDiag = diag::note_template_param_list_different_arity; 4644 } 4645 S.Diag(New->getTemplateLoc(), NextDiag) 4646 << (New->size() > Old->size()) 4647 << (Kind != Sema::TPL_TemplateMatch) 4648 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 4649 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 4650 << (Kind != Sema::TPL_TemplateMatch) 4651 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 4652 } 4653 4654 /// \brief Determine whether the given template parameter lists are 4655 /// equivalent. 4656 /// 4657 /// \param New The new template parameter list, typically written in the 4658 /// source code as part of a new template declaration. 4659 /// 4660 /// \param Old The old template parameter list, typically found via 4661 /// name lookup of the template declared with this template parameter 4662 /// list. 4663 /// 4664 /// \param Complain If true, this routine will produce a diagnostic if 4665 /// the template parameter lists are not equivalent. 4666 /// 4667 /// \param Kind describes how we are to match the template parameter lists. 4668 /// 4669 /// \param TemplateArgLoc If this source location is valid, then we 4670 /// are actually checking the template parameter list of a template 4671 /// argument (New) against the template parameter list of its 4672 /// corresponding template template parameter (Old). We produce 4673 /// slightly different diagnostics in this scenario. 4674 /// 4675 /// \returns True if the template parameter lists are equal, false 4676 /// otherwise. 4677 bool 4678 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 4679 TemplateParameterList *Old, 4680 bool Complain, 4681 TemplateParameterListEqualKind Kind, 4682 SourceLocation TemplateArgLoc) { 4683 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { 4684 if (Complain) 4685 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4686 TemplateArgLoc); 4687 4688 return false; 4689 } 4690 4691 // C++0x [temp.arg.template]p3: 4692 // A template-argument matches a template template-parameter (call it P) 4693 // when each of the template parameters in the template-parameter-list of 4694 // the template-argument's corresponding class template or alias template 4695 // (call it A) matches the corresponding template parameter in the 4696 // template-parameter-list of P. [...] 4697 TemplateParameterList::iterator NewParm = New->begin(); 4698 TemplateParameterList::iterator NewParmEnd = New->end(); 4699 for (TemplateParameterList::iterator OldParm = Old->begin(), 4700 OldParmEnd = Old->end(); 4701 OldParm != OldParmEnd; ++OldParm) { 4702 if (Kind != TPL_TemplateTemplateArgumentMatch || 4703 !(*OldParm)->isTemplateParameterPack()) { 4704 if (NewParm == NewParmEnd) { 4705 if (Complain) 4706 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4707 TemplateArgLoc); 4708 4709 return false; 4710 } 4711 4712 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 4713 Kind, TemplateArgLoc)) 4714 return false; 4715 4716 ++NewParm; 4717 continue; 4718 } 4719 4720 // C++0x [temp.arg.template]p3: 4721 // [...] When P's template- parameter-list contains a template parameter 4722 // pack (14.5.3), the template parameter pack will match zero or more 4723 // template parameters or template parameter packs in the 4724 // template-parameter-list of A with the same type and form as the 4725 // template parameter pack in P (ignoring whether those template 4726 // parameters are template parameter packs). 4727 for (; NewParm != NewParmEnd; ++NewParm) { 4728 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 4729 Kind, TemplateArgLoc)) 4730 return false; 4731 } 4732 } 4733 4734 // Make sure we exhausted all of the arguments. 4735 if (NewParm != NewParmEnd) { 4736 if (Complain) 4737 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4738 TemplateArgLoc); 4739 4740 return false; 4741 } 4742 4743 return true; 4744 } 4745 4746 /// \brief Check whether a template can be declared within this scope. 4747 /// 4748 /// If the template declaration is valid in this scope, returns 4749 /// false. Otherwise, issues a diagnostic and returns true. 4750 bool 4751 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 4752 if (!S) 4753 return false; 4754 4755 // Find the nearest enclosing declaration scope. 4756 while ((S->getFlags() & Scope::DeclScope) == 0 || 4757 (S->getFlags() & Scope::TemplateParamScope) != 0) 4758 S = S->getParent(); 4759 4760 // C++ [temp]p2: 4761 // A template-declaration can appear only as a namespace scope or 4762 // class scope declaration. 4763 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 4764 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 4765 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 4766 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 4767 << TemplateParams->getSourceRange(); 4768 4769 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 4770 Ctx = Ctx->getParent(); 4771 4772 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 4773 return false; 4774 4775 return Diag(TemplateParams->getTemplateLoc(), 4776 diag::err_template_outside_namespace_or_class_scope) 4777 << TemplateParams->getSourceRange(); 4778 } 4779 4780 /// \brief Determine what kind of template specialization the given declaration 4781 /// is. 4782 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) { 4783 if (!D) 4784 return TSK_Undeclared; 4785 4786 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 4787 return Record->getTemplateSpecializationKind(); 4788 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 4789 return Function->getTemplateSpecializationKind(); 4790 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 4791 return Var->getTemplateSpecializationKind(); 4792 4793 return TSK_Undeclared; 4794 } 4795 4796 /// \brief Check whether a specialization is well-formed in the current 4797 /// context. 4798 /// 4799 /// This routine determines whether a template specialization can be declared 4800 /// in the current context (C++ [temp.expl.spec]p2). 4801 /// 4802 /// \param S the semantic analysis object for which this check is being 4803 /// performed. 4804 /// 4805 /// \param Specialized the entity being specialized or instantiated, which 4806 /// may be a kind of template (class template, function template, etc.) or 4807 /// a member of a class template (member function, static data member, 4808 /// member class). 4809 /// 4810 /// \param PrevDecl the previous declaration of this entity, if any. 4811 /// 4812 /// \param Loc the location of the explicit specialization or instantiation of 4813 /// this entity. 4814 /// 4815 /// \param IsPartialSpecialization whether this is a partial specialization of 4816 /// a class template. 4817 /// 4818 /// \returns true if there was an error that we cannot recover from, false 4819 /// otherwise. 4820 static bool CheckTemplateSpecializationScope(Sema &S, 4821 NamedDecl *Specialized, 4822 NamedDecl *PrevDecl, 4823 SourceLocation Loc, 4824 bool IsPartialSpecialization) { 4825 // Keep these "kind" numbers in sync with the %select statements in the 4826 // various diagnostics emitted by this routine. 4827 int EntityKind = 0; 4828 if (isa<ClassTemplateDecl>(Specialized)) 4829 EntityKind = IsPartialSpecialization? 1 : 0; 4830 else if (isa<FunctionTemplateDecl>(Specialized)) 4831 EntityKind = 2; 4832 else if (isa<CXXMethodDecl>(Specialized)) 4833 EntityKind = 3; 4834 else if (isa<VarDecl>(Specialized)) 4835 EntityKind = 4; 4836 else if (isa<RecordDecl>(Specialized)) 4837 EntityKind = 5; 4838 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus0x) 4839 EntityKind = 6; 4840 else { 4841 S.Diag(Loc, diag::err_template_spec_unknown_kind) 4842 << S.getLangOpts().CPlusPlus0x; 4843 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4844 return true; 4845 } 4846 4847 // C++ [temp.expl.spec]p2: 4848 // An explicit specialization shall be declared in the namespace 4849 // of which the template is a member, or, for member templates, in 4850 // the namespace of which the enclosing class or enclosing class 4851 // template is a member. An explicit specialization of a member 4852 // function, member class or static data member of a class 4853 // template shall be declared in the namespace of which the class 4854 // template is a member. Such a declaration may also be a 4855 // definition. If the declaration is not a definition, the 4856 // specialization may be defined later in the name- space in which 4857 // the explicit specialization was declared, or in a namespace 4858 // that encloses the one in which the explicit specialization was 4859 // declared. 4860 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 4861 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 4862 << Specialized; 4863 return true; 4864 } 4865 4866 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 4867 if (S.getLangOpts().MicrosoftExt) { 4868 // Do not warn for class scope explicit specialization during 4869 // instantiation, warning was already emitted during pattern 4870 // semantic analysis. 4871 if (!S.ActiveTemplateInstantiations.size()) 4872 S.Diag(Loc, diag::ext_function_specialization_in_class) 4873 << Specialized; 4874 } else { 4875 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 4876 << Specialized; 4877 return true; 4878 } 4879 } 4880 4881 if (S.CurContext->isRecord() && 4882 !S.CurContext->Equals(Specialized->getDeclContext())) { 4883 // Make sure that we're specializing in the right record context. 4884 // Otherwise, things can go horribly wrong. 4885 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 4886 << Specialized; 4887 return true; 4888 } 4889 4890 // C++ [temp.class.spec]p6: 4891 // A class template partial specialization may be declared or redeclared 4892 // in any namespace scope in which its definition may be defined (14.5.1 4893 // and 14.5.2). 4894 bool ComplainedAboutScope = false; 4895 DeclContext *SpecializedContext 4896 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 4897 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 4898 if ((!PrevDecl || 4899 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 4900 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 4901 // C++ [temp.exp.spec]p2: 4902 // An explicit specialization shall be declared in the namespace of which 4903 // the template is a member, or, for member templates, in the namespace 4904 // of which the enclosing class or enclosing class template is a member. 4905 // An explicit specialization of a member function, member class or 4906 // static data member of a class template shall be declared in the 4907 // namespace of which the class template is a member. 4908 // 4909 // C++0x [temp.expl.spec]p2: 4910 // An explicit specialization shall be declared in a namespace enclosing 4911 // the specialized template. 4912 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) { 4913 bool IsCPlusPlus0xExtension = DC->Encloses(SpecializedContext); 4914 if (isa<TranslationUnitDecl>(SpecializedContext)) { 4915 assert(!IsCPlusPlus0xExtension && 4916 "DC encloses TU but isn't in enclosing namespace set"); 4917 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global) 4918 << EntityKind << Specialized; 4919 } else if (isa<NamespaceDecl>(SpecializedContext)) { 4920 int Diag; 4921 if (!IsCPlusPlus0xExtension) 4922 Diag = diag::err_template_spec_decl_out_of_scope; 4923 else if (!S.getLangOpts().CPlusPlus0x) 4924 Diag = diag::ext_template_spec_decl_out_of_scope; 4925 else 4926 Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope; 4927 S.Diag(Loc, Diag) 4928 << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext); 4929 } 4930 4931 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4932 ComplainedAboutScope = 4933 !(IsCPlusPlus0xExtension && S.getLangOpts().CPlusPlus0x); 4934 } 4935 } 4936 4937 // Make sure that this redeclaration (or definition) occurs in an enclosing 4938 // namespace. 4939 // Note that HandleDeclarator() performs this check for explicit 4940 // specializations of function templates, static data members, and member 4941 // functions, so we skip the check here for those kinds of entities. 4942 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 4943 // Should we refactor that check, so that it occurs later? 