Home | History | Annotate | Download | only in Sema
      1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //===----------------------------------------------------------------------===/
      8 //
      9 //  This file implements semantic analysis for C++ templates.
     10 //===----------------------------------------------------------------------===/
     11 
     12 #include "clang/Sema/SemaInternal.h"
     13 #include "clang/Sema/Lookup.h"
     14 #include "clang/Sema/Scope.h"
     15 #include "clang/Sema/Template.h"
     16 #include "clang/Sema/TemplateDeduction.h"
     17 #include "TreeTransform.h"
     18 #include "clang/AST/ASTContext.h"
     19 #include "clang/AST/Expr.h"
     20 #include "clang/AST/ExprCXX.h"
     21 #include "clang/AST/DeclFriend.h"
     22 #include "clang/AST/DeclTemplate.h"
     23 #include "clang/AST/RecursiveASTVisitor.h"
     24 #include "clang/AST/TypeVisitor.h"
     25 #include "clang/Sema/DeclSpec.h"
     26 #include "clang/Sema/ParsedTemplate.h"
     27 #include "clang/Basic/LangOptions.h"
     28 #include "clang/Basic/PartialDiagnostic.h"
     29 #include "llvm/ADT/SmallBitVector.h"
     30 #include "llvm/ADT/SmallString.h"
     31 #include "llvm/ADT/StringExtras.h"
     32 using namespace clang;
     33 using namespace sema;
     34 
     35 // Exported for use by Parser.
     36 SourceRange
     37 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
     38                               unsigned N) {
     39   if (!N) return SourceRange();
     40   return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
     41 }
     42 
     43 /// \brief Determine whether the declaration found is acceptable as the name
     44 /// of a template and, if so, return that template declaration. Otherwise,
     45 /// returns NULL.
     46 static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
     47                                            NamedDecl *Orig,
     48                                            bool AllowFunctionTemplates) {
     49   NamedDecl *D = Orig->getUnderlyingDecl();
     50 
     51   if (isa<TemplateDecl>(D)) {
     52     if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
     53       return 0;
     54 
     55     return Orig;
     56   }
     57 
     58   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
     59     // C++ [temp.local]p1:
     60     //   Like normal (non-template) classes, class templates have an
     61     //   injected-class-name (Clause 9). The injected-class-name
     62     //   can be used with or without a template-argument-list. When
     63     //   it is used without a template-argument-list, it is
     64     //   equivalent to the injected-class-name followed by the
     65     //   template-parameters of the class template enclosed in
     66     //   <>. When it is used with a template-argument-list, it
     67     //   refers to the specified class template specialization,
     68     //   which could be the current specialization or another
     69     //   specialization.
     70     if (Record->isInjectedClassName()) {
     71       Record = cast<CXXRecordDecl>(Record->getDeclContext());
     72       if (Record->getDescribedClassTemplate())
     73         return Record->getDescribedClassTemplate();
     74 
     75       if (ClassTemplateSpecializationDecl *Spec
     76             = dyn_cast<ClassTemplateSpecializationDecl>(Record))
     77         return Spec->getSpecializedTemplate();
     78     }
     79 
     80     return 0;
     81   }
     82 
     83   return 0;
     84 }
     85 
     86 void Sema::FilterAcceptableTemplateNames(LookupResult &R,
     87                                          bool AllowFunctionTemplates) {
     88   // The set of class templates we've already seen.
     89   llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
     90   LookupResult::Filter filter = R.makeFilter();
     91   while (filter.hasNext()) {
     92     NamedDecl *Orig = filter.next();
     93     NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
     94                                                AllowFunctionTemplates);
     95     if (!Repl)
     96       filter.erase();
     97     else if (Repl != Orig) {
     98 
     99       // C++ [temp.local]p3:
    100       //   A lookup that finds an injected-class-name (10.2) can result in an
    101       //   ambiguity in certain cases (for example, if it is found in more than
    102       //   one base class). If all of the injected-class-names that are found
    103       //   refer to specializations of the same class template, and if the name
    104       //   is used as a template-name, the reference refers to the class
    105       //   template itself and not a specialization thereof, and is not
    106       //   ambiguous.
    107       if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
    108         if (!ClassTemplates.insert(ClassTmpl)) {
    109           filter.erase();
    110           continue;
    111         }
    112 
    113       // FIXME: we promote access to public here as a workaround to
    114       // the fact that LookupResult doesn't let us remember that we
    115       // found this template through a particular injected class name,
    116       // which means we end up doing nasty things to the invariants.
    117       // Pretending that access is public is *much* safer.
    118       filter.replace(Repl, AS_public);
    119     }
    120   }
    121   filter.done();
    122 }
    123 
    124 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
    125                                          bool AllowFunctionTemplates) {
    126   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
    127     if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
    128       return true;
    129 
    130   return false;
    131 }
    132 
    133 TemplateNameKind Sema::isTemplateName(Scope *S,
    134                                       CXXScopeSpec &SS,
    135                                       bool hasTemplateKeyword,
    136                                       UnqualifiedId &Name,
    137                                       ParsedType ObjectTypePtr,
    138                                       bool EnteringContext,
    139                                       TemplateTy &TemplateResult,
    140                                       bool &MemberOfUnknownSpecialization) {
    141   assert(getLangOpts().CPlusPlus && "No template names in C!");
    142 
    143   DeclarationName TName;
    144   MemberOfUnknownSpecialization = false;
    145 
    146   switch (Name.getKind()) {
    147   case UnqualifiedId::IK_Identifier:
    148     TName = DeclarationName(Name.Identifier);
    149     break;
    150 
    151   case UnqualifiedId::IK_OperatorFunctionId:
    152     TName = Context.DeclarationNames.getCXXOperatorName(
    153                                               Name.OperatorFunctionId.Operator);
    154     break;
    155 
    156   case UnqualifiedId::IK_LiteralOperatorId:
    157     TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
    158     break;
    159 
    160   default:
    161     return TNK_Non_template;
    162   }
    163 
    164   QualType ObjectType = ObjectTypePtr.get();
    165 
    166   LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
    167   LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
    168                      MemberOfUnknownSpecialization);
    169   if (R.empty()) return TNK_Non_template;
    170   if (R.isAmbiguous()) {
    171     // Suppress diagnostics;  we'll redo this lookup later.
    172     R.suppressDiagnostics();
    173 
    174     // FIXME: we might have ambiguous templates, in which case we
    175     // should at least parse them properly!
    176     return TNK_Non_template;
    177   }
    178 
    179   TemplateName Template;
    180   TemplateNameKind TemplateKind;
    181 
    182   unsigned ResultCount = R.end() - R.begin();
    183   if (ResultCount > 1) {
    184     // We assume that we'll preserve the qualifier from a function
    185     // template name in other ways.
    186     Template = Context.getOverloadedTemplateName(R.begin(), R.end());
    187     TemplateKind = TNK_Function_template;
    188 
    189     // We'll do this lookup again later.
    190     R.suppressDiagnostics();
    191   } else {
    192     TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
    193 
    194     if (SS.isSet() && !SS.isInvalid()) {
    195       NestedNameSpecifier *Qualifier
    196         = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
    197       Template = Context.getQualifiedTemplateName(Qualifier,
    198                                                   hasTemplateKeyword, TD);
    199     } else {
    200       Template = TemplateName(TD);
    201     }
    202 
    203     if (isa<FunctionTemplateDecl>(TD)) {
    204       TemplateKind = TNK_Function_template;
    205 
    206       // We'll do this lookup again later.
    207       R.suppressDiagnostics();
    208     } else {
    209       assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
    210              isa<TypeAliasTemplateDecl>(TD));
    211       TemplateKind = TNK_Type_template;
    212     }
    213   }
    214 
    215   TemplateResult = TemplateTy::make(Template);
    216   return TemplateKind;
    217 }
    218 
    219 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
    220                                        SourceLocation IILoc,
    221                                        Scope *S,
    222                                        const CXXScopeSpec *SS,
    223                                        TemplateTy &SuggestedTemplate,
    224                                        TemplateNameKind &SuggestedKind) {
    225   // We can't recover unless there's a dependent scope specifier preceding the
    226   // template name.
    227   // FIXME: Typo correction?
    228   if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
    229       computeDeclContext(*SS))
    230     return false;
    231 
    232   // The code is missing a 'template' keyword prior to the dependent template
    233   // name.
    234   NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
    235   Diag(IILoc, diag::err_template_kw_missing)
    236     << Qualifier << II.getName()
    237     << FixItHint::CreateInsertion(IILoc, "template ");
    238   SuggestedTemplate
    239     = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
    240   SuggestedKind = TNK_Dependent_template_name;
    241   return true;
    242 }
    243 
    244 void Sema::LookupTemplateName(LookupResult &Found,
    245                               Scope *S, CXXScopeSpec &SS,
    246                               QualType ObjectType,
    247                               bool EnteringContext,
    248                               bool &MemberOfUnknownSpecialization) {
    249   // Determine where to perform name lookup
    250   MemberOfUnknownSpecialization = false;
    251   DeclContext *LookupCtx = 0;
    252   bool isDependent = false;
    253   if (!ObjectType.isNull()) {
    254     // This nested-name-specifier occurs in a member access expression, e.g.,
    255     // x->B::f, and we are looking into the type of the object.
    256     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
    257     LookupCtx = computeDeclContext(ObjectType);
    258     isDependent = ObjectType->isDependentType();
    259     assert((isDependent || !ObjectType->isIncompleteType()) &&
    260            "Caller should have completed object type");
    261 
    262     // Template names cannot appear inside an Objective-C class or object type.
    263     if (ObjectType->isObjCObjectOrInterfaceType()) {
    264       Found.clear();
    265       return;
    266     }
    267   } else if (SS.isSet()) {
    268     // This nested-name-specifier occurs after another nested-name-specifier,
    269     // so long into the context associated with the prior nested-name-specifier.
    270     LookupCtx = computeDeclContext(SS, EnteringContext);
    271     isDependent = isDependentScopeSpecifier(SS);
    272 
    273     // The declaration context must be complete.
    274     if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
    275       return;
    276   }
    277 
    278   bool ObjectTypeSearchedInScope = false;
    279   bool AllowFunctionTemplatesInLookup = true;
    280   if (LookupCtx) {
    281     // Perform "qualified" name lookup into the declaration context we
    282     // computed, which is either the type of the base of a member access
    283     // expression or the declaration context associated with a prior
    284     // nested-name-specifier.
    285     LookupQualifiedName(Found, LookupCtx);
    286     if (!ObjectType.isNull() && Found.empty()) {
    287       // C++ [basic.lookup.classref]p1:
    288       //   In a class member access expression (5.2.5), if the . or -> token is
    289       //   immediately followed by an identifier followed by a <, the
    290       //   identifier must be looked up to determine whether the < is the
    291       //   beginning of a template argument list (14.2) or a less-than operator.
    292       //   The identifier is first looked up in the class of the object
    293       //   expression. If the identifier is not found, it is then looked up in
    294       //   the context of the entire postfix-expression and shall name a class
    295       //   or function template.
    296       if (S) LookupName(Found, S);
    297       ObjectTypeSearchedInScope = true;
    298       AllowFunctionTemplatesInLookup = false;
    299     }
    300   } else if (isDependent && (!S || ObjectType.isNull())) {
    301     // We cannot look into a dependent object type or nested nme
    302     // specifier.
    303     MemberOfUnknownSpecialization = true;
    304     return;
    305   } else {
    306     // Perform unqualified name lookup in the current scope.
    307     LookupName(Found, S);
    308 
    309     if (!ObjectType.isNull())
    310       AllowFunctionTemplatesInLookup = false;
    311   }
    312 
    313   if (Found.empty() && !isDependent) {
    314     // If we did not find any names, attempt to correct any typos.
    315     DeclarationName Name = Found.getLookupName();
    316     Found.clear();
    317     // Simple filter callback that, for keywords, only accepts the C++ *_cast
    318     CorrectionCandidateCallback FilterCCC;
    319     FilterCCC.WantTypeSpecifiers = false;
    320     FilterCCC.WantExpressionKeywords = false;
    321     FilterCCC.WantRemainingKeywords = false;
    322     FilterCCC.WantCXXNamedCasts = true;
    323     if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(),
    324                                                Found.getLookupKind(), S, &SS,
    325                                                FilterCCC, LookupCtx)) {
    326       Found.setLookupName(Corrected.getCorrection());
    327       if (Corrected.getCorrectionDecl())
    328         Found.addDecl(Corrected.getCorrectionDecl());
    329       FilterAcceptableTemplateNames(Found);
    330       if (!Found.empty()) {
    331         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
    332         std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
    333         if (LookupCtx)
    334           Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
    335             << Name << LookupCtx << CorrectedQuotedStr << SS.getRange()
    336             << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
    337         else
    338           Diag(Found.getNameLoc(), diag::err_no_template_suggest)
    339             << Name << CorrectedQuotedStr
    340             << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
    341         if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
    342           Diag(Template->getLocation(), diag::note_previous_decl)
    343             << CorrectedQuotedStr;
    344       }
    345     } else {
    346       Found.setLookupName(Name);
    347     }
    348   }
    349 
    350   FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
    351   if (Found.empty()) {
    352     if (isDependent)
    353       MemberOfUnknownSpecialization = true;
    354     return;
    355   }
    356 
    357   if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
    358     // C++ [basic.lookup.classref]p1:
    359     //   [...] If the lookup in the class of the object expression finds a
    360     //   template, the name is also looked up in the context of the entire
    361     //   postfix-expression and [...]
    362     //
    363     LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
    364                             LookupOrdinaryName);
    365     LookupName(FoundOuter, S);
    366     FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
    367 
    368     if (FoundOuter.empty()) {
    369       //   - if the name is not found, the name found in the class of the
    370       //     object expression is used, otherwise
    371     } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
    372                FoundOuter.isAmbiguous()) {
    373       //   - if the name is found in the context of the entire
    374       //     postfix-expression and does not name a class template, the name
    375       //     found in the class of the object expression is used, otherwise
    376       FoundOuter.clear();
    377     } else if (!Found.isSuppressingDiagnostics()) {
    378       //   - if the name found is a class template, it must refer to the same
    379       //     entity as the one found in the class of the object expression,
    380       //     otherwise the program is ill-formed.
    381       if (!Found.isSingleResult() ||
    382           Found.getFoundDecl()->getCanonicalDecl()
    383             != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
    384         Diag(Found.getNameLoc(),
    385              diag::ext_nested_name_member_ref_lookup_ambiguous)
    386           << Found.getLookupName()
    387           << ObjectType;
    388         Diag(Found.getRepresentativeDecl()->getLocation(),
    389              diag::note_ambig_member_ref_object_type)
    390           << ObjectType;
    391         Diag(FoundOuter.getFoundDecl()->getLocation(),
    392              diag::note_ambig_member_ref_scope);
    393 
    394         // Recover by taking the template that we found in the object
    395         // expression's type.
    396       }
    397     }
    398   }
    399 }
    400 
    401 /// ActOnDependentIdExpression - Handle a dependent id-expression that
    402 /// was just parsed.  This is only possible with an explicit scope
    403 /// specifier naming a dependent type.
    404 ExprResult
    405 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
    406                                  SourceLocation TemplateKWLoc,
    407                                  const DeclarationNameInfo &NameInfo,
    408                                  bool isAddressOfOperand,
    409                            const TemplateArgumentListInfo *TemplateArgs) {
    410   DeclContext *DC = getFunctionLevelDeclContext();
    411 
    412   if (!isAddressOfOperand &&
    413       isa<CXXMethodDecl>(DC) &&
    414       cast<CXXMethodDecl>(DC)->isInstance()) {
    415     QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
    416 
    417     // Since the 'this' expression is synthesized, we don't need to
    418     // perform the double-lookup check.
    419     NamedDecl *FirstQualifierInScope = 0;
    420 
    421     return Owned(CXXDependentScopeMemberExpr::Create(Context,
    422                                                      /*This*/ 0, ThisType,
    423                                                      /*IsArrow*/ true,
    424                                                      /*Op*/ SourceLocation(),
    425                                                SS.getWithLocInContext(Context),
    426                                                      TemplateKWLoc,
    427                                                      FirstQualifierInScope,
    428                                                      NameInfo,
    429                                                      TemplateArgs));
    430   }
    431 
    432   return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
    433 }
    434 
    435 ExprResult
    436 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
    437                                 SourceLocation TemplateKWLoc,
    438                                 const DeclarationNameInfo &NameInfo,
    439                                 const TemplateArgumentListInfo *TemplateArgs) {
    440   return Owned(DependentScopeDeclRefExpr::Create(Context,
    441                                                SS.getWithLocInContext(Context),
    442                                                  TemplateKWLoc,
    443                                                  NameInfo,
    444                                                  TemplateArgs));
    445 }
    446 
    447 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
    448 /// that the template parameter 'PrevDecl' is being shadowed by a new
    449 /// declaration at location Loc. Returns true to indicate that this is
    450 /// an error, and false otherwise.
    451 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
    452   assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
    453 
    454   // Microsoft Visual C++ permits template parameters to be shadowed.
    455   if (getLangOpts().MicrosoftExt)
    456     return;
    457 
    458   // C++ [temp.local]p4:
    459   //   A template-parameter shall not be redeclared within its
    460   //   scope (including nested scopes).
    461   Diag(Loc, diag::err_template_param_shadow)
    462     << cast<NamedDecl>(PrevDecl)->getDeclName();
    463   Diag(PrevDecl->getLocation(), diag::note_template_param_here);
    464   return;
    465 }
    466 
    467 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
    468 /// the parameter D to reference the templated declaration and return a pointer
    469 /// to the template declaration. Otherwise, do nothing to D and return null.
    470 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
    471   if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
    472     D = Temp->getTemplatedDecl();
    473     return Temp;
    474   }
    475   return 0;
    476 }
    477 
    478 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
    479                                              SourceLocation EllipsisLoc) const {
    480   assert(Kind == Template &&
    481          "Only template template arguments can be pack expansions here");
    482   assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
    483          "Template template argument pack expansion without packs");
    484   ParsedTemplateArgument Result(*this);
    485   Result.EllipsisLoc = EllipsisLoc;
    486   return Result;
    487 }
    488 
    489 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
    490                                             const ParsedTemplateArgument &Arg) {
    491 
    492   switch (Arg.getKind()) {
    493   case ParsedTemplateArgument::Type: {
    494     TypeSourceInfo *DI;
    495     QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
    496     if (!DI)
    497       DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
    498     return TemplateArgumentLoc(TemplateArgument(T), DI);
    499   }
    500 
    501   case ParsedTemplateArgument::NonType: {
    502     Expr *E = static_cast<Expr *>(Arg.getAsExpr());
    503     return TemplateArgumentLoc(TemplateArgument(E), E);
    504   }
    505 
    506   case ParsedTemplateArgument::Template: {
    507     TemplateName Template = Arg.getAsTemplate().get();
    508     TemplateArgument TArg;
    509     if (Arg.getEllipsisLoc().isValid())
    510       TArg = TemplateArgument(Template, llvm::Optional<unsigned int>());
    511     else
    512       TArg = Template;
    513     return TemplateArgumentLoc(TArg,
    514                                Arg.getScopeSpec().getWithLocInContext(
    515                                                               SemaRef.Context),
    516                                Arg.getLocation(),
    517                                Arg.getEllipsisLoc());
    518   }
    519   }
    520 
    521   llvm_unreachable("Unhandled parsed template argument");
    522 }
    523 
    524 /// \brief Translates template arguments as provided by the parser
    525 /// into template arguments used by semantic analysis.
    526 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
    527                                       TemplateArgumentListInfo &TemplateArgs) {
    528  for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
    529    TemplateArgs.addArgument(translateTemplateArgument(*this,
    530                                                       TemplateArgsIn[I]));
    531 }
    532 
    533 /// ActOnTypeParameter - Called when a C++ template type parameter
    534 /// (e.g., "typename T") has been parsed. Typename specifies whether
    535 /// the keyword "typename" was used to declare the type parameter
    536 /// (otherwise, "class" was used), and KeyLoc is the location of the
    537 /// "class" or "typename" keyword. ParamName is the name of the
    538 /// parameter (NULL indicates an unnamed template parameter) and
    539 /// ParamNameLoc is the location of the parameter name (if any).
    540 /// If the type parameter has a default argument, it will be added
    541 /// later via ActOnTypeParameterDefault.
    542 Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
    543                                SourceLocation EllipsisLoc,
    544                                SourceLocation KeyLoc,
    545                                IdentifierInfo *ParamName,
    546                                SourceLocation ParamNameLoc,
    547                                unsigned Depth, unsigned Position,
    548                                SourceLocation EqualLoc,
    549                                ParsedType DefaultArg) {
    550   assert(S->isTemplateParamScope() &&
    551          "Template type parameter not in template parameter scope!");
    552   bool Invalid = false;
    553 
    554   if (ParamName) {
    555     NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
    556                                            LookupOrdinaryName,
    557                                            ForRedeclaration);
    558     if (PrevDecl && PrevDecl->isTemplateParameter()) {
    559       DiagnoseTemplateParameterShadow(ParamNameLoc, PrevDecl);
    560       PrevDecl = 0;
    561     }
    562   }
    563 
    564   SourceLocation Loc = ParamNameLoc;
    565   if (!ParamName)
    566     Loc = KeyLoc;
    567 
    568   TemplateTypeParmDecl *Param
    569     = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
    570                                    KeyLoc, Loc, Depth, Position, ParamName,
    571                                    Typename, Ellipsis);
    572   Param->setAccess(AS_public);
    573   if (Invalid)
    574     Param->setInvalidDecl();
    575 
    576   if (ParamName) {
    577     // Add the template parameter into the current scope.
    578     S->AddDecl(Param);
    579     IdResolver.AddDecl(Param);
    580   }
    581 
    582   // C++0x [temp.param]p9:
    583   //   A default template-argument may be specified for any kind of
    584   //   template-parameter that is not a template parameter pack.
    585   if (DefaultArg && Ellipsis) {
    586     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
    587     DefaultArg = ParsedType();
    588   }
    589 
    590   // Handle the default argument, if provided.
    591   if (DefaultArg) {
    592     TypeSourceInfo *DefaultTInfo;
    593     GetTypeFromParser(DefaultArg, &DefaultTInfo);
    594 
    595     assert(DefaultTInfo && "expected source information for type");
    596 
    597     // Check for unexpanded parameter packs.
    598     if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
    599                                         UPPC_DefaultArgument))
    600       return Param;
    601 
    602     // Check the template argument itself.
    603     if (CheckTemplateArgument(Param, DefaultTInfo)) {
    604       Param->setInvalidDecl();
    605       return Param;
    606     }
    607 
    608     Param->setDefaultArgument(DefaultTInfo, false);
    609   }
    610 
    611   return Param;
    612 }
    613 
    614 /// \brief Check that the type of a non-type template parameter is
    615 /// well-formed.
    616 ///
    617 /// \returns the (possibly-promoted) parameter type if valid;
    618 /// otherwise, produces a diagnostic and returns a NULL type.
    619 QualType
    620 Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
    621   // We don't allow variably-modified types as the type of non-type template
    622   // parameters.
    623   if (T->isVariablyModifiedType()) {
    624     Diag(Loc, diag::err_variably_modified_nontype_template_param)
    625       << T;
    626     return QualType();
    627   }
    628 
    629   // C++ [temp.param]p4:
    630   //
    631   // A non-type template-parameter shall have one of the following
    632   // (optionally cv-qualified) types:
    633   //
    634   //       -- integral or enumeration type,
    635   if (T->isIntegralOrEnumerationType() ||
    636       //   -- pointer to object or pointer to function,
    637       T->isPointerType() ||
    638       //   -- reference to object or reference to function,
    639       T->isReferenceType() ||
    640       //   -- pointer to member,
    641       T->isMemberPointerType() ||
    642       //   -- std::nullptr_t.
    643       T->isNullPtrType() ||
    644       // If T is a dependent type, we can't do the check now, so we
    645       // assume that it is well-formed.
    646       T->isDependentType()) {
    647     // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
    648     // are ignored when determining its type.
    649     return T.getUnqualifiedType();
    650   }
    651 
    652   // C++ [temp.param]p8:
    653   //
    654   //   A non-type template-parameter of type "array of T" or
    655   //   "function returning T" is adjusted to be of type "pointer to
    656   //   T" or "pointer to function returning T", respectively.
    657   else if (T->isArrayType())
    658     // FIXME: Keep the type prior to promotion?
    659     return Context.getArrayDecayedType(T);
    660   else if (T->isFunctionType())
    661     // FIXME: Keep the type prior to promotion?
    662     return Context.getPointerType(T);
    663 
    664   Diag(Loc, diag::err_template_nontype_parm_bad_type)
    665     << T;
    666 
    667   return QualType();
    668 }
    669 
    670 Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
    671                                           unsigned Depth,
    672                                           unsigned Position,
    673                                           SourceLocation EqualLoc,
    674                                           Expr *Default) {
    675   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
    676   QualType T = TInfo->getType();
    677 
    678   assert(S->isTemplateParamScope() &&
    679          "Non-type template parameter not in template parameter scope!");
    680   bool Invalid = false;
    681 
    682   IdentifierInfo *ParamName = D.getIdentifier();
    683   if (ParamName) {
    684     NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
    685                                            LookupOrdinaryName,
    686                                            ForRedeclaration);
    687     if (PrevDecl && PrevDecl->isTemplateParameter()) {
    688       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
    689       PrevDecl = 0;
    690     }
    691   }
    692 
    693   T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
    694   if (T.isNull()) {
    695     T = Context.IntTy; // Recover with an 'int' type.
    696     Invalid = true;
    697   }
    698 
    699   bool IsParameterPack = D.hasEllipsis();
    700   NonTypeTemplateParmDecl *Param
    701     = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
    702                                       D.getLocStart(),
    703                                       D.getIdentifierLoc(),
    704                                       Depth, Position, ParamName, T,
    705                                       IsParameterPack, TInfo);
    706   Param->setAccess(AS_public);
    707 
    708   if (Invalid)
    709     Param->setInvalidDecl();
    710 
    711   if (D.getIdentifier()) {
    712     // Add the template parameter into the current scope.
    713     S->AddDecl(Param);
    714     IdResolver.AddDecl(Param);
    715   }
    716 
    717   // C++0x [temp.param]p9:
    718   //   A default template-argument may be specified for any kind of
    719   //   template-parameter that is not a template parameter pack.
    720   if (Default && IsParameterPack) {
    721     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
    722     Default = 0;
    723   }
    724 
    725   // Check the well-formedness of the default template argument, if provided.
    726   if (Default) {
    727     // Check for unexpanded parameter packs.
    728     if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
    729       return Param;
    730 
    731     TemplateArgument Converted;
    732     ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted);
    733     if (DefaultRes.isInvalid()) {
    734       Param->setInvalidDecl();
    735       return Param;
    736     }
    737     Default = DefaultRes.take();
    738 
    739     Param->setDefaultArgument(Default, false);
    740   }
    741 
    742   return Param;
    743 }
    744 
    745 /// ActOnTemplateTemplateParameter - Called when a C++ template template
    746 /// parameter (e.g. T in template <template <typename> class T> class array)
    747 /// has been parsed. S is the current scope.
    748 Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
    749                                            SourceLocation TmpLoc,
    750                                            TemplateParameterList *Params,
    751                                            SourceLocation EllipsisLoc,
    752                                            IdentifierInfo *Name,
    753                                            SourceLocation NameLoc,
    754                                            unsigned Depth,
    755                                            unsigned Position,
    756                                            SourceLocation EqualLoc,
    757                                            ParsedTemplateArgument Default) {
    758   assert(S->isTemplateParamScope() &&
    759          "Template template parameter not in template parameter scope!");
    760 
    761   // Construct the parameter object.
    762   bool IsParameterPack = EllipsisLoc.isValid();
    763   TemplateTemplateParmDecl *Param =
    764     TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
    765                                      NameLoc.isInvalid()? TmpLoc : NameLoc,
    766                                      Depth, Position, IsParameterPack,
    767                                      Name, Params);
    768   Param->setAccess(AS_public);
    769 
    770   // If the template template parameter has a name, then link the identifier
    771   // into the scope and lookup mechanisms.
    772   if (Name) {
    773     S->AddDecl(Param);
    774     IdResolver.AddDecl(Param);
    775   }
    776 
    777   if (Params->size() == 0) {
    778     Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
    779     << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
    780     Param->setInvalidDecl();
    781   }
    782 
    783   // C++0x [temp.param]p9:
    784   //   A default template-argument may be specified for any kind of
    785   //   template-parameter that is not a template parameter pack.
    786   if (IsParameterPack && !Default.isInvalid()) {
    787     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
    788     Default = ParsedTemplateArgument();
    789   }
    790 
    791   if (!Default.isInvalid()) {
    792     // Check only that we have a template template argument. We don't want to
    793     // try to check well-formedness now, because our template template parameter
    794     // might have dependent types in its template parameters, which we wouldn't
    795     // be able to match now.
    796     //
    797     // If none of the template template parameter's template arguments mention
    798     // other template parameters, we could actually perform more checking here.
    799     // However, it isn't worth doing.
    800     TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
    801     if (DefaultArg.getArgument().getAsTemplate().isNull()) {
    802       Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
    803         << DefaultArg.getSourceRange();
    804       return Param;
    805     }
    806 
    807     // Check for unexpanded parameter packs.
    808     if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
    809                                         DefaultArg.getArgument().getAsTemplate(),
    810                                         UPPC_DefaultArgument))
    811       return Param;
    812 
    813     Param->setDefaultArgument(DefaultArg, false);
    814   }
    815 
    816   return Param;
    817 }
    818 
    819 /// ActOnTemplateParameterList - Builds a TemplateParameterList that
    820 /// contains the template parameters in Params/NumParams.
    821 TemplateParameterList *
    822 Sema::ActOnTemplateParameterList(unsigned Depth,
    823                                  SourceLocation ExportLoc,
    824                                  SourceLocation TemplateLoc,
    825                                  SourceLocation LAngleLoc,
    826                                  Decl **Params, unsigned NumParams,
    827                                  SourceLocation RAngleLoc) {
    828   if (ExportLoc.isValid())
    829     Diag(ExportLoc, diag::warn_template_export_unsupported);
    830 
    831   return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
    832                                        (NamedDecl**)Params, NumParams,
    833                                        RAngleLoc);
    834 }
    835 
    836 static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
    837   if (SS.isSet())
    838     T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
    839 }
    840 
    841 DeclResult
    842 Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
    843                          SourceLocation KWLoc, CXXScopeSpec &SS,
    844                          IdentifierInfo *Name, SourceLocation NameLoc,
    845                          AttributeList *Attr,
    846                          TemplateParameterList *TemplateParams,
    847                          AccessSpecifier AS, SourceLocation ModulePrivateLoc,
    848                          unsigned NumOuterTemplateParamLists,
    849                          TemplateParameterList** OuterTemplateParamLists) {
    850   assert(TemplateParams && TemplateParams->size() > 0 &&
    851          "No template parameters");
    852   assert(TUK != TUK_Reference && "Can only declare or define class templates");
    853   bool Invalid = false;
    854 
    855   // Check that we can declare a template here.
    856   if (CheckTemplateDeclScope(S, TemplateParams))
    857     return true;
    858 
    859   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
    860   assert(Kind != TTK_Enum && "can't build template of enumerated type");
    861 
    862   // There is no such thing as an unnamed class template.
    863   if (!Name) {
    864     Diag(KWLoc, diag::err_template_unnamed_class);
    865     return true;
    866   }
    867 
    868   // Find any previous declaration with this name.
    869   DeclContext *SemanticContext;
    870   LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
    871                         ForRedeclaration);
    872   if (SS.isNotEmpty() && !SS.isInvalid()) {
    873     SemanticContext = computeDeclContext(SS, true);
    874     if (!SemanticContext) {
    875       // FIXME: Horrible, horrible hack! We can't currently represent this
    876       // in the AST, and historically we have just ignored such friend
    877       // class templates, so don't complain here.
    878       if (TUK != TUK_Friend)
    879         Diag(NameLoc, diag::err_template_qualified_declarator_no_match)
    880           << SS.getScopeRep() << SS.getRange();
    881       return true;
    882     }
    883 
    884     if (RequireCompleteDeclContext(SS, SemanticContext))
    885       return true;
    886 
    887     // If we're adding a template to a dependent context, we may need to
    888     // rebuilding some of the types used within the template parameter list,
    889     // now that we know what the current instantiation is.
    890     if (SemanticContext->isDependentContext()) {
    891       ContextRAII SavedContext(*this, SemanticContext);
    892       if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
    893         Invalid = true;
    894     } else if (TUK != TUK_Friend && TUK != TUK_Reference)
    895       diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc);
    896 
    897     LookupQualifiedName(Previous, SemanticContext);
    898   } else {
    899     SemanticContext = CurContext;
    900     LookupName(Previous, S);
    901   }
    902 
    903   if (Previous.isAmbiguous())
    904     return true;
    905 
    906   NamedDecl *PrevDecl = 0;
    907   if (Previous.begin() != Previous.end())
    908     PrevDecl = (*Previous.begin())->getUnderlyingDecl();
    909 
    910   // If there is a previous declaration with the same name, check
    911   // whether this is a valid redeclaration.
    912   ClassTemplateDecl *PrevClassTemplate
    913     = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
    914 
    915   // We may have found the injected-class-name of a class template,
    916   // class template partial specialization, or class template specialization.
    917   // In these cases, grab the template that is being defined or specialized.
    918   if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
    919       cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
    920     PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
    921     PrevClassTemplate
    922       = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
    923     if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
    924       PrevClassTemplate
    925         = cast<ClassTemplateSpecializationDecl>(PrevDecl)
    926             ->getSpecializedTemplate();
    927     }
    928   }
    929 
    930   if (TUK == TUK_Friend) {
    931     // C++ [namespace.memdef]p3:
    932     //   [...] When looking for a prior declaration of a class or a function
    933     //   declared as a friend, and when the name of the friend class or
    934     //   function is neither a qualified name nor a template-id, scopes outside
    935     //   the innermost enclosing namespace scope are not considered.
    936     if (!SS.isSet()) {
    937       DeclContext *OutermostContext = CurContext;
    938       while (!OutermostContext->isFileContext())
    939         OutermostContext = OutermostContext->getLookupParent();
    940 
    941       if (PrevDecl &&
    942           (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
    943            OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
    944         SemanticContext = PrevDecl->getDeclContext();
    945       } else {
    946         // Declarations in outer scopes don't matter. However, the outermost
    947         // context we computed is the semantic context for our new
    948         // declaration.
