Home | History | Annotate | Download | only in PowerPC
      1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the PPCISelLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "PPCISelLowering.h"
     15 #include "PPCMachineFunctionInfo.h"
     16 #include "PPCPerfectShuffle.h"
     17 #include "PPCTargetMachine.h"
     18 #include "MCTargetDesc/PPCPredicates.h"
     19 #include "llvm/CallingConv.h"
     20 #include "llvm/Constants.h"
     21 #include "llvm/DerivedTypes.h"
     22 #include "llvm/Function.h"
     23 #include "llvm/Intrinsics.h"
     24 #include "llvm/ADT/STLExtras.h"
     25 #include "llvm/CodeGen/CallingConvLower.h"
     26 #include "llvm/CodeGen/MachineFrameInfo.h"
     27 #include "llvm/CodeGen/MachineFunction.h"
     28 #include "llvm/CodeGen/MachineInstrBuilder.h"
     29 #include "llvm/CodeGen/MachineRegisterInfo.h"
     30 #include "llvm/CodeGen/SelectionDAG.h"
     31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
     32 #include "llvm/Support/CommandLine.h"
     33 #include "llvm/Support/ErrorHandling.h"
     34 #include "llvm/Support/MathExtras.h"
     35 #include "llvm/Support/raw_ostream.h"
     36 #include "llvm/Target/TargetOptions.h"
     37 using namespace llvm;
     38 
     39 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
     40                                      CCValAssign::LocInfo &LocInfo,
     41                                      ISD::ArgFlagsTy &ArgFlags,
     42                                      CCState &State);
     43 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
     44                                             MVT &LocVT,
     45                                             CCValAssign::LocInfo &LocInfo,
     46                                             ISD::ArgFlagsTy &ArgFlags,
     47                                             CCState &State);
     48 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
     49                                               MVT &LocVT,
     50                                               CCValAssign::LocInfo &LocInfo,
     51                                               ISD::ArgFlagsTy &ArgFlags,
     52                                               CCState &State);
     53 
     54 static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
     55 cl::desc("enable preincrement load/store generation on PPC (experimental)"),
     56                                      cl::Hidden);
     57 
     58 static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
     59   if (TM.getSubtargetImpl()->isDarwin())
     60     return new TargetLoweringObjectFileMachO();
     61 
     62   return new TargetLoweringObjectFileELF();
     63 }
     64 
     65 PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
     66   : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
     67 
     68   setPow2DivIsCheap();
     69 
     70   // Use _setjmp/_longjmp instead of setjmp/longjmp.
     71   setUseUnderscoreSetJmp(true);
     72   setUseUnderscoreLongJmp(true);
     73 
     74   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
     75   // arguments are at least 4/8 bytes aligned.
     76   setMinStackArgumentAlignment(TM.getSubtarget<PPCSubtarget>().isPPC64() ? 8:4);
     77 
     78   // Set up the register classes.
     79   addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
     80   addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
     81   addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
     82 
     83   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
     84   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
     85   setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
     86 
     87   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
     88 
     89   // PowerPC has pre-inc load and store's.
     90   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
     91   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
     92   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
     93   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
     94   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
     95   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
     96   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
     97   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
     98   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
     99   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
    100 
    101   // This is used in the ppcf128->int sequence.  Note it has different semantics
    102   // from FP_ROUND:  that rounds to nearest, this rounds to zero.
    103   setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
    104 
    105   // We do not currently implment this libm ops for PowerPC.
    106   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
    107   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
    108   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
    109   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
    110   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
    111 
    112   // PowerPC has no SREM/UREM instructions
    113   setOperationAction(ISD::SREM, MVT::i32, Expand);
    114   setOperationAction(ISD::UREM, MVT::i32, Expand);
    115   setOperationAction(ISD::SREM, MVT::i64, Expand);
    116   setOperationAction(ISD::UREM, MVT::i64, Expand);
    117 
    118   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
    119   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
    120   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
    121   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
    122   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
    123   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
    124   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
    125   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
    126   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
    127 
    128   // We don't support sin/cos/sqrt/fmod/pow
    129   setOperationAction(ISD::FSIN , MVT::f64, Expand);
    130   setOperationAction(ISD::FCOS , MVT::f64, Expand);
    131   setOperationAction(ISD::FREM , MVT::f64, Expand);
    132   setOperationAction(ISD::FPOW , MVT::f64, Expand);
    133   setOperationAction(ISD::FMA  , MVT::f64, Expand);
    134   setOperationAction(ISD::FSIN , MVT::f32, Expand);
    135   setOperationAction(ISD::FCOS , MVT::f32, Expand);
    136   setOperationAction(ISD::FREM , MVT::f32, Expand);
    137   setOperationAction(ISD::FPOW , MVT::f32, Expand);
    138   setOperationAction(ISD::FMA  , MVT::f32, Expand);
    139 
    140   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
    141 
    142   // If we're enabling GP optimizations, use hardware square root
    143   if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
    144     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
    145     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
    146   }
    147 
    148   setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
    149   setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
    150 
    151   // PowerPC does not have BSWAP, CTPOP or CTTZ
    152   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
    153   setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
    154   setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
    155   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
    156   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
    157   setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
    158   setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
    159   setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
    160   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
    161   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
    162 
    163   // PowerPC does not have ROTR
    164   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
    165   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
    166 
    167   // PowerPC does not have Select
    168   setOperationAction(ISD::SELECT, MVT::i32, Expand);
    169   setOperationAction(ISD::SELECT, MVT::i64, Expand);
    170   setOperationAction(ISD::SELECT, MVT::f32, Expand);
    171   setOperationAction(ISD::SELECT, MVT::f64, Expand);
    172 
    173   // PowerPC wants to turn select_cc of FP into fsel when possible.
    174   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
    175   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
    176 
    177   // PowerPC wants to optimize integer setcc a bit
    178   setOperationAction(ISD::SETCC, MVT::i32, Custom);
    179 
    180   // PowerPC does not have BRCOND which requires SetCC
    181   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
    182 
    183   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
    184 
    185   // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
    186   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
    187 
    188   // PowerPC does not have [U|S]INT_TO_FP
    189   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
    190   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
    191 
    192   setOperationAction(ISD::BITCAST, MVT::f32, Expand);
    193   setOperationAction(ISD::BITCAST, MVT::i32, Expand);
    194   setOperationAction(ISD::BITCAST, MVT::i64, Expand);
    195   setOperationAction(ISD::BITCAST, MVT::f64, Expand);
    196 
    197   // We cannot sextinreg(i1).  Expand to shifts.
    198   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
    199 
    200   setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
    201   setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
    202   setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
    203   setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
    204 
    205 
    206   // We want to legalize GlobalAddress and ConstantPool nodes into the
    207   // appropriate instructions to materialize the address.
    208   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
    209   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
    210   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
    211   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
    212   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
    213   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
    214   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
    215   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
    216   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
    217   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
    218 
    219   // TRAP is legal.
    220   setOperationAction(ISD::TRAP, MVT::Other, Legal);
    221 
    222   // TRAMPOLINE is custom lowered.
    223   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
    224   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
    225 
    226   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
    227   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
    228 
    229   if (TM.getSubtarget<PPCSubtarget>().isSVR4ABI()) {
    230     if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
    231       // VAARG always uses double-word chunks, so promote anything smaller.
    232       setOperationAction(ISD::VAARG, MVT::i1, Promote);
    233       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
    234       setOperationAction(ISD::VAARG, MVT::i8, Promote);
    235       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
    236       setOperationAction(ISD::VAARG, MVT::i16, Promote);
    237       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
    238       setOperationAction(ISD::VAARG, MVT::i32, Promote);
    239       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
    240       setOperationAction(ISD::VAARG, MVT::Other, Expand);
    241     } else {
    242       // VAARG is custom lowered with the 32-bit SVR4 ABI.
    243       setOperationAction(ISD::VAARG, MVT::Other, Custom);
    244       setOperationAction(ISD::VAARG, MVT::i64, Custom);
    245     }
    246   } else
    247     setOperationAction(ISD::VAARG, MVT::Other, Expand);
    248 
    249   // Use the default implementation.
    250   setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
    251   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
    252   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
    253   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
    254   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
    255   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
    256 
    257   // We want to custom lower some of our intrinsics.
    258   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
    259 
    260   // Comparisons that require checking two conditions.
    261   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
    262   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
    263   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
    264   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
    265   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
    266   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
    267   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
    268   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
    269   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
    270   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
    271   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
    272   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
    273 
    274   if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
    275     // They also have instructions for converting between i64 and fp.
    276     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
    277     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
    278     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
    279     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
    280     // This is just the low 32 bits of a (signed) fp->i64 conversion.
    281     // We cannot do this with Promote because i64 is not a legal type.
    282     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
    283 
    284     // FIXME: disable this lowered code.  This generates 64-bit register values,
    285     // and we don't model the fact that the top part is clobbered by calls.  We
    286     // need to flag these together so that the value isn't live across a call.
    287     //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
    288   } else {
    289     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
    290     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
    291   }
    292 
    293   if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
    294     // 64-bit PowerPC implementations can support i64 types directly
    295     addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
    296     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
    297     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
    298     // 64-bit PowerPC wants to expand i128 shifts itself.
    299     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
    300     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
    301     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
    302   } else {
    303     // 32-bit PowerPC wants to expand i64 shifts itself.
    304     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
    305     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
    306     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
    307   }
    308 
    309   if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
    310     // First set operation action for all vector types to expand. Then we
    311     // will selectively turn on ones that can be effectively codegen'd.
    312     for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
    313          i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
    314       MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
    315 
    316       // add/sub are legal for all supported vector VT's.
    317       setOperationAction(ISD::ADD , VT, Legal);
    318       setOperationAction(ISD::SUB , VT, Legal);
    319 
    320       // We promote all shuffles to v16i8.
    321       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
    322       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
    323 
    324       // We promote all non-typed operations to v4i32.
    325       setOperationAction(ISD::AND   , VT, Promote);
    326       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
    327       setOperationAction(ISD::OR    , VT, Promote);
    328       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
    329       setOperationAction(ISD::XOR   , VT, Promote);
    330       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
    331       setOperationAction(ISD::LOAD  , VT, Promote);
    332       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
    333       setOperationAction(ISD::SELECT, VT, Promote);
    334       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
    335       setOperationAction(ISD::STORE, VT, Promote);
    336       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
    337 
    338       // No other operations are legal.
    339       setOperationAction(ISD::MUL , VT, Expand);
    340       setOperationAction(ISD::SDIV, VT, Expand);
    341       setOperationAction(ISD::SREM, VT, Expand);
    342       setOperationAction(ISD::UDIV, VT, Expand);
    343       setOperationAction(ISD::UREM, VT, Expand);
    344       setOperationAction(ISD::FDIV, VT, Expand);
    345       setOperationAction(ISD::FNEG, VT, Expand);
    346       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
    347       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
    348       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
    349       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
    350       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
    351       setOperationAction(ISD::UDIVREM, VT, Expand);
    352       setOperationAction(ISD::SDIVREM, VT, Expand);
    353       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
    354       setOperationAction(ISD::FPOW, VT, Expand);
    355       setOperationAction(ISD::CTPOP, VT, Expand);
    356       setOperationAction(ISD::CTLZ, VT, Expand);
    357       setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
    358       setOperationAction(ISD::CTTZ, VT, Expand);
    359       setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
    360     }
    361 
    362     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
    363     // with merges, splats, etc.
    364     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
    365 
    366     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
    367     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
    368     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
    369     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
    370     setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
    371     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
    372 
    373     addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
    374     addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
    375     addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
    376     addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
    377 
    378     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
    379     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
    380     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
    381     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
    382 
    383     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
    384     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
    385 
    386     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
    387     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
    388     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
    389     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
    390   }
    391 
    392   if (TM.getSubtarget<PPCSubtarget>().has64BitSupport())
    393     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
    394 
    395   setOperationAction(ISD::ATOMIC_LOAD,  MVT::i32, Expand);
    396   setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
    397 
    398   setBooleanContents(ZeroOrOneBooleanContent);
    399   setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
    400 
    401   if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
    402     setStackPointerRegisterToSaveRestore(PPC::X1);
    403     setExceptionPointerRegister(PPC::X3);
    404     setExceptionSelectorRegister(PPC::X4);
    405   } else {
    406     setStackPointerRegisterToSaveRestore(PPC::R1);
    407     setExceptionPointerRegister(PPC::R3);
    408     setExceptionSelectorRegister(PPC::R4);
    409   }
    410 
    411   // We have target-specific dag combine patterns for the following nodes:
    412   setTargetDAGCombine(ISD::SINT_TO_FP);
    413   setTargetDAGCombine(ISD::STORE);
    414   setTargetDAGCombine(ISD::BR_CC);
    415   setTargetDAGCombine(ISD::BSWAP);
    416 
    417   // Darwin long double math library functions have $LDBL128 appended.
    418   if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
    419     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
    420     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
    421     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
    422     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
    423     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
    424     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
    425     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
    426     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
    427     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
    428     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
    429   }
    430 
    431   setMinFunctionAlignment(2);
    432   if (PPCSubTarget.isDarwin())
    433     setPrefFunctionAlignment(4);
    434 
    435   setInsertFencesForAtomic(true);
    436 
    437   setSchedulingPreference(Sched::Hybrid);
    438 
    439   computeRegisterProperties();
    440 }
    441 
    442 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
    443 /// function arguments in the caller parameter area.
    444 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
    445   const TargetMachine &TM = getTargetMachine();
    446   // Darwin passes everything on 4 byte boundary.
    447   if (TM.getSubtarget<PPCSubtarget>().isDarwin())
    448     return 4;
    449 
    450   // 16byte and wider vectors are passed on 16byte boundary.