4944 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 4945 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 4946 isa<FunctionDecl>(Specialized))) { 4947 if (isa<TranslationUnitDecl>(SpecializedContext)) 4948 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 4949 << EntityKind << Specialized; 4950 else if (isa<NamespaceDecl>(SpecializedContext)) 4951 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 4952 << EntityKind << Specialized 4953 << cast<NamedDecl>(SpecializedContext); 4954 4955 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4956 } 4957 4958 // FIXME: check for specialization-after-instantiation errors and such. 4959 4960 return false; 4961 } 4962 4963 /// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs 4964 /// that checks non-type template partial specialization arguments. 4965 static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S, 4966 NonTypeTemplateParmDecl *Param, 4967 const TemplateArgument *Args, 4968 unsigned NumArgs) { 4969 for (unsigned I = 0; I != NumArgs; ++I) { 4970 if (Args[I].getKind() == TemplateArgument::Pack) { 4971 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 4972 Args[I].pack_begin(), 4973 Args[I].pack_size())) 4974 return true; 4975 4976 continue; 4977 } 4978 4979 Expr *ArgExpr = Args[I].getAsExpr(); 4980 if (!ArgExpr) { 4981 continue; 4982 } 4983 4984 // We can have a pack expansion of any of the bullets below. 4985 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 4986 ArgExpr = Expansion->getPattern(); 4987 4988 // Strip off any implicit casts we added as part of type checking. 4989 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 4990 ArgExpr = ICE->getSubExpr(); 4991 4992 // C++ [temp.class.spec]p8: 4993 // A non-type argument is non-specialized if it is the name of a 4994 // non-type parameter. All other non-type arguments are 4995 // specialized. 4996 // 4997 // Below, we check the two conditions that only apply to 4998 // specialized non-type arguments, so skip any non-specialized 4999 // arguments. 5000 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 5001 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 5002 continue; 5003 5004 // C++ [temp.class.spec]p9: 5005 // Within the argument list of a class template partial 5006 // specialization, the following restrictions apply: 5007 // -- A partially specialized non-type argument expression 5008 // shall not involve a template parameter of the partial 5009 // specialization except when the argument expression is a 5010 // simple identifier. 5011 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 5012 S.Diag(ArgExpr->getLocStart(), 5013 diag::err_dependent_non_type_arg_in_partial_spec) 5014 << ArgExpr->getSourceRange(); 5015 return true; 5016 } 5017 5018 // -- The type of a template parameter corresponding to a 5019 // specialized non-type argument shall not be dependent on a 5020 // parameter of the specialization. 5021 if (Param->getType()->isDependentType()) { 5022 S.Diag(ArgExpr->getLocStart(), 5023 diag::err_dependent_typed_non_type_arg_in_partial_spec) 5024 << Param->getType() 5025 << ArgExpr->getSourceRange(); 5026 S.Diag(Param->getLocation(), diag::note_template_param_here); 5027 return true; 5028 } 5029 } 5030 5031 return false; 5032 } 5033 5034 /// \brief Check the non-type template arguments of a class template 5035 /// partial specialization according to C++ [temp.class.spec]p9. 5036 /// 5037 /// \param TemplateParams the template parameters of the primary class 5038 /// template. 5039 /// 5040 /// \param TemplateArg the template arguments of the class template 5041 /// partial specialization. 5042 /// 5043 /// \returns true if there was an error, false otherwise. 5044 static bool CheckClassTemplatePartialSpecializationArgs(Sema &S, 5045 TemplateParameterList *TemplateParams, 5046 SmallVectorImpl<TemplateArgument> &TemplateArgs) { 5047 const TemplateArgument *ArgList = TemplateArgs.data(); 5048 5049 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 5050 NonTypeTemplateParmDecl *Param 5051 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 5052 if (!Param) 5053 continue; 5054 5055 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 5056 &ArgList[I], 1)) 5057 return true; 5058 } 5059 5060 return false; 5061 } 5062 5063 DeclResult 5064 Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 5065 TagUseKind TUK, 5066 SourceLocation KWLoc, 5067 SourceLocation ModulePrivateLoc, 5068 CXXScopeSpec &SS, 5069 TemplateTy TemplateD, 5070 SourceLocation TemplateNameLoc, 5071 SourceLocation LAngleLoc, 5072 ASTTemplateArgsPtr TemplateArgsIn, 5073 SourceLocation RAngleLoc, 5074 AttributeList *Attr, 5075 MultiTemplateParamsArg TemplateParameterLists) { 5076 assert(TUK != TUK_Reference && "References are not specializations"); 5077 5078 // NOTE: KWLoc is the location of the tag keyword. This will instead 5079 // store the location of the outermost template keyword in the declaration. 5080 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0 5081 ? TemplateParameterLists.get()[0]->getTemplateLoc() : SourceLocation(); 5082 5083 // Find the class template we're specializing 5084 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 5085 ClassTemplateDecl *ClassTemplate 5086 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 5087 5088 if (!ClassTemplate) { 5089 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 5090 << (Name.getAsTemplateDecl() && 5091 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 5092 return true; 5093 } 5094 5095 bool isExplicitSpecialization = false; 5096 bool isPartialSpecialization = false; 5097 5098 // Check the validity of the template headers that introduce this 5099 // template. 5100 // FIXME: We probably shouldn't complain about these headers for 5101 // friend declarations. 5102 bool Invalid = false; 5103 TemplateParameterList *TemplateParams 5104 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, 5105 TemplateNameLoc, 5106 SS, 5107 (TemplateParameterList**)TemplateParameterLists.get(), 5108 TemplateParameterLists.size(), 5109 TUK == TUK_Friend, 5110 isExplicitSpecialization, 5111 Invalid); 5112 if (Invalid) 5113 return true; 5114 5115 if (TemplateParams && TemplateParams->size() > 0) { 5116 isPartialSpecialization = true; 5117 5118 if (TUK == TUK_Friend) { 5119 Diag(KWLoc, diag::err_partial_specialization_friend) 5120 << SourceRange(LAngleLoc, RAngleLoc); 5121 return true; 5122 } 5123 5124 // C++ [temp.class.spec]p10: 5125 // The template parameter list of a specialization shall not 5126 // contain default template argument values. 5127 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 5128 Decl *Param = TemplateParams->getParam(I); 5129 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 5130 if (TTP->hasDefaultArgument()) { 5131 Diag(TTP->getDefaultArgumentLoc(), 5132 diag::err_default_arg_in_partial_spec); 5133 TTP->removeDefaultArgument(); 5134 } 5135 } else if (NonTypeTemplateParmDecl *NTTP 5136 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 5137 if (Expr *DefArg = NTTP->getDefaultArgument()) { 5138 Diag(NTTP->getDefaultArgumentLoc(), 5139 diag::err_default_arg_in_partial_spec) 5140 << DefArg->getSourceRange(); 5141 NTTP->removeDefaultArgument(); 5142 } 5143 } else { 5144 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 5145 if (TTP->hasDefaultArgument()) { 5146 Diag(TTP->getDefaultArgument().getLocation(), 5147 diag::err_default_arg_in_partial_spec) 5148 << TTP->getDefaultArgument().getSourceRange(); 5149 TTP->removeDefaultArgument(); 5150 } 5151 } 5152 } 5153 } else if (TemplateParams) { 5154 if (TUK == TUK_Friend) 5155 Diag(KWLoc, diag::err_template_spec_friend) 5156 << FixItHint::CreateRemoval( 5157 SourceRange(TemplateParams->getTemplateLoc(), 5158 TemplateParams->getRAngleLoc())) 5159 << SourceRange(LAngleLoc, RAngleLoc); 5160 else 5161 isExplicitSpecialization = true; 5162 } else if (TUK != TUK_Friend) { 5163 Diag(KWLoc, diag::err_template_spec_needs_header) 5164 << FixItHint::CreateInsertion(KWLoc, "template<> "); 5165 isExplicitSpecialization = true; 5166 } 5167 5168 // Check that the specialization uses the same tag kind as the 5169 // original template. 5170 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5171 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 5172 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 5173 Kind, TUK == TUK_Definition, KWLoc, 5174 *ClassTemplate->getIdentifier())) { 5175 Diag(KWLoc, diag::err_use_with_wrong_tag) 5176 << ClassTemplate 5177 << FixItHint::CreateReplacement(KWLoc, 5178 ClassTemplate->getTemplatedDecl()->getKindName()); 5179 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 5180 diag::note_previous_use); 5181 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 5182 } 5183 5184 // Translate the parser's template argument list in our AST format. 5185 TemplateArgumentListInfo TemplateArgs; 5186 TemplateArgs.setLAngleLoc(LAngleLoc); 5187 TemplateArgs.setRAngleLoc(RAngleLoc); 5188 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 5189 5190 // Check for unexpanded parameter packs in any of the template arguments. 5191 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 5192 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 5193 UPPC_PartialSpecialization)) 5194 return true; 5195 5196 // Check that the template argument list is well-formed for this 5197 // template. 5198 SmallVector<TemplateArgument, 4> Converted; 5199 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 5200 TemplateArgs, false, Converted)) 5201 return true; 5202 5203 // Find the class template (partial) specialization declaration that 5204 // corresponds to these arguments. 5205 if (isPartialSpecialization) { 5206 if (CheckClassTemplatePartialSpecializationArgs(*this, 5207 ClassTemplate->getTemplateParameters(), 5208 Converted)) 5209 return true; 5210 5211 bool InstantiationDependent; 5212 if (!Name.isDependent() && 5213 !TemplateSpecializationType::anyDependentTemplateArguments( 5214 TemplateArgs.getArgumentArray(), 5215 TemplateArgs.size(), 5216 InstantiationDependent)) { 5217 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 5218 << ClassTemplate->getDeclName(); 5219 isPartialSpecialization = false; 5220 } 5221 } 5222 5223 void *InsertPos = 0; 5224 ClassTemplateSpecializationDecl *PrevDecl = 0; 5225 5226 if (isPartialSpecialization) 5227 // FIXME: Template parameter list matters, too 5228 PrevDecl 5229 = ClassTemplate->findPartialSpecialization(Converted.data(), 5230 Converted.size(), 5231 InsertPos); 5232 else 5233 PrevDecl 5234 = ClassTemplate->findSpecialization(Converted.data(), 5235 Converted.size(), InsertPos); 5236 5237 ClassTemplateSpecializationDecl *Specialization = 0; 5238 5239 // Check whether we can declare a class template specialization in 5240 // the current scope. 5241 if (TUK != TUK_Friend && 5242 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 5243 TemplateNameLoc, 5244 isPartialSpecialization)) 5245 return true; 5246 5247 // The canonical type 5248 QualType CanonType; 5249 if (PrevDecl && 5250 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 5251 TUK == TUK_Friend)) { 5252 // Since the only prior class template specialization with these 5253 // arguments was referenced but not declared, or we're only 5254 // referencing this specialization as a friend, reuse that 5255 // declaration node as our own, updating its source location and 5256 // the list of outer template parameters to reflect our new declaration. 5257 Specialization = PrevDecl; 5258 Specialization->setLocation(TemplateNameLoc); 5259 if (TemplateParameterLists.size() > 0) { 5260 Specialization->setTemplateParameterListsInfo(Context, 5261 TemplateParameterLists.size(), 5262 (TemplateParameterList**) TemplateParameterLists.release()); 5263 } 5264 PrevDecl = 0; 5265 CanonType = Context.getTypeDeclType(Specialization); 5266 } else if (isPartialSpecialization) { 5267 // Build the canonical type that describes the converted template 5268 // arguments of the class template partial specialization. 