    949         PrevDecl = PrevClassTemplate = 0;
    950         SemanticContext = OutermostContext;
    951       }
    952     }
    953 
    954     if (CurContext->isDependentContext()) {
    955       // If this is a dependent context, we don't want to link the friend
    956       // class template to the template in scope, because that would perform
    957       // checking of the template parameter lists that can't be performed
    958       // until the outer context is instantiated.
    959       PrevDecl = PrevClassTemplate = 0;
    960     }
    961   } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
    962     PrevDecl = PrevClassTemplate = 0;
    963 
    964   if (PrevClassTemplate) {
    965     // Ensure that the template parameter lists are compatible.
    966     if (!TemplateParameterListsAreEqual(TemplateParams,
    967                                    PrevClassTemplate->getTemplateParameters(),
    968                                         /*Complain=*/true,
    969                                         TPL_TemplateMatch))
    970       return true;
    971 
    972     // C++ [temp.class]p4:
    973     //   In a redeclaration, partial specialization, explicit
    974     //   specialization or explicit instantiation of a class template,
    975     //   the class-key shall agree in kind with the original class
    976     //   template declaration (7.1.5.3).
    977     RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
    978     if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
    979                                       TUK == TUK_Definition,  KWLoc, *Name)) {
    980       Diag(KWLoc, diag::err_use_with_wrong_tag)
    981         << Name
    982         << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
    983       Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
    984       Kind = PrevRecordDecl->getTagKind();
    985     }
    986 
    987     // Check for redefinition of this class template.
    988     if (TUK == TUK_Definition) {
    989       if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
    990         Diag(NameLoc, diag::err_redefinition) << Name;
    991         Diag(Def->getLocation(), diag::note_previous_definition);
    992         // FIXME: Would it make sense to try to "forget" the previous
    993         // definition, as part of error recovery?
    994         return true;
    995       }
    996     }
    997   } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
    998     // Maybe we will complain about the shadowed template parameter.
    999     DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
   1000     // Just pretend that we didn't see the previous declaration.
   1001     PrevDecl = 0;
   1002   } else if (PrevDecl) {
   1003     // C++ [temp]p5:
   1004     //   A class template shall not have the same name as any other
   1005     //   template, class, function, object, enumeration, enumerator,
   1006     //   namespace, or type in the same scope (3.3), except as specified
   1007     //   in (14.5.4).
   1008     Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
   1009     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   1010     return true;
   1011   }
   1012 
   1013   // Check the template parameter list of this declaration, possibly
   1014   // merging in the template parameter list from the previous class
   1015   // template declaration.
   1016   if (CheckTemplateParameterList(TemplateParams,
   1017             PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
   1018                                  (SS.isSet() && SemanticContext &&
   1019                                   SemanticContext->isRecord() &&
   1020                                   SemanticContext->isDependentContext())
   1021                                    ? TPC_ClassTemplateMember
   1022                                    : TPC_ClassTemplate))
   1023     Invalid = true;
   1024 
   1025   if (SS.isSet()) {
   1026     // If the name of the template was qualified, we must be defining the
   1027     // template out-of-line.
   1028     if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
   1029         !(TUK == TUK_Friend && CurContext->isDependentContext())) {
   1030       Diag(NameLoc, diag::err_member_def_does_not_match)
   1031         << Name << SemanticContext << SS.getRange();
   1032       Invalid = true;
   1033     }
   1034   }
   1035 
   1036   CXXRecordDecl *NewClass =
   1037     CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
   1038                           PrevClassTemplate?
   1039                             PrevClassTemplate->getTemplatedDecl() : 0,
   1040                           /*DelayTypeCreation=*/true);
   1041   SetNestedNameSpecifier(NewClass, SS);
   1042   if (NumOuterTemplateParamLists > 0)
   1043     NewClass->setTemplateParameterListsInfo(Context,
   1044                                             NumOuterTemplateParamLists,
   1045                                             OuterTemplateParamLists);
   1046 
   1047   // Add alignment attributes if necessary; these attributes are checked when
   1048   // the ASTContext lays out the structure.
   1049   AddAlignmentAttributesForRecord(NewClass);
   1050   AddMsStructLayoutForRecord(NewClass);
   1051 
   1052   ClassTemplateDecl *NewTemplate
   1053     = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
   1054                                 DeclarationName(Name), TemplateParams,
   1055                                 NewClass, PrevClassTemplate);
   1056   NewClass->setDescribedClassTemplate(NewTemplate);
   1057 
   1058   if (ModulePrivateLoc.isValid())
   1059     NewTemplate->setModulePrivate();
   1060 
   1061   // Build the type for the class template declaration now.
   1062   QualType T = NewTemplate->getInjectedClassNameSpecialization();
   1063   T = Context.getInjectedClassNameType(NewClass, T);
   1064   assert(T->isDependentType() && "Class template type is not dependent?");
   1065   (void)T;
   1066 
   1067   // If we are providing an explicit specialization of a member that is a
   1068   // class template, make a note of that.
   1069   if (PrevClassTemplate &&
   1070       PrevClassTemplate->getInstantiatedFromMemberTemplate())
   1071     PrevClassTemplate->setMemberSpecialization();
   1072 
   1073   // Set the access specifier.
   1074   if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
   1075     SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
   1076 
   1077   // Set the lexical context of these templates
   1078   NewClass->setLexicalDeclContext(CurContext);
   1079   NewTemplate->setLexicalDeclContext(CurContext);
   1080 
   1081   if (TUK == TUK_Definition)
   1082     NewClass->startDefinition();
   1083 
   1084   if (Attr)
   1085     ProcessDeclAttributeList(S, NewClass, Attr);
   1086 
   1087   if (TUK != TUK_Friend)
   1088     PushOnScopeChains(NewTemplate, S);
   1089   else {
   1090     if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
   1091       NewTemplate->setAccess(PrevClassTemplate->getAccess());
   1092       NewClass->setAccess(PrevClassTemplate->getAccess());
   1093     }
   1094 
   1095     NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
   1096                                        PrevClassTemplate != NULL);
   1097 
   1098     // Friend templates are visible in fairly strange ways.
   1099     if (!CurContext->isDependentContext()) {
   1100       DeclContext *DC = SemanticContext->getRedeclContext();
   1101       DC->makeDeclVisibleInContext(NewTemplate);
   1102       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
   1103         PushOnScopeChains(NewTemplate, EnclosingScope,
   1104                           /* AddToContext = */ false);
   1105     }
   1106 
   1107     FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
   1108                                             NewClass->getLocation(),
   1109                                             NewTemplate,
   1110                                     /*FIXME:*/NewClass->getLocation());
   1111     Friend->setAccess(AS_public);
   1112     CurContext->addDecl(Friend);
   1113   }
   1114 
   1115   if (Invalid) {
   1116     NewTemplate->setInvalidDecl();
   1117     NewClass->setInvalidDecl();
   1118   }
   1119   return NewTemplate;
   1120 }
   1121 
   1122 /// \brief Diagnose the presence of a default template argument on a
   1123 /// template parameter, which is ill-formed in certain contexts.
   1124 ///
   1125 /// \returns true if the default template argument should be dropped.
   1126 static bool DiagnoseDefaultTemplateArgument(Sema &S,
   1127                                             Sema::TemplateParamListContext TPC,
   1128                                             SourceLocation ParamLoc,
   1129                                             SourceRange DefArgRange) {
   1130   switch (TPC) {
   1131   case Sema::TPC_ClassTemplate:
   1132   case Sema::TPC_TypeAliasTemplate:
   1133     return false;
   1134 
   1135   case Sema::TPC_FunctionTemplate:
   1136   case Sema::TPC_FriendFunctionTemplateDefinition:
   1137     // C++ [temp.param]p9:
   1138     //   A default template-argument shall not be specified in a
   1139     //   function template declaration or a function template
   1140     //   definition [...]
   1141     //   If a friend function template declaration specifies a default
   1142     //   template-argument, that declaration shall be a definition and shall be
   1143     //   the only declaration of the function template in the translation unit.
   1144     // (C++98/03 doesn't have this wording; see DR226).
   1145     S.Diag(ParamLoc, S.getLangOpts().CPlusPlus0x ?
   1146          diag::warn_cxx98_compat_template_parameter_default_in_function_template
   1147            : diag::ext_template_parameter_default_in_function_template)
   1148       << DefArgRange;
   1149     return false;
   1150 
   1151   case Sema::TPC_ClassTemplateMember:
   1152     // C++0x [temp.param]p9:
   1153     //   A default template-argument shall not be specified in the
   1154     //   template-parameter-lists of the definition of a member of a
   1155     //   class template that appears outside of the member's class.
   1156     S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
   1157       << DefArgRange;
   1158     return true;
   1159 
   1160   case Sema::TPC_FriendFunctionTemplate:
   1161     // C++ [temp.param]p9:
   1162     //   A default template-argument shall not be specified in a
   1163     //   friend template declaration.
   1164     S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
   1165       << DefArgRange;
   1166     return true;
   1167 
   1168     // FIXME: C++0x [temp.param]p9 allows default template-arguments
   1169     // for friend function templates if there is only a single
   1170     // declaration (and it is a definition). Strange!
   1171   }
   1172 
   1173   llvm_unreachable("Invalid TemplateParamListContext!");
   1174 }
   1175 
   1176 /// \brief Check for unexpanded parameter packs within the template parameters
   1177 /// of a template template parameter, recursively.
   1178 static bool DiagnoseUnexpandedParameterPacks(Sema &S,
   1179                                              TemplateTemplateParmDecl *TTP) {
   1180   TemplateParameterList *Params = TTP->getTemplateParameters();
   1181   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
   1182     NamedDecl *P = Params->getParam(I);
   1183     if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
   1184       if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
   1185                                             NTTP->getTypeSourceInfo(),
   1186                                       Sema::UPPC_NonTypeTemplateParameterType))
   1187         return true;
   1188 
   1189       continue;
   1190     }
   1191 
   1192     if (TemplateTemplateParmDecl *InnerTTP
   1193                                         = dyn_cast<TemplateTemplateParmDecl>(P))
   1194       if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
   1195         return true;
   1196   }
   1197 
   1198   return false;
   1199 }
   1200 
   1201 /// \brief Checks the validity of a template parameter list, possibly
   1202 /// considering the template parameter list from a previous
   1203 /// declaration.
   1204 ///
   1205 /// If an "old" template parameter list is provided, it must be
   1206 /// equivalent (per TemplateParameterListsAreEqual) to the "new"
   1207 /// template parameter list.
   1208 ///
   1209 /// \param NewParams Template parameter list for a new template
   1210 /// declaration. This template parameter list will be updated with any
   1211 /// default arguments that are carried through from the previous
   1212 /// template parameter list.
   1213 ///
   1214 /// \param OldParams If provided, template parameter list from a
   1215 /// previous declaration of the same template. Default template
   1216 /// arguments will be merged from the old template parameter list to
   1217 /// the new template parameter list.
   1218 ///
   1219 /// \param TPC Describes the context in which we are checking the given
   1220 /// template parameter list.
   1221 ///
   1222 /// \returns true if an error occurred, false otherwise.
   1223 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
   1224                                       TemplateParameterList *OldParams,
   1225                                       TemplateParamListContext TPC) {
   1226   bool Invalid = false;
   1227 
   1228   // C++ [temp.param]p10:
   1229   //   The set of default template-arguments available for use with a
   1230   //   template declaration or definition is obtained by merging the
   1231   //   default arguments from the definition (if in scope) and all
   1232   //   declarations in scope in the same way default function
   1233   //   arguments are (8.3.6).
   1234   bool SawDefaultArgument = false;
   1235   SourceLocation PreviousDefaultArgLoc;
   1236 
   1237   // Dummy initialization to avoid warnings.
   1238   TemplateParameterList::iterator OldParam = NewParams->end();
   1239   if (OldParams)
   1240     OldParam = OldParams->begin();
   1241 
   1242   bool RemoveDefaultArguments = false;
   1243   for (TemplateParameterList::iterator NewParam = NewParams->begin(),
   1244                                     NewParamEnd = NewParams->end();
   1245        NewParam != NewParamEnd; ++NewParam) {
   1246     // Variables used to diagnose redundant default arguments
   1247     bool RedundantDefaultArg = false;
   1248     SourceLocation OldDefaultLoc;
   1249     SourceLocation NewDefaultLoc;
   1250 
   1251     // Variable used to diagnose missing default arguments
   1252     bool MissingDefaultArg = false;
   1253 
   1254     // Variable used to diagnose non-final parameter packs
   1255     bool SawParameterPack = false;
   1256 
   1257     if (TemplateTypeParmDecl *NewTypeParm
   1258           = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
   1259       // Check the presence of a default argument here.
   1260       if (NewTypeParm->hasDefaultArgument() &&
   1261           DiagnoseDefaultTemplateArgument(*this, TPC,
   1262                                           NewTypeParm->getLocation(),
   1263                NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
   1264                                                        .getSourceRange()))
   1265         NewTypeParm->removeDefaultArgument();
   1266 
   1267       // Merge default arguments for template type parameters.
   1268       TemplateTypeParmDecl *OldTypeParm
   1269           = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
   1270 
   1271       if (NewTypeParm->isParameterPack()) {
   1272         assert(!NewTypeParm->hasDefaultArgument() &&
   1273                "Parameter packs can't have a default argument!");
   1274         SawParameterPack = true;
   1275       } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
   1276                  NewTypeParm->hasDefaultArgument()) {
   1277         OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
   1278         NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
   1279         SawDefaultArgument = true;
   1280         RedundantDefaultArg = true;
   1281         PreviousDefaultArgLoc = NewDefaultLoc;
   1282       } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
   1283         // Merge the default argument from the old declaration to the
   1284         // new declaration.
   1285         SawDefaultArgument = true;
   1286         NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
   1287                                         true);
   1288         PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
   1289       } else if (NewTypeParm->hasDefaultArgument()) {
   1290         SawDefaultArgument = true;
   1291         PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
   1292       } else if (SawDefaultArgument)
   1293         MissingDefaultArg = true;
   1294     } else if (NonTypeTemplateParmDecl *NewNonTypeParm
   1295                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
   1296       // Check for unexpanded parameter packs.
   1297       if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
   1298                                           NewNonTypeParm->getTypeSourceInfo(),
   1299                                           UPPC_NonTypeTemplateParameterType)) {
   1300         Invalid = true;
   1301         continue;
   1302       }
   1303 
   1304       // Check the presence of a default argument here.
   1305       if (NewNonTypeParm->hasDefaultArgument() &&
   1306           DiagnoseDefaultTemplateArgument(*this, TPC,
   1307                                           NewNonTypeParm->getLocation(),
   1308                     NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
   1309         NewNonTypeParm->removeDefaultArgument();
   1310       }
   1311 
   1312       // Merge default arguments for non-type template parameters
   1313       NonTypeTemplateParmDecl *OldNonTypeParm
   1314         = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
   1315       if (NewNonTypeParm->isParameterPack()) {
   1316         assert(!NewNonTypeParm->hasDefaultArgument() &&
   1317                "Parameter packs can't have a default argument!");
   1318         SawParameterPack = true;
   1319       } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
   1320           NewNonTypeParm->hasDefaultArgument()) {
   1321         OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
   1322         NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
   1323         SawDefaultArgument = true;
   1324         RedundantDefaultArg = true;
   1325         PreviousDefaultArgLoc = NewDefaultLoc;
   1326       } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
   1327         // Merge the default argument from the old declaration to the
   1328         // new declaration.
   1329         SawDefaultArgument = true;
   1330         // FIXME: We need to create a new kind of "default argument"
   1331         // expression that points to a previous non-type template
   1332         // parameter.
   1333         NewNonTypeParm->setDefaultArgument(
   1334                                          OldNonTypeParm->getDefaultArgument(),
   1335                                          /*Inherited=*/ true);
   1336         PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
   1337       } else if (NewNonTypeParm->hasDefaultArgument()) {
   1338         SawDefaultArgument = true;
   1339         PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
   1340       } else if (SawDefaultArgument)
   1341         MissingDefaultArg = true;
   1342     } else {
   1343       TemplateTemplateParmDecl *NewTemplateParm
   1344         = cast<TemplateTemplateParmDecl>(*NewParam);
   1345 
   1346       // Check for unexpanded parameter packs, recursively.
   1347       if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
   1348         Invalid = true;
   1349         continue;
   1350       }
   1351 
   1352       // Check the presence of a default argument here.
   1353       if (NewTemplateParm->hasDefaultArgument() &&
   1354           DiagnoseDefaultTemplateArgument(*this, TPC,
   1355                                           NewTemplateParm->getLocation(),
   1356                      NewTemplateParm->getDefaultArgument().getSourceRange()))
   1357         NewTemplateParm->removeDefaultArgument();
   1358 
   1359       // Merge default arguments for template template parameters
   1360       TemplateTemplateParmDecl *OldTemplateParm
   1361         = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
   1362       if (NewTemplateParm->isParameterPack()) {
   1363         assert(!NewTemplateParm->hasDefaultArgument() &&
   1364                "Parameter packs can't have a default argument!");
   1365         SawParameterPack = true;
   1366       } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
   1367           NewTemplateParm->hasDefaultArgument()) {
   1368         OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
   1369         NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
   1370         SawDefaultArgument = true;
   1371         RedundantDefaultArg = true;
   1372         PreviousDefaultArgLoc = NewDefaultLoc;
   1373       } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
   1374         // Merge the default argument from the old declaration to the
   1375         // new declaration.
   1376         SawDefaultArgument = true;
   1377         // FIXME: We need to create a new kind of "default argument" expression
   1378         // that points to a previous template template parameter.
   1379         NewTemplateParm->setDefaultArgument(
   1380                                           OldTemplateParm->getDefaultArgument(),
   1381                                           /*Inherited=*/ true);
   1382         PreviousDefaultArgLoc
   1383           = OldTemplateParm->getDefaultArgument().getLocation();
   1384       } else if (NewTemplateParm->hasDefaultArgument()) {
   1385         SawDefaultArgument = true;
   1386         PreviousDefaultArgLoc
   1387           = NewTemplateParm->getDefaultArgument().getLocation();
   1388       } else if (SawDefaultArgument)
   1389         MissingDefaultArg = true;
   1390     }
   1391 
   1392     // C++0x [temp.param]p11:
   1393     //   If a template parameter of a primary class template or alias template
   1394     //   is a template parameter pack, it shall be the last template parameter.
   1395     if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
   1396         (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) {
   1397       Diag((*NewParam)->getLocation(),
   1398            diag::err_template_param_pack_must_be_last_template_parameter);
   1399       Invalid = true;
   1400     }
   1401 
   1402     if (RedundantDefaultArg) {
   1403       // C++ [temp.param]p12:
   1404       //   A template-parameter shall not be given default arguments
   1405       //   by two different declarations in the same scope.
   1406       Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
   1407       Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
   1408       Invalid = true;
   1409     } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
   1410       // C++ [temp.param]p11:
   1411       //   If a template-parameter of a class template has a default
   1412       //   template-argument, each subsequent template-parameter shall either
   1413       //   have a default template-argument supplied or be a template parameter
   1414       //   pack.
   1415       Diag((*NewParam)->getLocation(),
   1416            diag::err_template_param_default_arg_missing);
   1417       Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
   1418       Invalid = true;
   1419       RemoveDefaultArguments = true;
   1420     }
   1421 
   1422     // If we have an old template parameter list that we're merging
   1423     // in, move on to the next parameter.
   1424     if (OldParams)
   1425       ++OldParam;
   1426   }
   1427 
   1428   // We were missing some default arguments at the end of the list, so remove
   1429   // all of the default arguments.
   1430   if (RemoveDefaultArguments) {
   1431     for (TemplateParameterList::iterator NewParam = NewParams->begin(),
   1432                                       NewParamEnd = NewParams->end();
   1433          NewParam != NewParamEnd; ++NewParam) {
   1434       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
   1435         TTP->removeDefaultArgument();
   1436       else if (NonTypeTemplateParmDecl *NTTP
   1437                                 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
   1438         NTTP->removeDefaultArgument();
   1439       else
   1440         cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
   1441     }
   1442   }
   1443 
   1444   return Invalid;
   1445 }
   1446 
   1447 namespace {
   1448 
   1449 /// A class which looks for a use of a certain level of template
   1450 /// parameter.
   1451 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
   1452   typedef RecursiveASTVisitor<DependencyChecker> super;
   1453 
   1454   unsigned Depth;
   1455   bool Match;
   1456 
   1457   DependencyChecker(TemplateParameterList *Params) : Match(false) {
   1458     NamedDecl *ND = Params->getParam(0);
   1459     if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
   1460       Depth = PD->getDepth();
   1461     } else if (NonTypeTemplateParmDecl *PD =
   1462                  dyn_cast<NonTypeTemplateParmDecl>(ND)) {
   1463       Depth = PD->getDepth();
   1464     } else {
   1465       Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
   1466     }
   1467   }
   1468 
   1469   bool Matches(unsigned ParmDepth) {
   1470     if (ParmDepth >= Depth) {
   1471       Match = true;
   1472       return true;
   1473     }
   1474     return false;
   1475   }
   1476 
   1477   bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
   1478     return !Matches(T->getDepth());
   1479   }
   1480 
   1481   bool TraverseTemplateName(TemplateName N) {
   1482     if (TemplateTemplateParmDecl *PD =
   1483           dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
   1484       if (Matches(PD->getDepth())) return false;
   1485     return super::TraverseTemplateName(N);
   1486   }
   1487 
   1488   bool VisitDeclRefExpr(DeclRefExpr *E) {
   1489     if (NonTypeTemplateParmDecl *PD =
   1490           dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
   1491       if (PD->getDepth() == Depth) {
   1492         Match = true;
   1493         return false;
   1494       }
   1495     }
   1496     return super::VisitDeclRefExpr(E);
   1497   }
   1498 
   1499   bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
   1500     return TraverseType(T->getInjectedSpecializationType());
   1501   }
   1502 };
   1503 }
   1504 
   1505 /// Determines whether a given type depends on the given parameter
   1506 /// list.
   1507 static bool
   1508 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
   1509   DependencyChecker Checker(Params);
   1510   Checker.TraverseType(T);
   1511   return Checker.Match;
   1512 }
   1513 
   1514 // Find the source range corresponding to the named type in the given
   1515 // nested-name-specifier, if any.
   1516 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
   1517                                                        QualType T,
   1518                                                        const CXXScopeSpec &SS) {
   1519   NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
   1520   while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
   1521     if (const Type *CurType = NNS->getAsType()) {
   1522       if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
   1523         return NNSLoc.getTypeLoc().getSourceRange();
   1524     } else
   1525       break;
   1526 
   1527     NNSLoc = NNSLoc.getPrefix();
   1528   }
   1529 
   1530   return SourceRange();
   1531 }
   1532 
   1533 /// \brief Match the given template parameter lists to the given scope
   1534 /// specifier, returning the template parameter list that applies to the
   1535 /// name.
   1536 ///
   1537 /// \param DeclStartLoc the start of the declaration that has a scope
   1538 /// specifier or a template parameter list.
   1539 ///
   1540 /// \param DeclLoc The location of the declaration itself.
   1541 ///
   1542 /// \param SS the scope specifier that will be matched to the given template
   1543 /// parameter lists. This scope specifier precedes a qualified name that is
   1544 /// being declared.
   1545 ///
   1546 /// \param ParamLists the template parameter lists, from the outermost to the
   1547 /// innermost template parameter lists.
   1548 ///
   1549 /// \param NumParamLists the number of template parameter lists in ParamLists.
   1550 ///
   1551 /// \param IsFriend Whether to apply the slightly different rules for
   1552 /// matching template parameters to scope specifiers in friend
   1553 /// declarations.
   1554 ///
   1555 /// \param IsExplicitSpecialization will be set true if the entity being
   1556 /// declared is an explicit specialization, false otherwise.
   1557 ///
   1558 /// \returns the template parameter list, if any, that corresponds to the
   1559 /// name that is preceded by the scope specifier @p SS. This template
   1560 /// parameter list may have template parameters (if we're declaring a
   1561 /// template) or may have no template parameters (if we're declaring a
   1562 /// template specialization), or may be NULL (if what we're declaring isn't
   1563 /// itself a template).
   1564 TemplateParameterList *
   1565 Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
   1566                                               SourceLocation DeclLoc,
   1567                                               const CXXScopeSpec &SS,
   1568                                           TemplateParameterList **ParamLists,
   1569                                               unsigned NumParamLists,
   1570                                               bool IsFriend,
   1571                                               bool &IsExplicitSpecialization,
   1572                                               bool &Invalid) {
   1573   IsExplicitSpecialization = false;
   1574   Invalid = false;
   1575 
   1576   // The sequence of nested types to which we will match up the template
   1577   // parameter lists. We first build this list by starting with the type named
   1578   // by the nested-name-specifier and walking out until we run out of types.
   1579   SmallVector<QualType, 4> NestedTypes;
   1580   QualType T;
   1581   if (SS.getScopeRep()) {
   1582     if (CXXRecordDecl *Record
   1583               = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
   1584       T = Context.getTypeDeclType(Record);
   1585     else
   1586       T = QualType(SS.getScopeRep()->getAsType(), 0);
   1587   }
   1588 
   1589   // If we found an explicit specialization that prevents us from needing
   1590   // 'template<>' headers, this will be set to the location of that
   1591   // explicit specialization.
   1592   SourceLocation ExplicitSpecLoc;
   1593 
   1594   while (!T.isNull()) {
   1595     NestedTypes.push_back(T);
   1596 
   1597     // Retrieve the parent of a record type.
   1598     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
   1599       // If this type is an explicit specialization, we're done.
   1600       if (ClassTemplateSpecializationDecl *Spec
   1601           = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
   1602         if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
   1603             Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
   1604           ExplicitSpecLoc = Spec->getLocation();
   1605           break;
   1606         }
   1607       } else if (Record->getTemplateSpecializationKind()
   1608                                                 == TSK_ExplicitSpecialization) {
   1609         ExplicitSpecLoc = Record->getLocation();
   1610         break;
   1611       }
   1612 
   1613       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
   1614         T = Context.getTypeDeclType(Parent);
   1615       else
   1616         T = QualType();
   1617       continue;
   1618     }
   1619 
   1620     if (const TemplateSpecializationType *TST
   1621                                      = T->getAs<TemplateSpecializationType>()) {
   1622       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
   1623         if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
   1624           T = Context.getTypeDeclType(Parent);
   1625         else
   1626           T = QualType();
   1627         continue;
   1628       }
   1629     }
   1630 
   1631     // Look one step prior in a dependent template specialization type.
   1632     if (const DependentTemplateSpecializationType *DependentTST
   1633                           = T->getAs<DependentTemplateSpecializationType>()) {
   1634       if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
   1635         T = QualType(NNS->getAsType(), 0);
   1636       else
   1637         T = QualType();
   1638       continue;
   1639     }
   1640 
   1641     // Look one step prior in a dependent name type.
   1642     if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
   1643       if (NestedNameSpecifier *NNS = DependentName->getQualifier())
   1644         T = QualType(NNS->getAsType(), 0);
   1645       else
   1646         T = QualType();
   1647       continue;
   1648     }
   1649 
   1650     // Retrieve the parent of an enumeration type.
   1651     if (const EnumType *EnumT = T->getAs<EnumType>()) {
   1652       // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
   1653       // check here.
   1654       EnumDecl *Enum = EnumT->getDecl();
   1655 
   1656       // Get to the parent type.
   1657       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
   1658         T = Context.getTypeDeclType(Parent);
   1659       else
   1660         T = QualType();
   1661       continue;
   1662     }
   1663 
   1664     T = QualType();
   1665   }
   1666   // Reverse the nested types list, since we want to traverse from the outermost
   1667   // to the innermost while checking template-parameter-lists.
   1668   std::reverse(NestedTypes.begin(), NestedTypes.end());
   1669 
   1670   // C++0x [temp.expl.spec]p17:
   1671   //   A member or a member template may be nested within many
   1672   //   enclosing class templates. In an explicit specialization for
   1673   //   such a member, the member declaration shall be preceded by a
   1674   //   template<> for each enclosing class template that is
   1675   //   explicitly specialized.
   1676   bool SawNonEmptyTemplateParameterList = false;
   1677   unsigned ParamIdx = 0;
   1678   for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
   1679        ++TypeIdx) {
   1680     T = NestedTypes[TypeIdx];
   1681 
   1682     // Whether we expect a 'template<>' header.
   1683     bool NeedEmptyTemplateHeader = false;
   1684 
   1685     // Whether we expect a template header with parameters.
   1686     bool NeedNonemptyTemplateHeader = false;
   1687 
   1688     // For a dependent type, the set of template parameters that we
   1689     // expect to see.
   1690     TemplateParameterList *ExpectedTemplateParams = 0;
   1691 
   1692     // C++0x [temp.expl.spec]p15:
   1693     //   A member or a member template may be nested within many enclosing
   1694     //   class templates. In an explicit specialization for such a member, the
   1695     //   member declaration shall be preceded by a template<> for each
   1696     //   enclosing class template that is explicitly specialized.
   1697     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
   1698       if (ClassTemplatePartialSpecializationDecl *Partial
   1699             = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
   1700         ExpectedTemplateParams = Partial->getTemplateParameters();
   1701         NeedNonemptyTemplateHeader = true;
   1702       } else if (Record->isDependentType()) {
   1703         if (Record->getDescribedClassTemplate()) {
   1704           ExpectedTemplateParams = Record->getDescribedClassTemplate()
   1705                                                       ->getTemplateParameters();
   1706           NeedNonemptyTemplateHeader = true;
   1707         }
   1708       } else if (ClassTemplateSpecializationDecl *Spec
   1709                      = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
   1710         // C++0x [temp.expl.spec]p4:
   1711         //   Members of an explicitly specialized class template are defined
   1712         //   in the same manner as members of normal classes, and not using
   1713         //   the template<> syntax.
   1714         if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
   1715           NeedEmptyTemplateHeader = true;
   1716         else
   1717           continue;
   1718       } else if (Record->getTemplateSpecializationKind()) {
   1719         if (Record->getTemplateSpecializationKind()
   1720                                                 != TSK_ExplicitSpecialization &&
   1721             TypeIdx == NumTypes - 1)
   1722           IsExplicitSpecialization = true;
   1723 
   1724         continue;
   1725       }
   1726     } else if (const TemplateSpecializationType *TST
   1727                                      = T->getAs<TemplateSpecializationType>()) {
   1728       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
   1729         ExpectedTemplateParams = Template->getTemplateParameters();
   1730         NeedNonemptyTemplateHeader = true;
   1731       }
   1732     } else if (T->getAs<DependentTemplateSpecializationType>()) {
   1733       // FIXME:  We actually could/should check the template arguments here
   1734       // against the corresponding template parameter list.
   1735       NeedNonemptyTemplateHeader = false;
   1736     }
   1737 
   1738     // C++ [temp.expl.spec]p16:
   1739     //   In an explicit specialization declaration for a member of a class
   1740     //   template or a member template that ap- pears in namespace scope, the
   1741     //   member template and some of its enclosing class templates may remain
   1742     //   unspecialized, except that the declaration shall not explicitly
   1743     //   specialize a class member template if its en- closing class templates
   1744     //   are not explicitly specialized as well.
   1745     if (ParamIdx < NumParamLists) {
   1746       if (ParamLists[ParamIdx]->size() == 0) {
   1747         if (SawNonEmptyTemplateParameterList) {
   1748           Diag(DeclLoc, diag::err_specialize_member_of_template)
   1749             << ParamLists[ParamIdx]->getSourceRange();
   1750           Invalid = true;
   1751           IsExplicitSpecialization = false;
   1752           return 0;
   1753         }
   1754       } else
   1755         SawNonEmptyTemplateParameterList = true;
   1756     }
   1757 
   1758     if (NeedEmptyTemplateHeader) {
   1759       // If we're on the last of the types, and we need a 'template<>' header
   1760       // here, then it's an explicit specialization.
   1761       if (TypeIdx == NumTypes - 1)
   1762         IsExplicitSpecialization = true;
   1763 
   1764       if (ParamIdx < NumParamLists) {
   1765         if (ParamLists[ParamIdx]->size() > 0) {
   1766           // The header has template parameters when it shouldn't. Complain.
   1767           Diag(ParamLists[ParamIdx]->getTemplateLoc(),
   1768                diag::err_template_param_list_matches_nontemplate)
   1769             << T
   1770             << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
   1771                            ParamLists[ParamIdx]->getRAngleLoc())
   1772             << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
   1773           Invalid = true;
   1774           return 0;
   1775         }
   1776 
   1777         // Consume this template header.
   1778         ++ParamIdx;
   1779         continue;
   1780       }
   1781 
   1782       if (!IsFriend) {
   1783         // We don't have a template header, but we should.
   1784         SourceLocation ExpectedTemplateLoc;
   1785         if (NumParamLists > 0)
   1786           ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
   1787         else
   1788           ExpectedTemplateLoc = DeclStartLoc;
   1789 
   1790         Diag(DeclLoc, diag::err_template_spec_needs_header)
   1791           << getRangeOfTypeInNestedNameSpecifier(Context, T, SS)
   1792           << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
   1793       }
   1794 
   1795       continue;
   1796     }
   1797 
   1798     if (NeedNonemptyTemplateHeader) {
   1799       // In friend declarations we can have template-ids which don't
   1800       // depend on the corresponding template parameter lists.  But
   1801       // assume that empty parameter lists are supposed to match this
   1802       // template-id.
   1803       if (IsFriend && T->isDependentType()) {
   1804         if (ParamIdx < NumParamLists &&
   1805             DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
   1806           ExpectedTemplateParams = 0;
   1807         else
   1808           continue;
   1809       }
   1810 
   1811       if (ParamIdx < NumParamLists) {
   1812         // Check the template parameter list, if we can.
   1813         if (ExpectedTemplateParams &&
   1814             !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
   1815                                             ExpectedTemplateParams,
   1816                                             true, TPL_TemplateMatch))
   1817           Invalid = true;
   1818 
   1819         if (!Invalid &&
   1820             CheckTemplateParameterList(ParamLists[ParamIdx], 0,
   1821                                        TPC_ClassTemplateMember))
   1822           Invalid = true;
   1823 
   1824         ++ParamIdx;
   1825         continue;
   1826       }
   1827 
   1828       Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
   1829         << T
   1830         << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
   1831       Invalid = true;
   1832       continue;
   1833     }
   1834   }
   1835 
   1836   // If there were at least as many template-ids as there were template
   1837   // parameter lists, then there are no template parameter lists remaining for
   1838   // the declaration itself.