    451   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    452     if (VTy->getBitWidth() >= 128)
    453       return 16;
    454 
    455   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
    456    if (PPCSubTarget.isPPC64())
    457      return 8;
    458 
    459   return 4;
    460 }
    461 
    462 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
    463   switch (Opcode) {
    464   default: return 0;
    465   case PPCISD::FSEL:            return "PPCISD::FSEL";
    466   case PPCISD::FCFID:           return "PPCISD::FCFID";
    467   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
    468   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
    469   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
    470   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
    471   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
    472   case PPCISD::VPERM:           return "PPCISD::VPERM";
    473   case PPCISD::Hi:              return "PPCISD::Hi";
    474   case PPCISD::Lo:              return "PPCISD::Lo";
    475   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
    476   case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
    477   case PPCISD::LOAD:            return "PPCISD::LOAD";
    478   case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
    479   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
    480   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
    481   case PPCISD::SRL:             return "PPCISD::SRL";
    482   case PPCISD::SRA:             return "PPCISD::SRA";
    483   case PPCISD::SHL:             return "PPCISD::SHL";
    484   case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
    485   case PPCISD::STD_32:          return "PPCISD::STD_32";
    486   case PPCISD::CALL_SVR4:       return "PPCISD::CALL_SVR4";
    487   case PPCISD::CALL_NOP_SVR4:   return "PPCISD::CALL_NOP_SVR4";
    488   case PPCISD::CALL_Darwin:     return "PPCISD::CALL_Darwin";
    489   case PPCISD::NOP:             return "PPCISD::NOP";
    490   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
    491   case PPCISD::BCTRL_Darwin:    return "PPCISD::BCTRL_Darwin";
    492   case PPCISD::BCTRL_SVR4:      return "PPCISD::BCTRL_SVR4";
    493   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
    494   case PPCISD::MFCR:            return "PPCISD::MFCR";
    495   case PPCISD::VCMP:            return "PPCISD::VCMP";
    496   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
    497   case PPCISD::LBRX:            return "PPCISD::LBRX";
    498   case PPCISD::STBRX:           return "PPCISD::STBRX";
    499   case PPCISD::LARX:            return "PPCISD::LARX";
    500   case PPCISD::STCX:            return "PPCISD::STCX";
    501   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
    502   case PPCISD::MFFS:            return "PPCISD::MFFS";
    503   case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
    504   case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
    505   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
    506   case PPCISD::MTFSF:           return "PPCISD::MTFSF";
    507   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
    508   }
    509 }
    510 
    511 EVT PPCTargetLowering::getSetCCResultType(EVT VT) const {
    512   return MVT::i32;
    513 }
    514 
    515 //===----------------------------------------------------------------------===//
    516 // Node matching predicates, for use by the tblgen matching code.
    517 //===----------------------------------------------------------------------===//
    518 
    519 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
    520 static bool isFloatingPointZero(SDValue Op) {
    521   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
    522     return CFP->getValueAPF().isZero();
    523   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
    524     // Maybe this has already been legalized into the constant pool?
    525     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
    526       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
    527         return CFP->getValueAPF().isZero();
    528   }
    529   return false;
    530 }
    531 
    532 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
    533 /// true if Op is undef or if it matches the specified value.
    534 static bool isConstantOrUndef(int Op, int Val) {
    535   return Op < 0 || Op == Val;
    536 }
    537 
    538 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
    539 /// VPKUHUM instruction.
    540 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
    541   if (!isUnary) {
    542     for (unsigned i = 0; i != 16; ++i)
    543       if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
    544         return false;
    545   } else {
    546     for (unsigned i = 0; i != 8; ++i)
    547       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
    548           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
    549         return false;
    550   }
    551   return true;
    552 }
    553 
    554 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
    555 /// VPKUWUM instruction.
    556 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
    557   if (!isUnary) {
    558     for (unsigned i = 0; i != 16; i += 2)
    559       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
    560           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
    561         return false;
    562   } else {
    563     for (unsigned i = 0; i != 8; i += 2)
    564       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
    565           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
    566           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
    567           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
    568         return false;
    569   }
    570   return true;
    571 }
    572 
    573 /// isVMerge - Common function, used to match vmrg* shuffles.
    574 ///
    575 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
    576                      unsigned LHSStart, unsigned RHSStart) {
    577   assert(N->getValueType(0) == MVT::v16i8 &&
    578          "PPC only supports shuffles by bytes!");
    579   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
    580          "Unsupported merge size!");
    581 
    582   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
    583     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
    584       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
    585                              LHSStart+j+i*UnitSize) ||
    586           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
    587                              RHSStart+j+i*UnitSize))
    588         return false;
    589     }
    590   return true;
    591 }
    592 
    593 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
    594 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
    595 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
    596                              bool isUnary) {
    597   if (!isUnary)
    598     return isVMerge(N, UnitSize, 8, 24);
    599   return isVMerge(N, UnitSize, 8, 8);
    600 }
    601 
    602 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
    603 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
    604 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
    605                              bool isUnary) {
    606   if (!isUnary)
    607     return isVMerge(N, UnitSize, 0, 16);
    608   return isVMerge(N, UnitSize, 0, 0);
    609 }
    610 
    611 
    612 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
    613 /// amount, otherwise return -1.
    614 int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
    615   assert(N->getValueType(0) == MVT::v16i8 &&
    616          "PPC only supports shuffles by bytes!");
    617 
    618   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
    619 
    620   // Find the first non-undef value in the shuffle mask.
    621   unsigned i;
    622   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
    623     /*search*/;
    624 
    625   if (i == 16) return -1;  // all undef.
    626 
    627   // Otherwise, check to see if the rest of the elements are consecutively
    628   // numbered from this value.
    629   unsigned ShiftAmt = SVOp->getMaskElt(i);
    630   if (ShiftAmt < i) return -1;
    631   ShiftAmt -= i;
    632 
    633   if (!isUnary) {
    634     // Check the rest of the elements to see if they are consecutive.
    635     for (++i; i != 16; ++i)
    636       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
    637         return -1;
    638   } else {
    639     // Check the rest of the elements to see if they are consecutive.
    640     for (++i; i != 16; ++i)
    641       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
    642         return -1;
    643   }
    644   return ShiftAmt;
    645 }
    646 
    647 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
    648 /// specifies a splat of a single element that is suitable for input to
    649 /// VSPLTB/VSPLTH/VSPLTW.
    650 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
    651   assert(N->getValueType(0) == MVT::v16i8 &&
    652          (EltSize == 1 || EltSize == 2 || EltSize == 4));
    653 
    654   // This is a splat operation if each element of the permute is the same, and
    655   // if the value doesn't reference the second vector.
    656   unsigned ElementBase = N->getMaskElt(0);
    657 
    658   // FIXME: Handle UNDEF elements too!
    659   if (ElementBase >= 16)
    660     return false;
    661 
    662   // Check that the indices are consecutive, in the case of a multi-byte element
    663   // splatted with a v16i8 mask.
    664   for (unsigned i = 1; i != EltSize; ++i)
    665     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
    666       return false;
    667 
    668   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
    669     if (N->getMaskElt(i) < 0) continue;
    670     for (unsigned j = 0; j != EltSize; ++j)
    671       if (N->getMaskElt(i+j) != N->getMaskElt(j))
    672         return false;
    673   }
    674   return true;
    675 }
    676 
    677 /// isAllNegativeZeroVector - Returns true if all elements of build_vector
    678 /// are -0.0.
    679 bool PPC::isAllNegativeZeroVector(SDNode *N) {
    680   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
    681 
    682   APInt APVal, APUndef;
    683   unsigned BitSize;
    684   bool HasAnyUndefs;
    685 
    686   if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
    687     if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
    688       return CFP->getValueAPF().isNegZero();
    689 
    690   return false;
    691 }
    692 
    693 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
    694 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
    695 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
    696   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
    697   assert(isSplatShuffleMask(SVOp, EltSize));
    698   return SVOp->getMaskElt(0) / EltSize;
    699 }
    700 
    701 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
    702 /// by using a vspltis[bhw] instruction of the specified element size, return
    703 /// the constant being splatted.  The ByteSize field indicates the number of
    704 /// bytes of each element [124] -> [bhw].
    705 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
    706   SDValue OpVal(0, 0);
    707 
    708   // If ByteSize of the splat is bigger than the element size of the
    709   // build_vector, then we have a case where we are checking for a splat where
    710   // multiple elements of the buildvector are folded together into a single
    711   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
    712   unsigned EltSize = 16/N->getNumOperands();
    713   if (EltSize < ByteSize) {
    714     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
    715     SDValue UniquedVals[4];
    716     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
    717 
    718     // See if all of the elements in the buildvector agree across.
    719     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    720       if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
    721       // If the element isn't a constant, bail fully out.
    722       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
    723 
    724 
    725       if (UniquedVals[i&(Multiple-1)].getNode() == 0)
    726         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
    727       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
    728         return SDValue();  // no match.
    729     }
    730 
    731     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
    732     // either constant or undef values that are identical for each chunk.  See
    733     // if these chunks can form into a larger vspltis*.
    734 
    735     // Check to see if all of the leading entries are either 0 or -1.  If
    736     // neither, then this won't fit into the immediate field.
    737     bool LeadingZero = true;
    738     bool LeadingOnes = true;
    739     for (unsigned i = 0; i != Multiple-1; ++i) {
    740       if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
    741 
    742       LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
    743       LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
    744     }
    745     // Finally, check the least significant entry.
    746     if (LeadingZero) {
    747       if (UniquedVals[Multiple-1].getNode() == 0)
    748         return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
    749       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
    750       if (Val < 16)
    751         return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
    752     }
    753     if (LeadingOnes) {
    754       if (UniquedVals[Multiple-1].getNode() == 0)
    755         return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
    756       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
    757       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
    758         return DAG.getTargetConstant(Val, MVT::i32);
    759     }
    760 
    761     return SDValue();
    762   }
    763 
    764   // Check to see if this buildvec has a single non-undef value in its elements.
    765   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    766     if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
    767     if (OpVal.getNode() == 0)
    768       OpVal = N->getOperand(i);
    769     else if (OpVal != N->getOperand(i))
    770       return SDValue();
    771   }
    772 
    773   if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
    774 
    775   unsigned ValSizeInBytes = EltSize;
    776   uint64_t Value = 0;
    777   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
    778     Value = CN->getZExtValue();
    779   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
    780     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
    781     Value = FloatToBits(CN->getValueAPF().convertToFloat());
    782   }
    783 
    784   // If the splat value is larger than the element value, then we can never do
    785   // this splat.  The only case that we could fit the replicated bits into our
    786   // immediate field for would be zero, and we prefer to use vxor for it.
    787   if (ValSizeInBytes < ByteSize) return SDValue();
    788 
    789   // If the element value is larger than the splat value, cut it in half and
    790   // check to see if the two halves are equal.  Continue doing this until we
    791   // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
    792   while (ValSizeInBytes > ByteSize) {
    793     ValSizeInBytes >>= 1;
    794 
    795     // If the top half equals the bottom half, we're still ok.
    796     if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
    797          (Value                        & ((1 << (8*ValSizeInBytes))-1)))
    798       return SDValue();
    799   }
    800 
    801   // Properly sign extend the value.
    802   int ShAmt = (4-ByteSize)*8;
    803   int MaskVal = ((int)Value << ShAmt) >> ShAmt;
    804 
    805   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
    806   if (MaskVal == 0) return SDValue();
    807 
    808   // Finally, if this value fits in a 5 bit sext field, return it
    809   if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
    810     return DAG.getTargetConstant(MaskVal, MVT::i32);
    811   return SDValue();
    812 }
    813 
    814 //===----------------------------------------------------------------------===//
    815 //  Addressing Mode Selection
    816 //===----------------------------------------------------------------------===//
    817 
    818 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
    819 /// or 64-bit immediate, and if the value can be accurately represented as a
    820 /// sign extension from a 16-bit value.  If so, this returns true and the
    821 /// immediate.
    822 static bool isIntS16Immediate(SDNode *N, short &Imm) {
    823   if (N->getOpcode() != ISD::Constant)
    824     return false;
    825 
    826   Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
    827   if (N->getValueType(0) == MVT::i32)
    828     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
    829   else
    830     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
    831 }
    832 static bool isIntS16Immediate(SDValue Op, short &Imm) {
    833   return isIntS16Immediate(Op.getNode(), Imm);
    834 }
    835 
    836 
    837 /// SelectAddressRegReg - Given the specified addressed, check to see if it
    838 /// can be represented as an indexed [r+r] operation.  Returns false if it
    839 /// can be more efficiently represented with [r+imm].
    840 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
    841                                             SDValue &Index,
    842                                             SelectionDAG &DAG) const {
    843   short imm = 0;
    844   if (N.getOpcode() == ISD::ADD) {
    845     if (isIntS16Immediate(N.getOperand(1), imm))
    846       return false;    // r+i
    847     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
    848       return false;    // r+i
    849 
    850     Base = N.getOperand(0);
    851     Index = N.getOperand(1);
    852     return true;
    853   } else if (N.getOpcode() == ISD::OR) {
    854     if (isIntS16Immediate(N.getOperand(1), imm))
    855       return false;    // r+i can fold it if we can.
    856 
    857     // If this is an or of disjoint bitfields, we can codegen this as an add
    858     // (for better address arithmetic) if the LHS and RHS of the OR are provably
    859     // disjoint.
    860     APInt LHSKnownZero, LHSKnownOne;
    861     APInt RHSKnownZero, RHSKnownOne;
    862     DAG.ComputeMaskedBits(N.getOperand(0),
    863                           LHSKnownZero, LHSKnownOne);
    864 
    865     if (LHSKnownZero.getBoolValue()) {
    866       DAG.ComputeMaskedBits(N.getOperand(1),
    867                             RHSKnownZero, RHSKnownOne);
    868       // If all of the bits are known zero on the LHS or RHS, the add won't
    869       // carry.
    870       if (~(LHSKnownZero | RHSKnownZero) == 0) {
    871         Base = N.getOperand(0);
    872         Index = N.getOperand(1);
    873         return true;
    874       }
    875     }
    876   }
    877 
    878   return false;
    879 }
    880 
    881 /// Returns true if the address N can be represented by a base register plus
    882 /// a signed 16-bit displacement [r+imm], and if it is not better
    883 /// represented as reg+reg.
    884 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
    885                                             SDValue &Base,
    886                                             SelectionDAG &DAG) const {
    887   // FIXME dl should come from parent load or store, not from address
    888   DebugLoc dl = N.getDebugLoc();
    889   // If this can be more profitably realized as r+r, fail.
    890   if (SelectAddressRegReg(N, Disp, Base, DAG))
    891     return false;
    892 
    893   if (N.getOpcode() == ISD::ADD) {
    894     short imm = 0;
    895     if (isIntS16Immediate(N.getOperand(1), imm)) {
    896       Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
    897       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
    898         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
    899       } else {
    900         Base = N.getOperand(0);
    901       }
    902       return true; // [r+i]
    903     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
    904       // Match LOAD (ADD (X, Lo(G))).