5269 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 5270 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 5271 Converted.data(), 5272 Converted.size()); 5273 5274 if (Context.hasSameType(CanonType, 5275 ClassTemplate->getInjectedClassNameSpecialization())) { 5276 // C++ [temp.class.spec]p9b3: 5277 // 5278 // -- The argument list of the specialization shall not be identical 5279 // to the implicit argument list of the primary template. 5280 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 5281 << (TUK == TUK_Definition) 5282 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 5283 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 5284 ClassTemplate->getIdentifier(), 5285 TemplateNameLoc, 5286 Attr, 5287 TemplateParams, 5288 AS_none, /*ModulePrivateLoc=*/SourceLocation(), 5289 TemplateParameterLists.size() - 1, 5290 (TemplateParameterList**) TemplateParameterLists.release()); 5291 } 5292 5293 // Create a new class template partial specialization declaration node. 5294 ClassTemplatePartialSpecializationDecl *PrevPartial 5295 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 5296 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber() 5297 : ClassTemplate->getNextPartialSpecSequenceNumber(); 5298 ClassTemplatePartialSpecializationDecl *Partial 5299 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 5300 ClassTemplate->getDeclContext(), 5301 KWLoc, TemplateNameLoc, 5302 TemplateParams, 5303 ClassTemplate, 5304 Converted.data(), 5305 Converted.size(), 5306 TemplateArgs, 5307 CanonType, 5308 PrevPartial, 5309 SequenceNumber); 5310 SetNestedNameSpecifier(Partial, SS); 5311 if (TemplateParameterLists.size() > 1 && SS.isSet()) { 5312 Partial->setTemplateParameterListsInfo(Context, 5313 TemplateParameterLists.size() - 1, 5314 (TemplateParameterList**) TemplateParameterLists.release()); 5315 } 5316 5317 if (!PrevPartial) 5318 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 5319 Specialization = Partial; 5320 5321 // If we are providing an explicit specialization of a member class 5322 // template specialization, make a note of that. 5323 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 5324 PrevPartial->setMemberSpecialization(); 5325 5326 // Check that all of the template parameters of the class template 5327 // partial specialization are deducible from the template 5328 // arguments. If not, this class template partial specialization 5329 // will never be used. 5330 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 5331 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 5332 TemplateParams->getDepth(), 5333 DeducibleParams); 5334 5335 if (!DeducibleParams.all()) { 5336 unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count(); 5337 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 5338 << (NumNonDeducible > 1) 5339 << SourceRange(TemplateNameLoc, RAngleLoc); 5340 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 5341 if (!DeducibleParams[I]) { 5342 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 5343 if (Param->getDeclName()) 5344 Diag(Param->getLocation(), 5345 diag::note_partial_spec_unused_parameter) 5346 << Param->getDeclName(); 5347 else 5348 Diag(Param->getLocation(), 5349 diag::note_partial_spec_unused_parameter) 5350 << "<anonymous>"; 5351 } 5352 } 5353 } 5354 } else { 5355 // Create a new class template specialization declaration node for 5356 // this explicit specialization or friend declaration. 5357 Specialization 5358 = ClassTemplateSpecializationDecl::Create(Context, Kind, 5359 ClassTemplate->getDeclContext(), 5360 KWLoc, TemplateNameLoc, 5361 ClassTemplate, 5362 Converted.data(), 5363 Converted.size(), 5364 PrevDecl); 5365 SetNestedNameSpecifier(Specialization, SS); 5366 if (TemplateParameterLists.size() > 0) { 5367 Specialization->setTemplateParameterListsInfo(Context, 5368 TemplateParameterLists.size(), 5369 (TemplateParameterList**) TemplateParameterLists.release()); 5370 } 5371 5372 if (!PrevDecl) 5373 ClassTemplate->AddSpecialization(Specialization, InsertPos); 5374 5375 CanonType = Context.getTypeDeclType(Specialization); 5376 } 5377 5378 // C++ [temp.expl.spec]p6: 5379 // If a template, a member template or the member of a class template is 5380 // explicitly specialized then that specialization shall be declared 5381 // before the first use of that specialization that would cause an implicit 5382 // instantiation to take place, in every translation unit in which such a 5383 // use occurs; no diagnostic is required. 5384 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 5385 bool Okay = false; 5386 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 5387 // Is there any previous explicit specialization declaration? 5388 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 5389 Okay = true; 5390 break; 5391 } 5392 } 5393 5394 if (!Okay) { 5395 SourceRange Range(TemplateNameLoc, RAngleLoc); 5396 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 5397 << Context.getTypeDeclType(Specialization) << Range; 5398 5399 Diag(PrevDecl->getPointOfInstantiation(), 5400 diag::note_instantiation_required_here) 5401 << (PrevDecl->getTemplateSpecializationKind() 5402 != TSK_ImplicitInstantiation); 5403 return true; 5404 } 5405 } 5406 5407 // If this is not a friend, note that this is an explicit specialization. 5408 if (TUK != TUK_Friend) 5409 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 5410 5411 // Check that this isn't a redefinition of this specialization. 5412 if (TUK == TUK_Definition) { 5413 if (RecordDecl *Def = Specialization->getDefinition()) { 5414 SourceRange Range(TemplateNameLoc, RAngleLoc); 5415 Diag(TemplateNameLoc, diag::err_redefinition) 5416 << Context.getTypeDeclType(Specialization) << Range; 5417 Diag(Def->getLocation(), diag::note_previous_definition); 5418 Specialization->setInvalidDecl(); 5419 return true; 5420 } 5421 } 5422 5423 if (Attr) 5424 ProcessDeclAttributeList(S, Specialization, Attr); 5425 5426 if (ModulePrivateLoc.isValid()) 5427 Diag(Specialization->getLocation(), diag::err_module_private_specialization) 5428 << (isPartialSpecialization? 1 : 0) 5429 << FixItHint::CreateRemoval(ModulePrivateLoc); 5430 5431 // Build the fully-sugared type for this class template 5432 // specialization as the user wrote in the specialization 5433 // itself. This means that we'll pretty-print the type retrieved 5434 // from the specialization's declaration the way that the user 5435 // actually wrote the specialization, rather than formatting the 5436 // name based on the "canonical" representation used to store the 5437 // template arguments in the specialization. 5438 TypeSourceInfo *WrittenTy 5439 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 5440 TemplateArgs, CanonType); 5441 if (TUK != TUK_Friend) { 5442 Specialization->setTypeAsWritten(WrittenTy); 5443 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 5444 } 5445 TemplateArgsIn.release(); 5446 5447 // C++ [temp.expl.spec]p9: 5448 // A template explicit specialization is in the scope of the 5449 // namespace in which the template was defined. 5450 // 5451 // We actually implement this paragraph where we set the semantic 5452 // context (in the creation of the ClassTemplateSpecializationDecl), 5453 // but we also maintain the lexical context where the actual 5454 // definition occurs. 5455 Specialization->setLexicalDeclContext(CurContext); 5456 5457 // We may be starting the definition of this specialization. 5458 if (TUK == TUK_Definition) 5459 Specialization->startDefinition(); 5460 5461 if (TUK == TUK_Friend) { 5462 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 5463 TemplateNameLoc, 5464 WrittenTy, 5465 /*FIXME:*/KWLoc); 5466 Friend->setAccess(AS_public); 5467 CurContext->addDecl(Friend); 5468 } else { 5469 // Add the specialization into its lexical context, so that it can 5470 // be seen when iterating through the list of declarations in that 5471 // context. However, specializations are not found by name lookup. 5472 CurContext->addDecl(Specialization); 5473 } 5474 return Specialization; 5475 } 5476 5477 Decl *Sema::ActOnTemplateDeclarator(Scope *S, 5478 MultiTemplateParamsArg TemplateParameterLists, 5479 Declarator &D) { 5480 return HandleDeclarator(S, D, move(TemplateParameterLists)); 5481 } 5482 5483 Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 5484 MultiTemplateParamsArg TemplateParameterLists, 5485 Declarator &D) { 5486 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 5487 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 5488 5489 if (FTI.hasPrototype) { 5490 // FIXME: Diagnose arguments without names in C. 5491 } 5492 5493 Scope *ParentScope = FnBodyScope->getParent(); 5494 5495 D.setFunctionDefinitionKind(FDK_Definition); 5496 Decl *DP = HandleDeclarator(ParentScope, D, 5497 move(TemplateParameterLists)); 5498 if (FunctionTemplateDecl *FunctionTemplate 5499 = dyn_cast_or_null<FunctionTemplateDecl>(DP)) 5500 return ActOnStartOfFunctionDef(FnBodyScope, 5501 FunctionTemplate->getTemplatedDecl()); 5502 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP)) 5503 return ActOnStartOfFunctionDef(FnBodyScope, Function); 5504 return 0; 5505 } 5506 5507 /// \brief Strips various properties off an implicit instantiation 5508 /// that has just been explicitly specialized. 5509 static void StripImplicitInstantiation(NamedDecl *D) { 5510 // FIXME: "make check" is clean if the call to dropAttrs() is commented out. 5511 D->dropAttrs(); 5512 5513 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 5514 FD->setInlineSpecified(false); 5515 } 5516 } 5517 5518 /// \brief Compute the diagnostic location for an explicit instantiation 5519 // declaration or definition. 5520 static SourceLocation DiagLocForExplicitInstantiation( 5521 NamedDecl* D, SourceLocation PointOfInstantiation) { 5522 // Explicit instantiations following a specialization have no effect and 5523 // hence no PointOfInstantiation. In that case, walk decl backwards 5524 // until a valid name loc is found. 5525 SourceLocation PrevDiagLoc = PointOfInstantiation; 5526 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid(); 5527 Prev = Prev->getPreviousDecl()) { 5528 PrevDiagLoc = Prev->getLocation(); 5529 } 5530 assert(PrevDiagLoc.isValid() && 5531 "Explicit instantiation without point of instantiation?"); 5532 return PrevDiagLoc; 5533 } 5534 5535 /// \brief Diagnose cases where we have an explicit template specialization 5536 /// before/after an explicit template instantiation, producing diagnostics 5537 /// for those cases where they are required and determining whether the 5538 /// new specialization/instantiation will have any effect. 5539 /// 5540 /// \param NewLoc the location of the new explicit specialization or 5541 /// instantiation. 5542 /// 5543 /// \param NewTSK the kind of the new explicit specialization or instantiation. 5544 /// 5545 /// \param PrevDecl the previous declaration of the entity. 5546 /// 5547 /// \param PrevTSK the kind of the old explicit specialization or instantiatin. 5548 /// 5549 /// \param PrevPointOfInstantiation if valid, indicates where the previus 5550 /// declaration was instantiated (either implicitly or explicitly). 5551 /// 5552 /// \param HasNoEffect will be set to true to indicate that the new 5553 /// specialization or instantiation has no effect and should be ignored. 5554 /// 5555 /// \returns true if there was an error that should prevent the introduction of 5556 /// the new declaration into the AST, false otherwise. 5557 bool 5558 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 5559 TemplateSpecializationKind NewTSK, 5560 NamedDecl *PrevDecl, 5561 TemplateSpecializationKind PrevTSK, 5562 SourceLocation PrevPointOfInstantiation, 5563 bool &HasNoEffect) { 5564 HasNoEffect = false; 5565 5566 switch (NewTSK) { 5567 case TSK_Undeclared: 5568 case TSK_ImplicitInstantiation: 5569 llvm_unreachable("Don't check implicit instantiations here"); 5570 5571 case TSK_ExplicitSpecialization: 5572 switch (PrevTSK) { 5573 case TSK_Undeclared: 5574 case TSK_ExplicitSpecialization: 5575 // Okay, we're just specializing something that is either already 5576 // explicitly specialized or has merely been mentioned without any 5577 // instantiation. 