   1839   if (ParamIdx >= NumParamLists)
   1840     return 0;
   1841 
   1842   // If there were too many template parameter lists, complain about that now.
   1843   if (ParamIdx < NumParamLists - 1) {
   1844     bool HasAnyExplicitSpecHeader = false;
   1845     bool AllExplicitSpecHeaders = true;
   1846     for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) {
   1847       if (ParamLists[I]->size() == 0)
   1848         HasAnyExplicitSpecHeader = true;
   1849       else
   1850         AllExplicitSpecHeaders = false;
   1851     }
   1852 
   1853     Diag(ParamLists[ParamIdx]->getTemplateLoc(),
   1854          AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers
   1855                                : diag::err_template_spec_extra_headers)
   1856       << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
   1857                      ParamLists[NumParamLists - 2]->getRAngleLoc());
   1858 
   1859     // If there was a specialization somewhere, such that 'template<>' is
   1860     // not required, and there were any 'template<>' headers, note where the
   1861     // specialization occurred.
   1862     if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
   1863       Diag(ExplicitSpecLoc,
   1864            diag::note_explicit_template_spec_does_not_need_header)
   1865         << NestedTypes.back();
   1866 
   1867     // We have a template parameter list with no corresponding scope, which
   1868     // means that the resulting template declaration can't be instantiated
   1869     // properly (we'll end up with dependent nodes when we shouldn't).
   1870     if (!AllExplicitSpecHeaders)
   1871       Invalid = true;
   1872   }
   1873 
   1874   // C++ [temp.expl.spec]p16:
   1875   //   In an explicit specialization declaration for a member of a class
   1876   //   template or a member template that ap- pears in namespace scope, the
   1877   //   member template and some of its enclosing class templates may remain
   1878   //   unspecialized, except that the declaration shall not explicitly
   1879   //   specialize a class member template if its en- closing class templates
   1880   //   are not explicitly specialized as well.
   1881   if (ParamLists[NumParamLists - 1]->size() == 0 &&
   1882       SawNonEmptyTemplateParameterList) {
   1883     Diag(DeclLoc, diag::err_specialize_member_of_template)
   1884       << ParamLists[ParamIdx]->getSourceRange();
   1885     Invalid = true;
   1886     IsExplicitSpecialization = false;
   1887     return 0;
   1888   }
   1889 
   1890   // Return the last template parameter list, which corresponds to the
   1891   // entity being declared.
   1892   return ParamLists[NumParamLists - 1];
   1893 }
   1894 
   1895 void Sema::NoteAllFoundTemplates(TemplateName Name) {
   1896   if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
   1897     Diag(Template->getLocation(), diag::note_template_declared_here)
   1898       << (isa<FunctionTemplateDecl>(Template)? 0
   1899           : isa<ClassTemplateDecl>(Template)? 1
   1900           : isa<TypeAliasTemplateDecl>(Template)? 2
   1901           : 3)
   1902       << Template->getDeclName();
   1903     return;
   1904   }
   1905 
   1906   if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
   1907     for (OverloadedTemplateStorage::iterator I = OST->begin(),
   1908                                           IEnd = OST->end();
   1909          I != IEnd; ++I)
   1910       Diag((*I)->getLocation(), diag::note_template_declared_here)
   1911         << 0 << (*I)->getDeclName();
   1912 
   1913     return;
   1914   }
   1915 }
   1916 
   1917 QualType Sema::CheckTemplateIdType(TemplateName Name,
   1918                                    SourceLocation TemplateLoc,
   1919                                    TemplateArgumentListInfo &TemplateArgs) {
   1920   DependentTemplateName *DTN
   1921     = Name.getUnderlying().getAsDependentTemplateName();
   1922   if (DTN && DTN->isIdentifier())
   1923     // When building a template-id where the template-name is dependent,
   1924     // assume the template is a type template. Either our assumption is
   1925     // correct, or the code is ill-formed and will be diagnosed when the
   1926     // dependent name is substituted.
   1927     return Context.getDependentTemplateSpecializationType(ETK_None,
   1928                                                           DTN->getQualifier(),
   1929                                                           DTN->getIdentifier(),
   1930                                                           TemplateArgs);
   1931 
   1932   TemplateDecl *Template = Name.getAsTemplateDecl();
   1933   if (!Template || isa<FunctionTemplateDecl>(Template)) {
   1934     // We might have a substituted template template parameter pack. If so,
   1935     // build a template specialization type for it.
   1936     if (Name.getAsSubstTemplateTemplateParmPack())
   1937       return Context.getTemplateSpecializationType(Name, TemplateArgs);
   1938 
   1939     Diag(TemplateLoc, diag::err_template_id_not_a_type)
   1940       << Name;
   1941     NoteAllFoundTemplates(Name);
   1942     return QualType();
   1943   }
   1944 
   1945   // Check that the template argument list is well-formed for this
   1946   // template.
   1947   SmallVector<TemplateArgument, 4> Converted;
   1948   bool ExpansionIntoFixedList = false;
   1949   if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
   1950                                 false, Converted, &ExpansionIntoFixedList))
   1951     return QualType();
   1952 
   1953   QualType CanonType;
   1954 
   1955   bool InstantiationDependent = false;
   1956   TypeAliasTemplateDecl *AliasTemplate = 0;
   1957   if (!ExpansionIntoFixedList &&
   1958       (AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Template))) {
   1959     // Find the canonical type for this type alias template specialization.
   1960     TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
   1961     if (Pattern->isInvalidDecl())
   1962       return QualType();
   1963 
   1964     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   1965                                       Converted.data(), Converted.size());
   1966 
   1967     // Only substitute for the innermost template argument list.
   1968     MultiLevelTemplateArgumentList TemplateArgLists;
   1969     TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
   1970     unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
   1971     for (unsigned I = 0; I < Depth; ++I)
   1972       TemplateArgLists.addOuterTemplateArguments(0, 0);
   1973 
   1974     InstantiatingTemplate Inst(*this, TemplateLoc, Template);
   1975     CanonType = SubstType(Pattern->getUnderlyingType(),
   1976                           TemplateArgLists, AliasTemplate->getLocation(),
   1977                           AliasTemplate->getDeclName());
   1978     if (CanonType.isNull())
   1979       return QualType();
   1980   } else if (Name.isDependent() ||
   1981              TemplateSpecializationType::anyDependentTemplateArguments(
   1982                TemplateArgs, InstantiationDependent)) {
   1983     // This class template specialization is a dependent
   1984     // type. Therefore, its canonical type is another class template
   1985     // specialization type that contains all of the converted
   1986     // arguments in canonical form. This ensures that, e.g., A<T> and
   1987     // A<T, T> have identical types when A is declared as:
   1988     //
   1989     //   template<typename T, typename U = T> struct A;
   1990     TemplateName CanonName = Context.getCanonicalTemplateName(Name);
   1991     CanonType = Context.getTemplateSpecializationType(CanonName,
   1992                                                       Converted.data(),
   1993                                                       Converted.size());
   1994 
   1995     // FIXME: CanonType is not actually the canonical type, and unfortunately
   1996     // it is a TemplateSpecializationType that we will never use again.
   1997     // In the future, we need to teach getTemplateSpecializationType to only
   1998     // build the canonical type and return that to us.
   1999     CanonType = Context.getCanonicalType(CanonType);
   2000 
   2001     // This might work out to be a current instantiation, in which
   2002     // case the canonical type needs to be the InjectedClassNameType.
   2003     //
   2004     // TODO: in theory this could be a simple hashtable lookup; most
   2005     // changes to CurContext don't change the set of current
   2006     // instantiations.
   2007     if (isa<ClassTemplateDecl>(Template)) {
   2008       for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
   2009         // If we get out to a namespace, we're done.
   2010         if (Ctx->isFileContext()) break;
   2011 
   2012         // If this isn't a record, keep looking.
   2013         CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
   2014         if (!Record) continue;
   2015 
   2016         // Look for one of the two cases with InjectedClassNameTypes
   2017         // and check whether it's the same template.
   2018         if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
   2019             !Record->getDescribedClassTemplate())
   2020           continue;
   2021 
   2022         // Fetch the injected class name type and check whether its
   2023         // injected type is equal to the type we just built.
   2024         QualType ICNT = Context.getTypeDeclType(Record);
   2025         QualType Injected = cast<InjectedClassNameType>(ICNT)
   2026           ->getInjectedSpecializationType();
   2027 
   2028         if (CanonType != Injected->getCanonicalTypeInternal())
   2029           continue;
   2030 
   2031         // If so, the canonical type of this TST is the injected
   2032         // class name type of the record we just found.
   2033         assert(ICNT.isCanonical());
   2034         CanonType = ICNT;
   2035         break;
   2036       }
   2037     }
   2038   } else if (ClassTemplateDecl *ClassTemplate
   2039                = dyn_cast<ClassTemplateDecl>(Template)) {
   2040     // Find the class template specialization declaration that
   2041     // corresponds to these arguments.
   2042     void *InsertPos = 0;
   2043     ClassTemplateSpecializationDecl *Decl
   2044       = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
   2045                                           InsertPos);
   2046     if (!Decl) {
   2047       // This is the first time we have referenced this class template
   2048       // specialization. Create the canonical declaration and add it to
   2049       // the set of specializations.
   2050       Decl = ClassTemplateSpecializationDecl::Create(Context,
   2051                             ClassTemplate->getTemplatedDecl()->getTagKind(),
   2052                                                 ClassTemplate->getDeclContext(),
   2053                             ClassTemplate->getTemplatedDecl()->getLocStart(),
   2054                                                 ClassTemplate->getLocation(),
   2055                                                      ClassTemplate,
   2056                                                      Converted.data(),
   2057                                                      Converted.size(), 0);
   2058       ClassTemplate->AddSpecialization(Decl, InsertPos);
   2059       Decl->setLexicalDeclContext(CurContext);
   2060     }
   2061 
   2062     CanonType = Context.getTypeDeclType(Decl);
   2063     assert(isa<RecordType>(CanonType) &&
   2064            "type of non-dependent specialization is not a RecordType");
   2065   }
   2066 
   2067   // Build the fully-sugared type for this class template
   2068   // specialization, which refers back to the class template
   2069   // specialization we created or found.
   2070   return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
   2071 }
   2072 
   2073 TypeResult
   2074 Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
   2075                           TemplateTy TemplateD, SourceLocation TemplateLoc,
   2076                           SourceLocation LAngleLoc,
   2077                           ASTTemplateArgsPtr TemplateArgsIn,
   2078                           SourceLocation RAngleLoc,
   2079                           bool IsCtorOrDtorName) {
   2080   if (SS.isInvalid())
   2081     return true;
   2082 
   2083   TemplateName Template = TemplateD.getAsVal<TemplateName>();
   2084 
   2085   // Translate the parser's template argument list in our AST format.
   2086   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
   2087   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
   2088 
   2089   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
   2090     QualType T
   2091       = Context.getDependentTemplateSpecializationType(ETK_None,
   2092                                                        DTN->getQualifier(),
   2093                                                        DTN->getIdentifier(),
   2094                                                        TemplateArgs);
   2095     // Build type-source information.
   2096     TypeLocBuilder TLB;
   2097     DependentTemplateSpecializationTypeLoc SpecTL
   2098       = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
   2099     SpecTL.setElaboratedKeywordLoc(SourceLocation());
   2100     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
   2101     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
   2102     SpecTL.setTemplateNameLoc(TemplateLoc);
   2103     SpecTL.setLAngleLoc(LAngleLoc);
   2104     SpecTL.setRAngleLoc(RAngleLoc);
   2105     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
   2106       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
   2107     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
   2108   }
   2109 
   2110   QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
   2111   TemplateArgsIn.release();
   2112 
   2113   if (Result.isNull())
   2114     return true;
   2115 
   2116   // Build type-source information.
   2117   TypeLocBuilder TLB;
   2118   TemplateSpecializationTypeLoc SpecTL
   2119     = TLB.push<TemplateSpecializationTypeLoc>(Result);
   2120   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
   2121   SpecTL.setTemplateNameLoc(TemplateLoc);
   2122   SpecTL.setLAngleLoc(LAngleLoc);
   2123   SpecTL.setRAngleLoc(RAngleLoc);
   2124   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
   2125     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
   2126 
   2127   // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
   2128   // constructor or destructor name (in such a case, the scope specifier
   2129   // will be attached to the enclosing Decl or Expr node).
   2130   if (SS.isNotEmpty() && !IsCtorOrDtorName) {
   2131     // Create an elaborated-type-specifier containing the nested-name-specifier.
   2132     Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
   2133     ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
   2134     ElabTL.setElaboratedKeywordLoc(SourceLocation());
   2135     ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
   2136   }
   2137 
   2138   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
   2139 }
   2140 
   2141 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
   2142                                         TypeSpecifierType TagSpec,
   2143                                         SourceLocation TagLoc,
   2144                                         CXXScopeSpec &SS,
   2145                                         SourceLocation TemplateKWLoc,
   2146                                         TemplateTy TemplateD,
   2147                                         SourceLocation TemplateLoc,
   2148                                         SourceLocation LAngleLoc,
   2149                                         ASTTemplateArgsPtr TemplateArgsIn,
   2150                                         SourceLocation RAngleLoc) {
   2151   TemplateName Template = TemplateD.getAsVal<TemplateName>();
   2152 
   2153   // Translate the parser's template argument list in our AST format.
   2154   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
   2155   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
   2156 
   2157   // Determine the tag kind
   2158   TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
   2159   ElaboratedTypeKeyword Keyword
   2160     = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
   2161 
   2162   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
   2163     QualType T = Context.getDependentTemplateSpecializationType(Keyword,
   2164                                                           DTN->getQualifier(),
   2165                                                           DTN->getIdentifier(),
   2166                                                                 TemplateArgs);
   2167 
   2168     // Build type-source information.
   2169     TypeLocBuilder TLB;
   2170     DependentTemplateSpecializationTypeLoc SpecTL
   2171       = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
   2172     SpecTL.setElaboratedKeywordLoc(TagLoc);
   2173     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
   2174     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
   2175     SpecTL.setTemplateNameLoc(TemplateLoc);
   2176     SpecTL.setLAngleLoc(LAngleLoc);
   2177     SpecTL.setRAngleLoc(RAngleLoc);
   2178     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
   2179       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
   2180     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
   2181   }
   2182 
   2183   if (TypeAliasTemplateDecl *TAT =
   2184         dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
   2185     // C++0x [dcl.type.elab]p2:
   2186     //   If the identifier resolves to a typedef-name or the simple-template-id
   2187     //   resolves to an alias template specialization, the
   2188     //   elaborated-type-specifier is ill-formed.
   2189     Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
   2190     Diag(TAT->getLocation(), diag::note_declared_at);
   2191   }
   2192 
   2193   QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
   2194   if (Result.isNull())
   2195     return TypeResult(true);
   2196 
   2197   // Check the tag kind
   2198   if (const RecordType *RT = Result->getAs<RecordType>()) {
   2199     RecordDecl *D = RT->getDecl();
   2200 
   2201     IdentifierInfo *Id = D->getIdentifier();
   2202     assert(Id && "templated class must have an identifier");
   2203 
   2204     if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
   2205                                       TagLoc, *Id)) {
   2206       Diag(TagLoc, diag::err_use_with_wrong_tag)
   2207         << Result
   2208         << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
   2209       Diag(D->getLocation(), diag::note_previous_use);
   2210     }
   2211   }
   2212 
   2213   // Provide source-location information for the template specialization.
   2214   TypeLocBuilder TLB;
   2215   TemplateSpecializationTypeLoc SpecTL
   2216     = TLB.push<TemplateSpecializationTypeLoc>(Result);
   2217   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
   2218   SpecTL.setTemplateNameLoc(TemplateLoc);
   2219   SpecTL.setLAngleLoc(LAngleLoc);
   2220   SpecTL.setRAngleLoc(RAngleLoc);
   2221   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
   2222     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
   2223 
   2224   // Construct an elaborated type containing the nested-name-specifier (if any)
   2225   // and tag keyword.
   2226   Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
   2227   ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
   2228   ElabTL.setElaboratedKeywordLoc(TagLoc);
   2229   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
   2230   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
   2231 }
   2232 
   2233 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
   2234                                      SourceLocation TemplateKWLoc,
   2235                                      LookupResult &R,
   2236                                      bool RequiresADL,
   2237                                  const TemplateArgumentListInfo *TemplateArgs) {
   2238   // FIXME: Can we do any checking at this point? I guess we could check the
   2239   // template arguments that we have against the template name, if the template
   2240   // name refers to a single template. That's not a terribly common case,
   2241   // though.
   2242   // foo<int> could identify a single function unambiguously
   2243   // This approach does NOT work, since f<int>(1);
   2244   // gets resolved prior to resorting to overload resolution
   2245   // i.e., template<class T> void f(double);
   2246   //       vs template<class T, class U> void f(U);
   2247 
   2248   // These should be filtered out by our callers.
   2249   assert(!R.empty() && "empty lookup results when building templateid");
   2250   assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
   2251 
   2252   // We don't want lookup warnings at this point.
   2253   R.suppressDiagnostics();
   2254 
   2255   UnresolvedLookupExpr *ULE
   2256     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
   2257                                    SS.getWithLocInContext(Context),
   2258                                    TemplateKWLoc,
   2259                                    R.getLookupNameInfo(),
   2260                                    RequiresADL, TemplateArgs,
   2261                                    R.begin(), R.end());
   2262 
   2263   return Owned(ULE);
   2264 }
   2265 
   2266 // We actually only call this from template instantiation.
   2267 ExprResult
   2268 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
   2269                                    SourceLocation TemplateKWLoc,
   2270                                    const DeclarationNameInfo &NameInfo,
   2271                              const TemplateArgumentListInfo *TemplateArgs) {
   2272   assert(TemplateArgs || TemplateKWLoc.isValid());
   2273   DeclContext *DC;
   2274   if (!(DC = computeDeclContext(SS, false)) ||
   2275       DC->isDependentContext() ||
   2276       RequireCompleteDeclContext(SS, DC))
   2277     return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
   2278 
   2279   bool MemberOfUnknownSpecialization;
   2280   LookupResult R(*this, NameInfo, LookupOrdinaryName);
   2281   LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
   2282                      MemberOfUnknownSpecialization);
   2283 
   2284   if (R.isAmbiguous())
   2285     return ExprError();
   2286 
   2287   if (R.empty()) {
   2288     Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
   2289       << NameInfo.getName() << SS.getRange();
   2290     return ExprError();
   2291   }
   2292 
   2293   if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
   2294     Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
   2295       << (NestedNameSpecifier*) SS.getScopeRep()
   2296       << NameInfo.getName() << SS.getRange();
   2297     Diag(Temp->getLocation(), diag::note_referenced_class_template);
   2298     return ExprError();
   2299   }
   2300 
   2301   return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
   2302 }
   2303 
   2304 /// \brief Form a dependent template name.
   2305 ///
   2306 /// This action forms a dependent template name given the template
   2307 /// name and its (presumably dependent) scope specifier. For
   2308 /// example, given "MetaFun::template apply", the scope specifier \p
   2309 /// SS will be "MetaFun::", \p TemplateKWLoc contains the location
   2310 /// of the "template" keyword, and "apply" is the \p Name.
   2311 TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
   2312                                                   CXXScopeSpec &SS,
   2313                                                   SourceLocation TemplateKWLoc,
   2314                                                   UnqualifiedId &Name,
   2315                                                   ParsedType ObjectType,
   2316                                                   bool EnteringContext,
   2317                                                   TemplateTy &Result) {
   2318   if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
   2319     Diag(TemplateKWLoc,
   2320          getLangOpts().CPlusPlus0x ?
   2321            diag::warn_cxx98_compat_template_outside_of_template :
   2322            diag::ext_template_outside_of_template)
   2323       << FixItHint::CreateRemoval(TemplateKWLoc);
   2324 
   2325   DeclContext *LookupCtx = 0;
   2326   if (SS.isSet())
   2327     LookupCtx = computeDeclContext(SS, EnteringContext);
   2328   if (!LookupCtx && ObjectType)
   2329     LookupCtx = computeDeclContext(ObjectType.get());
   2330   if (LookupCtx) {
   2331     // C++0x [temp.names]p5:
   2332     //   If a name prefixed by the keyword template is not the name of
   2333     //   a template, the program is ill-formed. [Note: the keyword
   2334     //   template may not be applied to non-template members of class
   2335     //   templates. -end note ] [ Note: as is the case with the
   2336     //   typename prefix, the template prefix is allowed in cases
   2337     //   where it is not strictly necessary; i.e., when the
   2338     //   nested-name-specifier or the expression on the left of the ->
   2339     //   or . is not dependent on a template-parameter, or the use
   2340     //   does not appear in the scope of a template. -end note]
   2341     //
   2342     // Note: C++03 was more strict here, because it banned the use of
   2343     // the "template" keyword prior to a template-name that was not a
   2344     // dependent name. C++ DR468 relaxed this requirement (the
   2345     // "template" keyword is now permitted). We follow the C++0x
   2346     // rules, even in C++03 mode with a warning, retroactively applying the DR.
   2347     bool MemberOfUnknownSpecialization;
   2348     TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
   2349                                           ObjectType, EnteringContext, Result,
   2350                                           MemberOfUnknownSpecialization);
   2351     if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
   2352         isa<CXXRecordDecl>(LookupCtx) &&
   2353         (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
   2354          cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
   2355       // This is a dependent template. Handle it below.
   2356     } else if (TNK == TNK_Non_template) {
   2357       Diag(Name.getLocStart(),
   2358            diag::err_template_kw_refers_to_non_template)
   2359         << GetNameFromUnqualifiedId(Name).getName()
   2360         << Name.getSourceRange()
   2361         << TemplateKWLoc;
   2362       return TNK_Non_template;
   2363     } else {
   2364       // We found something; return it.
   2365       return TNK;
   2366     }
   2367   }
   2368 
   2369   NestedNameSpecifier *Qualifier
   2370     = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
   2371 
   2372   switch (Name.getKind()) {
   2373   case UnqualifiedId::IK_Identifier:
   2374     Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
   2375                                                               Name.Identifier));
   2376     return TNK_Dependent_template_name;
   2377 
   2378   case UnqualifiedId::IK_OperatorFunctionId:
   2379     Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
   2380                                              Name.OperatorFunctionId.Operator));
   2381     return TNK_Dependent_template_name;
   2382 
   2383   case UnqualifiedId::IK_LiteralOperatorId:
   2384     llvm_unreachable(
   2385             "We don't support these; Parse shouldn't have allowed propagation");
   2386 
   2387   default:
   2388     break;
   2389   }
   2390 
   2391   Diag(Name.getLocStart(),
   2392        diag::err_template_kw_refers_to_non_template)
   2393     << GetNameFromUnqualifiedId(Name).getName()
   2394     << Name.getSourceRange()
   2395     << TemplateKWLoc;
   2396   return TNK_Non_template;
   2397 }
   2398 
   2399 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
   2400                                      const TemplateArgumentLoc &AL,
   2401                           SmallVectorImpl<TemplateArgument> &Converted) {
   2402   const TemplateArgument &Arg = AL.getArgument();
   2403 
   2404   // Check template type parameter.
   2405   switch(Arg.getKind()) {
   2406   case TemplateArgument::Type:
   2407     // C++ [temp.arg.type]p1:
   2408     //   A template-argument for a template-parameter which is a
   2409     //   type shall be a type-id.
   2410     break;
   2411   case TemplateArgument::Template: {
   2412     // We have a template type parameter but the template argument
   2413     // is a template without any arguments.
   2414     SourceRange SR = AL.getSourceRange();
   2415     TemplateName Name = Arg.getAsTemplate();
   2416     Diag(SR.getBegin(), diag::err_template_missing_args)
   2417       << Name << SR;
   2418     if (TemplateDecl *Decl = Name.getAsTemplateDecl())
   2419       Diag(Decl->getLocation(), diag::note_template_decl_here);
   2420 
   2421     return true;
   2422   }
   2423   default: {
   2424     // We have a template type parameter but the template argument
   2425     // is not a type.
   2426     SourceRange SR = AL.getSourceRange();
   2427     Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
   2428     Diag(Param->getLocation(), diag::note_template_param_here);
   2429 
   2430     return true;
   2431   }
   2432   }
   2433 
   2434   if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
   2435     return true;
   2436 
   2437   // Add the converted template type argument.
   2438   QualType ArgType = Context.getCanonicalType(Arg.getAsType());
   2439 
   2440   // Objective-C ARC:
   2441   //   If an explicitly-specified template argument type is a lifetime type
   2442   //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
   2443   if (getLangOpts().ObjCAutoRefCount &&
   2444       ArgType->isObjCLifetimeType() &&
   2445       !ArgType.getObjCLifetime()) {
   2446     Qualifiers Qs;
   2447     Qs.setObjCLifetime(Qualifiers::OCL_Strong);
   2448     ArgType = Context.getQualifiedType(ArgType, Qs);
   2449   }
   2450 
   2451   Converted.push_back(TemplateArgument(ArgType));
   2452   return false;
   2453 }
   2454 
   2455 /// \brief Substitute template arguments into the default template argument for
   2456 /// the given template type parameter.
   2457 ///
   2458 /// \param SemaRef the semantic analysis object for which we are performing
   2459 /// the substitution.
   2460 ///
   2461 /// \param Template the template that we are synthesizing template arguments
   2462 /// for.
   2463 ///
   2464 /// \param TemplateLoc the location of the template name that started the
   2465 /// template-id we are checking.
   2466 ///
   2467 /// \param RAngleLoc the location of the right angle bracket ('>') that
   2468 /// terminates the template-id.
   2469 ///
   2470 /// \param Param the template template parameter whose default we are
   2471 /// substituting into.
   2472 ///
   2473 /// \param Converted the list of template arguments provided for template
   2474 /// parameters that precede \p Param in the template parameter list.
   2475 /// \returns the substituted template argument, or NULL if an error occurred.
   2476 static TypeSourceInfo *
   2477 SubstDefaultTemplateArgument(Sema &SemaRef,
   2478                              TemplateDecl *Template,
   2479                              SourceLocation TemplateLoc,
   2480                              SourceLocation RAngleLoc,
   2481                              TemplateTypeParmDecl *Param,
   2482                          SmallVectorImpl<TemplateArgument> &Converted) {
   2483   TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
   2484 
   2485   // If the argument type is dependent, instantiate it now based
   2486   // on the previously-computed template arguments.
   2487   if (ArgType->getType()->isDependentType()) {
   2488     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   2489                                       Converted.data(), Converted.size());
   2490 
   2491     MultiLevelTemplateArgumentList AllTemplateArgs
   2492       = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
   2493 
   2494     Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
   2495                                      Template, Converted.data(),
   2496                                      Converted.size(),
   2497                                      SourceRange(TemplateLoc, RAngleLoc));
   2498 
   2499     ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
   2500                                 Param->getDefaultArgumentLoc(),
   2501                                 Param->getDeclName());
   2502   }
   2503 
   2504   return ArgType;
   2505 }
   2506 
   2507 /// \brief Substitute template arguments into the default template argument for
   2508 /// the given non-type template parameter.
   2509 ///
   2510 /// \param SemaRef the semantic analysis object for which we are performing
   2511 /// the substitution.
   2512 ///
   2513 /// \param Template the template that we are synthesizing template arguments
   2514 /// for.
   2515 ///
   2516 /// \param TemplateLoc the location of the template name that started the
   2517 /// template-id we are checking.
   2518 ///
   2519 /// \param RAngleLoc the location of the right angle bracket ('>') that
   2520 /// terminates the template-id.
   2521 ///
   2522 /// \param Param the non-type template parameter whose default we are
   2523 /// substituting into.
   2524 ///
   2525 /// \param Converted the list of template arguments provided for template
   2526 /// parameters that precede \p Param in the template parameter list.
   2527 ///
   2528 /// \returns the substituted template argument, or NULL if an error occurred.
   2529 static ExprResult
   2530 SubstDefaultTemplateArgument(Sema &SemaRef,
   2531                              TemplateDecl *Template,
   2532                              SourceLocation TemplateLoc,
   2533                              SourceLocation RAngleLoc,
   2534                              NonTypeTemplateParmDecl *Param,
   2535                         SmallVectorImpl<TemplateArgument> &Converted) {
   2536   TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   2537                                     Converted.data(), Converted.size());
   2538 
   2539   MultiLevelTemplateArgumentList AllTemplateArgs
   2540     = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
   2541 
   2542   Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
   2543                                    Template, Converted.data(),
   2544                                    Converted.size(),
   2545                                    SourceRange(TemplateLoc, RAngleLoc));
   2546 
   2547   return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
   2548 }
   2549 
   2550 /// \brief Substitute template arguments into the default template argument for
   2551 /// the given template template parameter.
   2552 ///
   2553 /// \param SemaRef the semantic analysis object for which we are performing
   2554 /// the substitution.
   2555 ///
   2556 /// \param Template the template that we are synthesizing template arguments
   2557 /// for.
   2558 ///
   2559 /// \param TemplateLoc the location of the template name that started the
   2560 /// template-id we are checking.
   2561 ///
   2562 /// \param RAngleLoc the location of the right angle bracket ('>') that
   2563 /// terminates the template-id.
   2564 ///
   2565 /// \param Param the template template parameter whose default we are
   2566 /// substituting into.
   2567 ///
   2568 /// \param Converted the list of template arguments provided for template
   2569 /// parameters that precede \p Param in the template parameter list.
   2570 ///
   2571 /// \param QualifierLoc Will be set to the nested-name-specifier (with
   2572 /// source-location information) that precedes the template name.
   2573 ///
   2574 /// \returns the substituted template argument, or NULL if an error occurred.
   2575 static TemplateName
   2576 SubstDefaultTemplateArgument(Sema &SemaRef,
   2577                              TemplateDecl *Template,
   2578                              SourceLocation TemplateLoc,
   2579                              SourceLocation RAngleLoc,
   2580                              TemplateTemplateParmDecl *Param,
   2581                        SmallVectorImpl<TemplateArgument> &Converted,
   2582                              NestedNameSpecifierLoc &QualifierLoc) {
   2583   TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   2584                                     Converted.data(), Converted.size());
   2585 
   2586   MultiLevelTemplateArgumentList AllTemplateArgs
   2587     = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
   2588 
   2589   Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
   2590                                    Template, Converted.data(),
   2591                                    Converted.size(),
   2592                                    SourceRange(TemplateLoc, RAngleLoc));
   2593 
   2594   // Substitute into the nested-name-specifier first,
   2595   QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
   2596   if (QualifierLoc) {
   2597     QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
   2598                                                        AllTemplateArgs);
   2599     if (!QualifierLoc)
   2600       return TemplateName();
   2601   }
   2602 
   2603   return SemaRef.SubstTemplateName(QualifierLoc,
   2604                       Param->getDefaultArgument().getArgument().getAsTemplate(),
   2605                               Param->getDefaultArgument().getTemplateNameLoc(),
   2606                                    AllTemplateArgs);
   2607 }
   2608 
   2609 /// \brief If the given template parameter has a default template
   2610 /// argument, substitute into that default template argument and
   2611 /// return the corresponding template argument.
   2612 TemplateArgumentLoc
   2613 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
   2614                                               SourceLocation TemplateLoc,
   2615                                               SourceLocation RAngleLoc,
   2616                                               Decl *Param,
   2617                       SmallVectorImpl<TemplateArgument> &Converted) {
   2618    if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
   2619     if (!TypeParm->hasDefaultArgument())
   2620       return TemplateArgumentLoc();
   2621 
   2622     TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
   2623                                                       TemplateLoc,
   2624                                                       RAngleLoc,
   2625                                                       TypeParm,
   2626                                                       Converted);
   2627     if (DI)
   2628       return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
   2629 
   2630     return TemplateArgumentLoc();
   2631   }
   2632 
   2633   if (NonTypeTemplateParmDecl *NonTypeParm
   2634         = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
   2635     if (!NonTypeParm->hasDefaultArgument())
   2636       return TemplateArgumentLoc();
   2637 
   2638     ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
   2639                                                   TemplateLoc,
   2640                                                   RAngleLoc,
   2641                                                   NonTypeParm,
   2642                                                   Converted);
   2643     if (Arg.isInvalid())
   2644       return TemplateArgumentLoc();
   2645 
   2646     Expr *ArgE = Arg.takeAs<Expr>();
   2647     return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
   2648   }
   2649 
   2650   TemplateTemplateParmDecl *TempTempParm
   2651     = cast<TemplateTemplateParmDecl>(Param);
   2652   if (!TempTempParm->hasDefaultArgument())
   2653     return TemplateArgumentLoc();
   2654 
   2655 
   2656   NestedNameSpecifierLoc QualifierLoc;
   2657   TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
   2658                                                     TemplateLoc,
   2659                                                     RAngleLoc,
   2660                                                     TempTempParm,
   2661                                                     Converted,
   2662                                                     QualifierLoc);
   2663   if (TName.isNull())
   2664     return TemplateArgumentLoc();
   2665 
   2666   return TemplateArgumentLoc(TemplateArgument(TName),
   2667                 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
   2668                 TempTempParm->getDefaultArgument().getTemplateNameLoc());
   2669 }
   2670 
   2671 /// \brief Check that the given template argument corresponds to the given
   2672 /// template parameter.
   2673 ///
   2674 /// \param Param The template parameter against which the argument will be
   2675 /// checked.
   2676 ///
   2677 /// \param Arg The template argument.
   2678 ///
   2679 /// \param Template The template in which the template argument resides.
   2680 ///
   2681 /// \param TemplateLoc The location of the template name for the template
   2682 /// whose argument list we're matching.
   2683 ///
   2684 /// \param RAngleLoc The location of the right angle bracket ('>') that closes
   2685 /// the template argument list.
   2686 ///
   2687 /// \param ArgumentPackIndex The index into the argument pack where this
   2688 /// argument will be placed. Only valid if the parameter is a parameter pack.
   2689 ///
   2690 /// \param Converted The checked, converted argument will be added to the
   2691 /// end of this small vector.
   2692 ///
   2693 /// \param CTAK Describes how we arrived at this particular template argument:
   2694 /// explicitly written, deduced, etc.