    905      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
    906              && "Cannot handle constant offsets yet!");
    907       Disp = N.getOperand(1).getOperand(0);  // The global address.
    908       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
    909              Disp.getOpcode() == ISD::TargetConstantPool ||
    910              Disp.getOpcode() == ISD::TargetJumpTable);
    911       Base = N.getOperand(0);
    912       return true;  // [&g+r]
    913     }
    914   } else if (N.getOpcode() == ISD::OR) {
    915     short imm = 0;
    916     if (isIntS16Immediate(N.getOperand(1), imm)) {
    917       // If this is an or of disjoint bitfields, we can codegen this as an add
    918       // (for better address arithmetic) if the LHS and RHS of the OR are
    919       // provably disjoint.
    920       APInt LHSKnownZero, LHSKnownOne;
    921       DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
    922 
    923       if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
    924         // If all of the bits are known zero on the LHS or RHS, the add won't
    925         // carry.
    926         Base = N.getOperand(0);
    927         Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
    928         return true;
    929       }
    930     }
    931   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
    932     // Loading from a constant address.
    933 
    934     // If this address fits entirely in a 16-bit sext immediate field, codegen
    935     // this as "d, 0"
    936     short Imm;
    937     if (isIntS16Immediate(CN, Imm)) {
    938       Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
    939       Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
    940                              CN->getValueType(0));
    941       return true;
    942     }
    943 
    944     // Handle 32-bit sext immediates with LIS + addr mode.
    945     if (CN->getValueType(0) == MVT::i32 ||
    946         (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
    947       int Addr = (int)CN->getZExtValue();
    948 
    949       // Otherwise, break this down into an LIS + disp.
    950       Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
    951 
    952       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
    953       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
    954       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
    955       return true;
    956     }
    957   }
    958 
    959   Disp = DAG.getTargetConstant(0, getPointerTy());
    960   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
    961     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
    962   else
    963     Base = N;
    964   return true;      // [r+0]
    965 }
    966 
    967 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
    968 /// represented as an indexed [r+r] operation.
    969 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
    970                                                 SDValue &Index,
    971                                                 SelectionDAG &DAG) const {
    972   // Check to see if we can easily represent this as an [r+r] address.  This
    973   // will fail if it thinks that the address is more profitably represented as
    974   // reg+imm, e.g. where imm = 0.
    975   if (SelectAddressRegReg(N, Base, Index, DAG))
    976     return true;
    977 
    978   // If the operand is an addition, always emit this as [r+r], since this is
    979   // better (for code size, and execution, as the memop does the add for free)
    980   // than emitting an explicit add.
    981   if (N.getOpcode() == ISD::ADD) {
    982     Base = N.getOperand(0);
    983     Index = N.getOperand(1);
    984     return true;
    985   }
    986 
    987   // Otherwise, do it the hard way, using R0 as the base register.
    988   Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
    989                          N.getValueType());
    990   Index = N;
    991   return true;
    992 }
    993 
    994 /// SelectAddressRegImmShift - Returns true if the address N can be
    995 /// represented by a base register plus a signed 14-bit displacement
    996 /// [r+imm*4].  Suitable for use by STD and friends.
    997 bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
    998                                                  SDValue &Base,
    999                                                  SelectionDAG &DAG) const {
   1000   // FIXME dl should come from the parent load or store, not the address
   1001   DebugLoc dl = N.getDebugLoc();
   1002   // If this can be more profitably realized as r+r, fail.
   1003   if (SelectAddressRegReg(N, Disp, Base, DAG))
   1004     return false;
   1005 
   1006   if (N.getOpcode() == ISD::ADD) {
   1007     short imm = 0;
   1008     if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
   1009       Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
   1010       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
   1011         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
   1012       } else {
   1013         Base = N.getOperand(0);
   1014       }
   1015       return true; // [r+i]
   1016     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
   1017       // Match LOAD (ADD (X, Lo(G))).
   1018      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
   1019              && "Cannot handle constant offsets yet!");
   1020       Disp = N.getOperand(1).getOperand(0);  // The global address.
   1021       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
   1022              Disp.getOpcode() == ISD::TargetConstantPool ||
   1023              Disp.getOpcode() == ISD::TargetJumpTable);
   1024       Base = N.getOperand(0);
   1025       return true;  // [&g+r]
   1026     }
   1027   } else if (N.getOpcode() == ISD::OR) {
   1028     short imm = 0;
   1029     if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
   1030       // If this is an or of disjoint bitfields, we can codegen this as an add
   1031       // (for better address arithmetic) if the LHS and RHS of the OR are
   1032       // provably disjoint.
   1033       APInt LHSKnownZero, LHSKnownOne;
   1034       DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
   1035       if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
   1036         // If all of the bits are known zero on the LHS or RHS, the add won't
   1037         // carry.
   1038         Base = N.getOperand(0);
   1039         Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
   1040         return true;
   1041       }
   1042     }
   1043   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
   1044     // Loading from a constant address.  Verify low two bits are clear.
   1045     if ((CN->getZExtValue() & 3) == 0) {
   1046       // If this address fits entirely in a 14-bit sext immediate field, codegen
   1047       // this as "d, 0"
   1048       short Imm;
   1049       if (isIntS16Immediate(CN, Imm)) {
   1050         Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
   1051         Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
   1052                                CN->getValueType(0));
   1053         return true;
   1054       }
   1055 
   1056       // Fold the low-part of 32-bit absolute addresses into addr mode.
   1057       if (CN->getValueType(0) == MVT::i32 ||
   1058           (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
   1059         int Addr = (int)CN->getZExtValue();
   1060 
   1061         // Otherwise, break this down into an LIS + disp.
   1062         Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
   1063         Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
   1064         unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
   1065         Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
   1066         return true;
   1067       }
   1068     }
   1069   }
   1070 
   1071   Disp = DAG.getTargetConstant(0, getPointerTy());
   1072   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
   1073     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
   1074   else
   1075     Base = N;
   1076   return true;      // [r+0]
   1077 }
   1078 
   1079 
   1080 /// getPreIndexedAddressParts - returns true by value, base pointer and
   1081 /// offset pointer and addressing mode by reference if the node's address
   1082 /// can be legally represented as pre-indexed load / store address.
   1083 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
   1084                                                   SDValue &Offset,
   1085                                                   ISD::MemIndexedMode &AM,
   1086                                                   SelectionDAG &DAG) const {
   1087   // Disabled by default for now.
   1088   if (!EnablePPCPreinc) return false;
   1089 
   1090   SDValue Ptr;
   1091   EVT VT;
   1092   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   1093     Ptr = LD->getBasePtr();
   1094     VT = LD->getMemoryVT();
   1095 
   1096   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
   1097     Ptr = ST->getBasePtr();
   1098     VT  = ST->getMemoryVT();
   1099   } else
   1100     return false;
   1101 
   1102   // PowerPC doesn't have preinc load/store instructions for vectors.
   1103   if (VT.isVector())
   1104     return false;
   1105 
   1106   // TODO: Check reg+reg first.
   1107 
   1108   // LDU/STU use reg+imm*4, others use reg+imm.
   1109   if (VT != MVT::i64) {
   1110     // reg + imm
   1111     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
   1112       return false;
   1113   } else {
   1114     // reg + imm * 4.
   1115     if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
   1116       return false;
   1117   }
   1118 
   1119   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   1120     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
   1121     // sext i32 to i64 when addr mode is r+i.
   1122     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
   1123         LD->getExtensionType() == ISD::SEXTLOAD &&
   1124         isa<ConstantSDNode>(Offset))
   1125       return false;
   1126   }
   1127 
   1128   AM = ISD::PRE_INC;
   1129   return true;
   1130 }
   1131 
   1132 //===----------------------------------------------------------------------===//
   1133 //  LowerOperation implementation
   1134 //===----------------------------------------------------------------------===//
   1135 
   1136 /// GetLabelAccessInfo - Return true if we should reference labels using a
   1137 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
   1138 static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
   1139                                unsigned &LoOpFlags, const GlobalValue *GV = 0) {
   1140   HiOpFlags = PPCII::MO_HA16;
   1141   LoOpFlags = PPCII::MO_LO16;
   1142 
   1143   // Don't use the pic base if not in PIC relocation model.  Or if we are on a
   1144   // non-darwin platform.  We don't support PIC on other platforms yet.
   1145   bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
   1146                TM.getSubtarget<PPCSubtarget>().isDarwin();
   1147   if (isPIC) {
   1148     HiOpFlags |= PPCII::MO_PIC_FLAG;
   1149     LoOpFlags |= PPCII::MO_PIC_FLAG;
   1150   }
   1151 
   1152   // If this is a reference to a global value that requires a non-lazy-ptr, make
   1153   // sure that instruction lowering adds it.
   1154   if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
   1155     HiOpFlags |= PPCII::MO_NLP_FLAG;
   1156     LoOpFlags |= PPCII::MO_NLP_FLAG;
   1157 
   1158     if (GV->hasHiddenVisibility()) {
   1159       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
   1160       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
   1161     }
   1162   }
   1163 
   1164   return isPIC;
   1165 }
   1166 
   1167 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
   1168                              SelectionDAG &DAG) {
   1169   EVT PtrVT = HiPart.getValueType();
   1170   SDValue Zero = DAG.getConstant(0, PtrVT);
   1171   DebugLoc DL = HiPart.getDebugLoc();
   1172 
   1173   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
   1174   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
   1175 
   1176   // With PIC, the first instruction is actually "GR+hi(&G)".
   1177   if (isPIC)
   1178     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
   1179                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
   1180 
   1181   // Generate non-pic code that has direct accesses to the constant pool.
   1182   // The address of the global is just (hi(&g)+lo(&g)).
   1183   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
   1184 }
   1185 
   1186 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
   1187                                              SelectionDAG &DAG) const {
   1188   EVT PtrVT = Op.getValueType();
   1189   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
   1190   const Constant *C = CP->getConstVal();
   1191 
   1192   unsigned MOHiFlag, MOLoFlag;
   1193   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
   1194   SDValue CPIHi =
   1195     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
   1196   SDValue CPILo =
   1197     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
   1198   return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
   1199 }
   1200 
   1201 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
   1202   EVT PtrVT = Op.getValueType();
   1203   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
   1204 
   1205   unsigned MOHiFlag, MOLoFlag;
   1206   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
   1207   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
   1208   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
   1209   return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
   1210 }
   1211 
   1212 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
   1213                                              SelectionDAG &DAG) const {
   1214   EVT PtrVT = Op.getValueType();
   1215 
   1216   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
   1217 
   1218   unsigned MOHiFlag, MOLoFlag;
   1219   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
   1220   SDValue TgtBAHi = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOHiFlag);
   1221   SDValue TgtBALo = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOLoFlag);
   1222   return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
   1223 }
   1224 
   1225 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
   1226                                               SelectionDAG &DAG) const {
   1227   EVT PtrVT = Op.getValueType();
   1228   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
   1229   DebugLoc DL = GSDN->getDebugLoc();
   1230   const GlobalValue *GV = GSDN->getGlobal();
   1231 
   1232   // 64-bit SVR4 ABI code is always position-independent.
   1233   // The actual address of the GlobalValue is stored in the TOC.
   1234   if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
   1235     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
   1236     return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
   1237                        DAG.getRegister(PPC::X2, MVT::i64));
   1238   }
   1239 
   1240   unsigned MOHiFlag, MOLoFlag;
   1241   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
   1242 
   1243   SDValue GAHi =
   1244     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
   1245   SDValue GALo =
   1246     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
   1247 
   1248   SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
   1249 
   1250   // If the global reference is actually to a non-lazy-pointer, we have to do an
   1251   // extra load to get the address of the global.
   1252   if (MOHiFlag & PPCII::MO_NLP_FLAG)
   1253     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
   1254                       false, false, false, 0);
   1255   return Ptr;
   1256 }
   1257 
   1258 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
   1259   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
   1260   DebugLoc dl = Op.getDebugLoc();
   1261 
   1262   // If we're comparing for equality to zero, expose the fact that this is
   1263   // implented as a ctlz/srl pair on ppc, so that the dag combiner can
   1264   // fold the new nodes.
   1265   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   1266     if (C->isNullValue() && CC == ISD::SETEQ) {
   1267       EVT VT = Op.getOperand(0).getValueType();
   1268       SDValue Zext = Op.getOperand(0);
   1269       if (VT.bitsLT(MVT::i32)) {
   1270         VT = MVT::i32;
   1271         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
   1272       }
   1273       unsigned Log2b = Log2_32(VT.getSizeInBits());
   1274       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
   1275       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
   1276                                 DAG.getConstant(Log2b, MVT::i32));
   1277       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
   1278     }
   1279     // Leave comparisons against 0 and -1 alone for now, since they're usually
   1280     // optimized.  FIXME: revisit this when we can custom lower all setcc
   1281     // optimizations.
   1282     if (C->isAllOnesValue() || C->isNullValue())
   1283       return SDValue();
   1284   }
   1285 
   1286   // If we have an integer seteq/setne, turn it into a compare against zero
   1287   // by xor'ing the rhs with the lhs, which is faster than setting a
   1288   // condition register, reading it back out, and masking the correct bit.  The
   1289   // normal approach here uses sub to do this instead of xor.  Using xor exposes
   1290   // the result to other bit-twiddling opportunities.