5578 return false; 5579 5580 case TSK_ImplicitInstantiation: 5581 if (PrevPointOfInstantiation.isInvalid()) { 5582 // The declaration itself has not actually been instantiated, so it is 5583 // still okay to specialize it. 5584 StripImplicitInstantiation(PrevDecl); 5585 return false; 5586 } 5587 // Fall through 5588 5589 case TSK_ExplicitInstantiationDeclaration: 5590 case TSK_ExplicitInstantiationDefinition: 5591 assert((PrevTSK == TSK_ImplicitInstantiation || 5592 PrevPointOfInstantiation.isValid()) && 5593 "Explicit instantiation without point of instantiation?"); 5594 5595 // C++ [temp.expl.spec]p6: 5596 // If a template, a member template or the member of a class template 5597 // is explicitly specialized then that specialization shall be declared 5598 // before the first use of that specialization that would cause an 5599 // implicit instantiation to take place, in every translation unit in 5600 // which such a use occurs; no diagnostic is required. 5601 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 5602 // Is there any previous explicit specialization declaration? 5603 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 5604 return false; 5605 } 5606 5607 Diag(NewLoc, diag::err_specialization_after_instantiation) 5608 << PrevDecl; 5609 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 5610 << (PrevTSK != TSK_ImplicitInstantiation); 5611 5612 return true; 5613 } 5614 5615 case TSK_ExplicitInstantiationDeclaration: 5616 switch (PrevTSK) { 5617 case TSK_ExplicitInstantiationDeclaration: 5618 // This explicit instantiation declaration is redundant (that's okay). 5619 HasNoEffect = true; 5620 return false; 5621 5622 case TSK_Undeclared: 5623 case TSK_ImplicitInstantiation: 5624 // We're explicitly instantiating something that may have already been 5625 // implicitly instantiated; that's fine. 5626 return false; 5627 5628 case TSK_ExplicitSpecialization: 5629 // C++0x [temp.explicit]p4: 5630 // For a given set of template parameters, if an explicit instantiation 5631 // of a template appears after a declaration of an explicit 5632 // specialization for that template, the explicit instantiation has no 5633 // effect. 5634 HasNoEffect = true; 5635 return false; 5636 5637 case TSK_ExplicitInstantiationDefinition: 5638 // C++0x [temp.explicit]p10: 5639 // If an entity is the subject of both an explicit instantiation 5640 // declaration and an explicit instantiation definition in the same 5641 // translation unit, the definition shall follow the declaration. 5642 Diag(NewLoc, 5643 diag::err_explicit_instantiation_declaration_after_definition); 5644 5645 // Explicit instantiations following a specialization have no effect and 5646 // hence no PrevPointOfInstantiation. In that case, walk decl backwards 5647 // until a valid name loc is found. 5648 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 5649 diag::note_explicit_instantiation_definition_here); 5650 HasNoEffect = true; 5651 return false; 5652 } 5653 5654 case TSK_ExplicitInstantiationDefinition: 5655 switch (PrevTSK) { 5656 case TSK_Undeclared: 5657 case TSK_ImplicitInstantiation: 5658 // We're explicitly instantiating something that may have already been 5659 // implicitly instantiated; that's fine. 5660 return false; 5661 5662 case TSK_ExplicitSpecialization: 5663 // C++ DR 259, C++0x [temp.explicit]p4: 5664 // For a given set of template parameters, if an explicit 5665 // instantiation of a template appears after a declaration of 5666 // an explicit specialization for that template, the explicit 5667 // instantiation has no effect. 5668 // 5669 // In C++98/03 mode, we only give an extension warning here, because it 5670 // is not harmful to try to explicitly instantiate something that 5671 // has been explicitly specialized. 5672 Diag(NewLoc, getLangOpts().CPlusPlus0x ? 5673 diag::warn_cxx98_compat_explicit_instantiation_after_specialization : 5674 diag::ext_explicit_instantiation_after_specialization) 5675 << PrevDecl; 5676 Diag(PrevDecl->getLocation(), 5677 diag::note_previous_template_specialization); 5678 HasNoEffect = true; 5679 return false; 5680 5681 case TSK_ExplicitInstantiationDeclaration: 5682 // We're explicity instantiating a definition for something for which we 5683 // were previously asked to suppress instantiations. That's fine. 5684 5685 // C++0x [temp.explicit]p4: 5686 // For a given set of template parameters, if an explicit instantiation 5687 // of a template appears after a declaration of an explicit 5688 // specialization for that template, the explicit instantiation has no 5689 // effect. 5690 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 5691 // Is there any previous explicit specialization declaration? 5692 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 5693 HasNoEffect = true; 5694 break; 5695 } 5696 } 5697 5698 return false; 5699 5700 case TSK_ExplicitInstantiationDefinition: 5701 // C++0x [temp.spec]p5: 5702 // For a given template and a given set of template-arguments, 5703 // - an explicit instantiation definition shall appear at most once 5704 // in a program, 5705 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 5706 << PrevDecl; 5707 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 5708 diag::note_previous_explicit_instantiation); 5709 HasNoEffect = true; 5710 return false; 5711 } 5712 } 5713 5714 llvm_unreachable("Missing specialization/instantiation case?"); 5715 } 5716 5717 /// \brief Perform semantic analysis for the given dependent function 5718 /// template specialization. The only possible way to get a dependent 5719 /// function template specialization is with a friend declaration, 5720 /// like so: 5721 /// 5722 /// template <class T> void foo(T); 5723 /// template <class T> class A { 5724 /// friend void foo<>(T); 5725 /// }; 5726 /// 5727 /// There really isn't any useful analysis we can do here, so we 5728 /// just store the information. 5729 bool 5730 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 5731 const TemplateArgumentListInfo &ExplicitTemplateArgs, 5732 LookupResult &Previous) { 5733 // Remove anything from Previous that isn't a function template in 5734 // the correct context. 5735 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 5736 LookupResult::Filter F = Previous.makeFilter(); 5737 while (F.hasNext()) { 5738 NamedDecl *D = F.next()->getUnderlyingDecl(); 5739 if (!isa<FunctionTemplateDecl>(D) || 5740 !FDLookupContext->InEnclosingNamespaceSetOf( 5741 D->getDeclContext()->getRedeclContext())) 5742 F.erase(); 5743 } 5744 F.done(); 5745 5746 // Should this be diagnosed here? 5747 if (Previous.empty()) return true; 5748 5749 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 5750 ExplicitTemplateArgs); 5751 return false; 5752 } 5753 5754 /// \brief Perform semantic analysis for the given function template 5755 /// specialization. 5756 /// 5757 /// This routine performs all of the semantic analysis required for an 5758 /// explicit function template specialization. On successful completion, 5759 /// the function declaration \p FD will become a function template 5760 /// specialization. 5761 /// 5762 /// \param FD the function declaration, which will be updated to become a 5763 /// function template specialization. 5764 /// 5765 /// \param ExplicitTemplateArgs the explicitly-provided template arguments, 5766 /// if any. Note that this may be valid info even when 0 arguments are 5767 /// explicitly provided as in, e.g., \c void sort<>(char*, char*); 5768 /// as it anyway contains info on the angle brackets locations. 5769 /// 5770 /// \param Previous the set of declarations that may be specialized by 5771 /// this function specialization. 5772 bool 5773 Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 5774 TemplateArgumentListInfo *ExplicitTemplateArgs, 5775 LookupResult &Previous) { 5776 // The set of function template specializations that could match this 5777 // explicit function template specialization. 5778 UnresolvedSet<8> Candidates; 5779 5780 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 5781 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 5782 I != E; ++I) { 5783 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 5784 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 5785 // Only consider templates found within the same semantic lookup scope as 5786 // FD. 5787 if (!FDLookupContext->InEnclosingNamespaceSetOf( 5788 Ovl->getDeclContext()->getRedeclContext())) 5789 continue; 5790 5791 // C++ [temp.expl.spec]p11: 5792 // A trailing template-argument can be left unspecified in the 5793 // template-id naming an explicit function template specialization 5794 // provided it can be deduced from the function argument type. 5795 // Perform template argument deduction to determine whether we may be 5796 // specializing this template. 5797 // FIXME: It is somewhat wasteful to build 5798 TemplateDeductionInfo Info(Context, FD->getLocation()); 5799 FunctionDecl *Specialization = 0; 5800 if (TemplateDeductionResult TDK 5801 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 5802 FD->getType(), 5803 Specialization, 5804 Info)) { 5805 // FIXME: Template argument deduction failed; record why it failed, so 5806 // that we can provide nifty diagnostics. 5807 (void)TDK; 5808 continue; 5809 } 5810 5811 // Record this candidate. 5812 Candidates.addDecl(Specialization, I.getAccess()); 5813 } 5814 } 5815 5816 // Find the most specialized function template. 5817 UnresolvedSetIterator Result 5818 = getMostSpecialized(Candidates.begin(), Candidates.end(), 5819 TPOC_Other, 0, FD->getLocation(), 5820 PDiag(diag::err_function_template_spec_no_match) 5821 << FD->getDeclName(), 5822 PDiag(diag::err_function_template_spec_ambiguous) 5823 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 5824 PDiag(diag::note_function_template_spec_matched)); 5825 if (Result == Candidates.end()) 5826 return true; 5827 5828 // Ignore access information; it doesn't figure into redeclaration checking. 5829 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 5830 5831 FunctionTemplateSpecializationInfo *SpecInfo 5832 = Specialization->getTemplateSpecializationInfo(); 5833 assert(SpecInfo && "Function template specialization info missing?"); 5834 5835 // Note: do not overwrite location info if previous template 5836 // specialization kind was explicit. 5837 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); 5838 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) { 5839 Specialization->setLocation(FD->getLocation()); 5840 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr 5841 // function can differ from the template declaration with respect to 5842 // the constexpr specifier. 5843 Specialization->setConstexpr(FD->isConstexpr()); 5844 } 5845 5846 // FIXME: Check if the prior specialization has a point of instantiation. 5847 // If so, we have run afoul of . 5848 5849 // If this is a friend declaration, then we're not really declaring 5850 // an explicit specialization. 5851 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 5852 5853 // Check the scope of this explicit specialization. 5854 if (!isFriend && 5855 CheckTemplateSpecializationScope(*this, 5856 Specialization->getPrimaryTemplate(), 5857 Specialization, FD->getLocation(), 5858 false)) 5859 return true; 5860 5861 // C++ [temp.expl.spec]p6: 5862 // If a template, a member template or the member of a class template is 5863 // explicitly specialized then that specialization shall be declared 5864 // before the first use of that specialization that would cause an implicit 5865 // instantiation to take place, in every translation unit in which such a 5866 // use occurs; no diagnostic is required. 5867 bool HasNoEffect = false; 5868 if (!isFriend && 5869 CheckSpecializationInstantiationRedecl(FD->getLocation(), 5870 TSK_ExplicitSpecialization, 5871 Specialization, 5872 SpecInfo->getTemplateSpecializationKind(), 5873 SpecInfo->getPointOfInstantiation(), 5874 HasNoEffect)) 5875 return true; 5876 5877 // Mark the prior declaration as an explicit specialization, so that later 5878 // clients know that this is an explicit specialization. 5879 if (!isFriend) { 5880 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 5881 MarkUnusedFileScopedDecl(Specialization); 5882 } 5883 5884 // Turn the given function declaration into a function template 5885 // specialization, with the template arguments from the previous 5886 // specialization. 