   2695 ///
   2696 /// \returns true on error, false otherwise.
   2697 bool Sema::CheckTemplateArgument(NamedDecl *Param,
   2698                                  const TemplateArgumentLoc &Arg,
   2699                                  NamedDecl *Template,
   2700                                  SourceLocation TemplateLoc,
   2701                                  SourceLocation RAngleLoc,
   2702                                  unsigned ArgumentPackIndex,
   2703                             SmallVectorImpl<TemplateArgument> &Converted,
   2704                                  CheckTemplateArgumentKind CTAK) {
   2705   // Check template type parameters.
   2706   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
   2707     return CheckTemplateTypeArgument(TTP, Arg, Converted);
   2708 
   2709   // Check non-type template parameters.
   2710   if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
   2711     // Do substitution on the type of the non-type template parameter
   2712     // with the template arguments we've seen thus far.  But if the
   2713     // template has a dependent context then we cannot substitute yet.
   2714     QualType NTTPType = NTTP->getType();
   2715     if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
   2716       NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
   2717 
   2718     if (NTTPType->isDependentType() &&
   2719         !isa<TemplateTemplateParmDecl>(Template) &&
   2720         !Template->getDeclContext()->isDependentContext()) {
   2721       // Do substitution on the type of the non-type template parameter.
   2722       InstantiatingTemplate Inst(*this, TemplateLoc, Template,
   2723                                  NTTP, Converted.data(), Converted.size(),
   2724                                  SourceRange(TemplateLoc, RAngleLoc));
   2725 
   2726       TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   2727                                         Converted.data(), Converted.size());
   2728       NTTPType = SubstType(NTTPType,
   2729                            MultiLevelTemplateArgumentList(TemplateArgs),
   2730                            NTTP->getLocation(),
   2731                            NTTP->getDeclName());
   2732       // If that worked, check the non-type template parameter type
   2733       // for validity.
   2734       if (!NTTPType.isNull())
   2735         NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
   2736                                                      NTTP->getLocation());
   2737       if (NTTPType.isNull())
   2738         return true;
   2739     }
   2740 
   2741     switch (Arg.getArgument().getKind()) {
   2742     case TemplateArgument::Null:
   2743       llvm_unreachable("Should never see a NULL template argument here");
   2744 
   2745     case TemplateArgument::Expression: {
   2746       TemplateArgument Result;
   2747       ExprResult Res =
   2748         CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
   2749                               Result, CTAK);
   2750       if (Res.isInvalid())
   2751         return true;
   2752 
   2753       Converted.push_back(Result);
   2754       break;
   2755     }
   2756 
   2757     case TemplateArgument::Declaration:
   2758     case TemplateArgument::Integral:
   2759       // We've already checked this template argument, so just copy
   2760       // it to the list of converted arguments.
   2761       Converted.push_back(Arg.getArgument());
   2762       break;
   2763 
   2764     case TemplateArgument::Template:
   2765     case TemplateArgument::TemplateExpansion:
   2766       // We were given a template template argument. It may not be ill-formed;
   2767       // see below.
   2768       if (DependentTemplateName *DTN
   2769             = Arg.getArgument().getAsTemplateOrTemplatePattern()
   2770                                               .getAsDependentTemplateName()) {
   2771         // We have a template argument such as \c T::template X, which we
   2772         // parsed as a template template argument. However, since we now
   2773         // know that we need a non-type template argument, convert this
   2774         // template name into an expression.
   2775 
   2776         DeclarationNameInfo NameInfo(DTN->getIdentifier(),
   2777                                      Arg.getTemplateNameLoc());
   2778 
   2779         CXXScopeSpec SS;
   2780         SS.Adopt(Arg.getTemplateQualifierLoc());
   2781         // FIXME: the template-template arg was a DependentTemplateName,
   2782         // so it was provided with a template keyword. However, its source
   2783         // location is not stored in the template argument structure.
   2784         SourceLocation TemplateKWLoc;
   2785         ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context,
   2786                                                 SS.getWithLocInContext(Context),
   2787                                                                TemplateKWLoc,
   2788                                                                NameInfo, 0));
   2789 
   2790         // If we parsed the template argument as a pack expansion, create a
   2791         // pack expansion expression.
   2792         if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
   2793           E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc());
   2794           if (E.isInvalid())
   2795             return true;
   2796         }
   2797 
   2798         TemplateArgument Result;
   2799         E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result);
   2800         if (E.isInvalid())
   2801           return true;
   2802 
   2803         Converted.push_back(Result);
   2804         break;
   2805       }
   2806 
   2807       // We have a template argument that actually does refer to a class
   2808       // template, alias template, or template template parameter, and
   2809       // therefore cannot be a non-type template argument.
   2810       Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
   2811         << Arg.getSourceRange();
   2812 
   2813       Diag(Param->getLocation(), diag::note_template_param_here);
   2814       return true;
   2815 
   2816     case TemplateArgument::Type: {
   2817       // We have a non-type template parameter but the template
   2818       // argument is a type.
   2819 
   2820       // C++ [temp.arg]p2:
   2821       //   In a template-argument, an ambiguity between a type-id and
   2822       //   an expression is resolved to a type-id, regardless of the
   2823       //   form of the corresponding template-parameter.
   2824       //
   2825       // We warn specifically about this case, since it can be rather
   2826       // confusing for users.
   2827       QualType T = Arg.getArgument().getAsType();
   2828       SourceRange SR = Arg.getSourceRange();
   2829       if (T->isFunctionType())
   2830         Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
   2831       else
   2832         Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
   2833       Diag(Param->getLocation(), diag::note_template_param_here);
   2834       return true;
   2835     }
   2836 
   2837     case TemplateArgument::Pack:
   2838       llvm_unreachable("Caller must expand template argument packs");
   2839     }
   2840 
   2841     return false;
   2842   }
   2843 
   2844 
   2845   // Check template template parameters.
   2846   TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
   2847 
   2848   // Substitute into the template parameter list of the template
   2849   // template parameter, since previously-supplied template arguments
   2850   // may appear within the template template parameter.
   2851   {
   2852     // Set up a template instantiation context.
   2853     LocalInstantiationScope Scope(*this);
   2854     InstantiatingTemplate Inst(*this, TemplateLoc, Template,
   2855                                TempParm, Converted.data(), Converted.size(),
   2856                                SourceRange(TemplateLoc, RAngleLoc));
   2857 
   2858     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   2859                                       Converted.data(), Converted.size());
   2860     TempParm = cast_or_null<TemplateTemplateParmDecl>(
   2861                       SubstDecl(TempParm, CurContext,
   2862                                 MultiLevelTemplateArgumentList(TemplateArgs)));
   2863     if (!TempParm)
   2864       return true;
   2865   }
   2866 
   2867   switch (Arg.getArgument().getKind()) {
   2868   case TemplateArgument::Null:
   2869     llvm_unreachable("Should never see a NULL template argument here");
   2870 
   2871   case TemplateArgument::Template:
   2872   case TemplateArgument::TemplateExpansion:
   2873     if (CheckTemplateArgument(TempParm, Arg))
   2874       return true;
   2875 
   2876     Converted.push_back(Arg.getArgument());
   2877     break;
   2878 
   2879   case TemplateArgument::Expression:
   2880   case TemplateArgument::Type:
   2881     // We have a template template parameter but the template
   2882     // argument does not refer to a template.
   2883     Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
   2884       << getLangOpts().CPlusPlus0x;
   2885     return true;
   2886 
   2887   case TemplateArgument::Declaration:
   2888     llvm_unreachable("Declaration argument with template template parameter");
   2889   case TemplateArgument::Integral:
   2890     llvm_unreachable("Integral argument with template template parameter");
   2891 
   2892   case TemplateArgument::Pack:
   2893     llvm_unreachable("Caller must expand template argument packs");
   2894   }
   2895 
   2896   return false;
   2897 }
   2898 
   2899 /// \brief Diagnose an arity mismatch in the
   2900 static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
   2901                                   SourceLocation TemplateLoc,
   2902                                   TemplateArgumentListInfo &TemplateArgs) {
   2903   TemplateParameterList *Params = Template->getTemplateParameters();
   2904   unsigned NumParams = Params->size();
   2905   unsigned NumArgs = TemplateArgs.size();
   2906 
   2907   SourceRange Range;
   2908   if (NumArgs > NumParams)
   2909     Range = SourceRange(TemplateArgs[NumParams].getLocation(),
   2910                         TemplateArgs.getRAngleLoc());
   2911   S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
   2912     << (NumArgs > NumParams)
   2913     << (isa<ClassTemplateDecl>(Template)? 0 :
   2914         isa<FunctionTemplateDecl>(Template)? 1 :
   2915         isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
   2916     << Template << Range;
   2917   S.Diag(Template->getLocation(), diag::note_template_decl_here)
   2918     << Params->getSourceRange();
   2919   return true;
   2920 }
   2921 
   2922 /// \brief Check that the given template argument list is well-formed
   2923 /// for specializing the given template.
   2924 bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
   2925                                      SourceLocation TemplateLoc,
   2926                                      TemplateArgumentListInfo &TemplateArgs,
   2927                                      bool PartialTemplateArgs,
   2928                           SmallVectorImpl<TemplateArgument> &Converted,
   2929                                      bool *ExpansionIntoFixedList) {
   2930   if (ExpansionIntoFixedList)
   2931     *ExpansionIntoFixedList = false;
   2932 
   2933   TemplateParameterList *Params = Template->getTemplateParameters();
   2934   unsigned NumParams = Params->size();
   2935   unsigned NumArgs = TemplateArgs.size();
   2936   bool Invalid = false;
   2937 
   2938   SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
   2939 
   2940   bool HasParameterPack =
   2941     NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
   2942 
   2943   // C++ [temp.arg]p1:
   2944   //   [...] The type and form of each template-argument specified in
   2945   //   a template-id shall match the type and form specified for the
   2946   //   corresponding parameter declared by the template in its
   2947   //   template-parameter-list.
   2948   bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
   2949   SmallVector<TemplateArgument, 2> ArgumentPack;
   2950   TemplateParameterList::iterator Param = Params->begin(),
   2951                                ParamEnd = Params->end();
   2952   unsigned ArgIdx = 0;
   2953   LocalInstantiationScope InstScope(*this, true);
   2954   bool SawPackExpansion = false;
   2955   while (Param != ParamEnd) {
   2956     if (ArgIdx < NumArgs) {
   2957       // If we have an expanded parameter pack, make sure we don't have too
   2958       // many arguments.
   2959       // FIXME: This really should fall out from the normal arity checking.
   2960       if (NonTypeTemplateParmDecl *NTTP
   2961                                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
   2962         if (NTTP->isExpandedParameterPack() &&
   2963             ArgumentPack.size() >= NTTP->getNumExpansionTypes()) {
   2964           Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
   2965             << true
   2966             << (isa<ClassTemplateDecl>(Template)? 0 :
   2967                 isa<FunctionTemplateDecl>(Template)? 1 :
   2968                 isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
   2969             << Template;
   2970           Diag(Template->getLocation(), diag::note_template_decl_here)
   2971             << Params->getSourceRange();
   2972           return true;
   2973         }
   2974       }
   2975 
   2976       // Check the template argument we were given.
   2977       if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
   2978                                 TemplateLoc, RAngleLoc,
   2979                                 ArgumentPack.size(), Converted))
   2980         return true;
   2981 
   2982       if ((*Param)->isTemplateParameterPack()) {
   2983         // The template parameter was a template parameter pack, so take the
   2984         // deduced argument and place it on the argument pack. Note that we
   2985         // stay on the same template parameter so that we can deduce more
   2986         // arguments.
   2987         ArgumentPack.push_back(Converted.back());
   2988         Converted.pop_back();
   2989       } else {
   2990         // Move to the next template parameter.
   2991         ++Param;
   2992       }
   2993 
   2994       // If this template argument is a pack expansion, record that fact
   2995       // and break out; we can't actually check any more.
   2996       if (TemplateArgs[ArgIdx].getArgument().isPackExpansion()) {
   2997         SawPackExpansion = true;
   2998         ++ArgIdx;
   2999         break;
   3000       }
   3001 
   3002       ++ArgIdx;
   3003       continue;
   3004     }
   3005 
   3006     // If we're checking a partial template argument list, we're done.
   3007     if (PartialTemplateArgs) {
   3008       if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
   3009         Converted.push_back(TemplateArgument::CreatePackCopy(Context,
   3010                                                          ArgumentPack.data(),
   3011                                                          ArgumentPack.size()));
   3012 
   3013       return Invalid;
   3014     }
   3015 
   3016     // If we have a template parameter pack with no more corresponding
   3017     // arguments, just break out now and we'll fill in the argument pack below.
   3018     if ((*Param)->isTemplateParameterPack())
   3019       break;
   3020 
   3021     // Check whether we have a default argument.
   3022     TemplateArgumentLoc Arg;
   3023 
   3024     // Retrieve the default template argument from the template
   3025     // parameter. For each kind of template parameter, we substitute the
   3026     // template arguments provided thus far and any "outer" template arguments
   3027     // (when the template parameter was part of a nested template) into
   3028     // the default argument.
   3029     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
   3030       if (!TTP->hasDefaultArgument())
   3031         return diagnoseArityMismatch(*this, Template, TemplateLoc,
   3032                                      TemplateArgs);
   3033 
   3034       TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
   3035                                                              Template,
   3036                                                              TemplateLoc,
   3037                                                              RAngleLoc,
   3038                                                              TTP,
   3039                                                              Converted);
   3040       if (!ArgType)
   3041         return true;
   3042 
   3043       Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
   3044                                 ArgType);
   3045     } else if (NonTypeTemplateParmDecl *NTTP
   3046                  = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
   3047       if (!NTTP->hasDefaultArgument())
   3048         return diagnoseArityMismatch(*this, Template, TemplateLoc,
   3049                                      TemplateArgs);
   3050 
   3051       ExprResult E = SubstDefaultTemplateArgument(*this, Template,
   3052                                                               TemplateLoc,
   3053                                                               RAngleLoc,
   3054                                                               NTTP,
   3055                                                               Converted);
   3056       if (E.isInvalid())
   3057         return true;
   3058 
   3059       Expr *Ex = E.takeAs<Expr>();
   3060       Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
   3061     } else {
   3062       TemplateTemplateParmDecl *TempParm
   3063         = cast<TemplateTemplateParmDecl>(*Param);
   3064 
   3065       if (!TempParm->hasDefaultArgument())
   3066         return diagnoseArityMismatch(*this, Template, TemplateLoc,
   3067                                      TemplateArgs);
   3068 
   3069       NestedNameSpecifierLoc QualifierLoc;
   3070       TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
   3071                                                        TemplateLoc,
   3072                                                        RAngleLoc,
   3073                                                        TempParm,
   3074                                                        Converted,
   3075                                                        QualifierLoc);
   3076       if (Name.isNull())
   3077         return true;
   3078 
   3079       Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
   3080                            TempParm->getDefaultArgument().getTemplateNameLoc());
   3081     }
   3082 
   3083     // Introduce an instantiation record that describes where we are using
   3084     // the default template argument.
   3085     InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
   3086                                         Converted.data(), Converted.size(),
   3087                                         SourceRange(TemplateLoc, RAngleLoc));
   3088 
   3089     // Check the default template argument.
   3090     if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
   3091                               RAngleLoc, 0, Converted))
   3092       return true;
   3093 
   3094     // Core issue 150 (assumed resolution): if this is a template template
   3095     // parameter, keep track of the default template arguments from the
   3096     // template definition.
   3097     if (isTemplateTemplateParameter)
   3098       TemplateArgs.addArgument(Arg);
   3099 
   3100     // Move to the next template parameter and argument.
   3101     ++Param;
   3102     ++ArgIdx;
   3103   }
   3104 
   3105   // If we saw a pack expansion, then directly convert the remaining arguments,
   3106   // because we don't know what parameters they'll match up with.
   3107   if (SawPackExpansion) {
   3108     bool AddToArgumentPack
   3109       = Param != ParamEnd && (*Param)->isTemplateParameterPack();
   3110     while (ArgIdx < NumArgs) {
   3111       if (AddToArgumentPack)
   3112         ArgumentPack.push_back(TemplateArgs[ArgIdx].getArgument());
   3113       else
   3114         Converted.push_back(TemplateArgs[ArgIdx].getArgument());
   3115       ++ArgIdx;
   3116     }
   3117 
   3118     // Push the argument pack onto the list of converted arguments.
   3119     if (AddToArgumentPack) {
   3120       if (ArgumentPack.empty())
   3121         Converted.push_back(TemplateArgument(0, 0));
   3122       else {
   3123         Converted.push_back(
   3124           TemplateArgument::CreatePackCopy(Context,
   3125                                            ArgumentPack.data(),
   3126                                            ArgumentPack.size()));
   3127         ArgumentPack.clear();
   3128       }
   3129     } else if (ExpansionIntoFixedList) {
   3130       // We have expanded a pack into a fixed list.
   3131       *ExpansionIntoFixedList = true;
   3132     }
   3133 
   3134     return Invalid;
   3135   }
   3136 
   3137   // If we have any leftover arguments, then there were too many arguments.
   3138   // Complain and fail.
   3139   if (ArgIdx < NumArgs)
   3140     return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs);
   3141 
   3142   // If we have an expanded parameter pack, make sure we don't have too
   3143   // many arguments.
   3144   // FIXME: This really should fall out from the normal arity checking.
   3145   if (Param != ParamEnd) {
   3146     if (NonTypeTemplateParmDecl *NTTP
   3147           = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
   3148       if (NTTP->isExpandedParameterPack() &&
   3149           ArgumentPack.size() < NTTP->getNumExpansionTypes()) {
   3150         Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
   3151           << false
   3152           << (isa<ClassTemplateDecl>(Template)? 0 :
   3153               isa<FunctionTemplateDecl>(Template)? 1 :
   3154               isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
   3155           << Template;
   3156         Diag(Template->getLocation(), diag::note_template_decl_here)
   3157           << Params->getSourceRange();
   3158         return true;
   3159       }
   3160     }
   3161   }
   3162 
   3163   // Form argument packs for each of the parameter packs remaining.
   3164   while (Param != ParamEnd) {
   3165     // If we're checking a partial list of template arguments, don't fill
   3166     // in arguments for non-template parameter packs.
   3167     if ((*Param)->isTemplateParameterPack()) {
   3168       if (!HasParameterPack)
   3169         return true;
   3170       if (ArgumentPack.empty())
   3171         Converted.push_back(TemplateArgument(0, 0));
   3172       else {
   3173         Converted.push_back(TemplateArgument::CreatePackCopy(Context,
   3174                                                           ArgumentPack.data(),
   3175                                                          ArgumentPack.size()));
   3176         ArgumentPack.clear();
   3177       }
   3178     } else if (!PartialTemplateArgs)
   3179       return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs);
   3180 
   3181     ++Param;
   3182   }
   3183 
   3184   return Invalid;
   3185 }
   3186 
   3187 namespace {
   3188   class UnnamedLocalNoLinkageFinder
   3189     : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
   3190   {
   3191     Sema &S;
   3192     SourceRange SR;
   3193 
   3194     typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
   3195 
   3196   public:
   3197     UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
   3198 
   3199     bool Visit(QualType T) {
   3200       return inherited::Visit(T.getTypePtr());
   3201     }
   3202 
   3203 #define TYPE(Class, Parent) \
   3204     bool Visit##Class##Type(const Class##Type *);
   3205 #define ABSTRACT_TYPE(Class, Parent) \
   3206     bool Visit##Class##Type(const Class##Type *) { return false; }
   3207 #define NON_CANONICAL_TYPE(Class, Parent) \
   3208     bool Visit##Class##Type(const Class##Type *) { return false; }
   3209 #include "clang/AST/TypeNodes.def"
   3210 
   3211     bool VisitTagDecl(const TagDecl *Tag);
   3212     bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
   3213   };
   3214 }
   3215 
   3216 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
   3217   return false;
   3218 }
   3219 
   3220 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
   3221   return Visit(T->getElementType());
   3222 }
   3223 
   3224 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
   3225   return Visit(T->getPointeeType());
   3226 }
   3227 
   3228 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
   3229                                                     const BlockPointerType* T) {
   3230   return Visit(T->getPointeeType());
   3231 }
   3232 
   3233 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
   3234                                                 const LValueReferenceType* T) {
   3235   return Visit(T->getPointeeType());
   3236 }
   3237 
   3238 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
   3239                                                 const RValueReferenceType* T) {
   3240   return Visit(T->getPointeeType());
   3241 }
   3242 
   3243 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
   3244                                                   const MemberPointerType* T) {
   3245   return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
   3246 }
   3247 
   3248 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
   3249                                                   const ConstantArrayType* T) {
   3250   return Visit(T->getElementType());
   3251 }
   3252 
   3253 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
   3254                                                  const IncompleteArrayType* T) {
   3255   return Visit(T->getElementType());
   3256 }
   3257 
   3258 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
   3259                                                    const VariableArrayType* T) {
   3260   return Visit(T->getElementType());
   3261 }
   3262 
   3263 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
   3264                                             const DependentSizedArrayType* T) {
   3265   return Visit(T->getElementType());
   3266 }
   3267 
   3268 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
   3269                                          const DependentSizedExtVectorType* T) {
   3270   return Visit(T->getElementType());
   3271 }
   3272 
   3273 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
   3274   return Visit(T->getElementType());
   3275 }
   3276 
   3277 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
   3278   return Visit(T->getElementType());
   3279 }
   3280 
   3281 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
   3282                                                   const FunctionProtoType* T) {
   3283   for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
   3284                                          AEnd = T->arg_type_end();
   3285        A != AEnd; ++A) {
   3286     if (Visit(*A))
   3287       return true;
   3288   }
   3289 
   3290   return Visit(T->getResultType());
   3291 }
   3292 
   3293 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
   3294                                                const FunctionNoProtoType* T) {
   3295   return Visit(T->getResultType());
   3296 }
   3297 
   3298 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
   3299                                                   const UnresolvedUsingType*) {
   3300   return false;
   3301 }
   3302 
   3303 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
   3304   return false;
   3305 }
   3306 
   3307 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
   3308   return Visit(T->getUnderlyingType());
   3309 }
   3310 
   3311 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
   3312   return false;
   3313 }
   3314 
   3315 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
   3316                                                     const UnaryTransformType*) {
   3317   return false;
   3318 }
   3319 
   3320 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
   3321   return Visit(T->getDeducedType());
   3322 }
   3323 
   3324 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
   3325   return VisitTagDecl(T->getDecl());
   3326 }
   3327 
   3328 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
   3329   return VisitTagDecl(T->getDecl());
   3330 }
   3331 
   3332 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
   3333                                                  const TemplateTypeParmType*) {
   3334   return false;
   3335 }
   3336 
   3337 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
   3338                                         const SubstTemplateTypeParmPackType *) {
   3339   return false;
   3340 }
   3341 
   3342 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
   3343                                             const TemplateSpecializationType*) {
   3344   return false;
   3345 }
   3346 
   3347 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
   3348                                               const InjectedClassNameType* T) {
   3349   return VisitTagDecl(T->getDecl());
   3350 }
   3351 
   3352 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
   3353                                                    const DependentNameType* T) {
   3354   return VisitNestedNameSpecifier(T->getQualifier());
   3355 }
   3356 
   3357 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
   3358                                  const DependentTemplateSpecializationType* T) {
   3359   return VisitNestedNameSpecifier(T->getQualifier());
   3360 }
   3361 
   3362 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
   3363                                                    const PackExpansionType* T) {
   3364   return Visit(T->getPattern());
   3365 }
   3366 
   3367 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
   3368   return false;
   3369 }
   3370 
   3371 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
   3372                                                    const ObjCInterfaceType *) {
   3373   return false;
   3374 }
   3375 
   3376 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
   3377                                                 const ObjCObjectPointerType *) {
   3378   return false;
   3379 }
   3380 
   3381 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
   3382   return Visit(T->getValueType());
   3383 }
   3384 
   3385 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
   3386   if (Tag->getDeclContext()->isFunctionOrMethod()) {
   3387     S.Diag(SR.getBegin(),
   3388            S.getLangOpts().CPlusPlus0x ?
   3389              diag::warn_cxx98_compat_template_arg_local_type :
   3390              diag::ext_template_arg_local_type)
   3391       << S.Context.getTypeDeclType(Tag) << SR;
   3392     return true;
   3393   }
   3394 
   3395   if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) {
   3396     S.Diag(SR.getBegin(),
   3397            S.getLangOpts().CPlusPlus0x ?
   3398              diag::warn_cxx98_compat_template_arg_unnamed_type :
   3399              diag::ext_template_arg_unnamed_type) << SR;
   3400     S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
   3401     return true;
   3402   }
   3403 
   3404   return false;
   3405 }
   3406 
   3407 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
   3408                                                     NestedNameSpecifier *NNS) {
   3409   if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
   3410     return true;
   3411 
   3412   switch (NNS->getKind()) {
   3413   case NestedNameSpecifier::Identifier:
   3414   case NestedNameSpecifier::Namespace:
   3415   case NestedNameSpecifier::NamespaceAlias:
   3416   case NestedNameSpecifier::Global:
   3417     return false;
   3418 
   3419   case NestedNameSpecifier::TypeSpec:
   3420   case NestedNameSpecifier::TypeSpecWithTemplate:
   3421     return Visit(QualType(NNS->getAsType(), 0));
   3422   }
   3423   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
   3424 }
   3425 
   3426 
   3427 /// \brief Check a template argument against its corresponding
   3428 /// template type parameter.
   3429 ///
   3430 /// This routine implements the semantics of C++ [temp.arg.type]. It
   3431 /// returns true if an error occurred, and false otherwise.
   3432 bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
   3433                                  TypeSourceInfo *ArgInfo) {
   3434   assert(ArgInfo && "invalid TypeSourceInfo");
   3435   QualType Arg = ArgInfo->getType();
   3436   SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
   3437 
   3438   if (Arg->isVariablyModifiedType()) {
   3439     return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
   3440   } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
   3441     return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
   3442   }
   3443 
   3444   // C++03 [temp.arg.type]p2:
   3445   //   A local type, a type with no linkage, an unnamed type or a type
   3446   //   compounded from any of these types shall not be used as a
   3447   //   template-argument for a template type-parameter.
   3448   //
   3449   // C++11 allows these, and even in C++03 we allow them as an extension with
   3450   // a warning.
   3451   if (LangOpts.CPlusPlus0x ?
   3452      Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type,
   3453                               SR.getBegin()) != DiagnosticsEngine::Ignored ||
   3454       Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type,
   3455                                SR.getBegin()) != DiagnosticsEngine::Ignored :
   3456       Arg->hasUnnamedOrLocalType()) {
   3457     UnnamedLocalNoLinkageFinder Finder(*this, SR);
   3458     (void)Finder.Visit(Context.getCanonicalType(Arg));
   3459   }
   3460 
   3461   return false;
   3462 }
   3463 
   3464 enum NullPointerValueKind {
   3465   NPV_NotNullPointer,
   3466   NPV_NullPointer,
   3467   NPV_Error
   3468 };
   3469 
   3470 /// \brief Determine whether the given template argument is a null pointer
   3471 /// value of the appropriate type.
   3472 static NullPointerValueKind
   3473 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
   3474                                    QualType ParamType, Expr *Arg) {
   3475   if (Arg->isValueDependent() || Arg->isTypeDependent())
   3476     return NPV_NotNullPointer;
   3477 
   3478   if (!S.getLangOpts().CPlusPlus0x)
   3479     return NPV_NotNullPointer;
   3480 
   3481   // Determine whether we have a constant expression.
   3482   ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
   3483   if (ArgRV.isInvalid())
   3484     return NPV_Error;
   3485   Arg = ArgRV.take();
   3486 
   3487   Expr::EvalResult EvalResult;
   3488   llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
   3489   EvalResult.Diag = &Notes;
   3490   if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
   3491       EvalResult.HasSideEffects) {
   3492     SourceLocation DiagLoc = Arg->getExprLoc();
   3493 
   3494     // If our only note is the usual "invalid subexpression" note, just point
   3495     // the caret at its location rather than producing an essentially
   3496     // redundant note.
   3497     if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
   3498         diag::note_invalid_subexpr_in_const_expr) {
   3499       DiagLoc = Notes[0].first;
   3500       Notes.clear();
   3501     }
   3502 
   3503     S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
   3504       << Arg->getType() << Arg->getSourceRange();
   3505     for (unsigned I = 0, N = Notes.size(); I != N; ++I)
   3506       S.Diag(Notes[I].first, Notes[I].second);
   3507 
   3508     S.Diag(Param->getLocation(), diag::note_template_param_here);
   3509     return NPV_Error;
   3510   }
   3511 
   3512   // C++11 [temp.arg.nontype]p1:
   3513   //   - an address constant expression of type std::nullptr_t
   3514   if (Arg->getType()->isNullPtrType())
   3515     return NPV_NullPointer;
   3516 
   3517   //   - a constant expression that evaluates to a null pointer value (4.10); or
   3518   //   - a constant expression that evaluates to a null member pointer value
   3519   //     (4.11); or
   3520   if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
   3521       (EvalResult.Val.isMemberPointer() &&
   3522        !EvalResult.Val.getMemberPointerDecl())) {
   3523     // If our expression has an appropriate type, we've succeeded.
   3524     bool ObjCLifetimeConversion;
   3525     if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
   3526         S.IsQualificationConversion(Arg->getType(), ParamType, false,
   3527                                      ObjCLifetimeConversion))
   3528       return NPV_NullPointer;
   3529 
   3530     // The types didn't match, but we know we got a null pointer; complain,
   3531     // then recover as if the types were correct.
   3532     S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
   3533       << Arg->getType() << ParamType << Arg->getSourceRange();
   3534     S.Diag(Param->getLocation(), diag::note_template_param_here);
   3535     return NPV_NullPointer;
   3536   }
   3537 
   3538   // If we don't have a null pointer value, but we do have a NULL pointer
   3539   // constant, suggest a cast to the appropriate type.
   3540   if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
   3541     std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
   3542     S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
   3543       << ParamType
   3544       << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
   3545       << FixItHint::CreateInsertion(S.PP.getLocForEndOfToken(Arg->getLocEnd()),
   3546                                     ")");
   3547     S.Diag(Param->getLocation(), diag::note_template_param_here);
   3548     return NPV_NullPointer;
   3549   }
   3550 
   3551   // FIXME: If we ever want to support general, address-constant expressions
   3552   // as non-type template arguments, we should return the ExprResult here to
   3553   // be interpreted by the caller.
   3554   return NPV_NotNullPointer;
   3555 }
   3556 
   3557 /// \brief Checks whether the given template argument is the address
   3558 /// of an object or function according to C++ [temp.arg.nontype]p1.
   3559 static bool
   3560 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
   3561                                                NonTypeTemplateParmDecl *Param,
   3562                                                QualType ParamType,
   3563                                                Expr *ArgIn,
   3564                                                TemplateArgument &Converted) {
   3565   bool Invalid = false;
   3566   Expr *Arg = ArgIn;
   3567   QualType ArgType = Arg->getType();
   3568 
   3569   // If our parameter has pointer type, check for a null template value.
   3570   if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
   3571     switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
   3572     case NPV_NullPointer:
   3573       Converted = TemplateArgument((Decl *)0);
   3574       return false;
   3575 
   3576     case NPV_Error:
   3577       return true;
   3578 
   3579     case NPV_NotNullPointer:
   3580       break;
   3581     }
   3582   }
   3583 
   3584   // See through any implicit casts we added to fix the type.
   3585   Arg = Arg->IgnoreImpCasts();
   3586 
   3587   // C++ [temp.arg.nontype]p1:
   3588   //
   3589   //   A template-argument for a non-type, non-template
   3590   //   template-parameter shall be one of: [...]
   3591   //
   3592   //     -- the address of an object or function with external
   3593   //        linkage, including function templates and function
   3594   //        template-ids but excluding non-static class members,
   3595   //        expressed as & id-expression where the & is optional if
   3596   //        the name refers to a function or array, or if the
   3597   //        corresponding template-parameter is a reference; or
   3598 
   3599   // In C++98/03 mode, give an extension warning on any extra parentheses.
   3600   // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
   3601   bool ExtraParens = false;
   3602   while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
   3603     if (!Invalid && !ExtraParens) {
   3604       S.Diag(Arg->getLocStart(),
   3605              S.getLangOpts().CPlusPlus0x ?
   3606                diag::warn_cxx98_compat_template_arg_extra_parens :
   3607                diag::ext_template_arg_extra_parens)
   3608         << Arg->getSourceRange();
   3609       ExtraParens = true;
   3610     }
   3611 
   3612     Arg = Parens->getSubExpr();
   3613   }
   3614 
   3615   while (SubstNonTypeTemplateParmExpr *subst =
   3616            dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
   3617     Arg = subst->getReplacement()->IgnoreImpCasts();
   3618 
   3619   bool AddressTaken = false;
   3620   SourceLocation AddrOpLoc;
   3621   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
   3622     if (UnOp->getOpcode() == UO_AddrOf) {
   3623       Arg = UnOp->getSubExpr();
   3624       AddressTaken = true;
   3625       AddrOpLoc = UnOp->getOperatorLoc();
   3626     }
   3627   }
   3628 
   3629   if (S.getLangOpts().MicrosoftExt && isa<CXXUuidofExpr>(Arg)) {
   3630     Converted = TemplateArgument(ArgIn);
   3631     return false;
   3632   }
   3633 
   3634   while (SubstNonTypeTemplateParmExpr *subst =
   3635            dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
   3636     Arg = subst->getReplacement()->IgnoreImpCasts();
   3637 
   3638   // Stop checking the precise nature of the argument if it is value dependent,
   3639   // it should be checked when instantiated.