   1291   EVT LHSVT = Op.getOperand(0).getValueType();
   1292   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
   1293     EVT VT = Op.getValueType();
   1294     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
   1295                                 Op.getOperand(1));
   1296     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
   1297   }
   1298   return SDValue();
   1299 }
   1300 
   1301 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
   1302                                       const PPCSubtarget &Subtarget) const {
   1303   SDNode *Node = Op.getNode();
   1304   EVT VT = Node->getValueType(0);
   1305   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   1306   SDValue InChain = Node->getOperand(0);
   1307   SDValue VAListPtr = Node->getOperand(1);
   1308   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
   1309   DebugLoc dl = Node->getDebugLoc();
   1310 
   1311   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
   1312 
   1313   // gpr_index
   1314   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
   1315                                     VAListPtr, MachinePointerInfo(SV), MVT::i8,
   1316                                     false, false, 0);
   1317   InChain = GprIndex.getValue(1);
   1318 
   1319   if (VT == MVT::i64) {
   1320     // Check if GprIndex is even
   1321     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
   1322                                  DAG.getConstant(1, MVT::i32));
   1323     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
   1324                                 DAG.getConstant(0, MVT::i32), ISD::SETNE);
   1325     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
   1326                                           DAG.getConstant(1, MVT::i32));
   1327     // Align GprIndex to be even if it isn't
   1328     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
   1329                            GprIndex);
   1330   }
   1331 
   1332   // fpr index is 1 byte after gpr
   1333   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
   1334                                DAG.getConstant(1, MVT::i32));
   1335 
   1336   // fpr
   1337   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
   1338                                     FprPtr, MachinePointerInfo(SV), MVT::i8,
   1339                                     false, false, 0);
   1340   InChain = FprIndex.getValue(1);
   1341 
   1342   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
   1343                                        DAG.getConstant(8, MVT::i32));
   1344 
   1345   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
   1346                                         DAG.getConstant(4, MVT::i32));
   1347 
   1348   // areas
   1349   SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
   1350                                      MachinePointerInfo(), false, false,
   1351                                      false, 0);
   1352   InChain = OverflowArea.getValue(1);
   1353 
   1354   SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
   1355                                     MachinePointerInfo(), false, false,
   1356                                     false, 0);
   1357   InChain = RegSaveArea.getValue(1);
   1358 
   1359   // select overflow_area if index > 8
   1360   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
   1361                             DAG.getConstant(8, MVT::i32), ISD::SETLT);
   1362 
   1363   // adjustment constant gpr_index * 4/8
   1364   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
   1365                                     VT.isInteger() ? GprIndex : FprIndex,
   1366                                     DAG.getConstant(VT.isInteger() ? 4 : 8,
   1367                                                     MVT::i32));
   1368 
   1369   // OurReg = RegSaveArea + RegConstant
   1370   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
   1371                                RegConstant);
   1372 
   1373   // Floating types are 32 bytes into RegSaveArea
   1374   if (VT.isFloatingPoint())
   1375     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
   1376                          DAG.getConstant(32, MVT::i32));
   1377 
   1378   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
   1379   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
   1380                                    VT.isInteger() ? GprIndex : FprIndex,
   1381                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1,
   1382                                                    MVT::i32));
   1383 
   1384   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
   1385                               VT.isInteger() ? VAListPtr : FprPtr,
   1386                               MachinePointerInfo(SV),
   1387                               MVT::i8, false, false, 0);
   1388 
   1389   // determine if we should load from reg_save_area or overflow_area
   1390   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
   1391 
   1392   // increase overflow_area by 4/8 if gpr/fpr > 8
   1393   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
   1394                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
   1395                                           MVT::i32));
   1396 
   1397   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
   1398                              OverflowAreaPlusN);
   1399 
   1400   InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
   1401                               OverflowAreaPtr,
   1402                               MachinePointerInfo(),
   1403                               MVT::i32, false, false, 0);
   1404 
   1405   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
   1406                      false, false, false, 0);
   1407 }
   1408 
   1409 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
   1410                                                   SelectionDAG &DAG) const {
   1411   return Op.getOperand(0);
   1412 }
   1413 
   1414 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
   1415                                                 SelectionDAG &DAG) const {
   1416   SDValue Chain = Op.getOperand(0);
   1417   SDValue Trmp = Op.getOperand(1); // trampoline
   1418   SDValue FPtr = Op.getOperand(2); // nested function
   1419   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
   1420   DebugLoc dl = Op.getDebugLoc();
   1421 
   1422   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   1423   bool isPPC64 = (PtrVT == MVT::i64);
   1424   Type *IntPtrTy =
   1425     DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType(
   1426                                                              *DAG.getContext());
   1427 
   1428   TargetLowering::ArgListTy Args;
   1429   TargetLowering::ArgListEntry Entry;
   1430 
   1431   Entry.Ty = IntPtrTy;
   1432   Entry.Node = Trmp; Args.push_back(Entry);
   1433 
   1434   // TrampSize == (isPPC64 ? 48 : 40);
   1435   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
   1436                                isPPC64 ? MVT::i64 : MVT::i32);
   1437   Args.push_back(Entry);
   1438 
   1439   Entry.Node = FPtr; Args.push_back(Entry);
   1440   Entry.Node = Nest; Args.push_back(Entry);
   1441 
   1442   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
   1443   std::pair<SDValue, SDValue> CallResult =
   1444     LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()),
   1445                 false, false, false, false, 0, CallingConv::C,
   1446                 /*isTailCall=*/false,
   1447                 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
   1448                 DAG.getExternalSymbol("__trampoline_setup", PtrVT),
   1449                 Args, DAG, dl);
   1450 
   1451   return CallResult.second;
   1452 }
   1453 
   1454 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
   1455                                         const PPCSubtarget &Subtarget) const {
   1456   MachineFunction &MF = DAG.getMachineFunction();
   1457   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   1458 
   1459   DebugLoc dl = Op.getDebugLoc();
   1460 
   1461   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
   1462     // vastart just stores the address of the VarArgsFrameIndex slot into the
   1463     // memory location argument.
   1464     EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   1465     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   1466     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   1467     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
   1468                         MachinePointerInfo(SV),
   1469                         false, false, 0);
   1470   }
   1471 
   1472   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
   1473   // We suppose the given va_list is already allocated.
   1474   //
   1475   // typedef struct {
   1476   //  char gpr;     /* index into the array of 8 GPRs
   1477   //                 * stored in the register save area
   1478   //                 * gpr=0 corresponds to r3,
   1479   //                 * gpr=1 to r4, etc.
   1480   //                 */
   1481   //  char fpr;     /* index into the array of 8 FPRs
   1482   //                 * stored in the register save area
   1483   //                 * fpr=0 corresponds to f1,
   1484   //                 * fpr=1 to f2, etc.
   1485   //                 */
   1486   //  char *overflow_arg_area;
   1487   //                /* location on stack that holds
   1488   //                 * the next overflow argument
   1489   //                 */
   1490   //  char *reg_save_area;
   1491   //               /* where r3:r10 and f1:f8 (if saved)
   1492   //                * are stored
   1493   //                */
   1494   // } va_list[1];
   1495 
   1496 
   1497   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
   1498   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
   1499 
   1500 
   1501   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   1502 
   1503   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
   1504                                             PtrVT);
   1505   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
   1506                                  PtrVT);
   1507 
   1508   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
   1509   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
   1510 
   1511   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
   1512   SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
   1513 
   1514   uint64_t FPROffset = 1;
   1515   SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
   1516 
   1517   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   1518 
   1519   // Store first byte : number of int regs
   1520   SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
   1521                                          Op.getOperand(1),
   1522                                          MachinePointerInfo(SV),
   1523                                          MVT::i8, false, false, 0);
   1524   uint64_t nextOffset = FPROffset;
   1525   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
   1526                                   ConstFPROffset);
   1527 
   1528   // Store second byte : number of float regs
   1529   SDValue secondStore =
   1530     DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
   1531                       MachinePointerInfo(SV, nextOffset), MVT::i8,
   1532                       false, false, 0);
   1533   nextOffset += StackOffset;
   1534   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
   1535 
   1536   // Store second word : arguments given on stack
   1537   SDValue thirdStore =
   1538     DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
   1539                  MachinePointerInfo(SV, nextOffset),
   1540                  false, false, 0);
   1541   nextOffset += FrameOffset;
   1542   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
   1543 
   1544   // Store third word : arguments given in registers
   1545   return DAG.getStore(thirdStore, dl, FR, nextPtr,
   1546                       MachinePointerInfo(SV, nextOffset),
   1547                       false, false, 0);
   1548 
   1549 }
   1550 
   1551 #include "PPCGenCallingConv.inc"
   1552 
   1553 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
   1554                                      CCValAssign::LocInfo &LocInfo,
   1555                                      ISD::ArgFlagsTy &ArgFlags,
   1556                                      CCState &State) {
   1557   return true;
   1558 }
   1559 
   1560 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
   1561                                             MVT &LocVT,
   1562                                             CCValAssign::LocInfo &LocInfo,
   1563                                             ISD::ArgFlagsTy &ArgFlags,
   1564                                             CCState &State) {
   1565   static const uint16_t ArgRegs[] = {
   1566     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   1567     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   1568   };
   1569   const unsigned NumArgRegs = array_lengthof(ArgRegs);
   1570 
   1571   unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
   1572 
   1573   // Skip one register if the first unallocated register has an even register
   1574   // number and there are still argument registers available which have not been
   1575   // allocated yet. RegNum is actually an index into ArgRegs, which means we
   1576   // need to skip a register if RegNum is odd.
   1577   if (RegNum != NumArgRegs && RegNum % 2 == 1) {
   1578     State.AllocateReg(ArgRegs[RegNum]);
   1579   }
   1580 
   1581   // Always return false here, as this function only makes sure that the first
   1582   // unallocated register has an odd register number and does not actually
   1583   // allocate a register for the current argument.
   1584   return false;
   1585 }
   1586 
   1587 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
   1588                                               MVT &LocVT,
   1589                                               CCValAssign::LocInfo &LocInfo,
   1590                                               ISD::ArgFlagsTy &ArgFlags,
   1591                                               CCState &State) {
   1592   static const uint16_t ArgRegs[] = {
   1593     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
   1594     PPC::F8
   1595   };
   1596 
   1597   const unsigned NumArgRegs = array_lengthof(ArgRegs);
   1598 
   1599   unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
   1600 
   1601   // If there is only one Floating-point register left we need to put both f64
   1602   // values of a split ppc_fp128 value on the stack.
   1603   if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
   1604     State.AllocateReg(ArgRegs[RegNum]);
   1605   }
   1606 
   1607   // Always return false here, as this function only makes sure that the two f64
   1608   // values a ppc_fp128 value is split into are both passed in registers or both
   1609   // passed on the stack and does not actually allocate a register for the
   1610   // current argument.
   1611   return false;
   1612 }
   1613 
   1614 /// GetFPR - Get the set of FP registers that should be allocated for arguments,
   1615 /// on Darwin.
   1616 static const uint16_t *GetFPR() {
   1617   static const uint16_t FPR[] = {
   1618     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
   1619     PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
   1620   };
   1621 
   1622   return FPR;
   1623 }
   1624 
   1625 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
   1626 /// the stack.
   1627 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
   1628                                        unsigned PtrByteSize) {
   1629   unsigned ArgSize = ArgVT.getSizeInBits()/8;
   1630   if (Flags.isByVal())
   1631     ArgSize = Flags.getByValSize();
   1632   ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   1633 
   1634   return ArgSize;
   1635 }
   1636 
   1637 SDValue
   1638 PPCTargetLowering::LowerFormalArguments(SDValue Chain,
   1639                                         CallingConv::ID CallConv, bool isVarArg,
   1640                                         const SmallVectorImpl<ISD::InputArg>
   1641                                           &Ins,
   1642                                         DebugLoc dl, SelectionDAG &DAG,
   1643                                         SmallVectorImpl<SDValue> &InVals)
   1644                                           const {
   1645   if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
   1646     return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins,
   1647                                      dl, DAG, InVals);
   1648   } else {
   1649     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
   1650                                        dl, DAG, InVals);
   1651   }
   1652 }
   1653 
   1654 SDValue
   1655 PPCTargetLowering::LowerFormalArguments_SVR4(
   1656                                       SDValue Chain,
   1657                                       CallingConv::ID CallConv, bool isVarArg,
   1658                                       const SmallVectorImpl<ISD::InputArg>
   1659                                         &Ins,
   1660                                       DebugLoc dl, SelectionDAG &DAG,
   1661                                       SmallVectorImpl<SDValue> &InVals) const {
   1662 
   1663   // 32-bit SVR4 ABI Stack Frame Layout:
   1664   //              +-----------------------------------+
   1665   //        +-->  |            Back chain             |
   1666   //        |     +-----------------------------------+
   1667   //        |     | Floating-point register save area |
   1668   //        |     +-----------------------------------+
   1669   //        |     |    General register save area     |
   1670   //        |     +-----------------------------------+
   1671   //        |     |          CR save word             |
   1672   //        |     +-----------------------------------+
   1673   //        |     |         VRSAVE save word          |
   1674   //        |     +-----------------------------------+
   1675   //        |     |         Alignment padding         |
   1676   //        |     +-----------------------------------+
   1677   //        |     |     Vector register save area     |
   1678   //        |     +-----------------------------------+
   1679   //        |     |       Local variable space        |
   1680   //        |     +-----------------------------------+
   1681   //        |     |        Parameter list area        |
   1682   //        |     +-----------------------------------+
   1683   //        |     |           LR save word            |
   1684   //        |     +-----------------------------------+
   1685   // SP-->  +---  |            Back chain             |
   1686   //              +-----------------------------------+
   1687   //
   1688   // Specifications:
   1689   //   System V Application Binary Interface PowerPC Processor Supplement
   1690   //   AltiVec Technology Programming Interface Manual
   1691 
   1692   MachineFunction &MF = DAG.getMachineFunction();
   1693   MachineFrameInfo *MFI = MF.getFrameInfo();
   1694   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   1695 
   1696   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   1697   // Potential tail calls could cause overwriting of argument stack slots.
   1698   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
   1699                        (CallConv == CallingConv::Fast));
   1700   unsigned PtrByteSize = 4;
   1701 
   1702   // Assign locations to all of the incoming arguments.
   1703   SmallVector<CCValAssign, 16> ArgLocs;
   1704   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   1705 		 getTargetMachine(), ArgLocs, *DAG.getContext());
   1706 
   1707   // Reserve space for the linkage area on the stack.
   1708   CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
   1709 
   1710   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4);
   1711 
   1712   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   1713     CCValAssign &VA = ArgLocs[i];
   1714 
   1715     // Arguments stored in registers.
   1716     if (VA.isRegLoc()) {
   1717       const TargetRegisterClass *RC;
   1718       EVT ValVT = VA.getValVT();
   1719 
   1720       switch (ValVT.getSimpleVT().SimpleTy) {
   1721         default:
   1722           llvm_unreachable("ValVT not supported by formal arguments Lowering");
   1723         case MVT::i32:
   1724           RC = PPC::GPRCRegisterClass;
   1725           break;
   1726         case MVT::f32:
   1727           RC = PPC::F4RCRegisterClass;
   1728           break;
   1729         case MVT::f64:
   1730           RC = PPC::F8RCRegisterClass;
   1731           break;
   1732         case MVT::v16i8:
   1733         case MVT::v8i16:
   1734         case MVT::v4i32:
   1735         case MVT::v4f32:
   1736           RC = PPC::VRRCRegisterClass;
   1737           break;
   1738       }
   1739 
   1740       // Transform the arguments stored in physical registers into virtual ones.
   1741       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
   1742       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
   1743 
   1744       InVals.push_back(ArgValue);
   1745     } else {
   1746       // Argument stored in memory.
   1747       assert(VA.isMemLoc());
   1748 
   1749       unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
   1750       int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
   1751                                       isImmutable);
   1752 
   1753       // Create load nodes to retrieve arguments from the stack.