5887 // Take copies of (semantic and syntactic) template argument lists. 5888 const TemplateArgumentList* TemplArgs = new (Context) 5889 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 5890 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 5891 TemplArgs, /*InsertPos=*/0, 5892 SpecInfo->getTemplateSpecializationKind(), 5893 ExplicitTemplateArgs); 5894 FD->setStorageClass(Specialization->getStorageClass()); 5895 5896 // The "previous declaration" for this function template specialization is 5897 // the prior function template specialization. 5898 Previous.clear(); 5899 Previous.addDecl(Specialization); 5900 return false; 5901 } 5902 5903 /// \brief Perform semantic analysis for the given non-template member 5904 /// specialization. 5905 /// 5906 /// This routine performs all of the semantic analysis required for an 5907 /// explicit member function specialization. On successful completion, 5908 /// the function declaration \p FD will become a member function 5909 /// specialization. 5910 /// 5911 /// \param Member the member declaration, which will be updated to become a 5912 /// specialization. 5913 /// 5914 /// \param Previous the set of declarations, one of which may be specialized 5915 /// by this function specialization; the set will be modified to contain the 5916 /// redeclared member. 5917 bool 5918 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 5919 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 5920 5921 // Try to find the member we are instantiating. 5922 NamedDecl *Instantiation = 0; 5923 NamedDecl *InstantiatedFrom = 0; 5924 MemberSpecializationInfo *MSInfo = 0; 5925 5926 if (Previous.empty()) { 5927 // Nowhere to look anyway. 5928 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 5929 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 5930 I != E; ++I) { 5931 NamedDecl *D = (*I)->getUnderlyingDecl(); 5932 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 5933 if (Context.hasSameType(Function->getType(), Method->getType())) { 5934 Instantiation = Method; 5935 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 5936 MSInfo = Method->getMemberSpecializationInfo(); 5937 break; 5938 } 5939 } 5940 } 5941 } else if (isa<VarDecl>(Member)) { 5942 VarDecl *PrevVar; 5943 if (Previous.isSingleResult() && 5944 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 5945 if (PrevVar->isStaticDataMember()) { 5946 Instantiation = PrevVar; 5947 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 5948 MSInfo = PrevVar->getMemberSpecializationInfo(); 5949 } 5950 } else if (isa<RecordDecl>(Member)) { 5951 CXXRecordDecl *PrevRecord; 5952 if (Previous.isSingleResult() && 5953 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 5954 Instantiation = PrevRecord; 5955 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 5956 MSInfo = PrevRecord->getMemberSpecializationInfo(); 5957 } 5958 } else if (isa<EnumDecl>(Member)) { 5959 EnumDecl *PrevEnum; 5960 if (Previous.isSingleResult() && 5961 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) { 5962 Instantiation = PrevEnum; 5963 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum(); 5964 MSInfo = PrevEnum->getMemberSpecializationInfo(); 5965 } 5966 } 5967 5968 if (!Instantiation) { 5969 // There is no previous declaration that matches. Since member 5970 // specializations are always out-of-line, the caller will complain about 5971 // this mismatch later. 5972 return false; 5973 } 5974 5975 // If this is a friend, just bail out here before we start turning 5976 // things into explicit specializations. 5977 if (Member->getFriendObjectKind() != Decl::FOK_None) { 5978 // Preserve instantiation information. 5979 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 5980 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 5981 cast<CXXMethodDecl>(InstantiatedFrom), 5982 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 5983 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 5984 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 5985 cast<CXXRecordDecl>(InstantiatedFrom), 5986 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 5987 } 5988 5989 Previous.clear(); 5990 Previous.addDecl(Instantiation); 5991 return false; 5992 } 5993 5994 // Make sure that this is a specialization of a member. 5995 if (!InstantiatedFrom) { 5996 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 5997 << Member; 5998 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 5999 return true; 6000 } 6001 6002 // C++ [temp.expl.spec]p6: 6003 // If a template, a member template or the member of a class template is 6004 // explicitly specialized then that specialization shall be declared 6005 // before the first use of that specialization that would cause an implicit 6006 // instantiation to take place, in every translation unit in which such a 6007 // use occurs; no diagnostic is required. 6008 assert(MSInfo && "Member specialization info missing?"); 6009 6010 bool HasNoEffect = false; 6011 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 6012 TSK_ExplicitSpecialization, 6013 Instantiation, 6014 MSInfo->getTemplateSpecializationKind(), 6015 MSInfo->getPointOfInstantiation(), 6016 HasNoEffect)) 6017 return true; 6018 6019 // Check the scope of this explicit specialization. 6020 if (CheckTemplateSpecializationScope(*this, 6021 InstantiatedFrom, 6022 Instantiation, Member->getLocation(), 6023 false)) 6024 return true; 6025 6026 // Note that this is an explicit instantiation of a member. 6027 // the original declaration to note that it is an explicit specialization 6028 // (if it was previously an implicit instantiation). This latter step 6029 // makes bookkeeping easier. 6030 if (isa<FunctionDecl>(Member)) { 6031 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 6032 if (InstantiationFunction->getTemplateSpecializationKind() == 6033 TSK_ImplicitInstantiation) { 6034 InstantiationFunction->setTemplateSpecializationKind( 6035 TSK_ExplicitSpecialization); 6036 InstantiationFunction->setLocation(Member->getLocation()); 6037 } 6038 6039 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 6040 cast<CXXMethodDecl>(InstantiatedFrom), 6041 TSK_ExplicitSpecialization); 6042 MarkUnusedFileScopedDecl(InstantiationFunction); 6043 } else if (isa<VarDecl>(Member)) { 6044 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 6045 if (InstantiationVar->getTemplateSpecializationKind() == 6046 TSK_ImplicitInstantiation) { 6047 InstantiationVar->setTemplateSpecializationKind( 6048 TSK_ExplicitSpecialization); 6049 InstantiationVar->setLocation(Member->getLocation()); 6050 } 6051 6052 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 6053 cast<VarDecl>(InstantiatedFrom), 6054 TSK_ExplicitSpecialization); 6055 MarkUnusedFileScopedDecl(InstantiationVar); 6056 } else if (isa<CXXRecordDecl>(Member)) { 6057 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 6058 if (InstantiationClass->getTemplateSpecializationKind() == 6059 TSK_ImplicitInstantiation) { 6060 InstantiationClass->setTemplateSpecializationKind( 6061 TSK_ExplicitSpecialization); 6062 InstantiationClass->setLocation(Member->getLocation()); 6063 } 6064 6065 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 6066 cast<CXXRecordDecl>(InstantiatedFrom), 6067 TSK_ExplicitSpecialization); 6068 } else { 6069 assert(isa<EnumDecl>(Member) && "Only member enums remain"); 6070 EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation); 6071 if (InstantiationEnum->getTemplateSpecializationKind() == 6072 TSK_ImplicitInstantiation) { 6073 InstantiationEnum->setTemplateSpecializationKind( 6074 TSK_ExplicitSpecialization); 6075 InstantiationEnum->setLocation(Member->getLocation()); 6076 } 6077 6078 cast<EnumDecl>(Member)->setInstantiationOfMemberEnum( 6079 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 6080 } 6081 6082 // Save the caller the trouble of having to figure out which declaration 6083 // this specialization matches. 6084 Previous.clear(); 6085 Previous.addDecl(Instantiation); 6086 return false; 6087 } 6088 6089 /// \brief Check the scope of an explicit instantiation. 6090 /// 6091 /// \returns true if a serious error occurs, false otherwise. 6092 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 6093 SourceLocation InstLoc, 6094 bool WasQualifiedName) { 6095 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 6096 DeclContext *CurContext = S.CurContext->getRedeclContext(); 6097 6098 if (CurContext->isRecord()) { 6099 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 6100 << D; 6101 return true; 6102 } 6103 6104 // C++11 [temp.explicit]p3: 6105 // An explicit instantiation shall appear in an enclosing namespace of its 6106 // template. If the name declared in the explicit instantiation is an 6107 // unqualified name, the explicit instantiation shall appear in the 6108 // namespace where its template is declared or, if that namespace is inline 6109 // (7.3.1), any namespace from its enclosing namespace set. 6110 // 6111 // This is DR275, which we do not retroactively apply to C++98/03. 6112 if (WasQualifiedName) { 6113 if (CurContext->Encloses(OrigContext)) 6114 return false; 6115 } else { 6116 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 6117 return false; 6118 } 6119 6120 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) { 6121 if (WasQualifiedName) 6122 S.Diag(InstLoc, 6123 S.getLangOpts().CPlusPlus0x? 6124 diag::err_explicit_instantiation_out_of_scope : 6125 diag::warn_explicit_instantiation_out_of_scope_0x) 6126 << D << NS; 6127 else 6128 S.Diag(InstLoc, 6129 S.getLangOpts().CPlusPlus0x? 6130 diag::err_explicit_instantiation_unqualified_wrong_namespace : 6131 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 6132 << D << NS; 6133 } else 6134 S.Diag(InstLoc, 6135 S.getLangOpts().CPlusPlus0x? 6136 diag::err_explicit_instantiation_must_be_global : 6137 diag::warn_explicit_instantiation_must_be_global_0x) 6138 << D; 6139 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 6140 return false; 6141 } 6142 6143 /// \brief Determine whether the given scope specifier has a template-id in it. 6144 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 6145 if (!SS.isSet()) 6146 return false; 6147 6148 // C++11 [temp.explicit]p3: 6149 // If the explicit instantiation is for a member function, a member class 6150 // or a static data member of a class template specialization, the name of 6151 // the class template specialization in the qualified-id for the member 6152 // name shall be a simple-template-id. 6153 // 6154 // C++98 has the same restriction, just worded differently. 6155 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 6156 NNS; NNS = NNS->getPrefix()) 6157 if (const Type *T = NNS->getAsType()) 6158 if (isa<TemplateSpecializationType>(T)) 6159 return true; 6160 6161 return false; 6162 } 6163 6164 // Explicit instantiation of a class template specialization 6165 DeclResult 6166 Sema::ActOnExplicitInstantiation(Scope *S, 6167 SourceLocation ExternLoc, 6168 SourceLocation TemplateLoc, 6169 unsigned TagSpec, 6170 SourceLocation KWLoc, 6171 const CXXScopeSpec &SS, 6172 TemplateTy TemplateD, 6173 SourceLocation TemplateNameLoc, 6174 SourceLocation LAngleLoc, 6175 ASTTemplateArgsPtr TemplateArgsIn, 6176 SourceLocation RAngleLoc, 6177 AttributeList *Attr) { 6178 // Find the class template we're specializing 6179 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 6180 ClassTemplateDecl *ClassTemplate 6181 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 6182 6183 // Check that the specialization uses the same tag kind as the 6184 // original template. 6185 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 6186 assert(Kind != TTK_Enum && 6187 "Invalid enum tag in class template explicit instantiation!"); 6188 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 6189 Kind, /*isDefinition*/false, KWLoc, 6190 *ClassTemplate->getIdentifier())) { 6191 Diag(KWLoc, diag::err_use_with_wrong_tag) 6192 << ClassTemplate 6193 << FixItHint::CreateReplacement(KWLoc, 6194 ClassTemplate->getTemplatedDecl()->getKindName()); 6195 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 6196 diag::note_previous_use); 6197 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 6198 } 6199 6200 // C++0x [temp.explicit]p2: 6201 // There are two forms of explicit instantiation: an explicit instantiation 6202 // definition and an explicit instantiation declaration. An explicit 6203 // instantiation declaration begins with the extern keyword. [...] 