   3640   if (Arg->isValueDependent()) {
   3641     Converted = TemplateArgument(ArgIn);
   3642     return false;
   3643   }
   3644 
   3645   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
   3646   if (!DRE) {
   3647     S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
   3648     << Arg->getSourceRange();
   3649     S.Diag(Param->getLocation(), diag::note_template_param_here);
   3650     return true;
   3651   }
   3652 
   3653   if (!isa<ValueDecl>(DRE->getDecl())) {
   3654     S.Diag(Arg->getLocStart(),
   3655            diag::err_template_arg_not_object_or_func_form)
   3656       << Arg->getSourceRange();
   3657     S.Diag(Param->getLocation(), diag::note_template_param_here);
   3658     return true;
   3659   }
   3660 
   3661   NamedDecl *Entity = DRE->getDecl();
   3662 
   3663   // Cannot refer to non-static data members
   3664   if (FieldDecl *Field = dyn_cast<FieldDecl>(Entity)) {
   3665     S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
   3666       << Field << Arg->getSourceRange();
   3667     S.Diag(Param->getLocation(), diag::note_template_param_here);
   3668     return true;
   3669   }
   3670 
   3671   // Cannot refer to non-static member functions
   3672   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
   3673     if (!Method->isStatic()) {
   3674       S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
   3675         << Method << Arg->getSourceRange();
   3676       S.Diag(Param->getLocation(), diag::note_template_param_here);
   3677       return true;
   3678     }
   3679   }
   3680 
   3681   FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
   3682   VarDecl *Var = dyn_cast<VarDecl>(Entity);
   3683 
   3684   // A non-type template argument must refer to an object or function.
   3685   if (!Func && !Var) {
   3686     // We found something, but we don't know specifically what it is.
   3687     S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
   3688       << Arg->getSourceRange();
   3689     S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
   3690     return true;
   3691   }
   3692 
   3693   // Address / reference template args must have external linkage in C++98.
   3694   if (Entity->getLinkage() == InternalLinkage) {
   3695     S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus0x ?
   3696              diag::warn_cxx98_compat_template_arg_object_internal :
   3697              diag::ext_template_arg_object_internal)
   3698       << !Func << Entity << Arg->getSourceRange();
   3699     S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
   3700       << !Func;
   3701   } else if (Entity->getLinkage() == NoLinkage) {
   3702     S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
   3703       << !Func << Entity << Arg->getSourceRange();
   3704     S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
   3705       << !Func;
   3706     return true;
   3707   }
   3708 
   3709   if (Func) {
   3710     // If the template parameter has pointer type, the function decays.
   3711     if (ParamType->isPointerType() && !AddressTaken)
   3712       ArgType = S.Context.getPointerType(Func->getType());
   3713     else if (AddressTaken && ParamType->isReferenceType()) {
   3714       // If we originally had an address-of operator, but the
   3715       // parameter has reference type, complain and (if things look
   3716       // like they will work) drop the address-of operator.
   3717       if (!S.Context.hasSameUnqualifiedType(Func->getType(),
   3718                                             ParamType.getNonReferenceType())) {
   3719         S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
   3720           << ParamType;
   3721         S.Diag(Param->getLocation(), diag::note_template_param_here);
   3722         return true;
   3723       }
   3724 
   3725       S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
   3726         << ParamType
   3727         << FixItHint::CreateRemoval(AddrOpLoc);
   3728       S.Diag(Param->getLocation(), diag::note_template_param_here);
   3729 
   3730       ArgType = Func->getType();
   3731     }
   3732   } else {
   3733     // A value of reference type is not an object.
   3734     if (Var->getType()->isReferenceType()) {
   3735       S.Diag(Arg->getLocStart(),
   3736              diag::err_template_arg_reference_var)
   3737         << Var->getType() << Arg->getSourceRange();
   3738       S.Diag(Param->getLocation(), diag::note_template_param_here);
   3739       return true;
   3740     }
   3741 
   3742     // A template argument must have static storage duration.
   3743     // FIXME: Ensure this works for thread_local as well as __thread.
   3744     if (Var->isThreadSpecified()) {
   3745       S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
   3746         << Arg->getSourceRange();
   3747       S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
   3748       return true;
   3749     }
   3750 
   3751     // If the template parameter has pointer type, we must have taken
   3752     // the address of this object.
   3753     if (ParamType->isReferenceType()) {
   3754       if (AddressTaken) {
   3755         // If we originally had an address-of operator, but the
   3756         // parameter has reference type, complain and (if things look
   3757         // like they will work) drop the address-of operator.
   3758         if (!S.Context.hasSameUnqualifiedType(Var->getType(),
   3759                                             ParamType.getNonReferenceType())) {
   3760           S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
   3761             << ParamType;
   3762           S.Diag(Param->getLocation(), diag::note_template_param_here);
   3763           return true;
   3764         }
   3765 
   3766         S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
   3767           << ParamType
   3768           << FixItHint::CreateRemoval(AddrOpLoc);
   3769         S.Diag(Param->getLocation(), diag::note_template_param_here);
   3770 
   3771         ArgType = Var->getType();
   3772       }
   3773     } else if (!AddressTaken && ParamType->isPointerType()) {
   3774       if (Var->getType()->isArrayType()) {
   3775         // Array-to-pointer decay.
   3776         ArgType = S.Context.getArrayDecayedType(Var->getType());
   3777       } else {
   3778         // If the template parameter has pointer type but the address of
   3779         // this object was not taken, complain and (possibly) recover by
   3780         // taking the address of the entity.
   3781         ArgType = S.Context.getPointerType(Var->getType());
   3782         if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
   3783           S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
   3784             << ParamType;
   3785           S.Diag(Param->getLocation(), diag::note_template_param_here);
   3786           return true;
   3787         }
   3788 
   3789         S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
   3790           << ParamType
   3791           << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
   3792 
   3793         S.Diag(Param->getLocation(), diag::note_template_param_here);
   3794       }
   3795     }
   3796   }
   3797 
   3798   bool ObjCLifetimeConversion;
   3799   if (ParamType->isPointerType() &&
   3800       !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
   3801       S.IsQualificationConversion(ArgType, ParamType, false,
   3802                                   ObjCLifetimeConversion)) {
   3803     // For pointer-to-object types, qualification conversions are
   3804     // permitted.
   3805   } else {
   3806     if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
   3807       if (!ParamRef->getPointeeType()->isFunctionType()) {
   3808         // C++ [temp.arg.nontype]p5b3:
   3809         //   For a non-type template-parameter of type reference to
   3810         //   object, no conversions apply. The type referred to by the
   3811         //   reference may be more cv-qualified than the (otherwise
   3812         //   identical) type of the template- argument. The
   3813         //   template-parameter is bound directly to the
   3814         //   template-argument, which shall be an lvalue.
   3815 
   3816         // FIXME: Other qualifiers?
   3817         unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
   3818         unsigned ArgQuals = ArgType.getCVRQualifiers();
   3819 
   3820         if ((ParamQuals | ArgQuals) != ParamQuals) {
   3821           S.Diag(Arg->getLocStart(),
   3822                  diag::err_template_arg_ref_bind_ignores_quals)
   3823             << ParamType << Arg->getType()
   3824             << Arg->getSourceRange();
   3825           S.Diag(Param->getLocation(), diag::note_template_param_here);
   3826           return true;
   3827         }
   3828       }
   3829     }
   3830 
   3831     // At this point, the template argument refers to an object or
   3832     // function with external linkage. We now need to check whether the
   3833     // argument and parameter types are compatible.
   3834     if (!S.Context.hasSameUnqualifiedType(ArgType,
   3835                                           ParamType.getNonReferenceType())) {
   3836       // We can't perform this conversion or binding.
   3837       if (ParamType->isReferenceType())
   3838         S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
   3839           << ParamType << ArgIn->getType() << Arg->getSourceRange();
   3840       else
   3841         S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
   3842           << ArgIn->getType() << ParamType << Arg->getSourceRange();
   3843       S.Diag(Param->getLocation(), diag::note_template_param_here);
   3844       return true;
   3845     }
   3846   }
   3847 
   3848   // Create the template argument.
   3849   Converted = TemplateArgument(Entity->getCanonicalDecl());
   3850   S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity);
   3851   return false;
   3852 }
   3853 
   3854 /// \brief Checks whether the given template argument is a pointer to
   3855 /// member constant according to C++ [temp.arg.nontype]p1.
   3856 static bool CheckTemplateArgumentPointerToMember(Sema &S,
   3857                                                  NonTypeTemplateParmDecl *Param,
   3858                                                  QualType ParamType,
   3859                                                  Expr *&ResultArg,
   3860                                                  TemplateArgument &Converted) {
   3861   bool Invalid = false;
   3862 
   3863   // Check for a null pointer value.
   3864   Expr *Arg = ResultArg;
   3865   switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
   3866   case NPV_Error:
   3867     return true;
   3868   case NPV_NullPointer:
   3869     Converted = TemplateArgument((Decl *)0);
   3870     return false;
   3871   case NPV_NotNullPointer:
   3872     break;
   3873   }
   3874 
   3875   bool ObjCLifetimeConversion;
   3876   if (S.IsQualificationConversion(Arg->getType(),
   3877                                   ParamType.getNonReferenceType(),
   3878                                   false, ObjCLifetimeConversion)) {
   3879     Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp,
   3880                               Arg->getValueKind()).take();
   3881     ResultArg = Arg;
   3882   } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(),
   3883                 ParamType.getNonReferenceType())) {
   3884     // We can't perform this conversion.
   3885     S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
   3886       << Arg->getType() << ParamType << Arg->getSourceRange();
   3887     S.Diag(Param->getLocation(), diag::note_template_param_here);
   3888     return true;
   3889   }
   3890 
   3891   // See through any implicit casts we added to fix the type.
   3892   while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
   3893     Arg = Cast->getSubExpr();
   3894 
   3895   // C++ [temp.arg.nontype]p1:
   3896   //
   3897   //   A template-argument for a non-type, non-template
   3898   //   template-parameter shall be one of: [...]
   3899   //
   3900   //     -- a pointer to member expressed as described in 5.3.1.
   3901   DeclRefExpr *DRE = 0;
   3902 
   3903   // In C++98/03 mode, give an extension warning on any extra parentheses.
   3904   // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
   3905   bool ExtraParens = false;
   3906   while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
   3907     if (!Invalid && !ExtraParens) {
   3908       S.Diag(Arg->getLocStart(),
   3909              S.getLangOpts().CPlusPlus0x ?
   3910                diag::warn_cxx98_compat_template_arg_extra_parens :
   3911                diag::ext_template_arg_extra_parens)
   3912         << Arg->getSourceRange();
   3913       ExtraParens = true;
   3914     }
   3915 
   3916     Arg = Parens->getSubExpr();
   3917   }
   3918 
   3919   while (SubstNonTypeTemplateParmExpr *subst =
   3920            dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
   3921     Arg = subst->getReplacement()->IgnoreImpCasts();
   3922 
   3923   // A pointer-to-member constant written &Class::member.
   3924   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
   3925     if (UnOp->getOpcode() == UO_AddrOf) {
   3926       DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
   3927       if (DRE && !DRE->getQualifier())
   3928         DRE = 0;
   3929     }
   3930   }
   3931   // A constant of pointer-to-member type.
   3932   else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
   3933     if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
   3934       if (VD->getType()->isMemberPointerType()) {
   3935         if (isa<NonTypeTemplateParmDecl>(VD) ||
   3936             (isa<VarDecl>(VD) &&
   3937              S.Context.getCanonicalType(VD->getType()).isConstQualified())) {
   3938           if (Arg->isTypeDependent() || Arg->isValueDependent())
   3939             Converted = TemplateArgument(Arg);
   3940           else
   3941             Converted = TemplateArgument(VD->getCanonicalDecl());
   3942           return Invalid;
   3943         }
   3944       }
   3945     }
   3946 
   3947     DRE = 0;
   3948   }
   3949 
   3950   if (!DRE)
   3951     return S.Diag(Arg->getLocStart(),
   3952                   diag::err_template_arg_not_pointer_to_member_form)
   3953       << Arg->getSourceRange();
   3954 
   3955   if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
   3956     assert((isa<FieldDecl>(DRE->getDecl()) ||
   3957             !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
   3958            "Only non-static member pointers can make it here");
   3959 
   3960     // Okay: this is the address of a non-static member, and therefore
   3961     // a member pointer constant.
   3962     if (Arg->isTypeDependent() || Arg->isValueDependent())
   3963       Converted = TemplateArgument(Arg);
   3964     else
   3965       Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
   3966     return Invalid;
   3967   }
   3968 
   3969   // We found something else, but we don't know specifically what it is.
   3970   S.Diag(Arg->getLocStart(),
   3971          diag::err_template_arg_not_pointer_to_member_form)
   3972     << Arg->getSourceRange();
   3973   S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
   3974   return true;
   3975 }
   3976 
   3977 /// \brief Check a template argument against its corresponding
   3978 /// non-type template parameter.
   3979 ///
   3980 /// This routine implements the semantics of C++ [temp.arg.nontype].
   3981 /// If an error occurred, it returns ExprError(); otherwise, it
   3982 /// returns the converted template argument. \p
   3983 /// InstantiatedParamType is the type of the non-type template
   3984 /// parameter after it has been instantiated.
   3985 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
   3986                                        QualType InstantiatedParamType, Expr *Arg,
   3987                                        TemplateArgument &Converted,
   3988                                        CheckTemplateArgumentKind CTAK) {
   3989   SourceLocation StartLoc = Arg->getLocStart();
   3990 
   3991   // If either the parameter has a dependent type or the argument is
   3992   // type-dependent, there's nothing we can check now.
   3993   if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
   3994     // FIXME: Produce a cloned, canonical expression?
   3995     Converted = TemplateArgument(Arg);
   3996     return Owned(Arg);
   3997   }
   3998 
   3999   // C++ [temp.arg.nontype]p5:
   4000   //   The following conversions are performed on each expression used
   4001   //   as a non-type template-argument. If a non-type
   4002   //   template-argument cannot be converted to the type of the
   4003   //   corresponding template-parameter then the program is
   4004   //   ill-formed.
   4005   QualType ParamType = InstantiatedParamType;
   4006   if (ParamType->isIntegralOrEnumerationType()) {
   4007     // C++11:
   4008     //   -- for a non-type template-parameter of integral or
   4009     //      enumeration type, conversions permitted in a converted
   4010     //      constant expression are applied.
   4011     //
   4012     // C++98:
   4013     //   -- for a non-type template-parameter of integral or
   4014     //      enumeration type, integral promotions (4.5) and integral
   4015     //      conversions (4.7) are applied.
   4016 
   4017     if (CTAK == CTAK_Deduced &&
   4018         !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) {
   4019       // C++ [temp.deduct.type]p17:
   4020       //   If, in the declaration of a function template with a non-type
   4021       //   template-parameter, the non-type template-parameter is used
   4022       //   in an expression in the function parameter-list and, if the
   4023       //   corresponding template-argument is deduced, the
   4024       //   template-argument type shall match the type of the
   4025       //   template-parameter exactly, except that a template-argument
   4026       //   deduced from an array bound may be of any integral type.
   4027       Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
   4028         << Arg->getType().getUnqualifiedType()
   4029         << ParamType.getUnqualifiedType();
   4030       Diag(Param->getLocation(), diag::note_template_param_here);
   4031       return ExprError();
   4032     }
   4033 
   4034     if (getLangOpts().CPlusPlus0x) {
   4035       // We can't check arbitrary value-dependent arguments.
   4036       // FIXME: If there's no viable conversion to the template parameter type,
   4037       // we should be able to diagnose that prior to instantiation.
   4038       if (Arg->isValueDependent()) {
   4039         Converted = TemplateArgument(Arg);
   4040         return Owned(Arg);
   4041       }
   4042 
   4043       // C++ [temp.arg.nontype]p1:
   4044       //   A template-argument for a non-type, non-template template-parameter
   4045       //   shall be one of:
   4046       //
   4047       //     -- for a non-type template-parameter of integral or enumeration
   4048       //        type, a converted constant expression of the type of the
   4049       //        template-parameter; or
   4050       llvm::APSInt Value;
   4051       ExprResult ArgResult =
   4052         CheckConvertedConstantExpression(Arg, ParamType, Value,
   4053                                          CCEK_TemplateArg);
   4054       if (ArgResult.isInvalid())
   4055         return ExprError();
   4056 
   4057       // Widen the argument value to sizeof(parameter type). This is almost
   4058       // always a no-op, except when the parameter type is bool. In
   4059       // that case, this may extend the argument from 1 bit to 8 bits.
   4060       QualType IntegerType = ParamType;
   4061       if (const EnumType *Enum = IntegerType->getAs<EnumType>())
   4062         IntegerType = Enum->getDecl()->getIntegerType();
   4063       Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
   4064 
   4065       Converted = TemplateArgument(Value, Context.getCanonicalType(ParamType));
   4066       return ArgResult;
   4067     }
   4068 
   4069     ExprResult ArgResult = DefaultLvalueConversion(Arg);
   4070     if (ArgResult.isInvalid())
   4071       return ExprError();
   4072     Arg = ArgResult.take();
   4073 
   4074     QualType ArgType = Arg->getType();
   4075 
   4076     // C++ [temp.arg.nontype]p1:
   4077     //   A template-argument for a non-type, non-template
   4078     //   template-parameter shall be one of:
   4079     //
   4080     //     -- an integral constant-expression of integral or enumeration
   4081     //        type; or
   4082     //     -- the name of a non-type template-parameter; or
   4083     SourceLocation NonConstantLoc;
   4084     llvm::APSInt Value;
   4085     if (!ArgType->isIntegralOrEnumerationType()) {
   4086       Diag(Arg->getLocStart(),
   4087            diag::err_template_arg_not_integral_or_enumeral)
   4088         << ArgType << Arg->getSourceRange();
   4089       Diag(Param->getLocation(), diag::note_template_param_here);
   4090       return ExprError();
   4091     } else if (!Arg->isValueDependent()) {
   4092       Arg = VerifyIntegerConstantExpression(Arg, &Value,
   4093         PDiag(diag::err_template_arg_not_ice) << ArgType, false).take();
   4094       if (!Arg)
   4095         return ExprError();
   4096     }
   4097 
   4098     // From here on out, all we care about are the unqualified forms
   4099     // of the parameter and argument types.
   4100     ParamType = ParamType.getUnqualifiedType();
   4101     ArgType = ArgType.getUnqualifiedType();
   4102 
   4103     // Try to convert the argument to the parameter's type.
   4104     if (Context.hasSameType(ParamType, ArgType)) {
   4105       // Okay: no conversion necessary
   4106     } else if (ParamType->isBooleanType()) {
   4107       // This is an integral-to-boolean conversion.
   4108       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take();
   4109     } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
   4110                !ParamType->isEnumeralType()) {
   4111       // This is an integral promotion or conversion.
   4112       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take();
   4113     } else {
   4114       // We can't perform this conversion.
   4115       Diag(Arg->getLocStart(),
   4116            diag::err_template_arg_not_convertible)
   4117         << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
   4118       Diag(Param->getLocation(), diag::note_template_param_here);
   4119       return ExprError();
   4120     }
   4121 
   4122     // Add the value of this argument to the list of converted
   4123     // arguments. We use the bitwidth and signedness of the template
   4124     // parameter.
   4125     if (Arg->isValueDependent()) {
   4126       // The argument is value-dependent. Create a new
   4127       // TemplateArgument with the converted expression.
   4128       Converted = TemplateArgument(Arg);
   4129       return Owned(Arg);
   4130     }
   4131 
   4132     QualType IntegerType = Context.getCanonicalType(ParamType);
   4133     if (const EnumType *Enum = IntegerType->getAs<EnumType>())
   4134       IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
   4135 
   4136     if (ParamType->isBooleanType()) {
   4137       // Value must be zero or one.
   4138       Value = Value != 0;
   4139       unsigned AllowedBits = Context.getTypeSize(IntegerType);
   4140       if (Value.getBitWidth() != AllowedBits)
   4141         Value = Value.extOrTrunc(AllowedBits);
   4142       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
   4143     } else {
   4144       llvm::APSInt OldValue = Value;
   4145 
   4146       // Coerce the template argument's value to the value it will have
   4147       // based on the template parameter's type.
   4148       unsigned AllowedBits = Context.getTypeSize(IntegerType);
   4149       if (Value.getBitWidth() != AllowedBits)
   4150         Value = Value.extOrTrunc(AllowedBits);
   4151       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
   4152 
   4153       // Complain if an unsigned parameter received a negative value.
   4154       if (IntegerType->isUnsignedIntegerOrEnumerationType()
   4155                && (OldValue.isSigned() && OldValue.isNegative())) {
   4156         Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
   4157           << OldValue.toString(10) << Value.toString(10) << Param->getType()
   4158           << Arg->getSourceRange();
   4159         Diag(Param->getLocation(), diag::note_template_param_here);
   4160       }
   4161 
   4162       // Complain if we overflowed the template parameter's type.
   4163       unsigned RequiredBits;
   4164       if (IntegerType->isUnsignedIntegerOrEnumerationType())
   4165         RequiredBits = OldValue.getActiveBits();
   4166       else if (OldValue.isUnsigned())
   4167         RequiredBits = OldValue.getActiveBits() + 1;
   4168       else
   4169         RequiredBits = OldValue.getMinSignedBits();
   4170       if (RequiredBits > AllowedBits) {
   4171         Diag(Arg->getLocStart(),
   4172              diag::warn_template_arg_too_large)
   4173           << OldValue.toString(10) << Value.toString(10) << Param->getType()
   4174           << Arg->getSourceRange();
   4175         Diag(Param->getLocation(), diag::note_template_param_here);
   4176       }
   4177     }
   4178 
   4179     Converted = TemplateArgument(Value,
   4180                                  ParamType->isEnumeralType()
   4181                                    ? Context.getCanonicalType(ParamType)
   4182                                    : IntegerType);
   4183     return Owned(Arg);
   4184   }
   4185 
   4186   QualType ArgType = Arg->getType();
   4187   DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
   4188 
   4189   // Handle pointer-to-function, reference-to-function, and
   4190   // pointer-to-member-function all in (roughly) the same way.
   4191   if (// -- For a non-type template-parameter of type pointer to
   4192       //    function, only the function-to-pointer conversion (4.3) is
   4193       //    applied. If the template-argument represents a set of
   4194       //    overloaded functions (or a pointer to such), the matching
   4195       //    function is selected from the set (13.4).
   4196       (ParamType->isPointerType() &&
   4197        ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
   4198       // -- For a non-type template-parameter of type reference to
   4199       //    function, no conversions apply. If the template-argument
   4200       //    represents a set of overloaded functions, the matching
   4201       //    function is selected from the set (13.4).
   4202       (ParamType->isReferenceType() &&
   4203        ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
   4204       // -- For a non-type template-parameter of type pointer to
   4205       //    member function, no conversions apply. If the
   4206       //    template-argument represents a set of overloaded member
   4207       //    functions, the matching member function is selected from
   4208       //    the set (13.4).
   4209       (ParamType->isMemberPointerType() &&
   4210        ParamType->getAs<MemberPointerType>()->getPointeeType()
   4211          ->isFunctionType())) {
   4212 
   4213     if (Arg->getType() == Context.OverloadTy) {
   4214       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
   4215                                                                 true,
   4216                                                                 FoundResult)) {
   4217         if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
   4218           return ExprError();
   4219 
   4220         Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
   4221         ArgType = Arg->getType();
   4222       } else
   4223         return ExprError();
   4224     }
   4225 
   4226     if (!ParamType->isMemberPointerType()) {
   4227       if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
   4228                                                          ParamType,
   4229                                                          Arg, Converted))
   4230         return ExprError();
   4231       return Owned(Arg);
   4232     }
   4233 
   4234     if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
   4235                                              Converted))
   4236       return ExprError();
   4237     return Owned(Arg);
   4238   }
   4239 
   4240   if (ParamType->isPointerType()) {
   4241     //   -- for a non-type template-parameter of type pointer to
   4242     //      object, qualification conversions (4.4) and the
   4243     //      array-to-pointer conversion (4.2) are applied.
   4244     // C++0x also allows a value of std::nullptr_t.
   4245     assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
   4246            "Only object pointers allowed here");
   4247 
   4248     if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
   4249                                                        ParamType,
   4250                                                        Arg, Converted))
   4251       return ExprError();
   4252     return Owned(Arg);
   4253   }
   4254 
   4255   if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
   4256     //   -- For a non-type template-parameter of type reference to
   4257     //      object, no conversions apply. The type referred to by the
   4258     //      reference may be more cv-qualified than the (otherwise
   4259     //      identical) type of the template-argument. The
   4260     //      template-parameter is bound directly to the
   4261     //      template-argument, which must be an lvalue.
   4262     assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
   4263            "Only object references allowed here");
   4264 
   4265     if (Arg->getType() == Context.OverloadTy) {
   4266       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
   4267                                                  ParamRefType->getPointeeType(),
   4268                                                                 true,
   4269                                                                 FoundResult)) {
   4270         if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
   4271           return ExprError();
   4272 
   4273         Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
   4274         ArgType = Arg->getType();
   4275       } else
   4276         return ExprError();
   4277     }
   4278 
   4279     if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
   4280                                                        ParamType,
   4281                                                        Arg, Converted))
   4282       return ExprError();
   4283     return Owned(Arg);
   4284   }
   4285 
   4286   // Deal with parameters of type std::nullptr_t.
   4287   if (ParamType->isNullPtrType()) {
   4288     if (Arg->isTypeDependent() || Arg->isValueDependent()) {
   4289       Converted = TemplateArgument(Arg);
   4290       return Owned(Arg);
   4291     }
   4292 
   4293     switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
   4294     case NPV_NotNullPointer:
   4295       Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
   4296         << Arg->getType() << ParamType;
   4297       Diag(Param->getLocation(), diag::note_template_param_here);
   4298       return ExprError();
   4299 
   4300     case NPV_Error:
   4301       return ExprError();
   4302 
   4303     case NPV_NullPointer:
   4304       Converted = TemplateArgument((Decl *)0);
   4305       return Owned(Arg);;
   4306     }
   4307   }
   4308 
   4309   //     -- For a non-type template-parameter of type pointer to data
   4310   //        member, qualification conversions (4.4) are applied.
   4311   assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
   4312 
   4313   if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
   4314                                            Converted))
   4315     return ExprError();
   4316   return Owned(Arg);
   4317 }
   4318 
   4319 /// \brief Check a template argument against its corresponding
   4320 /// template template parameter.
   4321 ///
   4322 /// This routine implements the semantics of C++ [temp.arg.template].
   4323 /// It returns true if an error occurred, and false otherwise.
   4324 bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
   4325                                  const TemplateArgumentLoc &Arg) {
   4326   TemplateName Name = Arg.getArgument().getAsTemplate();
   4327   TemplateDecl *Template = Name.getAsTemplateDecl();
   4328   if (!Template) {
   4329     // Any dependent template name is fine.
   4330     assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
   4331     return false;
   4332   }
   4333 
   4334   // C++0x [temp.arg.template]p1:
   4335   //   A template-argument for a template template-parameter shall be
   4336   //   the name of a class template or an alias template, expressed as an
   4337   //   id-expression. When the template-argument names a class template, only
   4338   //   primary class templates are considered when matching the
   4339   //   template template argument with the corresponding parameter;
   4340   //   partial specializations are not considered even if their
   4341   //   parameter lists match that of the template template parameter.
   4342   //
   4343   // Note that we also allow template template parameters here, which
   4344   // will happen when we are dealing with, e.g., class template
   4345   // partial specializations.
   4346   if (!isa<ClassTemplateDecl>(Template) &&
   4347       !isa<TemplateTemplateParmDecl>(Template) &&
   4348       !isa<TypeAliasTemplateDecl>(Template)) {
   4349     assert(isa<FunctionTemplateDecl>(Template) &&
   4350            "Only function templates are possible here");
   4351     Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
   4352     Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
   4353       << Template;
   4354   }
   4355 
   4356   return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
   4357                                          Param->getTemplateParameters(),
   4358                                          true,
   4359                                          TPL_TemplateTemplateArgumentMatch,
   4360                                          Arg.getLocation());
   4361 }
   4362 
   4363 /// \brief Given a non-type template argument that refers to a
   4364 /// declaration and the type of its corresponding non-type template
   4365 /// parameter, produce an expression that properly refers to that
   4366 /// declaration.
   4367 ExprResult
   4368 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
   4369                                               QualType ParamType,
   4370                                               SourceLocation Loc) {
   4371   assert(Arg.getKind() == TemplateArgument::Declaration &&
   4372          "Only declaration template arguments permitted here");
   4373 
   4374   // For a NULL non-type template argument, return nullptr casted to the
   4375   // parameter's type.
   4376   if (!Arg.getAsDecl()) {
   4377     return ImpCastExprToType(
   4378              new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
   4379                              ParamType,
   4380                              ParamType->getAs<MemberPointerType>()
   4381                                ? CK_NullToMemberPointer
   4382                                : CK_NullToPointer);
   4383   }
   4384 
   4385   ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
   4386 
   4387   if (VD->getDeclContext()->isRecord() &&
   4388       (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
   4389     // If the value is a class member, we might have a pointer-to-member.
   4390     // Determine whether the non-type template template parameter is of
   4391     // pointer-to-member type. If so, we need to build an appropriate
   4392     // expression for a pointer-to-member, since a "normal" DeclRefExpr
   4393     // would refer to the member itself.
   4394     if (ParamType->isMemberPointerType()) {
   4395       QualType ClassType
   4396         = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
   4397       NestedNameSpecifier *Qualifier
   4398         = NestedNameSpecifier::Create(Context, 0, false,
   4399                                       ClassType.getTypePtr());
   4400       CXXScopeSpec SS;
   4401       SS.MakeTrivial(Context, Qualifier, Loc);
   4402 
   4403       // The actual value-ness of this is unimportant, but for
   4404       // internal consistency's sake, references to instance methods
   4405       // are r-values.
   4406       ExprValueKind VK = VK_LValue;
   4407       if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
   4408         VK = VK_RValue;
   4409 
   4410       ExprResult RefExpr = BuildDeclRefExpr(VD,
   4411                                             VD->getType().getNonReferenceType(),
   4412                                             VK,
   4413                                             Loc,
   4414                                             &SS);
   4415       if (RefExpr.isInvalid())
   4416         return ExprError();
   4417 
   4418       RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
   4419 
   4420       // We might need to perform a trailing qualification conversion, since
   4421       // the element type on the parameter could be more qualified than the
   4422       // element type in the expression we constructed.
   4423       bool ObjCLifetimeConversion;
   4424       if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
   4425                                     ParamType.getUnqualifiedType(), false,
   4426                                     ObjCLifetimeConversion))
   4427         RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp);
   4428 
   4429       assert(!RefExpr.isInvalid() &&
   4430              Context.hasSameType(((Expr*) RefExpr.get())->getType(),
   4431                                  ParamType.getUnqualifiedType()));
   4432       return move(RefExpr);
   4433     }
   4434   }
   4435 
   4436   QualType T = VD->getType().getNonReferenceType();
   4437   if (ParamType->isPointerType()) {
   4438     // When the non-type template parameter is a pointer, take the
   4439     // address of the declaration.
   4440     ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
   4441     if (RefExpr.isInvalid())
   4442       return ExprError();
   4443 
   4444     if (T->isFunctionType() || T->isArrayType()) {
   4445       // Decay functions and arrays.
   4446       RefExpr = DefaultFunctionArrayConversion(RefExpr.take());
   4447       if (RefExpr.isInvalid())
   4448         return ExprError();
   4449 
   4450       return move(RefExpr);
   4451     }
   4452 
   4453     // Take the address of everything else
   4454     return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
   4455   }
   4456 
   4457   ExprValueKind VK = VK_RValue;
   4458 
   4459   // If the non-type template parameter has reference type, qualify the
   4460   // resulting declaration reference with the extra qualifiers on the
   4461   // type that the reference refers to.
   4462   if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
   4463     VK = VK_LValue;
   4464     T = Context.getQualifiedType(T,
   4465                               TargetRef->getPointeeType().getQualifiers());
   4466   }
   4467 
   4468   return BuildDeclRefExpr(VD, T, VK, Loc);
   4469 }
   4470 
   4471 /// \brief Construct a new expression that refers to the given
   4472 /// integral template argument with the given source-location
   4473 /// information.
   4474 ///
   4475 /// This routine takes care of the mapping from an integral template
   4476 /// argument (which may have any integral type) to the appropriate
   4477 /// literal value.
   4478 ExprResult
   4479 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
   4480                                                   SourceLocation Loc) {
   4481   assert(Arg.getKind() == TemplateArgument::Integral &&
   4482          "Operation is only valid for integral template arguments");
   4483   QualType T = Arg.getIntegralType();
   4484   if (T->isAnyCharacterType()) {
   4485     CharacterLiteral::CharacterKind Kind;
   4486     if (T->isWideCharType())
   4487       Kind = CharacterLiteral::Wide;
   4488     else if (T->isChar16Type())
   4489       Kind = CharacterLiteral::UTF16;
   4490     else if (T->isChar32Type())
   4491       Kind = CharacterLiteral::UTF32;
   4492     else
   4493       Kind = CharacterLiteral::Ascii;
   4494 
   4495     return Owned(new (Context) CharacterLiteral(
   4496                                             Arg.getAsIntegral()->getZExtValue(),
   4497                                             Kind, T, Loc));
   4498   }
   4499 
   4500   if (T->isBooleanType())
   4501     return Owned(new (Context) CXXBoolLiteralExpr(
   4502                                             Arg.getAsIntegral()->getBoolValue(),
   4503                                             T, Loc));
   4504 
   4505   if (T->isNullPtrType())
   4506     return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
   4507 
   4508   // If this is an enum type that we're instantiating, we need to use an integer
   4509   // type the same size as the enumerator.  We don't want to build an
   4510   // IntegerLiteral with enum type.
   4511   QualType BT;
   4512   if (const EnumType *ET = T->getAs<EnumType>())
   4513     BT = ET->getDecl()->getIntegerType();
   4514   else
   4515     BT = T;
   4516 
   4517   Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc);
   4518   if (T->isEnumeralType()) {
   4519     // FIXME: This is a hack. We need a better way to handle substituted
   4520     // non-type template parameters.
   4521     E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0,
   4522                                Context.getTrivialTypeSourceInfo(T, Loc),
   4523                                Loc, Loc);
   4524   }
   4525 
   4526   return Owned(E);
   4527 }
   4528 
   4529 /// \brief Match two template parameters within template parameter lists.
   4530 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
   4531                                        bool Complain,
   4532                                      Sema::TemplateParameterListEqualKind Kind,
   4533                                        SourceLocation TemplateArgLoc) {
   4534   // Check the actual kind (type, non-type, template).