   1754       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   1755       InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
   1756                                    MachinePointerInfo(),
   1757                                    false, false, false, 0));
   1758     }
   1759   }
   1760 
   1761   // Assign locations to all of the incoming aggregate by value arguments.
   1762   // Aggregates passed by value are stored in the local variable space of the
   1763   // caller's stack frame, right above the parameter list area.
   1764   SmallVector<CCValAssign, 16> ByValArgLocs;
   1765   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   1766 		      getTargetMachine(), ByValArgLocs, *DAG.getContext());
   1767 
   1768   // Reserve stack space for the allocations in CCInfo.
   1769   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
   1770 
   1771   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal);
   1772 
   1773   // Area that is at least reserved in the caller of this function.
   1774   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
   1775 
   1776   // Set the size that is at least reserved in caller of this function.  Tail
   1777   // call optimized function's reserved stack space needs to be aligned so that
   1778   // taking the difference between two stack areas will result in an aligned
   1779   // stack.
   1780   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
   1781 
   1782   MinReservedArea =
   1783     std::max(MinReservedArea,
   1784              PPCFrameLowering::getMinCallFrameSize(false, false));
   1785 
   1786   unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
   1787     getStackAlignment();
   1788   unsigned AlignMask = TargetAlign-1;
   1789   MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
   1790 
   1791   FI->setMinReservedArea(MinReservedArea);
   1792 
   1793   SmallVector<SDValue, 8> MemOps;
   1794 
   1795   // If the function takes variable number of arguments, make a frame index for
   1796   // the start of the first vararg value... for expansion of llvm.va_start.
   1797   if (isVarArg) {
   1798     static const uint16_t GPArgRegs[] = {
   1799       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   1800       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   1801     };
   1802     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
   1803 
   1804     static const uint16_t FPArgRegs[] = {
   1805       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
   1806       PPC::F8
   1807     };
   1808     const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
   1809 
   1810     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
   1811                                                           NumGPArgRegs));
   1812     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
   1813                                                           NumFPArgRegs));
   1814 
   1815     // Make room for NumGPArgRegs and NumFPArgRegs.
   1816     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
   1817                 NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
   1818 
   1819     FuncInfo->setVarArgsStackOffset(
   1820       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
   1821                              CCInfo.getNextStackOffset(), true));
   1822 
   1823     FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
   1824     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   1825 
   1826     // The fixed integer arguments of a variadic function are stored to the
   1827     // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
   1828     // the result of va_next.
   1829     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
   1830       // Get an existing live-in vreg, or add a new one.
   1831       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
   1832       if (!VReg)
   1833         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
   1834 
   1835       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   1836       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   1837                                    MachinePointerInfo(), false, false, 0);
   1838       MemOps.push_back(Store);
   1839       // Increment the address by four for the next argument to store
   1840       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
   1841       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   1842     }
   1843 
   1844     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
   1845     // is set.
   1846     // The double arguments are stored to the VarArgsFrameIndex
   1847     // on the stack.
   1848     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
   1849       // Get an existing live-in vreg, or add a new one.
   1850       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
   1851       if (!VReg)
   1852         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
   1853 
   1854       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
   1855       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   1856                                    MachinePointerInfo(), false, false, 0);
   1857       MemOps.push_back(Store);
   1858       // Increment the address by eight for the next argument to store
   1859       SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
   1860                                          PtrVT);
   1861       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   1862     }
   1863   }
   1864 
   1865   if (!MemOps.empty())
   1866     Chain = DAG.getNode(ISD::TokenFactor, dl,
   1867                         MVT::Other, &MemOps[0], MemOps.size());
   1868 
   1869   return Chain;
   1870 }
   1871 
   1872 SDValue
   1873 PPCTargetLowering::LowerFormalArguments_Darwin(
   1874                                       SDValue Chain,
   1875                                       CallingConv::ID CallConv, bool isVarArg,
   1876                                       const SmallVectorImpl<ISD::InputArg>
   1877                                         &Ins,
   1878                                       DebugLoc dl, SelectionDAG &DAG,
   1879                                       SmallVectorImpl<SDValue> &InVals) const {
   1880   // TODO: add description of PPC stack frame format, or at least some docs.
   1881   //
   1882   MachineFunction &MF = DAG.getMachineFunction();
   1883   MachineFrameInfo *MFI = MF.getFrameInfo();
   1884   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   1885 
   1886   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   1887   bool isPPC64 = PtrVT == MVT::i64;
   1888   // Potential tail calls could cause overwriting of argument stack slots.
   1889   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
   1890                        (CallConv == CallingConv::Fast));
   1891   unsigned PtrByteSize = isPPC64 ? 8 : 4;
   1892 
   1893   unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
   1894   // Area that is at least reserved in caller of this function.
   1895   unsigned MinReservedArea = ArgOffset;
   1896 
   1897   static const uint16_t GPR_32[] = {           // 32-bit registers.
   1898     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   1899     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   1900   };
   1901   static const uint16_t GPR_64[] = {           // 64-bit registers.
   1902     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   1903     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   1904   };
   1905 
   1906   static const uint16_t *FPR = GetFPR();
   1907 
   1908   static const uint16_t VR[] = {
   1909     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   1910     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   1911   };
   1912 
   1913   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
   1914   const unsigned Num_FPR_Regs = 13;
   1915   const unsigned Num_VR_Regs  = array_lengthof( VR);
   1916 
   1917   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
   1918 
   1919   const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
   1920 
   1921   // In 32-bit non-varargs functions, the stack space for vectors is after the
   1922   // stack space for non-vectors.  We do not use this space unless we have
   1923   // too many vectors to fit in registers, something that only occurs in
   1924   // constructed examples:), but we have to walk the arglist to figure
   1925   // that out...for the pathological case, compute VecArgOffset as the
   1926   // start of the vector parameter area.  Computing VecArgOffset is the
   1927   // entire point of the following loop.
   1928   unsigned VecArgOffset = ArgOffset;
   1929   if (!isVarArg && !isPPC64) {
   1930     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
   1931          ++ArgNo) {
   1932       EVT ObjectVT = Ins[ArgNo].VT;
   1933       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
   1934 
   1935       if (Flags.isByVal()) {
   1936         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
   1937         unsigned ObjSize = Flags.getByValSize();
   1938         unsigned ArgSize =
   1939                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   1940         VecArgOffset += ArgSize;
   1941         continue;
   1942       }
   1943 
   1944       switch(ObjectVT.getSimpleVT().SimpleTy) {
   1945       default: llvm_unreachable("Unhandled argument type!");
   1946       case MVT::i32:
   1947       case MVT::f32:
   1948         VecArgOffset += isPPC64 ? 8 : 4;
   1949         break;
   1950       case MVT::i64:  // PPC64
   1951       case MVT::f64:
   1952         VecArgOffset += 8;
   1953         break;
   1954       case MVT::v4f32:
   1955       case MVT::v4i32:
   1956       case MVT::v8i16:
   1957       case MVT::v16i8:
   1958         // Nothing to do, we're only looking at Nonvector args here.
   1959         break;
   1960       }
   1961     }
   1962   }
   1963   // We've found where the vector parameter area in memory is.  Skip the
   1964   // first 12 parameters; these don't use that memory.
   1965   VecArgOffset = ((VecArgOffset+15)/16)*16;
   1966   VecArgOffset += 12*16;
   1967 
   1968   // Add DAG nodes to load the arguments or copy them out of registers.  On
   1969   // entry to a function on PPC, the arguments start after the linkage area,
   1970   // although the first ones are often in registers.
   1971 
   1972   SmallVector<SDValue, 8> MemOps;
   1973   unsigned nAltivecParamsAtEnd = 0;
   1974   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
   1975     SDValue ArgVal;
   1976     bool needsLoad = false;
   1977     EVT ObjectVT = Ins[ArgNo].VT;
   1978     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
   1979     unsigned ArgSize = ObjSize;
   1980     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
   1981 
   1982     unsigned CurArgOffset = ArgOffset;
   1983 
   1984     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
   1985     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
   1986         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
   1987       if (isVarArg || isPPC64) {
   1988         MinReservedArea = ((MinReservedArea+15)/16)*16;
   1989         MinReservedArea += CalculateStackSlotSize(ObjectVT,
   1990                                                   Flags,
   1991                                                   PtrByteSize);
   1992       } else  nAltivecParamsAtEnd++;
   1993     } else
   1994       // Calculate min reserved area.
   1995       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
   1996                                                 Flags,
   1997                                                 PtrByteSize);
   1998 
   1999     // FIXME the codegen can be much improved in some cases.
   2000     // We do not have to keep everything in memory.
   2001     if (Flags.isByVal()) {
   2002       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
   2003       ObjSize = Flags.getByValSize();
   2004       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   2005       // Objects of size 1 and 2 are right justified, everything else is
   2006       // left justified.  This means the memory address is adjusted forwards.
   2007       if (ObjSize==1 || ObjSize==2) {
   2008         CurArgOffset = CurArgOffset + (4 - ObjSize);
   2009       }
   2010       // The value of the object is its address.
   2011       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
   2012       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   2013       InVals.push_back(FIN);
   2014       if (ObjSize==1 || ObjSize==2) {
   2015         if (GPR_idx != Num_GPR_Regs) {
   2016           unsigned VReg;
   2017           if (isPPC64)
   2018             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   2019           else
   2020             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   2021           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   2022           SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
   2023                                             MachinePointerInfo(),
   2024                                             ObjSize==1 ? MVT::i8 : MVT::i16,
   2025                                             false, false, 0);
   2026           MemOps.push_back(Store);
   2027           ++GPR_idx;
   2028         }
   2029 
   2030         ArgOffset += PtrByteSize;
   2031 
   2032         continue;
   2033       }
   2034       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
   2035         // Store whatever pieces of the object are in registers
   2036         // to memory.  ArgVal will be address of the beginning of
   2037         // the object.
   2038         if (GPR_idx != Num_GPR_Regs) {
   2039           unsigned VReg;
   2040           if (isPPC64)
   2041             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   2042           else
   2043             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   2044           int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
   2045           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   2046           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   2047           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   2048                                        MachinePointerInfo(),
   2049                                        false, false, 0);
   2050           MemOps.push_back(Store);
   2051           ++GPR_idx;
   2052           ArgOffset += PtrByteSize;
   2053         } else {
   2054           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
   2055           break;
   2056         }
   2057       }
   2058       continue;
   2059     }
   2060 
   2061     switch (ObjectVT.getSimpleVT().SimpleTy) {
   2062     default: llvm_unreachable("Unhandled argument type!");
   2063     case MVT::i32:
   2064       if (!isPPC64) {
   2065         if (GPR_idx != Num_GPR_Regs) {
   2066           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   2067           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
   2068           ++GPR_idx;
   2069         } else {
   2070           needsLoad = true;
   2071           ArgSize = PtrByteSize;
   2072         }
   2073         // All int arguments reserve stack space in the Darwin ABI.
   2074         ArgOffset += PtrByteSize;
   2075         break;
   2076       }
   2077       // FALLTHROUGH
   2078     case MVT::i64:  // PPC64
   2079       if (GPR_idx != Num_GPR_Regs) {
   2080         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   2081         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
   2082 
   2083         if (ObjectVT == MVT::i32) {
   2084           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
   2085           // value to MVT::i64 and then truncate to the correct register size.
   2086           if (Flags.isSExt())
   2087             ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
   2088                                  DAG.getValueType(ObjectVT));
   2089           else if (Flags.isZExt())
   2090             ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
   2091                                  DAG.getValueType(ObjectVT));
   2092 
   2093           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
   2094         }
   2095 
   2096         ++GPR_idx;
   2097       } else {
   2098         needsLoad = true;
   2099         ArgSize = PtrByteSize;
   2100       }
   2101       // All int arguments reserve stack space in the Darwin ABI.
   2102       ArgOffset += 8;
   2103       break;
   2104 
   2105     case MVT::f32:
   2106     case MVT::f64:
   2107       // Every 4 bytes of argument space consumes one of the GPRs available for
   2108       // argument passing.
   2109       if (GPR_idx != Num_GPR_Regs) {
   2110         ++GPR_idx;
   2111         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
   2112           ++GPR_idx;
   2113       }
   2114       if (FPR_idx != Num_FPR_Regs) {
   2115         unsigned VReg;
   2116 
   2117         if (ObjectVT == MVT::f32)
   2118           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
   2119         else
   2120           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
   2121 
   2122         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   2123         ++FPR_idx;
   2124       } else {
   2125         needsLoad = true;
   2126       }
   2127 
   2128       // All FP arguments reserve stack space in the Darwin ABI.
   2129       ArgOffset += isPPC64 ? 8 : ObjSize;
   2130       break;
   2131     case MVT::v4f32:
   2132     case MVT::v4i32:
   2133     case MVT::v8i16:
   2134     case MVT::v16i8:
   2135       // Note that vector arguments in registers don't reserve stack space,
   2136       // except in varargs functions.
   2137       if (VR_idx != Num_VR_Regs) {
   2138         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
   2139         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   2140         if (isVarArg) {
   2141           while ((ArgOffset % 16) != 0) {
   2142             ArgOffset += PtrByteSize;
   2143             if (GPR_idx != Num_GPR_Regs)
   2144               GPR_idx++;
   2145           }
   2146           ArgOffset += 16;
   2147           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
   2148         }
   2149         ++VR_idx;
   2150       } else {
   2151         if (!isVarArg && !isPPC64) {
   2152           // Vectors go after all the nonvectors.
   2153           CurArgOffset = VecArgOffset;
   2154           VecArgOffset += 16;
   2155         } else {
   2156           // Vectors are aligned.
   2157           ArgOffset = ((ArgOffset+15)/16)*16;
   2158           CurArgOffset = ArgOffset;
   2159           ArgOffset += 16;
   2160         }
   2161         needsLoad = true;
   2162       }
   2163       break;
   2164     }
   2165 
   2166     // We need to load the argument to a virtual register if we determined above
   2167     // that we ran out of physical registers of the appropriate type.
   2168     if (needsLoad) {
   2169       int FI = MFI->CreateFixedObject(ObjSize,
   2170                                       CurArgOffset + (ArgSize - ObjSize),
   2171                                       isImmutable);
   2172       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   2173       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
   2174                            false, false, false, 0);
   2175     }
   2176 
   2177     InVals.push_back(ArgVal);
   2178   }
   2179 
   2180   // Set the size that is at least reserved in caller of this function.  Tail
   2181   // call optimized function's reserved stack space needs to be aligned so that
   2182   // taking the difference between two stack areas will result in an aligned
   2183   // stack.