6204 TemplateSpecializationKind TSK 6205 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6206 : TSK_ExplicitInstantiationDeclaration; 6207 6208 // Translate the parser's template argument list in our AST format. 6209 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 6210 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 6211 6212 // Check that the template argument list is well-formed for this 6213 // template. 6214 SmallVector<TemplateArgument, 4> Converted; 6215 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 6216 TemplateArgs, false, Converted)) 6217 return true; 6218 6219 // Find the class template specialization declaration that 6220 // corresponds to these arguments. 6221 void *InsertPos = 0; 6222 ClassTemplateSpecializationDecl *PrevDecl 6223 = ClassTemplate->findSpecialization(Converted.data(), 6224 Converted.size(), InsertPos); 6225 6226 TemplateSpecializationKind PrevDecl_TSK 6227 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 6228 6229 // C++0x [temp.explicit]p2: 6230 // [...] An explicit instantiation shall appear in an enclosing 6231 // namespace of its template. [...] 6232 // 6233 // This is C++ DR 275. 6234 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 6235 SS.isSet())) 6236 return true; 6237 6238 ClassTemplateSpecializationDecl *Specialization = 0; 6239 6240 bool HasNoEffect = false; 6241 if (PrevDecl) { 6242 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 6243 PrevDecl, PrevDecl_TSK, 6244 PrevDecl->getPointOfInstantiation(), 6245 HasNoEffect)) 6246 return PrevDecl; 6247 6248 // Even though HasNoEffect == true means that this explicit instantiation 6249 // has no effect on semantics, we go on to put its syntax in the AST. 6250 6251 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 6252 PrevDecl_TSK == TSK_Undeclared) { 6253 // Since the only prior class template specialization with these 6254 // arguments was referenced but not declared, reuse that 6255 // declaration node as our own, updating the source location 6256 // for the template name to reflect our new declaration. 6257 // (Other source locations will be updated later.) 6258 Specialization = PrevDecl; 6259 Specialization->setLocation(TemplateNameLoc); 6260 PrevDecl = 0; 6261 } 6262 } 6263 6264 if (!Specialization) { 6265 // Create a new class template specialization declaration node for 6266 // this explicit specialization. 6267 Specialization 6268 = ClassTemplateSpecializationDecl::Create(Context, Kind, 6269 ClassTemplate->getDeclContext(), 6270 KWLoc, TemplateNameLoc, 6271 ClassTemplate, 6272 Converted.data(), 6273 Converted.size(), 6274 PrevDecl); 6275 SetNestedNameSpecifier(Specialization, SS); 6276 6277 if (!HasNoEffect && !PrevDecl) { 6278 // Insert the new specialization. 6279 ClassTemplate->AddSpecialization(Specialization, InsertPos); 6280 } 6281 } 6282 6283 // Build the fully-sugared type for this explicit instantiation as 6284 // the user wrote in the explicit instantiation itself. This means 6285 // that we'll pretty-print the type retrieved from the 6286 // specialization's declaration the way that the user actually wrote 6287 // the explicit instantiation, rather than formatting the name based 6288 // on the "canonical" representation used to store the template 6289 // arguments in the specialization. 6290 TypeSourceInfo *WrittenTy 6291 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 6292 TemplateArgs, 6293 Context.getTypeDeclType(Specialization)); 6294 Specialization->setTypeAsWritten(WrittenTy); 6295 TemplateArgsIn.release(); 6296 6297 // Set source locations for keywords. 6298 Specialization->setExternLoc(ExternLoc); 6299 Specialization->setTemplateKeywordLoc(TemplateLoc); 6300 6301 if (Attr) 6302 ProcessDeclAttributeList(S, Specialization, Attr); 6303 6304 // Add the explicit instantiation into its lexical context. However, 6305 // since explicit instantiations are never found by name lookup, we 6306 // just put it into the declaration context directly. 6307 Specialization->setLexicalDeclContext(CurContext); 6308 CurContext->addDecl(Specialization); 6309 6310 // Syntax is now OK, so return if it has no other effect on semantics. 6311 if (HasNoEffect) { 6312 // Set the template specialization kind. 6313 Specialization->setTemplateSpecializationKind(TSK); 6314 return Specialization; 6315 } 6316 6317 // C++ [temp.explicit]p3: 6318 // A definition of a class template or class member template 6319 // shall be in scope at the point of the explicit instantiation of 6320 // the class template or class member template. 6321 // 6322 // This check comes when we actually try to perform the 6323 // instantiation. 6324 ClassTemplateSpecializationDecl *Def 6325 = cast_or_null<ClassTemplateSpecializationDecl>( 6326 Specialization->getDefinition()); 6327 if (!Def) 6328 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 6329 else if (TSK == TSK_ExplicitInstantiationDefinition) { 6330 MarkVTableUsed(TemplateNameLoc, Specialization, true); 6331 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 6332 } 6333 6334 // Instantiate the members of this class template specialization. 6335 Def = cast_or_null<ClassTemplateSpecializationDecl>( 6336 Specialization->getDefinition()); 6337 if (Def) { 6338 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 6339 6340 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 6341 // TSK_ExplicitInstantiationDefinition 6342 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 6343 TSK == TSK_ExplicitInstantiationDefinition) 6344 Def->setTemplateSpecializationKind(TSK); 6345 6346 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 6347 } 6348 6349 // Set the template specialization kind. 6350 Specialization->setTemplateSpecializationKind(TSK); 6351 return Specialization; 6352 } 6353 6354 // Explicit instantiation of a member class of a class template. 6355 DeclResult 6356 Sema::ActOnExplicitInstantiation(Scope *S, 6357 SourceLocation ExternLoc, 6358 SourceLocation TemplateLoc, 6359 unsigned TagSpec, 6360 SourceLocation KWLoc, 6361 CXXScopeSpec &SS, 6362 IdentifierInfo *Name, 6363 SourceLocation NameLoc, 6364 AttributeList *Attr) { 6365 6366 bool Owned = false; 6367 bool IsDependent = false; 6368 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 6369 KWLoc, SS, Name, NameLoc, Attr, AS_none, 6370 /*ModulePrivateLoc=*/SourceLocation(), 6371 MultiTemplateParamsArg(*this, 0, 0), 6372 Owned, IsDependent, SourceLocation(), false, 6373 TypeResult()); 6374 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 6375 6376 if (!TagD) 6377 return true; 6378 6379 TagDecl *Tag = cast<TagDecl>(TagD); 6380 assert(!Tag->isEnum() && "shouldn't see enumerations here"); 6381 6382 if (Tag->isInvalidDecl()) 6383 return true; 6384 6385 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 6386 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 6387 if (!Pattern) { 6388 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 6389 << Context.getTypeDeclType(Record); 6390 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 6391 return true; 6392 } 6393 6394 // C++0x [temp.explicit]p2: 6395 // If the explicit instantiation is for a class or member class, the 6396 // elaborated-type-specifier in the declaration shall include a 6397 // simple-template-id. 6398 // 6399 // C++98 has the same restriction, just worded differently. 6400 if (!ScopeSpecifierHasTemplateId(SS)) 6401 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 6402 << Record << SS.getRange(); 6403 6404 // C++0x [temp.explicit]p2: 6405 // There are two forms of explicit instantiation: an explicit instantiation 6406 // definition and an explicit instantiation declaration. An explicit 6407 // instantiation declaration begins with the extern keyword. [...] 6408 TemplateSpecializationKind TSK 6409 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6410 : TSK_ExplicitInstantiationDeclaration; 6411 6412 // C++0x [temp.explicit]p2: 6413 // [...] An explicit instantiation shall appear in an enclosing 6414 // namespace of its template. [...] 6415 // 6416 // This is C++ DR 275. 6417 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 6418 6419 // Verify that it is okay to explicitly instantiate here. 6420 CXXRecordDecl *PrevDecl 6421 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl()); 6422 if (!PrevDecl && Record->getDefinition()) 6423 PrevDecl = Record; 6424 if (PrevDecl) { 6425 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 6426 bool HasNoEffect = false; 6427 assert(MSInfo && "No member specialization information?"); 6428 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 6429 PrevDecl, 6430 MSInfo->getTemplateSpecializationKind(), 6431 MSInfo->getPointOfInstantiation(), 6432 HasNoEffect)) 6433 return true; 6434 if (HasNoEffect) 6435 return TagD; 6436 } 6437 6438 CXXRecordDecl *RecordDef 6439 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 6440 if (!RecordDef) { 6441 // C++ [temp.explicit]p3: 6442 // A definition of a member class of a class template shall be in scope 6443 // at the point of an explicit instantiation of the member class. 6444 CXXRecordDecl *Def 6445 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 6446 if (!Def) { 6447 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 6448 << 0 << Record->getDeclName() << Record->getDeclContext(); 6449 Diag(Pattern->getLocation(), diag::note_forward_declaration) 6450 << Pattern; 6451 return true; 6452 } else { 6453 if (InstantiateClass(NameLoc, Record, Def, 6454 getTemplateInstantiationArgs(Record), 6455 TSK)) 6456 return true; 6457 6458 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 6459 if (!RecordDef) 6460 return true; 6461 } 6462 } 6463 6464 // Instantiate all of the members of the class. 6465 InstantiateClassMembers(NameLoc, RecordDef, 6466 getTemplateInstantiationArgs(Record), TSK); 6467 6468 if (TSK == TSK_ExplicitInstantiationDefinition) 6469 MarkVTableUsed(NameLoc, RecordDef, true); 6470 6471 // FIXME: We don't have any representation for explicit instantiations of 6472 // member classes. Such a representation is not needed for compilation, but it 6473 // should be available for clients that want to see all of the declarations in 6474 // the source code. 6475 return TagD; 6476 } 6477 6478 DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 6479 SourceLocation ExternLoc, 6480 SourceLocation TemplateLoc, 6481 Declarator &D) { 6482 // Explicit instantiations always require a name. 6483 // TODO: check if/when DNInfo should replace Name. 6484 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 6485 DeclarationName Name = NameInfo.getName(); 6486 if (!Name) { 6487 if (!D.isInvalidType()) 6488 Diag(D.getDeclSpec().getLocStart(), 6489 diag::err_explicit_instantiation_requires_name) 6490 << D.getDeclSpec().getSourceRange() 6491 << D.getSourceRange(); 6492 6493 return true; 6494 } 6495 6496 // The scope passed in may not be a decl scope. Zip up the scope tree until 6497 // we find one that is. 6498 while ((S->getFlags() & Scope::DeclScope) == 0 || 6499 (S->getFlags() & Scope::TemplateParamScope) != 0) 6500 S = S->getParent(); 6501 6502 // Determine the type of the declaration. 6503 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 6504 QualType R = T->getType(); 6505 if (R.isNull()) 6506 return true; 6507 6508 // C++ [dcl.stc]p1: 6509 // A storage-class-specifier shall not be specified in [...] an explicit 6510 // instantiation (14.7.2) directive. 6511 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 6512 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 6513 << Name; 6514 return true; 6515 } else if (D.getDeclSpec().getStorageClassSpec() 6516 != DeclSpec::SCS_unspecified) { 6517 // Complain about then remove the storage class specifier. 