   4535   if (Old->getKind() != New->getKind()) {
   4536     if (Complain) {
   4537       unsigned NextDiag = diag::err_template_param_different_kind;
   4538       if (TemplateArgLoc.isValid()) {
   4539         S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
   4540         NextDiag = diag::note_template_param_different_kind;
   4541       }
   4542       S.Diag(New->getLocation(), NextDiag)
   4543         << (Kind != Sema::TPL_TemplateMatch);
   4544       S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
   4545         << (Kind != Sema::TPL_TemplateMatch);
   4546     }
   4547 
   4548     return false;
   4549   }
   4550 
   4551   // Check that both are parameter packs are neither are parameter packs.
   4552   // However, if we are matching a template template argument to a
   4553   // template template parameter, the template template parameter can have
   4554   // a parameter pack where the template template argument does not.
   4555   if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
   4556       !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
   4557         Old->isTemplateParameterPack())) {
   4558     if (Complain) {
   4559       unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
   4560       if (TemplateArgLoc.isValid()) {
   4561         S.Diag(TemplateArgLoc,
   4562              diag::err_template_arg_template_params_mismatch);
   4563         NextDiag = diag::note_template_parameter_pack_non_pack;
   4564       }
   4565 
   4566       unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
   4567                       : isa<NonTypeTemplateParmDecl>(New)? 1
   4568                       : 2;
   4569       S.Diag(New->getLocation(), NextDiag)
   4570         << ParamKind << New->isParameterPack();
   4571       S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
   4572         << ParamKind << Old->isParameterPack();
   4573     }
   4574 
   4575     return false;
   4576   }
   4577 
   4578   // For non-type template parameters, check the type of the parameter.
   4579   if (NonTypeTemplateParmDecl *OldNTTP
   4580                                     = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
   4581     NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
   4582 
   4583     // If we are matching a template template argument to a template
   4584     // template parameter and one of the non-type template parameter types
   4585     // is dependent, then we must wait until template instantiation time
   4586     // to actually compare the arguments.
   4587     if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
   4588         (OldNTTP->getType()->isDependentType() ||
   4589          NewNTTP->getType()->isDependentType()))
   4590       return true;
   4591 
   4592     if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
   4593       if (Complain) {
   4594         unsigned NextDiag = diag::err_template_nontype_parm_different_type;
   4595         if (TemplateArgLoc.isValid()) {
   4596           S.Diag(TemplateArgLoc,
   4597                  diag::err_template_arg_template_params_mismatch);
   4598           NextDiag = diag::note_template_nontype_parm_different_type;
   4599         }
   4600         S.Diag(NewNTTP->getLocation(), NextDiag)
   4601           << NewNTTP->getType()
   4602           << (Kind != Sema::TPL_TemplateMatch);
   4603         S.Diag(OldNTTP->getLocation(),
   4604                diag::note_template_nontype_parm_prev_declaration)
   4605           << OldNTTP->getType();
   4606       }
   4607 
   4608       return false;
   4609     }
   4610 
   4611     return true;
   4612   }
   4613 
   4614   // For template template parameters, check the template parameter types.
   4615   // The template parameter lists of template template
   4616   // parameters must agree.
   4617   if (TemplateTemplateParmDecl *OldTTP
   4618                                     = dyn_cast<TemplateTemplateParmDecl>(Old)) {
   4619     TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
   4620     return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
   4621                                             OldTTP->getTemplateParameters(),
   4622                                             Complain,
   4623                                         (Kind == Sema::TPL_TemplateMatch
   4624                                            ? Sema::TPL_TemplateTemplateParmMatch
   4625                                            : Kind),
   4626                                             TemplateArgLoc);
   4627   }
   4628 
   4629   return true;
   4630 }
   4631 
   4632 /// \brief Diagnose a known arity mismatch when comparing template argument
   4633 /// lists.
   4634 static
   4635 void DiagnoseTemplateParameterListArityMismatch(Sema &S,
   4636                                                 TemplateParameterList *New,
   4637                                                 TemplateParameterList *Old,
   4638                                       Sema::TemplateParameterListEqualKind Kind,
   4639                                                 SourceLocation TemplateArgLoc) {
   4640   unsigned NextDiag = diag::err_template_param_list_different_arity;
   4641   if (TemplateArgLoc.isValid()) {
   4642     S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
   4643     NextDiag = diag::note_template_param_list_different_arity;
   4644   }
   4645   S.Diag(New->getTemplateLoc(), NextDiag)
   4646     << (New->size() > Old->size())
   4647     << (Kind != Sema::TPL_TemplateMatch)
   4648     << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
   4649   S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
   4650     << (Kind != Sema::TPL_TemplateMatch)
   4651     << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
   4652 }
   4653 
   4654 /// \brief Determine whether the given template parameter lists are
   4655 /// equivalent.
   4656 ///
   4657 /// \param New  The new template parameter list, typically written in the
   4658 /// source code as part of a new template declaration.
   4659 ///
   4660 /// \param Old  The old template parameter list, typically found via
   4661 /// name lookup of the template declared with this template parameter
   4662 /// list.
   4663 ///
   4664 /// \param Complain  If true, this routine will produce a diagnostic if
   4665 /// the template parameter lists are not equivalent.
   4666 ///
   4667 /// \param Kind describes how we are to match the template parameter lists.
   4668 ///
   4669 /// \param TemplateArgLoc If this source location is valid, then we
   4670 /// are actually checking the template parameter list of a template
   4671 /// argument (New) against the template parameter list of its
   4672 /// corresponding template template parameter (Old). We produce
   4673 /// slightly different diagnostics in this scenario.
   4674 ///
   4675 /// \returns True if the template parameter lists are equal, false
   4676 /// otherwise.
   4677 bool
   4678 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
   4679                                      TemplateParameterList *Old,
   4680                                      bool Complain,
   4681                                      TemplateParameterListEqualKind Kind,
   4682                                      SourceLocation TemplateArgLoc) {
   4683   if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
   4684     if (Complain)
   4685       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
   4686                                                  TemplateArgLoc);
   4687 
   4688     return false;
   4689   }
   4690 
   4691   // C++0x [temp.arg.template]p3:
   4692   //   A template-argument matches a template template-parameter (call it P)
   4693   //   when each of the template parameters in the template-parameter-list of
   4694   //   the template-argument's corresponding class template or alias template
   4695   //   (call it A) matches the corresponding template parameter in the
   4696   //   template-parameter-list of P. [...]
   4697   TemplateParameterList::iterator NewParm = New->begin();
   4698   TemplateParameterList::iterator NewParmEnd = New->end();
   4699   for (TemplateParameterList::iterator OldParm = Old->begin(),
   4700                                     OldParmEnd = Old->end();
   4701        OldParm != OldParmEnd; ++OldParm) {
   4702     if (Kind != TPL_TemplateTemplateArgumentMatch ||
   4703         !(*OldParm)->isTemplateParameterPack()) {
   4704       if (NewParm == NewParmEnd) {
   4705         if (Complain)
   4706           DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
   4707                                                      TemplateArgLoc);
   4708 
   4709         return false;
   4710       }
   4711 
   4712       if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
   4713                                       Kind, TemplateArgLoc))
   4714         return false;
   4715 
   4716       ++NewParm;
   4717       continue;
   4718     }
   4719 
   4720     // C++0x [temp.arg.template]p3:
   4721     //   [...] When P's template- parameter-list contains a template parameter
   4722     //   pack (14.5.3), the template parameter pack will match zero or more
   4723     //   template parameters or template parameter packs in the
   4724     //   template-parameter-list of A with the same type and form as the
   4725     //   template parameter pack in P (ignoring whether those template
   4726     //   parameters are template parameter packs).
   4727     for (; NewParm != NewParmEnd; ++NewParm) {
   4728       if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
   4729                                       Kind, TemplateArgLoc))
   4730         return false;
   4731     }
   4732   }
   4733 
   4734   // Make sure we exhausted all of the arguments.
   4735   if (NewParm != NewParmEnd) {
   4736     if (Complain)
   4737       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
   4738                                                  TemplateArgLoc);
   4739 
   4740     return false;
   4741   }
   4742 
   4743   return true;
   4744 }
   4745 
   4746 /// \brief Check whether a template can be declared within this scope.
   4747 ///
   4748 /// If the template declaration is valid in this scope, returns
   4749 /// false. Otherwise, issues a diagnostic and returns true.
   4750 bool
   4751 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
   4752   if (!S)
   4753     return false;
   4754 
   4755   // Find the nearest enclosing declaration scope.
   4756   while ((S->getFlags() & Scope::DeclScope) == 0 ||
   4757          (S->getFlags() & Scope::TemplateParamScope) != 0)
   4758     S = S->getParent();
   4759 
   4760   // C++ [temp]p2:
   4761   //   A template-declaration can appear only as a namespace scope or
   4762   //   class scope declaration.
   4763   DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
   4764   if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
   4765       cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
   4766     return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
   4767              << TemplateParams->getSourceRange();
   4768 
   4769   while (Ctx && isa<LinkageSpecDecl>(Ctx))
   4770     Ctx = Ctx->getParent();
   4771 
   4772   if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
   4773     return false;
   4774 
   4775   return Diag(TemplateParams->getTemplateLoc(),
   4776               diag::err_template_outside_namespace_or_class_scope)
   4777     << TemplateParams->getSourceRange();
   4778 }
   4779 
   4780 /// \brief Determine what kind of template specialization the given declaration
   4781 /// is.
   4782 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
   4783   if (!D)
   4784     return TSK_Undeclared;
   4785 
   4786   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
   4787     return Record->getTemplateSpecializationKind();
   4788   if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
   4789     return Function->getTemplateSpecializationKind();
   4790   if (VarDecl *Var = dyn_cast<VarDecl>(D))
   4791     return Var->getTemplateSpecializationKind();
   4792 
   4793   return TSK_Undeclared;
   4794 }
   4795 
   4796 /// \brief Check whether a specialization is well-formed in the current
   4797 /// context.
   4798 ///
   4799 /// This routine determines whether a template specialization can be declared
   4800 /// in the current context (C++ [temp.expl.spec]p2).
   4801 ///
   4802 /// \param S the semantic analysis object for which this check is being
   4803 /// performed.
   4804 ///
   4805 /// \param Specialized the entity being specialized or instantiated, which
   4806 /// may be a kind of template (class template, function template, etc.) or
   4807 /// a member of a class template (member function, static data member,
   4808 /// member class).
   4809 ///
   4810 /// \param PrevDecl the previous declaration of this entity, if any.
   4811 ///
   4812 /// \param Loc the location of the explicit specialization or instantiation of
   4813 /// this entity.
   4814 ///
   4815 /// \param IsPartialSpecialization whether this is a partial specialization of
   4816 /// a class template.
   4817 ///
   4818 /// \returns true if there was an error that we cannot recover from, false
   4819 /// otherwise.
   4820 static bool CheckTemplateSpecializationScope(Sema &S,
   4821                                              NamedDecl *Specialized,
   4822                                              NamedDecl *PrevDecl,
   4823                                              SourceLocation Loc,
   4824                                              bool IsPartialSpecialization) {
   4825   // Keep these "kind" numbers in sync with the %select statements in the
   4826   // various diagnostics emitted by this routine.
   4827   int EntityKind = 0;
   4828   if (isa<ClassTemplateDecl>(Specialized))
   4829     EntityKind = IsPartialSpecialization? 1 : 0;
   4830   else if (isa<FunctionTemplateDecl>(Specialized))
   4831     EntityKind = 2;
   4832   else if (isa<CXXMethodDecl>(Specialized))
   4833     EntityKind = 3;
   4834   else if (isa<VarDecl>(Specialized))
   4835     EntityKind = 4;
   4836   else if (isa<RecordDecl>(Specialized))
   4837     EntityKind = 5;
   4838   else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus0x)
   4839     EntityKind = 6;
   4840   else {
   4841     S.Diag(Loc, diag::err_template_spec_unknown_kind)
   4842       << S.getLangOpts().CPlusPlus0x;
   4843     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
   4844     return true;
   4845   }
   4846 
   4847   // C++ [temp.expl.spec]p2:
   4848   //   An explicit specialization shall be declared in the namespace
   4849   //   of which the template is a member, or, for member templates, in
   4850   //   the namespace of which the enclosing class or enclosing class
   4851   //   template is a member. An explicit specialization of a member
   4852   //   function, member class or static data member of a class
   4853   //   template shall be declared in the namespace of which the class
   4854   //   template is a member. Such a declaration may also be a
   4855   //   definition. If the declaration is not a definition, the
   4856   //   specialization may be defined later in the name- space in which
   4857   //   the explicit specialization was declared, or in a namespace
   4858   //   that encloses the one in which the explicit specialization was
   4859   //   declared.
   4860   if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
   4861     S.Diag(Loc, diag::err_template_spec_decl_function_scope)
   4862       << Specialized;
   4863     return true;
   4864   }
   4865 
   4866   if (S.CurContext->isRecord() && !IsPartialSpecialization) {
   4867     if (S.getLangOpts().MicrosoftExt) {
   4868       // Do not warn for class scope explicit specialization during
   4869       // instantiation, warning was already emitted during pattern
   4870       // semantic analysis.
   4871       if (!S.ActiveTemplateInstantiations.size())
   4872         S.Diag(Loc, diag::ext_function_specialization_in_class)
   4873           << Specialized;
   4874     } else {
   4875       S.Diag(Loc, diag::err_template_spec_decl_class_scope)
   4876         << Specialized;
   4877       return true;
   4878     }
   4879   }
   4880 
   4881   if (S.CurContext->isRecord() &&
   4882       !S.CurContext->Equals(Specialized->getDeclContext())) {
   4883     // Make sure that we're specializing in the right record context.
   4884     // Otherwise, things can go horribly wrong.
   4885     S.Diag(Loc, diag::err_template_spec_decl_class_scope)
   4886       << Specialized;
   4887     return true;
   4888   }
   4889 
   4890   // C++ [temp.class.spec]p6:
   4891   //   A class template partial specialization may be declared or redeclared
   4892   //   in any namespace scope in which its definition may be defined (14.5.1
   4893   //   and 14.5.2).
   4894   bool ComplainedAboutScope = false;
   4895   DeclContext *SpecializedContext
   4896     = Specialized->getDeclContext()->getEnclosingNamespaceContext();
   4897   DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
   4898   if ((!PrevDecl ||
   4899        getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
   4900        getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
   4901     // C++ [temp.exp.spec]p2:
   4902     //   An explicit specialization shall be declared in the namespace of which
   4903     //   the template is a member, or, for member templates, in the namespace
   4904     //   of which the enclosing class or enclosing class template is a member.
   4905     //   An explicit specialization of a member function, member class or
   4906     //   static data member of a class template shall be declared in the
   4907     //   namespace of which the class template is a member.
   4908     //
   4909     // C++0x [temp.expl.spec]p2:
   4910     //   An explicit specialization shall be declared in a namespace enclosing
   4911     //   the specialized template.
   4912     if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
   4913       bool IsCPlusPlus0xExtension = DC->Encloses(SpecializedContext);
   4914       if (isa<TranslationUnitDecl>(SpecializedContext)) {
   4915         assert(!IsCPlusPlus0xExtension &&
   4916                "DC encloses TU but isn't in enclosing namespace set");
   4917         S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
   4918           << EntityKind << Specialized;
   4919       } else if (isa<NamespaceDecl>(SpecializedContext)) {
   4920         int Diag;
   4921         if (!IsCPlusPlus0xExtension)
   4922           Diag = diag::err_template_spec_decl_out_of_scope;
   4923         else if (!S.getLangOpts().CPlusPlus0x)
   4924           Diag = diag::ext_template_spec_decl_out_of_scope;
   4925         else
   4926           Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
   4927         S.Diag(Loc, Diag)
   4928           << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
   4929       }
   4930 
   4931       S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
   4932       ComplainedAboutScope =
   4933         !(IsCPlusPlus0xExtension && S.getLangOpts().CPlusPlus0x);
   4934     }
   4935   }
   4936 
   4937   // Make sure that this redeclaration (or definition) occurs in an enclosing
   4938   // namespace.
   4939   // Note that HandleDeclarator() performs this check for explicit
   4940   // specializations of function templates, static data members, and member
   4941   // functions, so we skip the check here for those kinds of entities.
   4942   // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
   4943   // Should we refactor that check, so that it occurs later?
   4944   if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
   4945       !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
   4946         isa<FunctionDecl>(Specialized))) {
   4947     if (isa<TranslationUnitDecl>(SpecializedContext))
   4948       S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
   4949         << EntityKind << Specialized;
   4950     else if (isa<NamespaceDecl>(SpecializedContext))
   4951       S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
   4952         << EntityKind << Specialized
   4953         << cast<NamedDecl>(SpecializedContext);
   4954 
   4955     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
   4956   }
   4957 
   4958   // FIXME: check for specialization-after-instantiation errors and such.
   4959 
   4960   return false;
   4961 }
   4962 
   4963 /// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs
   4964 /// that checks non-type template partial specialization arguments.
   4965 static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S,
   4966                                                 NonTypeTemplateParmDecl *Param,
   4967                                                   const TemplateArgument *Args,
   4968                                                         unsigned NumArgs) {
   4969   for (unsigned I = 0; I != NumArgs; ++I) {
   4970     if (Args[I].getKind() == TemplateArgument::Pack) {
   4971       if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
   4972                                                            Args[I].pack_begin(),
   4973                                                            Args[I].pack_size()))
   4974         return true;
   4975 
   4976       continue;
   4977     }
   4978 
   4979     Expr *ArgExpr = Args[I].getAsExpr();
   4980     if (!ArgExpr) {
   4981       continue;
   4982     }
   4983 
   4984     // We can have a pack expansion of any of the bullets below.
   4985     if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
   4986       ArgExpr = Expansion->getPattern();
   4987 
   4988     // Strip off any implicit casts we added as part of type checking.
   4989     while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
   4990       ArgExpr = ICE->getSubExpr();
   4991 
   4992     // C++ [temp.class.spec]p8:
   4993     //   A non-type argument is non-specialized if it is the name of a
   4994     //   non-type parameter. All other non-type arguments are
   4995     //   specialized.
   4996     //
   4997     // Below, we check the two conditions that only apply to
   4998     // specialized non-type arguments, so skip any non-specialized
   4999     // arguments.
   5000     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
   5001       if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
   5002         continue;
   5003 
   5004     // C++ [temp.class.spec]p9:
   5005     //   Within the argument list of a class template partial
   5006     //   specialization, the following restrictions apply:
   5007     //     -- A partially specialized non-type argument expression
   5008     //        shall not involve a template parameter of the partial
   5009     //        specialization except when the argument expression is a
   5010     //        simple identifier.
   5011     if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
   5012       S.Diag(ArgExpr->getLocStart(),
   5013            diag::err_dependent_non_type_arg_in_partial_spec)
   5014         << ArgExpr->getSourceRange();
   5015       return true;
   5016     }
   5017 
   5018     //     -- The type of a template parameter corresponding to a
   5019     //        specialized non-type argument shall not be dependent on a
   5020     //        parameter of the specialization.
   5021     if (Param->getType()->isDependentType()) {
   5022       S.Diag(ArgExpr->getLocStart(),
   5023            diag::err_dependent_typed_non_type_arg_in_partial_spec)
   5024         << Param->getType()
   5025         << ArgExpr->getSourceRange();
   5026       S.Diag(Param->getLocation(), diag::note_template_param_here);
   5027       return true;
   5028     }
   5029   }
   5030 
   5031   return false;
   5032 }
   5033 
   5034 /// \brief Check the non-type template arguments of a class template
   5035 /// partial specialization according to C++ [temp.class.spec]p9.
   5036 ///
   5037 /// \param TemplateParams the template parameters of the primary class
   5038 /// template.
   5039 ///
   5040 /// \param TemplateArg the template arguments of the class template
   5041 /// partial specialization.
   5042 ///
   5043 /// \returns true if there was an error, false otherwise.
   5044 static bool CheckClassTemplatePartialSpecializationArgs(Sema &S,
   5045                                         TemplateParameterList *TemplateParams,
   5046                        SmallVectorImpl<TemplateArgument> &TemplateArgs) {
   5047   const TemplateArgument *ArgList = TemplateArgs.data();
   5048 
   5049   for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
   5050     NonTypeTemplateParmDecl *Param
   5051       = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
   5052     if (!Param)
   5053       continue;
   5054 
   5055     if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
   5056                                                            &ArgList[I], 1))
   5057       return true;
   5058   }
   5059 
   5060   return false;
   5061 }
   5062 
   5063 DeclResult
   5064 Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
   5065                                        TagUseKind TUK,
   5066                                        SourceLocation KWLoc,
   5067                                        SourceLocation ModulePrivateLoc,
   5068                                        CXXScopeSpec &SS,
   5069                                        TemplateTy TemplateD,
   5070                                        SourceLocation TemplateNameLoc,
   5071                                        SourceLocation LAngleLoc,
   5072                                        ASTTemplateArgsPtr TemplateArgsIn,
   5073                                        SourceLocation RAngleLoc,
   5074                                        AttributeList *Attr,
   5075                                MultiTemplateParamsArg TemplateParameterLists) {
   5076   assert(TUK != TUK_Reference && "References are not specializations");
   5077 
   5078   // NOTE: KWLoc is the location of the tag keyword. This will instead
   5079   // store the location of the outermost template keyword in the declaration.
   5080   SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
   5081     ? TemplateParameterLists.get()[0]->getTemplateLoc() : SourceLocation();
   5082 
   5083   // Find the class template we're specializing
   5084   TemplateName Name = TemplateD.getAsVal<TemplateName>();
   5085   ClassTemplateDecl *ClassTemplate
   5086     = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
   5087 
   5088   if (!ClassTemplate) {
   5089     Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
   5090       << (Name.getAsTemplateDecl() &&
   5091           isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
   5092     return true;
   5093   }
   5094 
   5095   bool isExplicitSpecialization = false;
   5096   bool isPartialSpecialization = false;
   5097 
   5098   // Check the validity of the template headers that introduce this
   5099   // template.
   5100   // FIXME: We probably shouldn't complain about these headers for
   5101   // friend declarations.
   5102   bool Invalid = false;
   5103   TemplateParameterList *TemplateParams
   5104     = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc,
   5105                                               TemplateNameLoc,
   5106                                               SS,
   5107                         (TemplateParameterList**)TemplateParameterLists.get(),
   5108                                               TemplateParameterLists.size(),
   5109                                               TUK == TUK_Friend,
   5110                                               isExplicitSpecialization,
   5111                                               Invalid);
   5112   if (Invalid)
   5113     return true;
   5114 
   5115   if (TemplateParams && TemplateParams->size() > 0) {
   5116     isPartialSpecialization = true;
   5117 
   5118     if (TUK == TUK_Friend) {
   5119       Diag(KWLoc, diag::err_partial_specialization_friend)
   5120         << SourceRange(LAngleLoc, RAngleLoc);
   5121       return true;
   5122     }
   5123 
   5124     // C++ [temp.class.spec]p10:
   5125     //   The template parameter list of a specialization shall not
   5126     //   contain default template argument values.
   5127     for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
   5128       Decl *Param = TemplateParams->getParam(I);
   5129       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
   5130         if (TTP->hasDefaultArgument()) {
   5131           Diag(TTP->getDefaultArgumentLoc(),
   5132                diag::err_default_arg_in_partial_spec);
   5133           TTP->removeDefaultArgument();
   5134         }
   5135       } else if (NonTypeTemplateParmDecl *NTTP
   5136                    = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
   5137         if (Expr *DefArg = NTTP->getDefaultArgument()) {
   5138           Diag(NTTP->getDefaultArgumentLoc(),
   5139                diag::err_default_arg_in_partial_spec)
   5140             << DefArg->getSourceRange();
   5141           NTTP->removeDefaultArgument();
   5142         }
   5143       } else {
   5144         TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
   5145         if (TTP->hasDefaultArgument()) {
   5146           Diag(TTP->getDefaultArgument().getLocation(),
   5147                diag::err_default_arg_in_partial_spec)
   5148             << TTP->getDefaultArgument().getSourceRange();
   5149           TTP->removeDefaultArgument();
   5150         }
   5151       }
   5152     }
   5153   } else if (TemplateParams) {
   5154     if (TUK == TUK_Friend)
   5155       Diag(KWLoc, diag::err_template_spec_friend)
   5156         << FixItHint::CreateRemoval(
   5157                                 SourceRange(TemplateParams->getTemplateLoc(),
   5158                                             TemplateParams->getRAngleLoc()))
   5159         << SourceRange(LAngleLoc, RAngleLoc);
   5160     else
   5161       isExplicitSpecialization = true;
   5162   } else if (TUK != TUK_Friend) {
   5163     Diag(KWLoc, diag::err_template_spec_needs_header)
   5164       << FixItHint::CreateInsertion(KWLoc, "template<> ");
   5165     isExplicitSpecialization = true;
   5166   }
   5167 
   5168   // Check that the specialization uses the same tag kind as the
   5169   // original template.
   5170   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
   5171   assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
   5172   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
   5173                                     Kind, TUK == TUK_Definition, KWLoc,
   5174                                     *ClassTemplate->getIdentifier())) {
   5175     Diag(KWLoc, diag::err_use_with_wrong_tag)
   5176       << ClassTemplate
   5177       << FixItHint::CreateReplacement(KWLoc,
   5178                             ClassTemplate->getTemplatedDecl()->getKindName());
   5179     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
   5180          diag::note_previous_use);
   5181     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
   5182   }
   5183 
   5184   // Translate the parser's template argument list in our AST format.
   5185   TemplateArgumentListInfo TemplateArgs;
   5186   TemplateArgs.setLAngleLoc(LAngleLoc);
   5187   TemplateArgs.setRAngleLoc(RAngleLoc);
   5188   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
   5189 
   5190   // Check for unexpanded parameter packs in any of the template arguments.
   5191   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
   5192     if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
   5193                                         UPPC_PartialSpecialization))
   5194       return true;
   5195 
   5196   // Check that the template argument list is well-formed for this
   5197   // template.
   5198   SmallVector<TemplateArgument, 4> Converted;
   5199   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
   5200                                 TemplateArgs, false, Converted))
   5201     return true;
   5202 
   5203   // Find the class template (partial) specialization declaration that
   5204   // corresponds to these arguments.
   5205   if (isPartialSpecialization) {
   5206     if (CheckClassTemplatePartialSpecializationArgs(*this,
   5207                                          ClassTemplate->getTemplateParameters(),
   5208                                          Converted))
   5209       return true;
   5210 
   5211     bool InstantiationDependent;
   5212     if (!Name.isDependent() &&
   5213         !TemplateSpecializationType::anyDependentTemplateArguments(
   5214                                              TemplateArgs.getArgumentArray(),
   5215                                                          TemplateArgs.size(),
   5216                                                      InstantiationDependent)) {
   5217       Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
   5218         << ClassTemplate->getDeclName();
   5219       isPartialSpecialization = false;
   5220     }
   5221   }
   5222 
   5223   void *InsertPos = 0;
   5224   ClassTemplateSpecializationDecl *PrevDecl = 0;
   5225 
   5226   if (isPartialSpecialization)
   5227     // FIXME: Template parameter list matters, too
   5228     PrevDecl
   5229       = ClassTemplate->findPartialSpecialization(Converted.data(),
   5230                                                  Converted.size(),
   5231                                                  InsertPos);
   5232   else
   5233     PrevDecl
   5234       = ClassTemplate->findSpecialization(Converted.data(),
   5235                                           Converted.size(), InsertPos);
   5236 
   5237   ClassTemplateSpecializationDecl *Specialization = 0;
   5238 
   5239   // Check whether we can declare a class template specialization in
   5240   // the current scope.
   5241   if (TUK != TUK_Friend &&
   5242       CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
   5243                                        TemplateNameLoc,
   5244                                        isPartialSpecialization))
   5245     return true;
   5246 
   5247   // The canonical type
   5248   QualType CanonType;
   5249   if (PrevDecl &&
   5250       (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
   5251                TUK == TUK_Friend)) {
   5252     // Since the only prior class template specialization with these
   5253     // arguments was referenced but not declared, or we're only
   5254     // referencing this specialization as a friend, reuse that
   5255     // declaration node as our own, updating its source location and
   5256     // the list of outer template parameters to reflect our new declaration.
   5257     Specialization = PrevDecl;
   5258     Specialization->setLocation(TemplateNameLoc);
   5259     if (TemplateParameterLists.size() > 0) {
   5260       Specialization->setTemplateParameterListsInfo(Context,
   5261                                               TemplateParameterLists.size(),
   5262                     (TemplateParameterList**) TemplateParameterLists.release());
   5263     }
   5264     PrevDecl = 0;
   5265     CanonType = Context.getTypeDeclType(Specialization);
   5266   } else if (isPartialSpecialization) {
   5267     // Build the canonical type that describes the converted template
   5268     // arguments of the class template partial specialization.
   5269     TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
   5270     CanonType = Context.getTemplateSpecializationType(CanonTemplate,
   5271                                                       Converted.data(),
   5272                                                       Converted.size());
   5273 
   5274     if (Context.hasSameType(CanonType,
   5275                         ClassTemplate->getInjectedClassNameSpecialization())) {
   5276       // C++ [temp.class.spec]p9b3:
   5277       //
   5278       //   -- The argument list of the specialization shall not be identical
   5279       //      to the implicit argument list of the primary template.
   5280       Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
   5281         << (TUK == TUK_Definition)
   5282         << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
   5283       return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
   5284                                 ClassTemplate->getIdentifier(),
   5285                                 TemplateNameLoc,
   5286                                 Attr,
   5287                                 TemplateParams,
   5288                                 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
   5289                                 TemplateParameterLists.size() - 1,
   5290                   (TemplateParameterList**) TemplateParameterLists.release());
   5291     }
   5292 
   5293     // Create a new class template partial specialization declaration node.
   5294     ClassTemplatePartialSpecializationDecl *PrevPartial
   5295       = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
   5296     unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
   5297                             : ClassTemplate->getNextPartialSpecSequenceNumber();
   5298     ClassTemplatePartialSpecializationDecl *Partial
   5299       = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
   5300                                              ClassTemplate->getDeclContext(),
   5301                                                        KWLoc, TemplateNameLoc,
   5302                                                        TemplateParams,
   5303                                                        ClassTemplate,
   5304                                                        Converted.data(),
   5305                                                        Converted.size(),
   5306                                                        TemplateArgs,
   5307                                                        CanonType,
   5308                                                        PrevPartial,
   5309                                                        SequenceNumber);
   5310     SetNestedNameSpecifier(Partial, SS);
   5311     if (TemplateParameterLists.size() > 1 && SS.isSet()) {
   5312       Partial->setTemplateParameterListsInfo(Context,
   5313                                              TemplateParameterLists.size() - 1,
   5314                     (TemplateParameterList**) TemplateParameterLists.release());
   5315     }
   5316 
   5317     if (!PrevPartial)
   5318       ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
   5319     Specialization = Partial;
   5320 
   5321     // If we are providing an explicit specialization of a member class
   5322     // template specialization, make a note of that.
   5323     if (PrevPartial && PrevPartial->getInstantiatedFromMember())
   5324       PrevPartial->setMemberSpecialization();
   5325 
   5326     // Check that all of the template parameters of the class template
   5327     // partial specialization are deducible from the template
   5328     // arguments. If not, this class template partial specialization
   5329     // will never be used.
   5330     llvm::SmallBitVector DeducibleParams(TemplateParams->size());
   5331     MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
   5332                                TemplateParams->getDepth(),
   5333                                DeducibleParams);
   5334 
   5335     if (!DeducibleParams.all()) {
   5336       unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count();
   5337       Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
   5338         << (NumNonDeducible > 1)
   5339         << SourceRange(TemplateNameLoc, RAngleLoc);
   5340       for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
   5341         if (!DeducibleParams[I]) {
   5342           NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
   5343           if (Param->getDeclName())
   5344             Diag(Param->getLocation(),
   5345                  diag::note_partial_spec_unused_parameter)
   5346               << Param->getDeclName();
   5347           else
   5348             Diag(Param->getLocation(),
   5349                  diag::note_partial_spec_unused_parameter)
   5350               << "<anonymous>";
   5351         }
   5352       }
   5353     }
   5354   } else {
   5355     // Create a new class template specialization declaration node for
   5356     // this explicit specialization or friend declaration.
   5357     Specialization
   5358       = ClassTemplateSpecializationDecl::Create(Context, Kind,
   5359                                              ClassTemplate->getDeclContext(),
   5360                                                 KWLoc, TemplateNameLoc,
   5361                                                 ClassTemplate,
   5362                                                 Converted.data(),
   5363                                                 Converted.size(),
   5364                                                 PrevDecl);
   5365     SetNestedNameSpecifier(Specialization, SS);
   5366     if (TemplateParameterLists.size() > 0) {
   5367       Specialization->setTemplateParameterListsInfo(Context,
   5368                                               TemplateParameterLists.size(),
   5369                     (TemplateParameterList**) TemplateParameterLists.release());
   5370     }
   5371 
   5372     if (!PrevDecl)
   5373       ClassTemplate->AddSpecialization(Specialization, InsertPos);
   5374 
   5375     CanonType = Context.getTypeDeclType(Specialization);
   5376   }
   5377 
   5378   // C++ [temp.expl.spec]p6:
   5379   //   If a template, a member template or the member of a class template is
   5380   //   explicitly specialized then that specialization shall be declared
   5381   //   before the first use of that specialization that would cause an implicit
   5382   //   instantiation to take place, in every translation unit in which such a
   5383   //   use occurs; no diagnostic is required.
   5384   if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
   5385     bool Okay = false;
   5386     for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
   5387       // Is there any previous explicit specialization declaration?
   5388       if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
   5389         Okay = true;
   5390         break;
   5391       }
   5392     }
   5393 
   5394     if (!Okay) {
   5395       SourceRange Range(TemplateNameLoc, RAngleLoc);
   5396       Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
   5397         << Context.getTypeDeclType(Specialization) << Range;
   5398 
   5399       Diag(PrevDecl->getPointOfInstantiation(),
   5400            diag::note_instantiation_required_here)
   5401         << (PrevDecl->getTemplateSpecializationKind()
   5402                                                 != TSK_ImplicitInstantiation);
   5403       return true;
   5404     }
   5405   }
   5406 
   5407   // If this is not a friend, note that this is an explicit specialization.
   5408   if (TUK != TUK_Friend)
   5409     Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
   5410 
   5411   // Check that this isn't a redefinition of this specialization.