   2184   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
   2185   // Add the Altivec parameters at the end, if needed.
   2186   if (nAltivecParamsAtEnd) {
   2187     MinReservedArea = ((MinReservedArea+15)/16)*16;
   2188     MinReservedArea += 16*nAltivecParamsAtEnd;
   2189   }
   2190   MinReservedArea =
   2191     std::max(MinReservedArea,
   2192              PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
   2193   unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
   2194     getStackAlignment();
   2195   unsigned AlignMask = TargetAlign-1;
   2196   MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
   2197   FI->setMinReservedArea(MinReservedArea);
   2198 
   2199   // If the function takes variable number of arguments, make a frame index for
   2200   // the start of the first vararg value... for expansion of llvm.va_start.
   2201   if (isVarArg) {
   2202     int Depth = ArgOffset;
   2203 
   2204     FuncInfo->setVarArgsFrameIndex(
   2205       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
   2206                              Depth, true));
   2207     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   2208 
   2209     // If this function is vararg, store any remaining integer argument regs
   2210     // to their spots on the stack so that they may be loaded by deferencing the
   2211     // result of va_next.
   2212     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
   2213       unsigned VReg;
   2214 
   2215       if (isPPC64)
   2216         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   2217       else
   2218         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   2219 
   2220       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   2221       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   2222                                    MachinePointerInfo(), false, false, 0);
   2223       MemOps.push_back(Store);
   2224       // Increment the address by four for the next argument to store
   2225       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
   2226       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   2227     }
   2228   }
   2229 
   2230   if (!MemOps.empty())
   2231     Chain = DAG.getNode(ISD::TokenFactor, dl,
   2232                         MVT::Other, &MemOps[0], MemOps.size());
   2233 
   2234   return Chain;
   2235 }
   2236 
   2237 /// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
   2238 /// linkage area for the Darwin ABI.
   2239 static unsigned
   2240 CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
   2241                                      bool isPPC64,
   2242                                      bool isVarArg,
   2243                                      unsigned CC,
   2244                                      const SmallVectorImpl<ISD::OutputArg>
   2245                                        &Outs,
   2246                                      const SmallVectorImpl<SDValue> &OutVals,
   2247                                      unsigned &nAltivecParamsAtEnd) {
   2248   // Count how many bytes are to be pushed on the stack, including the linkage
   2249   // area, and parameter passing area.  We start with 24/48 bytes, which is
   2250   // prereserved space for [SP][CR][LR][3 x unused].
   2251   unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true);
   2252   unsigned NumOps = Outs.size();
   2253   unsigned PtrByteSize = isPPC64 ? 8 : 4;
   2254 
   2255   // Add up all the space actually used.
   2256   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
   2257   // they all go in registers, but we must reserve stack space for them for
   2258   // possible use by the caller.  In varargs or 64-bit calls, parameters are
   2259   // assigned stack space in order, with padding so Altivec parameters are
   2260   // 16-byte aligned.
   2261   nAltivecParamsAtEnd = 0;
   2262   for (unsigned i = 0; i != NumOps; ++i) {
   2263     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   2264     EVT ArgVT = Outs[i].VT;
   2265     // Varargs Altivec parameters are padded to a 16 byte boundary.
   2266     if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
   2267         ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
   2268       if (!isVarArg && !isPPC64) {
   2269         // Non-varargs Altivec parameters go after all the non-Altivec
   2270         // parameters; handle those later so we know how much padding we need.
   2271         nAltivecParamsAtEnd++;
   2272         continue;
   2273       }
   2274       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
   2275       NumBytes = ((NumBytes+15)/16)*16;
   2276     }
   2277     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
   2278   }
   2279 
   2280    // Allow for Altivec parameters at the end, if needed.
   2281   if (nAltivecParamsAtEnd) {
   2282     NumBytes = ((NumBytes+15)/16)*16;
   2283     NumBytes += 16*nAltivecParamsAtEnd;
   2284   }
   2285 
   2286   // The prolog code of the callee may store up to 8 GPR argument registers to
   2287   // the stack, allowing va_start to index over them in memory if its varargs.
   2288   // Because we cannot tell if this is needed on the caller side, we have to
   2289   // conservatively assume that it is needed.  As such, make sure we have at
   2290   // least enough stack space for the caller to store the 8 GPRs.
   2291   NumBytes = std::max(NumBytes,
   2292                       PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
   2293 
   2294   // Tail call needs the stack to be aligned.
   2295   if (CC == CallingConv::Fast && DAG.getTarget().Options.GuaranteedTailCallOpt){
   2296     unsigned TargetAlign = DAG.getMachineFunction().getTarget().
   2297       getFrameLowering()->getStackAlignment();
   2298     unsigned AlignMask = TargetAlign-1;
   2299     NumBytes = (NumBytes + AlignMask) & ~AlignMask;
   2300   }
   2301 
   2302   return NumBytes;
   2303 }
   2304 
   2305 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
   2306 /// adjusted to accommodate the arguments for the tailcall.
   2307 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
   2308                                    unsigned ParamSize) {
   2309 
   2310   if (!isTailCall) return 0;
   2311 
   2312   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
   2313   unsigned CallerMinReservedArea = FI->getMinReservedArea();
   2314   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
   2315   // Remember only if the new adjustement is bigger.
   2316   if (SPDiff < FI->getTailCallSPDelta())
   2317     FI->setTailCallSPDelta(SPDiff);
   2318 
   2319   return SPDiff;
   2320 }
   2321 
   2322 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
   2323 /// for tail call optimization. Targets which want to do tail call
   2324 /// optimization should implement this function.
   2325 bool
   2326 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
   2327                                                      CallingConv::ID CalleeCC,
   2328                                                      bool isVarArg,
   2329                                       const SmallVectorImpl<ISD::InputArg> &Ins,
   2330                                                      SelectionDAG& DAG) const {
   2331   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
   2332     return false;
   2333 
   2334   // Variable argument functions are not supported.
   2335   if (isVarArg)
   2336     return false;
   2337 
   2338   MachineFunction &MF = DAG.getMachineFunction();
   2339   CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
   2340   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
   2341     // Functions containing by val parameters are not supported.
   2342     for (unsigned i = 0; i != Ins.size(); i++) {
   2343        ISD::ArgFlagsTy Flags = Ins[i].Flags;
   2344        if (Flags.isByVal()) return false;
   2345     }
   2346 
   2347     // Non PIC/GOT  tail calls are supported.
   2348     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
   2349       return true;
   2350 
   2351     // At the moment we can only do local tail calls (in same module, hidden
   2352     // or protected) if we are generating PIC.
   2353     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
   2354       return G->getGlobal()->hasHiddenVisibility()
   2355           || G->getGlobal()->hasProtectedVisibility();
   2356   }
   2357 
   2358   return false;
   2359 }
   2360 
   2361 /// isCallCompatibleAddress - Return the immediate to use if the specified
   2362 /// 32-bit value is representable in the immediate field of a BxA instruction.
   2363 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
   2364   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
   2365   if (!C) return 0;
   2366 
   2367   int Addr = C->getZExtValue();
   2368   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
   2369       (Addr << 6 >> 6) != Addr)
   2370     return 0;  // Top 6 bits have to be sext of immediate.
   2371 
   2372   return DAG.getConstant((int)C->getZExtValue() >> 2,
   2373                          DAG.getTargetLoweringInfo().getPointerTy()).getNode();
   2374 }
   2375 
   2376 namespace {
   2377 
   2378 struct TailCallArgumentInfo {
   2379   SDValue Arg;
   2380   SDValue FrameIdxOp;
   2381   int       FrameIdx;
   2382 
   2383   TailCallArgumentInfo() : FrameIdx(0) {}
   2384 };
   2385 
   2386 }
   2387 
   2388 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
   2389 static void
   2390 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
   2391                                            SDValue Chain,
   2392                    const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
   2393                    SmallVector<SDValue, 8> &MemOpChains,
   2394                    DebugLoc dl) {
   2395   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
   2396     SDValue Arg = TailCallArgs[i].Arg;
   2397     SDValue FIN = TailCallArgs[i].FrameIdxOp;
   2398     int FI = TailCallArgs[i].FrameIdx;
   2399     // Store relative to framepointer.
   2400     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
   2401                                        MachinePointerInfo::getFixedStack(FI),
   2402                                        false, false, 0));
   2403   }
   2404 }
   2405 
   2406 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
   2407 /// the appropriate stack slot for the tail call optimized function call.
   2408 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
   2409                                                MachineFunction &MF,
   2410                                                SDValue Chain,
   2411                                                SDValue OldRetAddr,
   2412                                                SDValue OldFP,
   2413                                                int SPDiff,
   2414                                                bool isPPC64,
   2415                                                bool isDarwinABI,
   2416                                                DebugLoc dl) {
   2417   if (SPDiff) {
   2418     // Calculate the new stack slot for the return address.
   2419     int SlotSize = isPPC64 ? 8 : 4;
   2420     int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
   2421                                                                    isDarwinABI);
   2422     int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
   2423                                                           NewRetAddrLoc, true);
   2424     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
   2425     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
   2426     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
   2427                          MachinePointerInfo::getFixedStack(NewRetAddr),
   2428                          false, false, 0);
   2429 
   2430     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
   2431     // slot as the FP is never overwritten.
   2432     if (isDarwinABI) {
   2433       int NewFPLoc =
   2434         SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
   2435       int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
   2436                                                           true);
   2437       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
   2438       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
   2439                            MachinePointerInfo::getFixedStack(NewFPIdx),
   2440                            false, false, 0);
   2441     }
   2442   }
   2443   return Chain;
   2444 }
   2445 
   2446 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
   2447 /// the position of the argument.
   2448 static void
   2449 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
   2450                          SDValue Arg, int SPDiff, unsigned ArgOffset,
   2451                       SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
   2452   int Offset = ArgOffset + SPDiff;
   2453   uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
   2454   int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
   2455   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
   2456   SDValue FIN = DAG.getFrameIndex(FI, VT);
   2457   TailCallArgumentInfo Info;
   2458   Info.Arg = Arg;
   2459   Info.FrameIdxOp = FIN;
   2460   Info.FrameIdx = FI;
   2461   TailCallArguments.push_back(Info);
   2462 }
   2463 
   2464 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
   2465 /// stack slot. Returns the chain as result and the loaded frame pointers in
   2466 /// LROpOut/FPOpout. Used when tail calling.
   2467 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
   2468                                                         int SPDiff,
   2469                                                         SDValue Chain,
   2470                                                         SDValue &LROpOut,
   2471                                                         SDValue &FPOpOut,
   2472                                                         bool isDarwinABI,
   2473                                                         DebugLoc dl) const {
   2474   if (SPDiff) {
   2475     // Load the LR and FP stack slot for later adjusting.
   2476     EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
   2477     LROpOut = getReturnAddrFrameIndex(DAG);
   2478     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
   2479                           false, false, false, 0);
   2480     Chain = SDValue(LROpOut.getNode(), 1);
   2481 
   2482     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
   2483     // slot as the FP is never overwritten.
   2484     if (isDarwinABI) {
   2485       FPOpOut = getFramePointerFrameIndex(DAG);
   2486       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
   2487                             false, false, false, 0);
   2488       Chain = SDValue(FPOpOut.getNode(), 1);
   2489     }
   2490   }
   2491   return Chain;
   2492 }
   2493 
   2494 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
   2495 /// by "Src" to address "Dst" of size "Size".  Alignment information is
   2496 /// specified by the specific parameter attribute. The copy will be passed as
   2497 /// a byval function parameter.
   2498 /// Sometimes what we are copying is the end of a larger object, the part that
   2499 /// does not fit in registers.
   2500 static SDValue
   2501 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
   2502                           ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
   2503                           DebugLoc dl) {
   2504   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
   2505   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
   2506                        false, false, MachinePointerInfo(0),
   2507                        MachinePointerInfo(0));
   2508 }
   2509 
   2510 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
   2511 /// tail calls.
   2512 static void
   2513 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
   2514                  SDValue Arg, SDValue PtrOff, int SPDiff,
   2515                  unsigned ArgOffset, bool isPPC64, bool isTailCall,
   2516                  bool isVector, SmallVector<SDValue, 8> &MemOpChains,
   2517                  SmallVector<TailCallArgumentInfo, 8> &TailCallArguments,
   2518                  DebugLoc dl) {
   2519   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   2520   if (!isTailCall) {
   2521     if (isVector) {
   2522       SDValue StackPtr;
   2523       if (isPPC64)
   2524         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
   2525       else
   2526         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
   2527       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
   2528                            DAG.getConstant(ArgOffset, PtrVT));
   2529     }
   2530     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
   2531                                        MachinePointerInfo(), false, false, 0));
   2532   // Calculate and remember argument location.
   2533   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
   2534                                   TailCallArguments);
   2535 }
   2536 
   2537 static
   2538 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
   2539                      DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
   2540                      SDValue LROp, SDValue FPOp, bool isDarwinABI,
   2541                      SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
   2542   MachineFunction &MF = DAG.getMachineFunction();
   2543 
   2544   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
   2545   // might overwrite each other in case of tail call optimization.
   2546   SmallVector<SDValue, 8> MemOpChains2;
   2547   // Do not flag preceding copytoreg stuff together with the following stuff.
   2548   InFlag = SDValue();
   2549   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
   2550                                     MemOpChains2, dl);
   2551   if (!MemOpChains2.empty())
   2552     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   2553                         &MemOpChains2[0], MemOpChains2.size());
   2554 
   2555   // Store the return address to the appropriate stack slot.
   2556   Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
   2557                                         isPPC64, isDarwinABI, dl);
   2558 
   2559   // Emit callseq_end just before tailcall node.
   2560   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
   2561                              DAG.getIntPtrConstant(0, true), InFlag);
   2562   InFlag = Chain.getValue(1);
   2563 }
   2564 
   2565 static
   2566 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
   2567                      SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
   2568                      SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
   2569                      SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
   2570                      const PPCSubtarget &PPCSubTarget) {
   2571 
   2572   bool isPPC64 = PPCSubTarget.isPPC64();
   2573   bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
   2574 
   2575   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   2576   NodeTys.push_back(MVT::Other);   // Returns a chain
   2577   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
   2578 
   2579   unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
   2580 
   2581   bool needIndirectCall = true;
   2582   if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
   2583     // If this is an absolute destination address, use the munged value.