6518 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) 6519 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 6520 6521 D.getMutableDeclSpec().ClearStorageClassSpecs(); 6522 } 6523 6524 // C++0x [temp.explicit]p1: 6525 // [...] An explicit instantiation of a function template shall not use the 6526 // inline or constexpr specifiers. 6527 // Presumably, this also applies to member functions of class templates as 6528 // well. 6529 if (D.getDeclSpec().isInlineSpecified()) 6530 Diag(D.getDeclSpec().getInlineSpecLoc(), 6531 getLangOpts().CPlusPlus0x ? 6532 diag::err_explicit_instantiation_inline : 6533 diag::warn_explicit_instantiation_inline_0x) 6534 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 6535 if (D.getDeclSpec().isConstexprSpecified()) 6536 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is 6537 // not already specified. 6538 Diag(D.getDeclSpec().getConstexprSpecLoc(), 6539 diag::err_explicit_instantiation_constexpr); 6540 6541 // C++0x [temp.explicit]p2: 6542 // There are two forms of explicit instantiation: an explicit instantiation 6543 // definition and an explicit instantiation declaration. An explicit 6544 // instantiation declaration begins with the extern keyword. [...] 6545 TemplateSpecializationKind TSK 6546 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6547 : TSK_ExplicitInstantiationDeclaration; 6548 6549 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 6550 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 6551 6552 if (!R->isFunctionType()) { 6553 // C++ [temp.explicit]p1: 6554 // A [...] static data member of a class template can be explicitly 6555 // instantiated from the member definition associated with its class 6556 // template. 6557 if (Previous.isAmbiguous()) 6558 return true; 6559 6560 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 6561 if (!Prev || !Prev->isStaticDataMember()) { 6562 // We expect to see a data data member here. 6563 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 6564 << Name; 6565 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 6566 P != PEnd; ++P) 6567 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 6568 return true; 6569 } 6570 6571 if (!Prev->getInstantiatedFromStaticDataMember()) { 6572 // FIXME: Check for explicit specialization? 6573 Diag(D.getIdentifierLoc(), 6574 diag::err_explicit_instantiation_data_member_not_instantiated) 6575 << Prev; 6576 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 6577 // FIXME: Can we provide a note showing where this was declared? 6578 return true; 6579 } 6580 6581 // C++0x [temp.explicit]p2: 6582 // If the explicit instantiation is for a member function, a member class 6583 // or a static data member of a class template specialization, the name of 6584 // the class template specialization in the qualified-id for the member 6585 // name shall be a simple-template-id. 6586 // 6587 // C++98 has the same restriction, just worded differently. 6588 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 6589 Diag(D.getIdentifierLoc(), 6590 diag::ext_explicit_instantiation_without_qualified_id) 6591 << Prev << D.getCXXScopeSpec().getRange(); 6592 6593 // Check the scope of this explicit instantiation. 6594 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 6595 6596 // Verify that it is okay to explicitly instantiate here. 6597 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 6598 assert(MSInfo && "Missing static data member specialization info?"); 6599 bool HasNoEffect = false; 6600 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 6601 MSInfo->getTemplateSpecializationKind(), 6602 MSInfo->getPointOfInstantiation(), 6603 HasNoEffect)) 6604 return true; 6605 if (HasNoEffect) 6606 return (Decl*) 0; 6607 6608 // Instantiate static data member. 6609 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 6610 if (TSK == TSK_ExplicitInstantiationDefinition) 6611 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev); 6612 6613 // FIXME: Create an ExplicitInstantiation node? 6614 return (Decl*) 0; 6615 } 6616 6617 // If the declarator is a template-id, translate the parser's template 6618 // argument list into our AST format. 6619 bool HasExplicitTemplateArgs = false; 6620 TemplateArgumentListInfo TemplateArgs; 6621 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 6622 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 6623 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 6624 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 6625 ASTTemplateArgsPtr TemplateArgsPtr(*this, 6626 TemplateId->getTemplateArgs(), 6627 TemplateId->NumArgs); 6628 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 6629 HasExplicitTemplateArgs = true; 6630 TemplateArgsPtr.release(); 6631 } 6632 6633 // C++ [temp.explicit]p1: 6634 // A [...] function [...] can be explicitly instantiated from its template. 6635 // A member function [...] of a class template can be explicitly 6636 // instantiated from the member definition associated with its class 6637 // template. 6638 UnresolvedSet<8> Matches; 6639 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 6640 P != PEnd; ++P) { 6641 NamedDecl *Prev = *P; 6642 if (!HasExplicitTemplateArgs) { 6643 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 6644 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 6645 Matches.clear(); 6646 6647 Matches.addDecl(Method, P.getAccess()); 6648 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 6649 break; 6650 } 6651 } 6652 } 6653 6654 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 6655 if (!FunTmpl) 6656 continue; 6657 6658 TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); 6659 FunctionDecl *Specialization = 0; 6660 if (TemplateDeductionResult TDK 6661 = DeduceTemplateArguments(FunTmpl, 6662 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 6663 R, Specialization, Info)) { 6664 // FIXME: Keep track of almost-matches? 6665 (void)TDK; 6666 continue; 6667 } 6668 6669 Matches.addDecl(Specialization, P.getAccess()); 6670 } 6671 6672 // Find the most specialized function template specialization. 6673 UnresolvedSetIterator Result 6674 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0, 6675 D.getIdentifierLoc(), 6676 PDiag(diag::err_explicit_instantiation_not_known) << Name, 6677 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 6678 PDiag(diag::note_explicit_instantiation_candidate)); 6679 6680 if (Result == Matches.end()) 6681 return true; 6682 6683 // Ignore access control bits, we don't need them for redeclaration checking. 6684 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 6685 6686 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 6687 Diag(D.getIdentifierLoc(), 6688 diag::err_explicit_instantiation_member_function_not_instantiated) 6689 << Specialization 6690 << (Specialization->getTemplateSpecializationKind() == 6691 TSK_ExplicitSpecialization); 6692 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 6693 return true; 6694 } 6695 6696 FunctionDecl *PrevDecl = Specialization->getPreviousDecl(); 6697 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 6698 PrevDecl = Specialization; 6699 6700 if (PrevDecl) { 6701 bool HasNoEffect = false; 6702 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 6703 PrevDecl, 6704 PrevDecl->getTemplateSpecializationKind(), 6705 PrevDecl->getPointOfInstantiation(), 6706 HasNoEffect)) 6707 return true; 6708 6709 // FIXME: We may still want to build some representation of this 6710 // explicit specialization. 6711 if (HasNoEffect) 6712 return (Decl*) 0; 6713 } 6714 6715 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 6716 AttributeList *Attr = D.getDeclSpec().getAttributes().getList(); 6717 if (Attr) 6718 ProcessDeclAttributeList(S, Specialization, Attr); 6719 6720 if (TSK == TSK_ExplicitInstantiationDefinition) 6721 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 6722 6723 // C++0x [temp.explicit]p2: 6724 // If the explicit instantiation is for a member function, a member class 6725 // or a static data member of a class template specialization, the name of 6726 // the class template specialization in the qualified-id for the member 6727 // name shall be a simple-template-id. 6728 // 6729 // C++98 has the same restriction, just worded differently. 6730 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 6731 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 6732 D.getCXXScopeSpec().isSet() && 6733 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 6734 Diag(D.getIdentifierLoc(), 6735 diag::ext_explicit_instantiation_without_qualified_id) 6736 << Specialization << D.getCXXScopeSpec().getRange(); 6737 6738 CheckExplicitInstantiationScope(*this, 6739 FunTmpl? (NamedDecl *)FunTmpl 6740 : Specialization->getInstantiatedFromMemberFunction(), 6741 D.getIdentifierLoc(), 6742 D.getCXXScopeSpec().isSet()); 6743 6744 // FIXME: Create some kind of ExplicitInstantiationDecl here. 6745 return (Decl*) 0; 6746 } 6747 6748 TypeResult 6749 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 6750 const CXXScopeSpec &SS, IdentifierInfo *Name, 6751 SourceLocation TagLoc, SourceLocation NameLoc) { 6752 // This has to hold, because SS is expected to be defined. 6753 assert(Name && "Expected a name in a dependent tag"); 6754 6755 NestedNameSpecifier *NNS 6756 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 6757 if (!NNS) 6758 return true; 6759 6760 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 6761 6762 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 6763 Diag(NameLoc, diag::err_dependent_tag_decl) 6764 << (TUK == TUK_Definition) << Kind << SS.getRange(); 6765 return true; 6766 } 6767 6768 // Create the resulting type. 6769 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 6770 QualType Result = Context.getDependentNameType(Kwd, NNS, Name); 6771 6772 // Create type-source location information for this type. 6773 TypeLocBuilder TLB; 6774 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result); 6775 TL.setElaboratedKeywordLoc(TagLoc); 6776 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 6777 TL.setNameLoc(NameLoc); 6778 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 6779 } 6780 6781 TypeResult 6782 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 6783 const CXXScopeSpec &SS, const IdentifierInfo &II, 6784 SourceLocation IdLoc) { 6785 if (SS.isInvalid()) 6786 return true; 6787 6788 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 6789 Diag(TypenameLoc, 6790 getLangOpts().CPlusPlus0x ? 6791 diag::warn_cxx98_compat_typename_outside_of_template : 6792 diag::ext_typename_outside_of_template) 6793 << FixItHint::CreateRemoval(TypenameLoc); 6794 6795 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 6796 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None, 6797 TypenameLoc, QualifierLoc, II, IdLoc); 6798 if (T.isNull()) 6799 return true; 6800 6801 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 6802 if (isa<DependentNameType>(T)) { 6803 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); 6804 TL.setElaboratedKeywordLoc(TypenameLoc); 6805 TL.setQualifierLoc(QualifierLoc); 6806 TL.setNameLoc(IdLoc); 6807 } else { 6808 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc()); 6809 TL.setElaboratedKeywordLoc(TypenameLoc); 6810 TL.setQualifierLoc(QualifierLoc); 6811 cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc); 6812 } 6813 6814 return CreateParsedType(T, TSI); 6815 } 6816 6817 TypeResult 6818 Sema::ActOnTypenameType(Scope *S, 6819 SourceLocation TypenameLoc, 6820 const CXXScopeSpec &SS, 6821 SourceLocation TemplateKWLoc, 6822 TemplateTy TemplateIn, 6823 SourceLocation TemplateNameLoc, 6824 SourceLocation LAngleLoc, 6825 ASTTemplateArgsPtr TemplateArgsIn, 6826 SourceLocation RAngleLoc) { 6827 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 6828 Diag(TypenameLoc, 6829 getLangOpts().CPlusPlus0x ? 6830 diag::warn_cxx98_compat_typename_outside_of_template : 6831 diag::ext_typename_outside_of_template) 6832 << FixItHint::CreateRemoval(TypenameLoc); 6833 6834 // Translate the parser's template argument list in our AST format. 