   5412   if (TUK == TUK_Definition) {
   5413     if (RecordDecl *Def = Specialization->getDefinition()) {
   5414       SourceRange Range(TemplateNameLoc, RAngleLoc);
   5415       Diag(TemplateNameLoc, diag::err_redefinition)
   5416         << Context.getTypeDeclType(Specialization) << Range;
   5417       Diag(Def->getLocation(), diag::note_previous_definition);
   5418       Specialization->setInvalidDecl();
   5419       return true;
   5420     }
   5421   }
   5422 
   5423   if (Attr)
   5424     ProcessDeclAttributeList(S, Specialization, Attr);
   5425 
   5426   if (ModulePrivateLoc.isValid())
   5427     Diag(Specialization->getLocation(), diag::err_module_private_specialization)
   5428       << (isPartialSpecialization? 1 : 0)
   5429       << FixItHint::CreateRemoval(ModulePrivateLoc);
   5430 
   5431   // Build the fully-sugared type for this class template
   5432   // specialization as the user wrote in the specialization
   5433   // itself. This means that we'll pretty-print the type retrieved
   5434   // from the specialization's declaration the way that the user
   5435   // actually wrote the specialization, rather than formatting the
   5436   // name based on the "canonical" representation used to store the
   5437   // template arguments in the specialization.
   5438   TypeSourceInfo *WrittenTy
   5439     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
   5440                                                 TemplateArgs, CanonType);
   5441   if (TUK != TUK_Friend) {
   5442     Specialization->setTypeAsWritten(WrittenTy);
   5443     Specialization->setTemplateKeywordLoc(TemplateKWLoc);
   5444   }
   5445   TemplateArgsIn.release();
   5446 
   5447   // C++ [temp.expl.spec]p9:
   5448   //   A template explicit specialization is in the scope of the
   5449   //   namespace in which the template was defined.
   5450   //
   5451   // We actually implement this paragraph where we set the semantic
   5452   // context (in the creation of the ClassTemplateSpecializationDecl),
   5453   // but we also maintain the lexical context where the actual
   5454   // definition occurs.
   5455   Specialization->setLexicalDeclContext(CurContext);
   5456 
   5457   // We may be starting the definition of this specialization.
   5458   if (TUK == TUK_Definition)
   5459     Specialization->startDefinition();
   5460 
   5461   if (TUK == TUK_Friend) {
   5462     FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
   5463                                             TemplateNameLoc,
   5464                                             WrittenTy,
   5465                                             /*FIXME:*/KWLoc);
   5466     Friend->setAccess(AS_public);
   5467     CurContext->addDecl(Friend);
   5468   } else {
   5469     // Add the specialization into its lexical context, so that it can
   5470     // be seen when iterating through the list of declarations in that
   5471     // context. However, specializations are not found by name lookup.
   5472     CurContext->addDecl(Specialization);
   5473   }
   5474   return Specialization;
   5475 }
   5476 
   5477 Decl *Sema::ActOnTemplateDeclarator(Scope *S,
   5478                               MultiTemplateParamsArg TemplateParameterLists,
   5479                                     Declarator &D) {
   5480   return HandleDeclarator(S, D, move(TemplateParameterLists));
   5481 }
   5482 
   5483 Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
   5484                                MultiTemplateParamsArg TemplateParameterLists,
   5485                                             Declarator &D) {
   5486   assert(getCurFunctionDecl() == 0 && "Function parsing confused");
   5487   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
   5488 
   5489   if (FTI.hasPrototype) {
   5490     // FIXME: Diagnose arguments without names in C.
   5491   }
   5492 
   5493   Scope *ParentScope = FnBodyScope->getParent();
   5494 
   5495   D.setFunctionDefinitionKind(FDK_Definition);
   5496   Decl *DP = HandleDeclarator(ParentScope, D,
   5497                               move(TemplateParameterLists));
   5498   if (FunctionTemplateDecl *FunctionTemplate
   5499         = dyn_cast_or_null<FunctionTemplateDecl>(DP))
   5500     return ActOnStartOfFunctionDef(FnBodyScope,
   5501                                    FunctionTemplate->getTemplatedDecl());
   5502   if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
   5503     return ActOnStartOfFunctionDef(FnBodyScope, Function);
   5504   return 0;
   5505 }
   5506 
   5507 /// \brief Strips various properties off an implicit instantiation
   5508 /// that has just been explicitly specialized.
   5509 static void StripImplicitInstantiation(NamedDecl *D) {
   5510   // FIXME: "make check" is clean if the call to dropAttrs() is commented out.
   5511   D->dropAttrs();
   5512 
   5513   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   5514     FD->setInlineSpecified(false);
   5515   }
   5516 }
   5517 
   5518 /// \brief Compute the diagnostic location for an explicit instantiation
   5519 //  declaration or definition.
   5520 static SourceLocation DiagLocForExplicitInstantiation(
   5521     NamedDecl* D, SourceLocation PointOfInstantiation) {
   5522   // Explicit instantiations following a specialization have no effect and
   5523   // hence no PointOfInstantiation. In that case, walk decl backwards
   5524   // until a valid name loc is found.
   5525   SourceLocation PrevDiagLoc = PointOfInstantiation;
   5526   for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
   5527        Prev = Prev->getPreviousDecl()) {
   5528     PrevDiagLoc = Prev->getLocation();
   5529   }
   5530   assert(PrevDiagLoc.isValid() &&
   5531          "Explicit instantiation without point of instantiation?");
   5532   return PrevDiagLoc;
   5533 }
   5534 
   5535 /// \brief Diagnose cases where we have an explicit template specialization
   5536 /// before/after an explicit template instantiation, producing diagnostics
   5537 /// for those cases where they are required and determining whether the
   5538 /// new specialization/instantiation will have any effect.
   5539 ///
   5540 /// \param NewLoc the location of the new explicit specialization or
   5541 /// instantiation.
   5542 ///
   5543 /// \param NewTSK the kind of the new explicit specialization or instantiation.
   5544 ///
   5545 /// \param PrevDecl the previous declaration of the entity.
   5546 ///
   5547 /// \param PrevTSK the kind of the old explicit specialization or instantiatin.
   5548 ///
   5549 /// \param PrevPointOfInstantiation if valid, indicates where the previus
   5550 /// declaration was instantiated (either implicitly or explicitly).
   5551 ///
   5552 /// \param HasNoEffect will be set to true to indicate that the new
   5553 /// specialization or instantiation has no effect and should be ignored.
   5554 ///
   5555 /// \returns true if there was an error that should prevent the introduction of
   5556 /// the new declaration into the AST, false otherwise.
   5557 bool
   5558 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
   5559                                              TemplateSpecializationKind NewTSK,
   5560                                              NamedDecl *PrevDecl,
   5561                                              TemplateSpecializationKind PrevTSK,
   5562                                         SourceLocation PrevPointOfInstantiation,
   5563                                              bool &HasNoEffect) {
   5564   HasNoEffect = false;
   5565 
   5566   switch (NewTSK) {
   5567   case TSK_Undeclared:
   5568   case TSK_ImplicitInstantiation:
   5569     llvm_unreachable("Don't check implicit instantiations here");
   5570 
   5571   case TSK_ExplicitSpecialization:
   5572     switch (PrevTSK) {
   5573     case TSK_Undeclared:
   5574     case TSK_ExplicitSpecialization:
   5575       // Okay, we're just specializing something that is either already
   5576       // explicitly specialized or has merely been mentioned without any
   5577       // instantiation.
   5578       return false;
   5579 
   5580     case TSK_ImplicitInstantiation:
   5581       if (PrevPointOfInstantiation.isInvalid()) {
   5582         // The declaration itself has not actually been instantiated, so it is
   5583         // still okay to specialize it.
   5584         StripImplicitInstantiation(PrevDecl);
   5585         return false;
   5586       }
   5587       // Fall through
   5588 
   5589     case TSK_ExplicitInstantiationDeclaration:
   5590     case TSK_ExplicitInstantiationDefinition:
   5591       assert((PrevTSK == TSK_ImplicitInstantiation ||
   5592               PrevPointOfInstantiation.isValid()) &&
   5593              "Explicit instantiation without point of instantiation?");
   5594 
   5595       // C++ [temp.expl.spec]p6:
   5596       //   If a template, a member template or the member of a class template
   5597       //   is explicitly specialized then that specialization shall be declared
   5598       //   before the first use of that specialization that would cause an
   5599       //   implicit instantiation to take place, in every translation unit in
   5600       //   which such a use occurs; no diagnostic is required.
   5601       for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
   5602         // Is there any previous explicit specialization declaration?
   5603         if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
   5604           return false;
   5605       }
   5606 
   5607       Diag(NewLoc, diag::err_specialization_after_instantiation)
   5608         << PrevDecl;
   5609       Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
   5610         << (PrevTSK != TSK_ImplicitInstantiation);
   5611 
   5612       return true;
   5613     }
   5614 
   5615   case TSK_ExplicitInstantiationDeclaration:
   5616     switch (PrevTSK) {
   5617     case TSK_ExplicitInstantiationDeclaration:
   5618       // This explicit instantiation declaration is redundant (that's okay).
   5619       HasNoEffect = true;
   5620       return false;
   5621 
   5622     case TSK_Undeclared:
   5623     case TSK_ImplicitInstantiation:
   5624       // We're explicitly instantiating something that may have already been
   5625       // implicitly instantiated; that's fine.
   5626       return false;
   5627 
   5628     case TSK_ExplicitSpecialization:
   5629       // C++0x [temp.explicit]p4:
   5630       //   For a given set of template parameters, if an explicit instantiation
   5631       //   of a template appears after a declaration of an explicit
   5632       //   specialization for that template, the explicit instantiation has no
   5633       //   effect.
   5634       HasNoEffect = true;
   5635       return false;
   5636 
   5637     case TSK_ExplicitInstantiationDefinition:
   5638       // C++0x [temp.explicit]p10:
   5639       //   If an entity is the subject of both an explicit instantiation
   5640       //   declaration and an explicit instantiation definition in the same
   5641       //   translation unit, the definition shall follow the declaration.
   5642       Diag(NewLoc,
   5643            diag::err_explicit_instantiation_declaration_after_definition);
   5644 
   5645       // Explicit instantiations following a specialization have no effect and
   5646       // hence no PrevPointOfInstantiation. In that case, walk decl backwards
   5647       // until a valid name loc is found.
   5648       Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
   5649            diag::note_explicit_instantiation_definition_here);
   5650       HasNoEffect = true;
   5651       return false;
   5652     }
   5653 
   5654   case TSK_ExplicitInstantiationDefinition:
   5655     switch (PrevTSK) {
   5656     case TSK_Undeclared:
   5657     case TSK_ImplicitInstantiation:
   5658       // We're explicitly instantiating something that may have already been
   5659       // implicitly instantiated; that's fine.
   5660       return false;
   5661 
   5662     case TSK_ExplicitSpecialization:
   5663       // C++ DR 259, C++0x [temp.explicit]p4:
   5664       //   For a given set of template parameters, if an explicit
   5665       //   instantiation of a template appears after a declaration of
   5666       //   an explicit specialization for that template, the explicit
   5667       //   instantiation has no effect.
   5668       //
   5669       // In C++98/03 mode, we only give an extension warning here, because it
   5670       // is not harmful to try to explicitly instantiate something that
   5671       // has been explicitly specialized.
   5672       Diag(NewLoc, getLangOpts().CPlusPlus0x ?
   5673            diag::warn_cxx98_compat_explicit_instantiation_after_specialization :
   5674            diag::ext_explicit_instantiation_after_specialization)
   5675         << PrevDecl;
   5676       Diag(PrevDecl->getLocation(),
   5677            diag::note_previous_template_specialization);
   5678       HasNoEffect = true;
   5679       return false;
   5680 
   5681     case TSK_ExplicitInstantiationDeclaration:
   5682       // We're explicity instantiating a definition for something for which we
   5683       // were previously asked to suppress instantiations. That's fine.
   5684 
   5685       // C++0x [temp.explicit]p4:
   5686       //   For a given set of template parameters, if an explicit instantiation
   5687       //   of a template appears after a declaration of an explicit
   5688       //   specialization for that template, the explicit instantiation has no
   5689       //   effect.
   5690       for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
   5691         // Is there any previous explicit specialization declaration?
   5692         if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
   5693           HasNoEffect = true;
   5694           break;
   5695         }
   5696       }
   5697 
   5698       return false;
   5699 
   5700     case TSK_ExplicitInstantiationDefinition:
   5701       // C++0x [temp.spec]p5:
   5702       //   For a given template and a given set of template-arguments,
   5703       //     - an explicit instantiation definition shall appear at most once
   5704       //       in a program,
   5705       Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
   5706         << PrevDecl;
   5707       Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
   5708            diag::note_previous_explicit_instantiation);
   5709       HasNoEffect = true;
   5710       return false;
   5711     }
   5712   }
   5713 
   5714   llvm_unreachable("Missing specialization/instantiation case?");
   5715 }
   5716 
   5717 /// \brief Perform semantic analysis for the given dependent function
   5718 /// template specialization.  The only possible way to get a dependent
   5719 /// function template specialization is with a friend declaration,
   5720 /// like so:
   5721 ///
   5722 ///   template <class T> void foo(T);
   5723 ///   template <class T> class A {
   5724 ///     friend void foo<>(T);
   5725 ///   };
   5726 ///
   5727 /// There really isn't any useful analysis we can do here, so we
   5728 /// just store the information.
   5729 bool
   5730 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
   5731                    const TemplateArgumentListInfo &ExplicitTemplateArgs,
   5732                                                    LookupResult &Previous) {
   5733   // Remove anything from Previous that isn't a function template in
   5734   // the correct context.
   5735   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
   5736   LookupResult::Filter F = Previous.makeFilter();
   5737   while (F.hasNext()) {
   5738     NamedDecl *D = F.next()->getUnderlyingDecl();
   5739     if (!isa<FunctionTemplateDecl>(D) ||
   5740         !FDLookupContext->InEnclosingNamespaceSetOf(
   5741                               D->getDeclContext()->getRedeclContext()))
   5742       F.erase();
   5743   }
   5744   F.done();
   5745 
   5746   // Should this be diagnosed here?
   5747   if (Previous.empty()) return true;
   5748 
   5749   FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
   5750                                          ExplicitTemplateArgs);
   5751   return false;
   5752 }
   5753 
   5754 /// \brief Perform semantic analysis for the given function template
   5755 /// specialization.
   5756 ///
   5757 /// This routine performs all of the semantic analysis required for an
   5758 /// explicit function template specialization. On successful completion,
   5759 /// the function declaration \p FD will become a function template
   5760 /// specialization.
   5761 ///
   5762 /// \param FD the function declaration, which will be updated to become a
   5763 /// function template specialization.
   5764 ///
   5765 /// \param ExplicitTemplateArgs the explicitly-provided template arguments,
   5766 /// if any. Note that this may be valid info even when 0 arguments are
   5767 /// explicitly provided as in, e.g., \c void sort<>(char*, char*);
   5768 /// as it anyway contains info on the angle brackets locations.
   5769 ///
   5770 /// \param Previous the set of declarations that may be specialized by
   5771 /// this function specialization.
   5772 bool
   5773 Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
   5774                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
   5775                                           LookupResult &Previous) {
   5776   // The set of function template specializations that could match this
   5777   // explicit function template specialization.
   5778   UnresolvedSet<8> Candidates;
   5779 
   5780   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
   5781   for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
   5782          I != E; ++I) {
   5783     NamedDecl *Ovl = (*I)->getUnderlyingDecl();
   5784     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
   5785       // Only consider templates found within the same semantic lookup scope as
   5786       // FD.
   5787       if (!FDLookupContext->InEnclosingNamespaceSetOf(
   5788                                 Ovl->getDeclContext()->getRedeclContext()))
   5789         continue;
   5790 
   5791       // C++ [temp.expl.spec]p11:
   5792       //   A trailing template-argument can be left unspecified in the
   5793       //   template-id naming an explicit function template specialization
   5794       //   provided it can be deduced from the function argument type.
   5795       // Perform template argument deduction to determine whether we may be
   5796       // specializing this template.
   5797       // FIXME: It is somewhat wasteful to build
   5798       TemplateDeductionInfo Info(Context, FD->getLocation());
   5799       FunctionDecl *Specialization = 0;
   5800       if (TemplateDeductionResult TDK
   5801             = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
   5802                                       FD->getType(),
   5803                                       Specialization,
   5804                                       Info)) {
   5805         // FIXME: Template argument deduction failed; record why it failed, so
   5806         // that we can provide nifty diagnostics.
   5807         (void)TDK;
   5808         continue;
   5809       }
   5810 
   5811       // Record this candidate.
   5812       Candidates.addDecl(Specialization, I.getAccess());
   5813     }
   5814   }
   5815 
   5816   // Find the most specialized function template.
   5817   UnresolvedSetIterator Result
   5818     = getMostSpecialized(Candidates.begin(), Candidates.end(),
   5819                          TPOC_Other, 0, FD->getLocation(),
   5820                   PDiag(diag::err_function_template_spec_no_match)
   5821                     << FD->getDeclName(),
   5822                   PDiag(diag::err_function_template_spec_ambiguous)
   5823                     << FD->getDeclName() << (ExplicitTemplateArgs != 0),
   5824                   PDiag(diag::note_function_template_spec_matched));
   5825   if (Result == Candidates.end())
   5826     return true;
   5827 
   5828   // Ignore access information;  it doesn't figure into redeclaration checking.
   5829   FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
   5830 
   5831   FunctionTemplateSpecializationInfo *SpecInfo
   5832     = Specialization->getTemplateSpecializationInfo();
   5833   assert(SpecInfo && "Function template specialization info missing?");
   5834 
   5835   // Note: do not overwrite location info if previous template
   5836   // specialization kind was explicit.
   5837   TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
   5838   if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
   5839     Specialization->setLocation(FD->getLocation());
   5840     // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
   5841     // function can differ from the template declaration with respect to
   5842     // the constexpr specifier.
   5843     Specialization->setConstexpr(FD->isConstexpr());
   5844   }
   5845 
   5846   // FIXME: Check if the prior specialization has a point of instantiation.
   5847   // If so, we have run afoul of .
   5848 
   5849   // If this is a friend declaration, then we're not really declaring
   5850   // an explicit specialization.
   5851   bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
   5852 
   5853   // Check the scope of this explicit specialization.
   5854   if (!isFriend &&
   5855       CheckTemplateSpecializationScope(*this,
   5856                                        Specialization->getPrimaryTemplate(),
   5857                                        Specialization, FD->getLocation(),
   5858                                        false))
   5859     return true;
   5860 
   5861   // C++ [temp.expl.spec]p6:
   5862   //   If a template, a member template or the member of a class template is
   5863   //   explicitly specialized then that specialization shall be declared
   5864   //   before the first use of that specialization that would cause an implicit
   5865   //   instantiation to take place, in every translation unit in which such a
   5866   //   use occurs; no diagnostic is required.
   5867   bool HasNoEffect = false;
   5868   if (!isFriend &&
   5869       CheckSpecializationInstantiationRedecl(FD->getLocation(),
   5870                                              TSK_ExplicitSpecialization,
   5871                                              Specialization,
   5872                                    SpecInfo->getTemplateSpecializationKind(),
   5873                                          SpecInfo->getPointOfInstantiation(),
   5874                                              HasNoEffect))
   5875     return true;
   5876 
   5877   // Mark the prior declaration as an explicit specialization, so that later
   5878   // clients know that this is an explicit specialization.
   5879   if (!isFriend) {
   5880     SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
   5881     MarkUnusedFileScopedDecl(Specialization);
   5882   }
   5883 
   5884   // Turn the given function declaration into a function template
   5885   // specialization, with the template arguments from the previous
   5886   // specialization.
   5887   // Take copies of (semantic and syntactic) template argument lists.
   5888   const TemplateArgumentList* TemplArgs = new (Context)
   5889     TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
   5890   FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
   5891                                         TemplArgs, /*InsertPos=*/0,
   5892                                     SpecInfo->getTemplateSpecializationKind(),
   5893                                         ExplicitTemplateArgs);
   5894   FD->setStorageClass(Specialization->getStorageClass());
   5895 
   5896   // The "previous declaration" for this function template specialization is
   5897   // the prior function template specialization.
   5898   Previous.clear();
   5899   Previous.addDecl(Specialization);
   5900   return false;
   5901 }
   5902 
   5903 /// \brief Perform semantic analysis for the given non-template member
   5904 /// specialization.
   5905 ///
   5906 /// This routine performs all of the semantic analysis required for an
   5907 /// explicit member function specialization. On successful completion,
   5908 /// the function declaration \p FD will become a member function
   5909 /// specialization.
   5910 ///
   5911 /// \param Member the member declaration, which will be updated to become a
   5912 /// specialization.
   5913 ///
   5914 /// \param Previous the set of declarations, one of which may be specialized
   5915 /// by this function specialization;  the set will be modified to contain the
   5916 /// redeclared member.
   5917 bool
   5918 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
   5919   assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
   5920 
   5921   // Try to find the member we are instantiating.
   5922   NamedDecl *Instantiation = 0;
   5923   NamedDecl *InstantiatedFrom = 0;
   5924   MemberSpecializationInfo *MSInfo = 0;
   5925 
   5926   if (Previous.empty()) {
   5927     // Nowhere to look anyway.
   5928   } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
   5929     for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
   5930            I != E; ++I) {
   5931       NamedDecl *D = (*I)->getUnderlyingDecl();
   5932       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
   5933         if (Context.hasSameType(Function->getType(), Method->getType())) {
   5934           Instantiation = Method;
   5935           InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
   5936           MSInfo = Method->getMemberSpecializationInfo();
   5937           break;
   5938         }
   5939       }
   5940     }
   5941   } else if (isa<VarDecl>(Member)) {
   5942     VarDecl *PrevVar;
   5943     if (Previous.isSingleResult() &&
   5944         (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
   5945       if (PrevVar->isStaticDataMember()) {
   5946         Instantiation = PrevVar;
   5947         InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
   5948         MSInfo = PrevVar->getMemberSpecializationInfo();
   5949       }
   5950   } else if (isa<RecordDecl>(Member)) {
   5951     CXXRecordDecl *PrevRecord;
   5952     if (Previous.isSingleResult() &&
   5953         (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
   5954       Instantiation = PrevRecord;
   5955       InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
   5956       MSInfo = PrevRecord->getMemberSpecializationInfo();
   5957     }
   5958   } else if (isa<EnumDecl>(Member)) {
   5959     EnumDecl *PrevEnum;
   5960     if (Previous.isSingleResult() &&
   5961         (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
   5962       Instantiation = PrevEnum;
   5963       InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
   5964       MSInfo = PrevEnum->getMemberSpecializationInfo();
   5965     }
   5966   }
   5967 
   5968   if (!Instantiation) {
   5969     // There is no previous declaration that matches. Since member
   5970     // specializations are always out-of-line, the caller will complain about
   5971     // this mismatch later.
   5972     return false;
   5973   }
   5974 
   5975   // If this is a friend, just bail out here before we start turning
   5976   // things into explicit specializations.
   5977   if (Member->getFriendObjectKind() != Decl::FOK_None) {
   5978     // Preserve instantiation information.
   5979     if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
   5980       cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
   5981                                       cast<CXXMethodDecl>(InstantiatedFrom),
   5982         cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
   5983     } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
   5984       cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
   5985                                       cast<CXXRecordDecl>(InstantiatedFrom),
   5986         cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
   5987     }
   5988 
   5989     Previous.clear();
   5990     Previous.addDecl(Instantiation);
   5991     return false;
   5992   }
   5993 
   5994   // Make sure that this is a specialization of a member.
   5995   if (!InstantiatedFrom) {
   5996     Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
   5997       << Member;
   5998     Diag(Instantiation->getLocation(), diag::note_specialized_decl);
   5999     return true;
   6000   }
   6001 
   6002   // C++ [temp.expl.spec]p6:
   6003   //   If a template, a member template or the member of a class template is
   6004   //   explicitly specialized then that specialization shall be declared
   6005   //   before the first use of that specialization that would cause an implicit
   6006   //   instantiation to take place, in every translation unit in which such a
   6007   //   use occurs; no diagnostic is required.
   6008   assert(MSInfo && "Member specialization info missing?");
   6009 
   6010   bool HasNoEffect = false;
   6011   if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
   6012                                              TSK_ExplicitSpecialization,
   6013                                              Instantiation,
   6014                                      MSInfo->getTemplateSpecializationKind(),
   6015                                            MSInfo->getPointOfInstantiation(),
   6016                                              HasNoEffect))
   6017     return true;
   6018 
   6019   // Check the scope of this explicit specialization.
   6020   if (CheckTemplateSpecializationScope(*this,
   6021                                        InstantiatedFrom,
   6022                                        Instantiation, Member->getLocation(),
   6023                                        false))
   6024     return true;
   6025 
   6026   // Note that this is an explicit instantiation of a member.
   6027   // the original declaration to note that it is an explicit specialization
   6028   // (if it was previously an implicit instantiation). This latter step
   6029   // makes bookkeeping easier.
   6030   if (isa<FunctionDecl>(Member)) {
   6031     FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
   6032     if (InstantiationFunction->getTemplateSpecializationKind() ==
   6033           TSK_ImplicitInstantiation) {
   6034       InstantiationFunction->setTemplateSpecializationKind(
   6035                                                   TSK_ExplicitSpecialization);
   6036       InstantiationFunction->setLocation(Member->getLocation());
   6037     }
   6038 
   6039     cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
   6040                                         cast<CXXMethodDecl>(InstantiatedFrom),
   6041                                                   TSK_ExplicitSpecialization);
   6042     MarkUnusedFileScopedDecl(InstantiationFunction);
   6043   } else if (isa<VarDecl>(Member)) {
   6044     VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
   6045     if (InstantiationVar->getTemplateSpecializationKind() ==
   6046           TSK_ImplicitInstantiation) {
   6047       InstantiationVar->setTemplateSpecializationKind(
   6048                                                   TSK_ExplicitSpecialization);
   6049       InstantiationVar->setLocation(Member->getLocation());
   6050     }
   6051 
   6052     Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
   6053                                                 cast<VarDecl>(InstantiatedFrom),
   6054                                                 TSK_ExplicitSpecialization);
   6055     MarkUnusedFileScopedDecl(InstantiationVar);
   6056   } else if (isa<CXXRecordDecl>(Member)) {
   6057     CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
   6058     if (InstantiationClass->getTemplateSpecializationKind() ==
   6059           TSK_ImplicitInstantiation) {
   6060       InstantiationClass->setTemplateSpecializationKind(
   6061                                                    TSK_ExplicitSpecialization);
   6062       InstantiationClass->setLocation(Member->getLocation());
   6063     }
   6064 
   6065     cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
   6066                                         cast<CXXRecordDecl>(InstantiatedFrom),
   6067                                                    TSK_ExplicitSpecialization);
   6068   } else {
   6069     assert(isa<EnumDecl>(Member) && "Only member enums remain");
   6070     EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation);
   6071     if (InstantiationEnum->getTemplateSpecializationKind() ==
   6072           TSK_ImplicitInstantiation) {
   6073       InstantiationEnum->setTemplateSpecializationKind(
   6074                                                    TSK_ExplicitSpecialization);
   6075       InstantiationEnum->setLocation(Member->getLocation());
   6076     }
   6077 
   6078     cast<EnumDecl>(Member)->setInstantiationOfMemberEnum(
   6079         cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
   6080   }
   6081 
   6082   // Save the caller the trouble of having to figure out which declaration
   6083   // this specialization matches.
   6084   Previous.clear();
   6085   Previous.addDecl(Instantiation);
   6086   return false;
   6087 }
   6088 
   6089 /// \brief Check the scope of an explicit instantiation.
   6090 ///
   6091 /// \returns true if a serious error occurs, false otherwise.
   6092 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
   6093                                             SourceLocation InstLoc,
   6094                                             bool WasQualifiedName) {
   6095   DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
   6096   DeclContext *CurContext = S.CurContext->getRedeclContext();
   6097 
   6098   if (CurContext->isRecord()) {
   6099     S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
   6100       << D;
   6101     return true;
   6102   }
   6103 
   6104   // C++11 [temp.explicit]p3:
   6105   //   An explicit instantiation shall appear in an enclosing namespace of its
   6106   //   template. If the name declared in the explicit instantiation is an
   6107   //   unqualified name, the explicit instantiation shall appear in the
   6108   //   namespace where its template is declared or, if that namespace is inline
   6109   //   (7.3.1), any namespace from its enclosing namespace set.
   6110   //
   6111   // This is DR275, which we do not retroactively apply to C++98/03.
   6112   if (WasQualifiedName) {
   6113     if (CurContext->Encloses(OrigContext))
   6114       return false;
   6115   } else {
   6116     if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
   6117       return false;
   6118   }
   6119 
   6120   if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
   6121     if (WasQualifiedName)
   6122       S.Diag(InstLoc,
   6123              S.getLangOpts().CPlusPlus0x?
   6124                diag::err_explicit_instantiation_out_of_scope :
   6125                diag::warn_explicit_instantiation_out_of_scope_0x)
   6126         << D << NS;
   6127     else
   6128       S.Diag(InstLoc,
   6129              S.getLangOpts().CPlusPlus0x?
   6130                diag::err_explicit_instantiation_unqualified_wrong_namespace :
   6131                diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
   6132         << D << NS;
   6133   } else
   6134     S.Diag(InstLoc,
   6135            S.getLangOpts().CPlusPlus0x?
   6136              diag::err_explicit_instantiation_must_be_global :
   6137              diag::warn_explicit_instantiation_must_be_global_0x)
   6138       << D;
   6139   S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
   6140   return false;
   6141 }
   6142 
   6143 /// \brief Determine whether the given scope specifier has a template-id in it.
   6144 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
   6145   if (!SS.isSet())
   6146     return false;
   6147 
   6148   // C++11 [temp.explicit]p3:
   6149   //   If the explicit instantiation is for a member function, a member class
   6150   //   or a static data member of a class template specialization, the name of
   6151   //   the class template specialization in the qualified-id for the member
   6152   //   name shall be a simple-template-id.
   6153   //
   6154   // C++98 has the same restriction, just worded differently.
   6155   for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
   6156        NNS; NNS = NNS->getPrefix())
   6157     if (const Type *T = NNS->getAsType())
   6158       if (isa<TemplateSpecializationType>(T))
   6159         return true;
   6160 
   6161   return false;
   6162 }
   6163 
   6164 // Explicit instantiation of a class template specialization
   6165 DeclResult
   6166 Sema::ActOnExplicitInstantiation(Scope *S,
   6167                                  SourceLocation ExternLoc,
   6168                                  SourceLocation TemplateLoc,
   6169                                  unsigned TagSpec,
   6170                                  SourceLocation KWLoc,
   6171                                  const CXXScopeSpec &SS,
   6172                                  TemplateTy TemplateD,
   6173                                  SourceLocation TemplateNameLoc,
   6174                                  SourceLocation LAngleLoc,
   6175                                  ASTTemplateArgsPtr TemplateArgsIn,
   6176                                  SourceLocation RAngleLoc,
   6177                                  AttributeList *Attr) {
   6178   // Find the class template we're specializing
   6179   TemplateName Name = TemplateD.getAsVal<TemplateName>();
   6180   ClassTemplateDecl *ClassTemplate
   6181     = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
   6182 
   6183   // Check that the specialization uses the same tag kind as the
   6184   // original template.
   6185   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
   6186   assert(Kind != TTK_Enum &&
   6187          "Invalid enum tag in class template explicit instantiation!");
   6188   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
   6189                                     Kind, /*isDefinition*/false, KWLoc,
   6190                                     *ClassTemplate->getIdentifier())) {
   6191     Diag(KWLoc, diag::err_use_with_wrong_tag)
   6192       << ClassTemplate
   6193       << FixItHint::CreateReplacement(KWLoc,
   6194                             ClassTemplate->getTemplatedDecl()->getKindName());
   6195     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
   6196          diag::note_previous_use);
   6197     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
   6198   }
   6199 
   6200   // C++0x [temp.explicit]p2:
   6201   //   There are two forms of explicit instantiation: an explicit instantiation
   6202   //   definition and an explicit instantiation declaration. An explicit
   6203   //   instantiation declaration begins with the extern keyword. [...]
   6204   TemplateSpecializationKind TSK
   6205     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
   6206                            : TSK_ExplicitInstantiationDeclaration;
   6207 
   6208   // Translate the parser's template argument list in our AST format.
   6209   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
   6210   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
   6211 
   6212   // Check that the template argument list is well-formed for this
   6213   // template.
   6214   SmallVector<TemplateArgument, 4> Converted;
   6215   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
   6216                                 TemplateArgs, false, Converted))
   6217     return true;
   6218 
   6219   // Find the class template specialization declaration that
   6220   // corresponds to these arguments.
   6221   void *InsertPos = 0;
   6222   ClassTemplateSpecializationDecl *PrevDecl
   6223     = ClassTemplate->findSpecialization(Converted.data(),
   6224                                         Converted.size(), InsertPos);
   6225 
   6226   TemplateSpecializationKind PrevDecl_TSK
   6227     = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
   6228 
   6229   // C++0x [temp.explicit]p2:
   6230   //   [...] An explicit instantiation shall appear in an enclosing
   6231   //   namespace of its template. [...]
   6232   //
   6233   // This is C++ DR 275.
   6234   if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
   6235                                       SS.isSet()))
   6236     return true;
   6237 
   6238   ClassTemplateSpecializationDecl *Specialization = 0;
   6239 
   6240   bool HasNoEffect = false;
   6241   if (PrevDecl) {
   6242     if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
   6243                                                PrevDecl, PrevDecl_TSK,
   6244                                             PrevDecl->getPointOfInstantiation(),
   6245                                                HasNoEffect))
   6246       return PrevDecl;
   6247 
   6248     // Even though HasNoEffect == true means that this explicit instantiation
   6249     // has no effect on semantics, we go on to put its syntax in the AST.
   6250 
   6251     if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
   6252         PrevDecl_TSK == TSK_Undeclared) {
   6253       // Since the only prior class template specialization with these
   6254       // arguments was referenced but not declared, reuse that
   6255       // declaration node as our own, updating the source location
   6256       // for the template name to reflect our new declaration.
   6257       // (Other source locations will be updated later.)
   6258       Specialization = PrevDecl;
   6259       Specialization->setLocation(TemplateNameLoc);
   6260       PrevDecl = 0;
   6261     }
   6262   }
   6263 
   6264   if (!Specialization) {
   6265     // Create a new class template specialization declaration node for
   6266     // this explicit specialization.