   2584     Callee = SDValue(Dest, 0);
   2585     needIndirectCall = false;
   2586   }
   2587 
   2588   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   2589     // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
   2590     // Use indirect calls for ALL functions calls in JIT mode, since the
   2591     // far-call stubs may be outside relocation limits for a BL instruction.
   2592     if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
   2593       unsigned OpFlags = 0;
   2594       if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
   2595           (PPCSubTarget.getTargetTriple().isMacOSX() &&
   2596            PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
   2597           (G->getGlobal()->isDeclaration() ||
   2598            G->getGlobal()->isWeakForLinker())) {
   2599         // PC-relative references to external symbols should go through $stub,
   2600         // unless we're building with the leopard linker or later, which
   2601         // automatically synthesizes these stubs.
   2602         OpFlags = PPCII::MO_DARWIN_STUB;
   2603       }
   2604 
   2605       // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
   2606       // every direct call is) turn it into a TargetGlobalAddress /
   2607       // TargetExternalSymbol node so that legalize doesn't hack it.
   2608       Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
   2609                                           Callee.getValueType(),
   2610                                           0, OpFlags);
   2611       needIndirectCall = false;
   2612     }
   2613   }
   2614 
   2615   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
   2616     unsigned char OpFlags = 0;
   2617 
   2618     if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
   2619         (PPCSubTarget.getTargetTriple().isMacOSX() &&
   2620          PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
   2621       // PC-relative references to external symbols should go through $stub,
   2622       // unless we're building with the leopard linker or later, which
   2623       // automatically synthesizes these stubs.
   2624       OpFlags = PPCII::MO_DARWIN_STUB;
   2625     }
   2626 
   2627     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
   2628                                          OpFlags);
   2629     needIndirectCall = false;
   2630   }
   2631 
   2632   if (needIndirectCall) {
   2633     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
   2634     // to do the call, we can't use PPCISD::CALL.
   2635     SDValue MTCTROps[] = {Chain, Callee, InFlag};
   2636 
   2637     if (isSVR4ABI && isPPC64) {
   2638       // Function pointers in the 64-bit SVR4 ABI do not point to the function
   2639       // entry point, but to the function descriptor (the function entry point
   2640       // address is part of the function descriptor though).
   2641       // The function descriptor is a three doubleword structure with the
   2642       // following fields: function entry point, TOC base address and
   2643       // environment pointer.
   2644       // Thus for a call through a function pointer, the following actions need
   2645       // to be performed:
   2646       //   1. Save the TOC of the caller in the TOC save area of its stack
   2647       //      frame (this is done in LowerCall_Darwin()).
   2648       //   2. Load the address of the function entry point from the function
   2649       //      descriptor.
   2650       //   3. Load the TOC of the callee from the function descriptor into r2.
   2651       //   4. Load the environment pointer from the function descriptor into
   2652       //      r11.
   2653       //   5. Branch to the function entry point address.
   2654       //   6. On return of the callee, the TOC of the caller needs to be
   2655       //      restored (this is done in FinishCall()).
   2656       //
   2657       // All those operations are flagged together to ensure that no other
   2658       // operations can be scheduled in between. E.g. without flagging the
   2659       // operations together, a TOC access in the caller could be scheduled
   2660       // between the load of the callee TOC and the branch to the callee, which
   2661       // results in the TOC access going through the TOC of the callee instead
   2662       // of going through the TOC of the caller, which leads to incorrect code.
   2663 
   2664       // Load the address of the function entry point from the function
   2665       // descriptor.
   2666       SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
   2667       SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
   2668                                         InFlag.getNode() ? 3 : 2);
   2669       Chain = LoadFuncPtr.getValue(1);
   2670       InFlag = LoadFuncPtr.getValue(2);
   2671 
   2672       // Load environment pointer into r11.
   2673       // Offset of the environment pointer within the function descriptor.
   2674       SDValue PtrOff = DAG.getIntPtrConstant(16);
   2675 
   2676       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
   2677       SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
   2678                                        InFlag);
   2679       Chain = LoadEnvPtr.getValue(1);
   2680       InFlag = LoadEnvPtr.getValue(2);
   2681 
   2682       SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
   2683                                         InFlag);
   2684       Chain = EnvVal.getValue(0);
   2685       InFlag = EnvVal.getValue(1);
   2686 
   2687       // Load TOC of the callee into r2. We are using a target-specific load
   2688       // with r2 hard coded, because the result of a target-independent load
   2689       // would never go directly into r2, since r2 is a reserved register (which
   2690       // prevents the register allocator from allocating it), resulting in an
   2691       // additional register being allocated and an unnecessary move instruction
   2692       // being generated.
   2693       VTs = DAG.getVTList(MVT::Other, MVT::Glue);
   2694       SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
   2695                                        Callee, InFlag);
   2696       Chain = LoadTOCPtr.getValue(0);
   2697       InFlag = LoadTOCPtr.getValue(1);
   2698 
   2699       MTCTROps[0] = Chain;
   2700       MTCTROps[1] = LoadFuncPtr;
   2701       MTCTROps[2] = InFlag;
   2702     }
   2703 
   2704     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
   2705                         2 + (InFlag.getNode() != 0));
   2706     InFlag = Chain.getValue(1);
   2707 
   2708     NodeTys.clear();
   2709     NodeTys.push_back(MVT::Other);
   2710     NodeTys.push_back(MVT::Glue);
   2711     Ops.push_back(Chain);
   2712     CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
   2713     Callee.setNode(0);
   2714     // Add CTR register as callee so a bctr can be emitted later.
   2715     if (isTailCall)
   2716       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
   2717   }
   2718 
   2719   // If this is a direct call, pass the chain and the callee.
   2720   if (Callee.getNode()) {
   2721     Ops.push_back(Chain);
   2722     Ops.push_back(Callee);
   2723   }
   2724   // If this is a tail call add stack pointer delta.
   2725   if (isTailCall)
   2726     Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
   2727 
   2728   // Add argument registers to the end of the list so that they are known live
   2729   // into the call.
   2730   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
   2731     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
   2732                                   RegsToPass[i].second.getValueType()));
   2733 
   2734   return CallOpc;
   2735 }
   2736 
   2737 SDValue
   2738 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
   2739                                    CallingConv::ID CallConv, bool isVarArg,
   2740                                    const SmallVectorImpl<ISD::InputArg> &Ins,
   2741                                    DebugLoc dl, SelectionDAG &DAG,
   2742                                    SmallVectorImpl<SDValue> &InVals) const {
   2743 
   2744   SmallVector<CCValAssign, 16> RVLocs;
   2745   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   2746 		    getTargetMachine(), RVLocs, *DAG.getContext());
   2747   CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
   2748 
   2749   // Copy all of the result registers out of their specified physreg.
   2750   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
   2751     CCValAssign &VA = RVLocs[i];
   2752     EVT VT = VA.getValVT();
   2753     assert(VA.isRegLoc() && "Can only return in registers!");
   2754     Chain = DAG.getCopyFromReg(Chain, dl,
   2755                                VA.getLocReg(), VT, InFlag).getValue(1);
   2756     InVals.push_back(Chain.getValue(0));
   2757     InFlag = Chain.getValue(2);
   2758   }
   2759 
   2760   return Chain;
   2761 }
   2762 
   2763 SDValue
   2764 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
   2765                               bool isTailCall, bool isVarArg,
   2766                               SelectionDAG &DAG,
   2767                               SmallVector<std::pair<unsigned, SDValue>, 8>
   2768                                 &RegsToPass,
   2769                               SDValue InFlag, SDValue Chain,
   2770                               SDValue &Callee,
   2771                               int SPDiff, unsigned NumBytes,
   2772                               const SmallVectorImpl<ISD::InputArg> &Ins,
   2773                               SmallVectorImpl<SDValue> &InVals) const {
   2774   std::vector<EVT> NodeTys;
   2775   SmallVector<SDValue, 8> Ops;
   2776   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
   2777                                  isTailCall, RegsToPass, Ops, NodeTys,
   2778                                  PPCSubTarget);
   2779 
   2780   // When performing tail call optimization the callee pops its arguments off
   2781   // the stack. Account for this here so these bytes can be pushed back on in
   2782   // PPCRegisterInfo::eliminateCallFramePseudoInstr.
   2783   int BytesCalleePops =
   2784     (CallConv == CallingConv::Fast &&
   2785      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
   2786 
   2787   // Add a register mask operand representing the call-preserved registers.
   2788   const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
   2789   const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
   2790   assert(Mask && "Missing call preserved mask for calling convention");
   2791   Ops.push_back(DAG.getRegisterMask(Mask));
   2792 
   2793   if (InFlag.getNode())
   2794     Ops.push_back(InFlag);
   2795 
   2796   // Emit tail call.
   2797   if (isTailCall) {
   2798     // If this is the first return lowered for this function, add the regs
   2799     // to the liveout set for the function.
   2800     if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
   2801       SmallVector<CCValAssign, 16> RVLocs;
   2802       CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   2803 		     getTargetMachine(), RVLocs, *DAG.getContext());
   2804       CCInfo.AnalyzeCallResult(Ins, RetCC_PPC);
   2805       for (unsigned i = 0; i != RVLocs.size(); ++i)
   2806         DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
   2807     }
   2808 
   2809     assert(((Callee.getOpcode() == ISD::Register &&
   2810              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
   2811             Callee.getOpcode() == ISD::TargetExternalSymbol ||
   2812             Callee.getOpcode() == ISD::TargetGlobalAddress ||
   2813             isa<ConstantSDNode>(Callee)) &&
   2814     "Expecting an global address, external symbol, absolute value or register");
   2815 
   2816     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
   2817   }
   2818 
   2819   // Add a NOP immediately after the branch instruction when using the 64-bit
   2820   // SVR4 ABI. At link time, if caller and callee are in a different module and
   2821   // thus have a different TOC, the call will be replaced with a call to a stub
   2822   // function which saves the current TOC, loads the TOC of the callee and
   2823   // branches to the callee. The NOP will be replaced with a load instruction
   2824   // which restores the TOC of the caller from the TOC save slot of the current
   2825   // stack frame. If caller and callee belong to the same module (and have the
   2826   // same TOC), the NOP will remain unchanged.
   2827 
   2828   bool needsTOCRestore = false;
   2829   if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
   2830     if (CallOpc == PPCISD::BCTRL_SVR4) {
   2831       // This is a call through a function pointer.
   2832       // Restore the caller TOC from the save area into R2.
   2833       // See PrepareCall() for more information about calls through function
   2834       // pointers in the 64-bit SVR4 ABI.
   2835       // We are using a target-specific load with r2 hard coded, because the
   2836       // result of a target-independent load would never go directly into r2,
   2837       // since r2 is a reserved register (which prevents the register allocator
   2838       // from allocating it), resulting in an additional register being
   2839       // allocated and an unnecessary move instruction being generated.
   2840       needsTOCRestore = true;
   2841     } else if (CallOpc == PPCISD::CALL_SVR4) {
   2842       // Otherwise insert NOP.
   2843       CallOpc = PPCISD::CALL_NOP_SVR4;
   2844     }
   2845   }
   2846 
   2847   Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
   2848   InFlag = Chain.getValue(1);
   2849 
   2850   if (needsTOCRestore) {
   2851     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
   2852     Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
   2853     InFlag = Chain.getValue(1);
   2854   }
   2855 
   2856   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
   2857                              DAG.getIntPtrConstant(BytesCalleePops, true),
   2858                              InFlag);
   2859   if (!Ins.empty())
   2860     InFlag = Chain.getValue(1);
   2861 
   2862   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
   2863                          Ins, dl, DAG, InVals);
   2864 }
   2865 
   2866 SDValue
   2867 PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
   2868                              CallingConv::ID CallConv, bool isVarArg,
   2869                              bool doesNotRet, bool &isTailCall,
   2870                              const SmallVectorImpl<ISD::OutputArg> &Outs,
   2871                              const SmallVectorImpl<SDValue> &OutVals,
   2872                              const SmallVectorImpl<ISD::InputArg> &Ins,
   2873                              DebugLoc dl, SelectionDAG &DAG,
   2874                              SmallVectorImpl<SDValue> &InVals) const {
   2875   if (isTailCall)
   2876     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
   2877                                                    Ins, DAG);
   2878 
   2879   if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
   2880     return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg,
   2881                           isTailCall, Outs, OutVals, Ins,
   2882                           dl, DAG, InVals);
   2883 
   2884   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
   2885                           isTailCall, Outs, OutVals, Ins,
   2886                           dl, DAG, InVals);
   2887 }
   2888 
   2889 SDValue
   2890 PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee,
   2891                                   CallingConv::ID CallConv, bool isVarArg,
   2892                                   bool isTailCall,
   2893                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
   2894                                   const SmallVectorImpl<SDValue> &OutVals,
   2895                                   const SmallVectorImpl<ISD::InputArg> &Ins,
   2896                                   DebugLoc dl, SelectionDAG &DAG,
   2897                                   SmallVectorImpl<SDValue> &InVals) const {
   2898   // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description
   2899   // of the 32-bit SVR4 ABI stack frame layout.
   2900 
   2901   assert((CallConv == CallingConv::C ||
   2902           CallConv == CallingConv::Fast) && "Unknown calling convention!");
   2903 
   2904   unsigned PtrByteSize = 4;
   2905 
   2906   MachineFunction &MF = DAG.getMachineFunction();
   2907 
   2908   // Mark this function as potentially containing a function that contains a
   2909   // tail call. As a consequence the frame pointer will be used for dynamicalloc
   2910   // and restoring the callers stack pointer in this functions epilog. This is
   2911   // done because by tail calling the called function might overwrite the value
   2912   // in this function's (MF) stack pointer stack slot 0(SP).
   2913   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   2914       CallConv == CallingConv::Fast)
   2915     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
   2916 
   2917   // Count how many bytes are to be pushed on the stack, including the linkage
   2918   // area, parameter list area and the part of the local variable space which
   2919   // contains copies of aggregates which are passed by value.
   2920 
   2921   // Assign locations to all of the outgoing arguments.
   2922   SmallVector<CCValAssign, 16> ArgLocs;
   2923   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   2924 		 getTargetMachine(), ArgLocs, *DAG.getContext());
   2925 
   2926   // Reserve space for the linkage area on the stack.
   2927   CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
   2928 
   2929   if (isVarArg) {
   2930     // Handle fixed and variable vector arguments differently.
   2931     // Fixed vector arguments go into registers as long as registers are
   2932     // available. Variable vector arguments always go into memory.