6835 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 6836 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 6837 6838 TemplateName Template = TemplateIn.get(); 6839 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 6840 // Construct a dependent template specialization type. 6841 assert(DTN && "dependent template has non-dependent name?"); 6842 assert(DTN->getQualifier() 6843 == static_cast<NestedNameSpecifier*>(SS.getScopeRep())); 6844 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename, 6845 DTN->getQualifier(), 6846 DTN->getIdentifier(), 6847 TemplateArgs); 6848 6849 // Create source-location information for this type. 6850 TypeLocBuilder Builder; 6851 DependentTemplateSpecializationTypeLoc SpecTL 6852 = Builder.push<DependentTemplateSpecializationTypeLoc>(T); 6853 SpecTL.setElaboratedKeywordLoc(TypenameLoc); 6854 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 6855 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 6856 SpecTL.setTemplateNameLoc(TemplateNameLoc); 6857 SpecTL.setLAngleLoc(LAngleLoc); 6858 SpecTL.setRAngleLoc(RAngleLoc); 6859 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 6860 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 6861 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 6862 } 6863 6864 QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs); 6865 if (T.isNull()) 6866 return true; 6867 6868 // Provide source-location information for the template specialization type. 6869 TypeLocBuilder Builder; 6870 TemplateSpecializationTypeLoc SpecTL 6871 = Builder.push<TemplateSpecializationTypeLoc>(T); 6872 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 6873 SpecTL.setTemplateNameLoc(TemplateNameLoc); 6874 SpecTL.setLAngleLoc(LAngleLoc); 6875 SpecTL.setRAngleLoc(RAngleLoc); 6876 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 6877 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 6878 6879 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T); 6880 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 6881 TL.setElaboratedKeywordLoc(TypenameLoc); 6882 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 6883 6884 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 6885 return CreateParsedType(T, TSI); 6886 } 6887 6888 6889 /// \brief Build the type that describes a C++ typename specifier, 6890 /// e.g., "typename T::type". 6891 QualType 6892 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 6893 SourceLocation KeywordLoc, 6894 NestedNameSpecifierLoc QualifierLoc, 6895 const IdentifierInfo &II, 6896 SourceLocation IILoc) { 6897 CXXScopeSpec SS; 6898 SS.Adopt(QualifierLoc); 6899 6900 DeclContext *Ctx = computeDeclContext(SS); 6901 if (!Ctx) { 6902 // If the nested-name-specifier is dependent and couldn't be 6903 // resolved to a type, build a typename type. 6904 assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); 6905 return Context.getDependentNameType(Keyword, 6906 QualifierLoc.getNestedNameSpecifier(), 6907 &II); 6908 } 6909 6910 // If the nested-name-specifier refers to the current instantiation, 6911 // the "typename" keyword itself is superfluous. In C++03, the 6912 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 6913 // allows such extraneous "typename" keywords, and we retroactively 6914 // apply this DR to C++03 code with only a warning. In any case we continue. 6915 6916 if (RequireCompleteDeclContext(SS, Ctx)) 6917 return QualType(); 6918 6919 DeclarationName Name(&II); 6920 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 6921 LookupQualifiedName(Result, Ctx); 6922 unsigned DiagID = 0; 6923 Decl *Referenced = 0; 6924 switch (Result.getResultKind()) { 6925 case LookupResult::NotFound: 6926 DiagID = diag::err_typename_nested_not_found; 6927 break; 6928 6929 case LookupResult::FoundUnresolvedValue: { 6930 // We found a using declaration that is a value. Most likely, the using 6931 // declaration itself is meant to have the 'typename' keyword. 6932 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 6933 IILoc); 6934 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 6935 << Name << Ctx << FullRange; 6936 if (UnresolvedUsingValueDecl *Using 6937 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 6938 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); 6939 Diag(Loc, diag::note_using_value_decl_missing_typename) 6940 << FixItHint::CreateInsertion(Loc, "typename "); 6941 } 6942 } 6943 // Fall through to create a dependent typename type, from which we can recover 6944 // better. 6945 6946 case LookupResult::NotFoundInCurrentInstantiation: 6947 // Okay, it's a member of an unknown instantiation. 6948 return Context.getDependentNameType(Keyword, 6949 QualifierLoc.getNestedNameSpecifier(), 6950 &II); 6951 6952 case LookupResult::Found: 6953 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 6954 // We found a type. Build an ElaboratedType, since the 6955 // typename-specifier was just sugar. 6956 return Context.getElaboratedType(ETK_Typename, 6957 QualifierLoc.getNestedNameSpecifier(), 6958 Context.getTypeDeclType(Type)); 6959 } 6960 6961 DiagID = diag::err_typename_nested_not_type; 6962 Referenced = Result.getFoundDecl(); 6963 break; 6964 6965 case LookupResult::FoundOverloaded: 6966 DiagID = diag::err_typename_nested_not_type; 6967 Referenced = *Result.begin(); 6968 break; 6969 6970 case LookupResult::Ambiguous: 6971 return QualType(); 6972 } 6973 6974 // If we get here, it's because name lookup did not find a 6975 // type. Emit an appropriate diagnostic and return an error. 6976 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 6977 IILoc); 6978 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 6979 if (Referenced) 6980 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 6981 << Name; 6982 return QualType(); 6983 } 6984 6985 namespace { 6986 // See Sema::RebuildTypeInCurrentInstantiation 6987 class CurrentInstantiationRebuilder 6988 : public TreeTransform<CurrentInstantiationRebuilder> { 6989 SourceLocation Loc; 6990 DeclarationName Entity; 6991 6992 public: 6993 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 6994 6995 CurrentInstantiationRebuilder(Sema &SemaRef, 6996 SourceLocation Loc, 6997 DeclarationName Entity) 6998 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 6999 Loc(Loc), Entity(Entity) { } 7000 7001 /// \brief Determine whether the given type \p T has already been 7002 /// transformed. 7003 /// 7004 /// For the purposes of type reconstruction, a type has already been 7005 /// transformed if it is NULL or if it is not dependent. 7006 bool AlreadyTransformed(QualType T) { 7007 return T.isNull() || !T->isDependentType(); 7008 } 7009 7010 /// \brief Returns the location of the entity whose type is being 7011 /// rebuilt. 7012 SourceLocation getBaseLocation() { return Loc; } 7013 7014 /// \brief Returns the name of the entity whose type is being rebuilt. 7015 DeclarationName getBaseEntity() { return Entity; } 7016 7017 /// \brief Sets the "base" location and entity when that 7018 /// information is known based on another transformation. 7019 void setBase(SourceLocation Loc, DeclarationName Entity) { 7020 this->Loc = Loc; 7021 this->Entity = Entity; 7022 } 7023 7024 ExprResult TransformLambdaExpr(LambdaExpr *E) { 7025 // Lambdas never need to be transformed. 7026 return E; 7027 } 7028 }; 7029 } 7030 7031 /// \brief Rebuilds a type within the context of the current instantiation. 7032 /// 7033 /// The type \p T is part of the type of an out-of-line member definition of 7034 /// a class template (or class template partial specialization) that was parsed 7035 /// and constructed before we entered the scope of the class template (or 7036 /// partial specialization thereof). This routine will rebuild that type now 7037 /// that we have entered the declarator's scope, which may produce different 7038 /// canonical types, e.g., 7039 /// 7040 /// \code 7041 /// template<typename T> 7042 /// struct X { 7043 /// typedef T* pointer; 7044 /// pointer data(); 7045 /// }; 7046 /// 7047 /// template<typename T> 7048 /// typename X<T>::pointer X<T>::data() { ... } 7049 /// \endcode 7050 /// 7051 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 7052 /// since we do not know that we can look into X<T> when we parsed the type. 7053 /// This function will rebuild the type, performing the lookup of "pointer" 7054 /// in X<T> and returning an ElaboratedType whose canonical type is the same 7055 /// as the canonical type of T*, allowing the return types of the out-of-line 7056 /// definition and the declaration to match. 7057 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 7058 SourceLocation Loc, 7059 DeclarationName Name) { 7060 if (!T || !T->getType()->isDependentType()) 7061 return T; 7062 7063 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 7064 return Rebuilder.TransformType(T); 7065 } 7066 7067 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 7068 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 7069 DeclarationName()); 7070 return Rebuilder.TransformExpr(E); 7071 } 7072 7073 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 7074 if (SS.isInvalid()) 7075 return true; 7076 7077 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 7078 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 7079 DeclarationName()); 7080 NestedNameSpecifierLoc Rebuilt 7081 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); 7082 if (!Rebuilt) 7083 return true; 7084 7085 SS.Adopt(Rebuilt); 7086 return false; 7087 } 7088 7089 /// \brief Rebuild the template parameters now that we know we're in a current 7090 /// instantiation. 7091 bool Sema::RebuildTemplateParamsInCurrentInstantiation( 7092 TemplateParameterList *Params) { 7093 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 7094 Decl *Param = Params->getParam(I); 7095 7096 // There is nothing to rebuild in a type parameter. 7097 if (isa<TemplateTypeParmDecl>(Param)) 7098 continue; 7099 7100 // Rebuild the template parameter list of a template template parameter. 7101 if (TemplateTemplateParmDecl *TTP 7102 = dyn_cast<TemplateTemplateParmDecl>(Param)) { 7103 if (RebuildTemplateParamsInCurrentInstantiation( 7104 TTP->getTemplateParameters())) 7105 return true; 7106 7107 continue; 7108 } 7109 7110 // Rebuild the type of a non-type template parameter. 7111 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param); 7112 TypeSourceInfo *NewTSI 7113 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(), 7114 NTTP->getLocation(), 7115 NTTP->getDeclName()); 7116 if (!NewTSI) 7117 return true; 7118 7119 if (NewTSI != NTTP->getTypeSourceInfo()) { 7120 NTTP->setTypeSourceInfo(NewTSI); 7121 NTTP->setType(NewTSI->getType()); 7122 } 7123 } 7124 7125 return false; 7126 } 7127 7128 /// \brief Produces a formatted string that describes the binding of 7129 /// template parameters to template arguments. 7130 std::string 7131 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 7132 const TemplateArgumentList &Args) { 7133 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 7134 } 7135 7136 std::string 7137 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 7138 const TemplateArgument *Args, 7139 unsigned NumArgs) { 7140 SmallString<128> Str; 7141 llvm::raw_svector_ostream Out(Str); 7142 7143 if (!Params || Params->size() == 0 || NumArgs == 0) 7144 return std::string(); 7145 7146 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 7147 if (I >= NumArgs) 7148 break; 7149 7150 if (I == 0) 7151 Out << "[with "; 7152 else 7153 Out << ", "; 7154 7155 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 7156 Out << Id->getName(); 7157 } else { 7158 Out << '$' << I; 7159 } 7160 7161 Out << " = "; 7162 Args[I].print(getPrintingPolicy(), Out); 7163 } 7164 7165 Out << ']'; 7166 return Out.str(); 7167 } 7168 7169 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) { 7170 if (!FD) 7171 return; 7172 FD->setLateTemplateParsed(Flag); 7173 } 7174 7175 bool Sema::IsInsideALocalClassWithinATemplateFunction() { 7176 DeclContext *DC = CurContext; 7177 7178 while (DC) { 7179 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) { 7180 const FunctionDecl *FD = RD->isLocalClass(); 7181 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); 7182 } else if (DC->isTranslationUnit() || DC->isNamespace()) 7183 return false; 7184 7185 DC = DC->getParent(); 7186 } 7187 return false; 7188 } 7189