   6267     Specialization
   6268       = ClassTemplateSpecializationDecl::Create(Context, Kind,
   6269                                              ClassTemplate->getDeclContext(),
   6270                                                 KWLoc, TemplateNameLoc,
   6271                                                 ClassTemplate,
   6272                                                 Converted.data(),
   6273                                                 Converted.size(),
   6274                                                 PrevDecl);
   6275     SetNestedNameSpecifier(Specialization, SS);
   6276 
   6277     if (!HasNoEffect && !PrevDecl) {
   6278       // Insert the new specialization.
   6279       ClassTemplate->AddSpecialization(Specialization, InsertPos);
   6280     }
   6281   }
   6282 
   6283   // Build the fully-sugared type for this explicit instantiation as
   6284   // the user wrote in the explicit instantiation itself. This means
   6285   // that we'll pretty-print the type retrieved from the
   6286   // specialization's declaration the way that the user actually wrote
   6287   // the explicit instantiation, rather than formatting the name based
   6288   // on the "canonical" representation used to store the template
   6289   // arguments in the specialization.
   6290   TypeSourceInfo *WrittenTy
   6291     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
   6292                                                 TemplateArgs,
   6293                                   Context.getTypeDeclType(Specialization));
   6294   Specialization->setTypeAsWritten(WrittenTy);
   6295   TemplateArgsIn.release();
   6296 
   6297   // Set source locations for keywords.
   6298   Specialization->setExternLoc(ExternLoc);
   6299   Specialization->setTemplateKeywordLoc(TemplateLoc);
   6300 
   6301   if (Attr)
   6302     ProcessDeclAttributeList(S, Specialization, Attr);
   6303 
   6304   // Add the explicit instantiation into its lexical context. However,
   6305   // since explicit instantiations are never found by name lookup, we
   6306   // just put it into the declaration context directly.
   6307   Specialization->setLexicalDeclContext(CurContext);
   6308   CurContext->addDecl(Specialization);
   6309 
   6310   // Syntax is now OK, so return if it has no other effect on semantics.
   6311   if (HasNoEffect) {
   6312     // Set the template specialization kind.
   6313     Specialization->setTemplateSpecializationKind(TSK);
   6314     return Specialization;
   6315   }
   6316 
   6317   // C++ [temp.explicit]p3:
   6318   //   A definition of a class template or class member template
   6319   //   shall be in scope at the point of the explicit instantiation of
   6320   //   the class template or class member template.
   6321   //
   6322   // This check comes when we actually try to perform the
   6323   // instantiation.
   6324   ClassTemplateSpecializationDecl *Def
   6325     = cast_or_null<ClassTemplateSpecializationDecl>(
   6326                                               Specialization->getDefinition());
   6327   if (!Def)
   6328     InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
   6329   else if (TSK == TSK_ExplicitInstantiationDefinition) {
   6330     MarkVTableUsed(TemplateNameLoc, Specialization, true);
   6331     Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
   6332   }
   6333 
   6334   // Instantiate the members of this class template specialization.
   6335   Def = cast_or_null<ClassTemplateSpecializationDecl>(
   6336                                        Specialization->getDefinition());
   6337   if (Def) {
   6338     TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
   6339 
   6340     // Fix a TSK_ExplicitInstantiationDeclaration followed by a
   6341     // TSK_ExplicitInstantiationDefinition
   6342     if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
   6343         TSK == TSK_ExplicitInstantiationDefinition)
   6344       Def->setTemplateSpecializationKind(TSK);
   6345 
   6346     InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
   6347   }
   6348 
   6349   // Set the template specialization kind.
   6350   Specialization->setTemplateSpecializationKind(TSK);
   6351   return Specialization;
   6352 }
   6353 
   6354 // Explicit instantiation of a member class of a class template.
   6355 DeclResult
   6356 Sema::ActOnExplicitInstantiation(Scope *S,
   6357                                  SourceLocation ExternLoc,
   6358                                  SourceLocation TemplateLoc,
   6359                                  unsigned TagSpec,
   6360                                  SourceLocation KWLoc,
   6361                                  CXXScopeSpec &SS,
   6362                                  IdentifierInfo *Name,
   6363                                  SourceLocation NameLoc,
   6364                                  AttributeList *Attr) {
   6365 
   6366   bool Owned = false;
   6367   bool IsDependent = false;
   6368   Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
   6369                         KWLoc, SS, Name, NameLoc, Attr, AS_none,
   6370                         /*ModulePrivateLoc=*/SourceLocation(),
   6371                         MultiTemplateParamsArg(*this, 0, 0),
   6372                         Owned, IsDependent, SourceLocation(), false,
   6373                         TypeResult());
   6374   assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
   6375 
   6376   if (!TagD)
   6377     return true;
   6378 
   6379   TagDecl *Tag = cast<TagDecl>(TagD);
   6380   assert(!Tag->isEnum() && "shouldn't see enumerations here");
   6381 
   6382   if (Tag->isInvalidDecl())
   6383     return true;
   6384 
   6385   CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
   6386   CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
   6387   if (!Pattern) {
   6388     Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
   6389       << Context.getTypeDeclType(Record);
   6390     Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
   6391     return true;
   6392   }
   6393 
   6394   // C++0x [temp.explicit]p2:
   6395   //   If the explicit instantiation is for a class or member class, the
   6396   //   elaborated-type-specifier in the declaration shall include a
   6397   //   simple-template-id.
   6398   //
   6399   // C++98 has the same restriction, just worded differently.
   6400   if (!ScopeSpecifierHasTemplateId(SS))
   6401     Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
   6402       << Record << SS.getRange();
   6403 
   6404   // C++0x [temp.explicit]p2:
   6405   //   There are two forms of explicit instantiation: an explicit instantiation
   6406   //   definition and an explicit instantiation declaration. An explicit
   6407   //   instantiation declaration begins with the extern keyword. [...]
   6408   TemplateSpecializationKind TSK
   6409     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
   6410                            : TSK_ExplicitInstantiationDeclaration;
   6411 
   6412   // C++0x [temp.explicit]p2:
   6413   //   [...] An explicit instantiation shall appear in an enclosing
   6414   //   namespace of its template. [...]
   6415   //
   6416   // This is C++ DR 275.
   6417   CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
   6418 
   6419   // Verify that it is okay to explicitly instantiate here.
   6420   CXXRecordDecl *PrevDecl
   6421     = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
   6422   if (!PrevDecl && Record->getDefinition())
   6423     PrevDecl = Record;
   6424   if (PrevDecl) {
   6425     MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
   6426     bool HasNoEffect = false;
   6427     assert(MSInfo && "No member specialization information?");
   6428     if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
   6429                                                PrevDecl,
   6430                                         MSInfo->getTemplateSpecializationKind(),
   6431                                              MSInfo->getPointOfInstantiation(),
   6432                                                HasNoEffect))
   6433       return true;
   6434     if (HasNoEffect)
   6435       return TagD;
   6436   }
   6437 
   6438   CXXRecordDecl *RecordDef
   6439     = cast_or_null<CXXRecordDecl>(Record->getDefinition());
   6440   if (!RecordDef) {
   6441     // C++ [temp.explicit]p3:
   6442     //   A definition of a member class of a class template shall be in scope
   6443     //   at the point of an explicit instantiation of the member class.
   6444     CXXRecordDecl *Def
   6445       = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
   6446     if (!Def) {
   6447       Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
   6448         << 0 << Record->getDeclName() << Record->getDeclContext();
   6449       Diag(Pattern->getLocation(), diag::note_forward_declaration)
   6450         << Pattern;
   6451       return true;
   6452     } else {
   6453       if (InstantiateClass(NameLoc, Record, Def,
   6454                            getTemplateInstantiationArgs(Record),
   6455                            TSK))
   6456         return true;
   6457 
   6458       RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
   6459       if (!RecordDef)
   6460         return true;
   6461     }
   6462   }
   6463 
   6464   // Instantiate all of the members of the class.
   6465   InstantiateClassMembers(NameLoc, RecordDef,
   6466                           getTemplateInstantiationArgs(Record), TSK);
   6467 
   6468   if (TSK == TSK_ExplicitInstantiationDefinition)
   6469     MarkVTableUsed(NameLoc, RecordDef, true);
   6470 
   6471   // FIXME: We don't have any representation for explicit instantiations of
   6472   // member classes. Such a representation is not needed for compilation, but it
   6473   // should be available for clients that want to see all of the declarations in
   6474   // the source code.
   6475   return TagD;
   6476 }
   6477 
   6478 DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
   6479                                             SourceLocation ExternLoc,
   6480                                             SourceLocation TemplateLoc,
   6481                                             Declarator &D) {
   6482   // Explicit instantiations always require a name.
   6483   // TODO: check if/when DNInfo should replace Name.
   6484   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
   6485   DeclarationName Name = NameInfo.getName();
   6486   if (!Name) {
   6487     if (!D.isInvalidType())
   6488       Diag(D.getDeclSpec().getLocStart(),
   6489            diag::err_explicit_instantiation_requires_name)
   6490         << D.getDeclSpec().getSourceRange()
   6491         << D.getSourceRange();
   6492 
   6493     return true;
   6494   }
   6495 
   6496   // The scope passed in may not be a decl scope.  Zip up the scope tree until
   6497   // we find one that is.
   6498   while ((S->getFlags() & Scope::DeclScope) == 0 ||
   6499          (S->getFlags() & Scope::TemplateParamScope) != 0)
   6500     S = S->getParent();
   6501 
   6502   // Determine the type of the declaration.
   6503   TypeSourceInfo *T = GetTypeForDeclarator(D, S);
   6504   QualType R = T->getType();
   6505   if (R.isNull())
   6506     return true;
   6507 
   6508   // C++ [dcl.stc]p1:
   6509   //   A storage-class-specifier shall not be specified in [...] an explicit
   6510   //   instantiation (14.7.2) directive.
   6511   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
   6512     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
   6513       << Name;
   6514     return true;
   6515   } else if (D.getDeclSpec().getStorageClassSpec()
   6516                                                 != DeclSpec::SCS_unspecified) {
   6517     // Complain about then remove the storage class specifier.
   6518     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
   6519       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
   6520 
   6521     D.getMutableDeclSpec().ClearStorageClassSpecs();
   6522   }
   6523 
   6524   // C++0x [temp.explicit]p1:
   6525   //   [...] An explicit instantiation of a function template shall not use the
   6526   //   inline or constexpr specifiers.
   6527   // Presumably, this also applies to member functions of class templates as
   6528   // well.
   6529   if (D.getDeclSpec().isInlineSpecified())
   6530     Diag(D.getDeclSpec().getInlineSpecLoc(),
   6531          getLangOpts().CPlusPlus0x ?
   6532            diag::err_explicit_instantiation_inline :
   6533            diag::warn_explicit_instantiation_inline_0x)
   6534       << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
   6535   if (D.getDeclSpec().isConstexprSpecified())
   6536     // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
   6537     // not already specified.
   6538     Diag(D.getDeclSpec().getConstexprSpecLoc(),
   6539          diag::err_explicit_instantiation_constexpr);
   6540 
   6541   // C++0x [temp.explicit]p2:
   6542   //   There are two forms of explicit instantiation: an explicit instantiation
   6543   //   definition and an explicit instantiation declaration. An explicit
   6544   //   instantiation declaration begins with the extern keyword. [...]
   6545   TemplateSpecializationKind TSK
   6546     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
   6547                            : TSK_ExplicitInstantiationDeclaration;
   6548 
   6549   LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
   6550   LookupParsedName(Previous, S, &D.getCXXScopeSpec());
   6551 
   6552   if (!R->isFunctionType()) {
   6553     // C++ [temp.explicit]p1:
   6554     //   A [...] static data member of a class template can be explicitly
   6555     //   instantiated from the member definition associated with its class
   6556     //   template.
   6557     if (Previous.isAmbiguous())
   6558       return true;
   6559 
   6560     VarDecl *Prev = Previous.getAsSingle<VarDecl>();
   6561     if (!Prev || !Prev->isStaticDataMember()) {
   6562       // We expect to see a data data member here.
   6563       Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
   6564         << Name;
   6565       for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
   6566            P != PEnd; ++P)
   6567         Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
   6568       return true;
   6569     }
   6570 
   6571     if (!Prev->getInstantiatedFromStaticDataMember()) {
   6572       // FIXME: Check for explicit specialization?
   6573       Diag(D.getIdentifierLoc(),
   6574            diag::err_explicit_instantiation_data_member_not_instantiated)
   6575         << Prev;
   6576       Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
   6577       // FIXME: Can we provide a note showing where this was declared?
   6578       return true;
   6579     }
   6580 
   6581     // C++0x [temp.explicit]p2:
   6582     //   If the explicit instantiation is for a member function, a member class
   6583     //   or a static data member of a class template specialization, the name of
   6584     //   the class template specialization in the qualified-id for the member
   6585     //   name shall be a simple-template-id.
   6586     //
   6587     // C++98 has the same restriction, just worded differently.
   6588     if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
   6589       Diag(D.getIdentifierLoc(),
   6590            diag::ext_explicit_instantiation_without_qualified_id)
   6591         << Prev << D.getCXXScopeSpec().getRange();
   6592 
   6593     // Check the scope of this explicit instantiation.
   6594     CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
   6595 
   6596     // Verify that it is okay to explicitly instantiate here.
   6597     MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
   6598     assert(MSInfo && "Missing static data member specialization info?");
   6599     bool HasNoEffect = false;
   6600     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
   6601                                         MSInfo->getTemplateSpecializationKind(),
   6602                                               MSInfo->getPointOfInstantiation(),
   6603                                                HasNoEffect))
   6604       return true;
   6605     if (HasNoEffect)
   6606       return (Decl*) 0;
   6607 
   6608     // Instantiate static data member.
   6609     Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
   6610     if (TSK == TSK_ExplicitInstantiationDefinition)
   6611       InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
   6612 
   6613     // FIXME: Create an ExplicitInstantiation node?
   6614     return (Decl*) 0;
   6615   }
   6616 
   6617   // If the declarator is a template-id, translate the parser's template
   6618   // argument list into our AST format.
   6619   bool HasExplicitTemplateArgs = false;
   6620   TemplateArgumentListInfo TemplateArgs;
   6621   if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
   6622     TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
   6623     TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
   6624     TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
   6625     ASTTemplateArgsPtr TemplateArgsPtr(*this,
   6626                                        TemplateId->getTemplateArgs(),
   6627                                        TemplateId->NumArgs);
   6628     translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
   6629     HasExplicitTemplateArgs = true;
   6630     TemplateArgsPtr.release();
   6631   }
   6632 
   6633   // C++ [temp.explicit]p1:
   6634   //   A [...] function [...] can be explicitly instantiated from its template.
   6635   //   A member function [...] of a class template can be explicitly
   6636   //  instantiated from the member definition associated with its class
   6637   //  template.
   6638   UnresolvedSet<8> Matches;
   6639   for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
   6640        P != PEnd; ++P) {
   6641     NamedDecl *Prev = *P;
   6642     if (!HasExplicitTemplateArgs) {
   6643       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
   6644         if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
   6645           Matches.clear();
   6646 
   6647           Matches.addDecl(Method, P.getAccess());
   6648           if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
   6649             break;
   6650         }
   6651       }
   6652     }
   6653 
   6654     FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
   6655     if (!FunTmpl)
   6656       continue;
   6657 
   6658     TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
   6659     FunctionDecl *Specialization = 0;
   6660     if (TemplateDeductionResult TDK
   6661           = DeduceTemplateArguments(FunTmpl,
   6662                                (HasExplicitTemplateArgs ? &TemplateArgs : 0),
   6663                                     R, Specialization, Info)) {
   6664       // FIXME: Keep track of almost-matches?
   6665       (void)TDK;
   6666       continue;
   6667     }
   6668 
   6669     Matches.addDecl(Specialization, P.getAccess());
   6670   }
   6671 
   6672   // Find the most specialized function template specialization.
   6673   UnresolvedSetIterator Result
   6674     = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0,
   6675                          D.getIdentifierLoc(),
   6676                      PDiag(diag::err_explicit_instantiation_not_known) << Name,
   6677                      PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
   6678                          PDiag(diag::note_explicit_instantiation_candidate));
   6679 
   6680   if (Result == Matches.end())
   6681     return true;
   6682 
   6683   // Ignore access control bits, we don't need them for redeclaration checking.
   6684   FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
   6685 
   6686   if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
   6687     Diag(D.getIdentifierLoc(),
   6688          diag::err_explicit_instantiation_member_function_not_instantiated)
   6689       << Specialization
   6690       << (Specialization->getTemplateSpecializationKind() ==
   6691           TSK_ExplicitSpecialization);
   6692     Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
   6693     return true;
   6694   }
   6695 
   6696   FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
   6697   if (!PrevDecl && Specialization->isThisDeclarationADefinition())
   6698     PrevDecl = Specialization;
   6699 
   6700   if (PrevDecl) {
   6701     bool HasNoEffect = false;
   6702     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
   6703                                                PrevDecl,
   6704                                      PrevDecl->getTemplateSpecializationKind(),
   6705                                           PrevDecl->getPointOfInstantiation(),
   6706                                                HasNoEffect))
   6707       return true;
   6708 
   6709     // FIXME: We may still want to build some representation of this
   6710     // explicit specialization.
   6711     if (HasNoEffect)
   6712       return (Decl*) 0;
   6713   }
   6714 
   6715   Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
   6716   AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
   6717   if (Attr)
   6718     ProcessDeclAttributeList(S, Specialization, Attr);
   6719 
   6720   if (TSK == TSK_ExplicitInstantiationDefinition)
   6721     InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
   6722 
   6723   // C++0x [temp.explicit]p2:
   6724   //   If the explicit instantiation is for a member function, a member class
   6725   //   or a static data member of a class template specialization, the name of
   6726   //   the class template specialization in the qualified-id for the member
   6727   //   name shall be a simple-template-id.
   6728   //
   6729   // C++98 has the same restriction, just worded differently.
   6730   FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
   6731   if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
   6732       D.getCXXScopeSpec().isSet() &&
   6733       !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
   6734     Diag(D.getIdentifierLoc(),
   6735          diag::ext_explicit_instantiation_without_qualified_id)
   6736     << Specialization << D.getCXXScopeSpec().getRange();
   6737 
   6738   CheckExplicitInstantiationScope(*this,
   6739                    FunTmpl? (NamedDecl *)FunTmpl
   6740                           : Specialization->getInstantiatedFromMemberFunction(),
   6741                                   D.getIdentifierLoc(),
   6742                                   D.getCXXScopeSpec().isSet());
   6743 
   6744   // FIXME: Create some kind of ExplicitInstantiationDecl here.
   6745   return (Decl*) 0;
   6746 }
   6747 
   6748 TypeResult
   6749 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
   6750                         const CXXScopeSpec &SS, IdentifierInfo *Name,
   6751                         SourceLocation TagLoc, SourceLocation NameLoc) {
   6752   // This has to hold, because SS is expected to be defined.
   6753   assert(Name && "Expected a name in a dependent tag");
   6754 
   6755   NestedNameSpecifier *NNS
   6756     = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
   6757   if (!NNS)
   6758     return true;
   6759 
   6760   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
   6761 
   6762   if (TUK == TUK_Declaration || TUK == TUK_Definition) {
   6763     Diag(NameLoc, diag::err_dependent_tag_decl)
   6764       << (TUK == TUK_Definition) << Kind << SS.getRange();
   6765     return true;
   6766   }
   6767 
   6768   // Create the resulting type.
   6769   ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
   6770   QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
   6771 
   6772   // Create type-source location information for this type.
   6773   TypeLocBuilder TLB;
   6774   DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
   6775   TL.setElaboratedKeywordLoc(TagLoc);
   6776   TL.setQualifierLoc(SS.getWithLocInContext(Context));
   6777   TL.setNameLoc(NameLoc);
   6778   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
   6779 }
   6780 
   6781 TypeResult
   6782 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
   6783                         const CXXScopeSpec &SS, const IdentifierInfo &II,
   6784                         SourceLocation IdLoc) {
   6785   if (SS.isInvalid())
   6786     return true;
   6787 
   6788   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
   6789     Diag(TypenameLoc,
   6790          getLangOpts().CPlusPlus0x ?
   6791            diag::warn_cxx98_compat_typename_outside_of_template :
   6792            diag::ext_typename_outside_of_template)
   6793       << FixItHint::CreateRemoval(TypenameLoc);
   6794 
   6795   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
   6796   QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
   6797                                  TypenameLoc, QualifierLoc, II, IdLoc);
   6798   if (T.isNull())
   6799     return true;
   6800 
   6801   TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
   6802   if (isa<DependentNameType>(T)) {
   6803     DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
   6804     TL.setElaboratedKeywordLoc(TypenameLoc);
   6805     TL.setQualifierLoc(QualifierLoc);
   6806     TL.setNameLoc(IdLoc);
   6807   } else {
   6808     ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
   6809     TL.setElaboratedKeywordLoc(TypenameLoc);
   6810     TL.setQualifierLoc(QualifierLoc);
   6811     cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
   6812   }
   6813 
   6814   return CreateParsedType(T, TSI);
   6815 }
   6816 
   6817 TypeResult
   6818 Sema::ActOnTypenameType(Scope *S,
   6819                         SourceLocation TypenameLoc,
   6820                         const CXXScopeSpec &SS,
   6821                         SourceLocation TemplateKWLoc,
   6822                         TemplateTy TemplateIn,
   6823                         SourceLocation TemplateNameLoc,
   6824                         SourceLocation LAngleLoc,
   6825                         ASTTemplateArgsPtr TemplateArgsIn,
   6826                         SourceLocation RAngleLoc) {
   6827   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
   6828     Diag(TypenameLoc,
   6829          getLangOpts().CPlusPlus0x ?
   6830            diag::warn_cxx98_compat_typename_outside_of_template :
   6831            diag::ext_typename_outside_of_template)
   6832       << FixItHint::CreateRemoval(TypenameLoc);
   6833 
   6834   // Translate the parser's template argument list in our AST format.
   6835   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
   6836   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
   6837 
   6838   TemplateName Template = TemplateIn.get();
   6839   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
   6840     // Construct a dependent template specialization type.
   6841     assert(DTN && "dependent template has non-dependent name?");
   6842     assert(DTN->getQualifier()
   6843            == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
   6844     QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
   6845                                                           DTN->getQualifier(),
   6846                                                           DTN->getIdentifier(),
   6847                                                                 TemplateArgs);
   6848 
   6849     // Create source-location information for this type.
   6850     TypeLocBuilder Builder;
   6851     DependentTemplateSpecializationTypeLoc SpecTL
   6852     = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
   6853     SpecTL.setElaboratedKeywordLoc(TypenameLoc);
   6854     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
   6855     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
   6856     SpecTL.setTemplateNameLoc(TemplateNameLoc);
   6857     SpecTL.setLAngleLoc(LAngleLoc);
   6858     SpecTL.setRAngleLoc(RAngleLoc);
   6859     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
   6860       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
   6861     return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
   6862   }
   6863 
   6864   QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
   6865   if (T.isNull())
   6866     return true;
   6867 
   6868   // Provide source-location information for the template specialization type.
   6869   TypeLocBuilder Builder;
   6870   TemplateSpecializationTypeLoc SpecTL
   6871     = Builder.push<TemplateSpecializationTypeLoc>(T);
   6872   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
   6873   SpecTL.setTemplateNameLoc(TemplateNameLoc);
   6874   SpecTL.setLAngleLoc(LAngleLoc);
   6875   SpecTL.setRAngleLoc(RAngleLoc);
   6876   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
   6877     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
   6878 
   6879   T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
   6880   ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
   6881   TL.setElaboratedKeywordLoc(TypenameLoc);
   6882   TL.setQualifierLoc(SS.getWithLocInContext(Context));
   6883 
   6884   TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
   6885   return CreateParsedType(T, TSI);
   6886 }
   6887 
   6888 
   6889 /// \brief Build the type that describes a C++ typename specifier,
   6890 /// e.g., "typename T::type".
   6891 QualType
   6892 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
   6893                         SourceLocation KeywordLoc,
   6894                         NestedNameSpecifierLoc QualifierLoc,
   6895                         const IdentifierInfo &II,
   6896                         SourceLocation IILoc) {
   6897   CXXScopeSpec SS;
   6898   SS.Adopt(QualifierLoc);
   6899 
   6900   DeclContext *Ctx = computeDeclContext(SS);
   6901   if (!Ctx) {
   6902     // If the nested-name-specifier is dependent and couldn't be
   6903     // resolved to a type, build a typename type.
   6904     assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
   6905     return Context.getDependentNameType(Keyword,
   6906                                         QualifierLoc.getNestedNameSpecifier(),
   6907                                         &II);
   6908   }
   6909 
   6910   // If the nested-name-specifier refers to the current instantiation,
   6911   // the "typename" keyword itself is superfluous. In C++03, the
   6912   // program is actually ill-formed. However, DR 382 (in C++0x CD1)
   6913   // allows such extraneous "typename" keywords, and we retroactively
   6914   // apply this DR to C++03 code with only a warning. In any case we continue.
   6915 
   6916   if (RequireCompleteDeclContext(SS, Ctx))
   6917     return QualType();
   6918 
   6919   DeclarationName Name(&II);
   6920   LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
   6921   LookupQualifiedName(Result, Ctx);
   6922   unsigned DiagID = 0;
   6923   Decl *Referenced = 0;
   6924   switch (Result.getResultKind()) {
   6925   case LookupResult::NotFound:
   6926     DiagID = diag::err_typename_nested_not_found;
   6927     break;
   6928 
   6929   case LookupResult::FoundUnresolvedValue: {
   6930     // We found a using declaration that is a value. Most likely, the using
   6931     // declaration itself is meant to have the 'typename' keyword.
   6932     SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
   6933                           IILoc);
   6934     Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
   6935       << Name << Ctx << FullRange;
   6936     if (UnresolvedUsingValueDecl *Using
   6937           = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
   6938       SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
   6939       Diag(Loc, diag::note_using_value_decl_missing_typename)
   6940         << FixItHint::CreateInsertion(Loc, "typename ");
   6941     }
   6942   }
   6943   // Fall through to create a dependent typename type, from which we can recover
   6944   // better.
   6945 
   6946   case LookupResult::NotFoundInCurrentInstantiation:
   6947     // Okay, it's a member of an unknown instantiation.
   6948     return Context.getDependentNameType(Keyword,
   6949                                         QualifierLoc.getNestedNameSpecifier(),
   6950                                         &II);
   6951 
   6952   case LookupResult::Found:
   6953     if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
   6954       // We found a type. Build an ElaboratedType, since the
   6955       // typename-specifier was just sugar.
   6956       return Context.getElaboratedType(ETK_Typename,
   6957                                        QualifierLoc.getNestedNameSpecifier(),
   6958                                        Context.getTypeDeclType(Type));
   6959     }
   6960 
   6961     DiagID = diag::err_typename_nested_not_type;
   6962     Referenced = Result.getFoundDecl();
   6963     break;
   6964 
   6965   case LookupResult::FoundOverloaded:
   6966     DiagID = diag::err_typename_nested_not_type;
   6967     Referenced = *Result.begin();
   6968     break;
   6969 
   6970   case LookupResult::Ambiguous:
   6971     return QualType();
   6972   }
   6973 
   6974   // If we get here, it's because name lookup did not find a
   6975   // type. Emit an appropriate diagnostic and return an error.
   6976   SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
   6977                         IILoc);
   6978   Diag(IILoc, DiagID) << FullRange << Name << Ctx;
   6979   if (Referenced)
   6980     Diag(Referenced->getLocation(), diag::note_typename_refers_here)
   6981       << Name;
   6982   return QualType();
   6983 }
   6984 
   6985 namespace {
   6986   // See Sema::RebuildTypeInCurrentInstantiation
   6987   class CurrentInstantiationRebuilder
   6988     : public TreeTransform<CurrentInstantiationRebuilder> {
   6989     SourceLocation Loc;
   6990     DeclarationName Entity;
   6991 
   6992   public:
   6993     typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
   6994 
   6995     CurrentInstantiationRebuilder(Sema &SemaRef,
   6996                                   SourceLocation Loc,
   6997                                   DeclarationName Entity)
   6998     : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
   6999       Loc(Loc), Entity(Entity) { }
   7000 
   7001     /// \brief Determine whether the given type \p T has already been
   7002     /// transformed.
   7003     ///
   7004     /// For the purposes of type reconstruction, a type has already been
   7005     /// transformed if it is NULL or if it is not dependent.
   7006     bool AlreadyTransformed(QualType T) {
   7007       return T.isNull() || !T->isDependentType();
   7008     }
   7009 
   7010     /// \brief Returns the location of the entity whose type is being
   7011     /// rebuilt.
   7012     SourceLocation getBaseLocation() { return Loc; }
   7013 
   7014     /// \brief Returns the name of the entity whose type is being rebuilt.
   7015     DeclarationName getBaseEntity() { return Entity; }
   7016 
   7017     /// \brief Sets the "base" location and entity when that
   7018     /// information is known based on another transformation.
   7019     void setBase(SourceLocation Loc, DeclarationName Entity) {
   7020       this->Loc = Loc;
   7021       this->Entity = Entity;
   7022     }
   7023 
   7024     ExprResult TransformLambdaExpr(LambdaExpr *E) {
   7025       // Lambdas never need to be transformed.
   7026       return E;
   7027     }
   7028   };
   7029 }
   7030 
   7031 /// \brief Rebuilds a type within the context of the current instantiation.
   7032 ///
   7033 /// The type \p T is part of the type of an out-of-line member definition of
   7034 /// a class template (or class template partial specialization) that was parsed
   7035 /// and constructed before we entered the scope of the class template (or
   7036 /// partial specialization thereof). This routine will rebuild that type now
   7037 /// that we have entered the declarator's scope, which may produce different
   7038 /// canonical types, e.g.,
   7039 ///
   7040 /// \code
   7041 /// template<typename T>
   7042 /// struct X {
   7043 ///   typedef T* pointer;
   7044 ///   pointer data();
   7045 /// };
   7046 ///
   7047 /// template<typename T>
   7048 /// typename X<T>::pointer X<T>::data() { ... }
   7049 /// \endcode
   7050 ///
   7051 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
   7052 /// since we do not know that we can look into X<T> when we parsed the type.
   7053 /// This function will rebuild the type, performing the lookup of "pointer"
   7054 /// in X<T> and returning an ElaboratedType whose canonical type is the same
   7055 /// as the canonical type of T*, allowing the return types of the out-of-line
   7056 /// definition and the declaration to match.
   7057 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
   7058                                                         SourceLocation Loc,
   7059                                                         DeclarationName Name) {
   7060   if (!T || !T->getType()->isDependentType())
   7061     return T;
   7062 
   7063   CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
   7064   return Rebuilder.TransformType(T);
   7065 }
   7066 
   7067 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
   7068   CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
   7069                                           DeclarationName());
   7070   return Rebuilder.TransformExpr(E);
   7071 }
   7072 
   7073 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
   7074   if (SS.isInvalid())
   7075     return true;
   7076 
   7077   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
   7078   CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
   7079                                           DeclarationName());
   7080   NestedNameSpecifierLoc Rebuilt
   7081     = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
   7082   if (!Rebuilt)
   7083     return true;
   7084 
   7085   SS.Adopt(Rebuilt);
   7086   return false;
   7087 }
   7088 
   7089 /// \brief Rebuild the template parameters now that we know we're in a current
   7090 /// instantiation.
   7091 bool Sema::RebuildTemplateParamsInCurrentInstantiation(
   7092                                                TemplateParameterList *Params) {
   7093   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
   7094     Decl *Param = Params->getParam(I);
   7095 
   7096     // There is nothing to rebuild in a type parameter.
   7097     if (isa<TemplateTypeParmDecl>(Param))
   7098       continue;
   7099 
   7100     // Rebuild the template parameter list of a template template parameter.
   7101     if (TemplateTemplateParmDecl *TTP
   7102         = dyn_cast<TemplateTemplateParmDecl>(Param)) {
   7103       if (RebuildTemplateParamsInCurrentInstantiation(
   7104             TTP->getTemplateParameters()))
   7105         return true;
   7106 
   7107       continue;
   7108     }
   7109 
   7110     // Rebuild the type of a non-type template parameter.
   7111     NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
   7112     TypeSourceInfo *NewTSI
   7113       = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
   7114                                           NTTP->getLocation(),
   7115                                           NTTP->getDeclName());
   7116     if (!NewTSI)
   7117       return true;
   7118 
   7119     if (NewTSI != NTTP->getTypeSourceInfo()) {
   7120       NTTP->setTypeSourceInfo(NewTSI);
   7121       NTTP->setType(NewTSI->getType());
   7122     }
   7123   }
   7124 
   7125   return false;
   7126 }
   7127 
   7128 /// \brief Produces a formatted string that describes the binding of
   7129 /// template parameters to template arguments.
   7130 std::string
   7131 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
   7132                                       const TemplateArgumentList &Args) {
   7133   return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
   7134 }
   7135 
   7136 std::string
   7137 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
   7138                                       const TemplateArgument *Args,
   7139                                       unsigned NumArgs) {
   7140   SmallString<128> Str;
   7141   llvm::raw_svector_ostream Out(Str);
   7142 
   7143   if (!Params || Params->size() == 0 || NumArgs == 0)
   7144     return std::string();
   7145 
   7146   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
   7147     if (I >= NumArgs)
   7148       break;
   7149 
   7150     if (I == 0)
   7151       Out << "[with ";
   7152     else
   7153       Out << ", ";
   7154 
   7155     if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
   7156       Out << Id->getName();
   7157     } else {
   7158       Out << '$' << I;
   7159     }
   7160 
   7161     Out << " = ";
   7162     Args[I].print(getPrintingPolicy(), Out);
   7163   }
   7164 
   7165   Out << ']';
   7166   return Out.str();
   7167 }
   7168 
   7169 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) {
   7170   if (!FD)
   7171     return;
   7172   FD->setLateTemplateParsed(Flag);
   7173 }
   7174 
   7175 bool Sema::IsInsideALocalClassWithinATemplateFunction() {
   7176   DeclContext *DC = CurContext;
   7177 
   7178   while (DC) {
   7179     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
   7180       const FunctionDecl *FD = RD->isLocalClass();
   7181       return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
   7182     } else if (DC->isTranslationUnit() || DC->isNamespace())
   7183       return false;
   7184 
   7185     DC = DC->getParent();
   7186   }
   7187   return false;
   7188 }
   7189