   2933     unsigned NumArgs = Outs.size();
   2934 
   2935     for (unsigned i = 0; i != NumArgs; ++i) {
   2936       MVT ArgVT = Outs[i].VT;
   2937       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
   2938       bool Result;
   2939 
   2940       if (Outs[i].IsFixed) {
   2941         Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
   2942                              CCInfo);
   2943       } else {
   2944         Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
   2945                                     ArgFlags, CCInfo);
   2946       }
   2947 
   2948       if (Result) {
   2949 #ifndef NDEBUG
   2950         errs() << "Call operand #" << i << " has unhandled type "
   2951              << EVT(ArgVT).getEVTString() << "\n";
   2952 #endif
   2953         llvm_unreachable(0);
   2954       }
   2955     }
   2956   } else {
   2957     // All arguments are treated the same.
   2958     CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4);
   2959   }
   2960 
   2961   // Assign locations to all of the outgoing aggregate by value arguments.
   2962   SmallVector<CCValAssign, 16> ByValArgLocs;
   2963   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   2964 		      getTargetMachine(), ByValArgLocs, *DAG.getContext());
   2965 
   2966   // Reserve stack space for the allocations in CCInfo.
   2967   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
   2968 
   2969   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal);
   2970 
   2971   // Size of the linkage area, parameter list area and the part of the local
   2972   // space variable where copies of aggregates which are passed by value are
   2973   // stored.
   2974   unsigned NumBytes = CCByValInfo.getNextStackOffset();
   2975 
   2976   // Calculate by how many bytes the stack has to be adjusted in case of tail
   2977   // call optimization.
   2978   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
   2979 
   2980   // Adjust the stack pointer for the new arguments...
   2981   // These operations are automatically eliminated by the prolog/epilog pass
   2982   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
   2983   SDValue CallSeqStart = Chain;
   2984 
   2985   // Load the return address and frame pointer so it can be moved somewhere else
   2986   // later.
   2987   SDValue LROp, FPOp;
   2988   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
   2989                                        dl);
   2990 
   2991   // Set up a copy of the stack pointer for use loading and storing any
   2992   // arguments that may not fit in the registers available for argument
   2993   // passing.
   2994   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
   2995 
   2996   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   2997   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
   2998   SmallVector<SDValue, 8> MemOpChains;
   2999 
   3000   bool seenFloatArg = false;
   3001   // Walk the register/memloc assignments, inserting copies/loads.
   3002   for (unsigned i = 0, j = 0, e = ArgLocs.size();
   3003        i != e;
   3004        ++i) {
   3005     CCValAssign &VA = ArgLocs[i];
   3006     SDValue Arg = OutVals[i];
   3007     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   3008 
   3009     if (Flags.isByVal()) {
   3010       // Argument is an aggregate which is passed by value, thus we need to
   3011       // create a copy of it in the local variable space of the current stack
   3012       // frame (which is the stack frame of the caller) and pass the address of
   3013       // this copy to the callee.
   3014       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
   3015       CCValAssign &ByValVA = ByValArgLocs[j++];
   3016       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
   3017 
   3018       // Memory reserved in the local variable space of the callers stack frame.
   3019       unsigned LocMemOffset = ByValVA.getLocMemOffset();
   3020 
   3021       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
   3022       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
   3023 
   3024       // Create a copy of the argument in the local area of the current
   3025       // stack frame.
   3026       SDValue MemcpyCall =
   3027         CreateCopyOfByValArgument(Arg, PtrOff,
   3028                                   CallSeqStart.getNode()->getOperand(0),
   3029                                   Flags, DAG, dl);
   3030 
   3031       // This must go outside the CALLSEQ_START..END.
   3032       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
   3033                            CallSeqStart.getNode()->getOperand(1));
   3034       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
   3035                              NewCallSeqStart.getNode());
   3036       Chain = CallSeqStart = NewCallSeqStart;
   3037 
   3038       // Pass the address of the aggregate copy on the stack either in a
   3039       // physical register or in the parameter list area of the current stack
   3040       // frame to the callee.
   3041       Arg = PtrOff;
   3042     }
   3043 
   3044     if (VA.isRegLoc()) {
   3045       seenFloatArg |= VA.getLocVT().isFloatingPoint();
   3046       // Put argument in a physical register.
   3047       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
   3048     } else {
   3049       // Put argument in the parameter list area of the current stack frame.
   3050       assert(VA.isMemLoc());
   3051       unsigned LocMemOffset = VA.getLocMemOffset();
   3052 
   3053       if (!isTailCall) {
   3054         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
   3055         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
   3056 
   3057         MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
   3058                                            MachinePointerInfo(),
   3059                                            false, false, 0));
   3060       } else {
   3061         // Calculate and remember argument location.
   3062         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
   3063                                  TailCallArguments);
   3064       }
   3065     }
   3066   }
   3067 
   3068   if (!MemOpChains.empty())
   3069     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   3070                         &MemOpChains[0], MemOpChains.size());
   3071 
   3072   // Set CR6 to true if this is a vararg call with floating args passed in
   3073   // registers.
   3074   if (isVarArg) {
   3075     SDValue SetCR(DAG.getMachineNode(seenFloatArg ? PPC::CRSET : PPC::CRUNSET,
   3076                                      dl, MVT::i32), 0);
   3077     RegsToPass.push_back(std::make_pair(unsigned(PPC::CR1EQ), SetCR));
   3078   }
   3079 
   3080   // Build a sequence of copy-to-reg nodes chained together with token chain
   3081   // and flag operands which copy the outgoing args into the appropriate regs.
   3082   SDValue InFlag;
   3083   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   3084     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   3085                              RegsToPass[i].second, InFlag);
   3086     InFlag = Chain.getValue(1);
   3087   }
   3088 
   3089   if (isTailCall)
   3090     PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
   3091                     false, TailCallArguments);
   3092 
   3093   return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
   3094                     RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
   3095                     Ins, InVals);
   3096 }
   3097 
   3098 SDValue
   3099 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
   3100                                     CallingConv::ID CallConv, bool isVarArg,
   3101                                     bool isTailCall,
   3102                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   3103                                     const SmallVectorImpl<SDValue> &OutVals,
   3104                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   3105                                     DebugLoc dl, SelectionDAG &DAG,
   3106                                     SmallVectorImpl<SDValue> &InVals) const {
   3107 
   3108   unsigned NumOps  = Outs.size();
   3109 
   3110   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   3111   bool isPPC64 = PtrVT == MVT::i64;
   3112   unsigned PtrByteSize = isPPC64 ? 8 : 4;
   3113 
   3114   MachineFunction &MF = DAG.getMachineFunction();
   3115 
   3116   // Mark this function as potentially containing a function that contains a
   3117   // tail call. As a consequence the frame pointer will be used for dynamicalloc
   3118   // and restoring the callers stack pointer in this functions epilog. This is
   3119   // done because by tail calling the called function might overwrite the value
   3120   // in this function's (MF) stack pointer stack slot 0(SP).
   3121   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   3122       CallConv == CallingConv::Fast)
   3123     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
   3124 
   3125   unsigned nAltivecParamsAtEnd = 0;
   3126 
   3127   // Count how many bytes are to be pushed on the stack, including the linkage
   3128   // area, and parameter passing area.  We start with 24/48 bytes, which is
   3129   // prereserved space for [SP][CR][LR][3 x unused].
   3130   unsigned NumBytes =
   3131     CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
   3132                                          Outs, OutVals,
   3133                                          nAltivecParamsAtEnd);
   3134 
   3135   // Calculate by how many bytes the stack has to be adjusted in case of tail
   3136   // call optimization.
   3137   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
   3138 
   3139   // To protect arguments on the stack from being clobbered in a tail call,
   3140   // force all the loads to happen before doing any other lowering.
   3141   if (isTailCall)
   3142     Chain = DAG.getStackArgumentTokenFactor(Chain);
   3143 
   3144   // Adjust the stack pointer for the new arguments...
   3145   // These operations are automatically eliminated by the prolog/epilog pass
   3146   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
   3147   SDValue CallSeqStart = Chain;
   3148 
   3149   // Load the return address and frame pointer so it can be move somewhere else
   3150   // later.
   3151   SDValue LROp, FPOp;
   3152   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
   3153                                        dl);
   3154 
   3155   // Set up a copy of the stack pointer for use loading and storing any
   3156   // arguments that may not fit in the registers available for argument
   3157   // passing.
   3158   SDValue StackPtr;
   3159   if (isPPC64)
   3160     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
   3161   else
   3162     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
   3163 
   3164   // Figure out which arguments are going to go in registers, and which in
   3165   // memory.  Also, if this is a vararg function, floating point operations
   3166   // must be stored to our stack, and loaded into integer regs as well, if
   3167   // any integer regs are available for argument passing.
   3168   unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
   3169   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
   3170 
   3171   static const uint16_t GPR_32[] = {           // 32-bit registers.
   3172     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   3173     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   3174   };
   3175   static const uint16_t GPR_64[] = {           // 64-bit registers.
   3176     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   3177     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   3178   };
   3179   static const uint16_t *FPR = GetFPR();
   3180 
   3181   static const uint16_t VR[] = {
   3182     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   3183     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   3184   };
   3185   const unsigned NumGPRs = array_lengthof(GPR_32);
   3186   const unsigned NumFPRs = 13;
   3187   const unsigned NumVRs  = array_lengthof(VR);
   3188 
   3189   const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
   3190 
   3191   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   3192   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
   3193 
   3194   SmallVector<SDValue, 8> MemOpChains;
   3195   for (unsigned i = 0; i != NumOps; ++i) {
   3196     SDValue Arg = OutVals[i];
   3197     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   3198 
   3199     // PtrOff will be used to store the current argument to the stack if a
   3200     // register cannot be found for it.
   3201     SDValue PtrOff;
   3202 
   3203     PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
   3204 
   3205     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
   3206 
   3207     // On PPC64, promote integers to 64-bit values.
   3208     if (isPPC64 && Arg.getValueType() == MVT::i32) {
   3209       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
   3210       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
   3211       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
   3212     }
   3213 
   3214     // FIXME memcpy is used way more than necessary.  Correctness first.
   3215     if (Flags.isByVal()) {
   3216       unsigned Size = Flags.getByValSize();
   3217       if (Size==1 || Size==2) {
   3218         // Very small objects are passed right-justified.
   3219         // Everything else is passed left-justified.
   3220         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
   3221         if (GPR_idx != NumGPRs) {
   3222           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
   3223                                         MachinePointerInfo(), VT,
   3224                                         false, false, 0);
   3225           MemOpChains.push_back(Load.getValue(1));
   3226           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   3227 
   3228           ArgOffset += PtrByteSize;
   3229         } else {
   3230           SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
   3231           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
   3232           SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
   3233                                 CallSeqStart.getNode()->getOperand(0),
   3234                                 Flags, DAG, dl);
   3235           // This must go outside the CALLSEQ_START..END.
   3236           SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
   3237                                CallSeqStart.getNode()->getOperand(1));
   3238           DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
   3239                                  NewCallSeqStart.getNode());
   3240           Chain = CallSeqStart = NewCallSeqStart;
   3241           ArgOffset += PtrByteSize;
   3242         }
   3243         continue;
   3244       }
   3245       // Copy entire object into memory.  There are cases where gcc-generated
   3246       // code assumes it is there, even if it could be put entirely into
   3247       // registers.  (This is not what the doc says.)
   3248       SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
   3249                             CallSeqStart.getNode()->getOperand(0),
   3250                             Flags, DAG, dl);
   3251       // This must go outside the CALLSEQ_START..END.
   3252       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
   3253                            CallSeqStart.getNode()->getOperand(1));
   3254       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
   3255       Chain = CallSeqStart = NewCallSeqStart;
   3256       // And copy the pieces of it that fit into registers.
   3257       for (unsigned j=0; j<Size; j+=PtrByteSize) {
   3258         SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
   3259         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
   3260         if (GPR_idx != NumGPRs) {
   3261           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
   3262                                      MachinePointerInfo(),
   3263                                      false, false, false, 0);
   3264           MemOpChains.push_back(Load.getValue(1));
   3265           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   3266           ArgOffset += PtrByteSize;
   3267         } else {
   3268           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
   3269           break;
   3270         }
   3271       }
   3272       continue;
   3273     }
   3274 
   3275     switch (Arg.getValueType().getSimpleVT().SimpleTy) {
   3276     default: llvm_unreachable("Unexpected ValueType for argument!");
   3277     case MVT::i32:
   3278     case MVT::i64:
   3279       if (GPR_idx != NumGPRs) {
   3280         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
   3281       } else {
   3282         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   3283                          isPPC64, isTailCall, false, MemOpChains,
   3284                          TailCallArguments, dl);
   3285       }
   3286       ArgOffset += PtrByteSize;
   3287       break;
   3288     case MVT::f32:
   3289     case MVT::f64:
   3290       if (FPR_idx != NumFPRs) {
   3291         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
   3292 
   3293         if (isVarArg) {
   3294           SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
   3295                                        MachinePointerInfo(), false, false, 0);
   3296           MemOpChains.push_back(Store);
   3297 
   3298           // Float varargs are always shadowed in available integer registers
   3299           if (GPR_idx != NumGPRs) {
   3300             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
   3301                                        MachinePointerInfo(), false, false,
   3302                                        false, 0);
   3303             MemOpChains.push_back(Load.getValue(1));
   3304             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   3305           }
   3306           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
   3307             SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
   3308             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
   3309             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
   3310                                        MachinePointerInfo(),
   3311                                        false, false, false, 0);
   3312             MemOpChains.push_back(Load.getValue(1));
   3313             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   3314           }
   3315         } else {
   3316           // If we have any FPRs remaining, we may also have GPRs remaining.
   3317           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
   3318           // GPRs.
   3319           if (GPR_idx != NumGPRs)
   3320             ++GPR_idx;
   3321           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
   3322               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
   3323             ++GPR_idx;
   3324         }
   3325       } else {
   3326         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   3327                          isPPC64, isTailCall, false, MemOpChains,
   3328                          TailCallArguments, dl);
   3329       }
   3330       if (isPPC64)
   3331         ArgOffset += 8;
   3332       else
   3333         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
   3334       break;
   3335     case MVT::v4f32:
   3336     case MVT::v4i32:
   3337     case MVT::v8i16:
   3338     case MVT::v16i8:
   3339       if (isVarArg) {
   3340         // These go aligned on the stack, or in the corresponding R registers
   3341         // when within range.  The Darwin PPC ABI doc claims they also go in
   3342         // V registers; in fact gcc does this only for arguments that are
   3343         // prototyped, not for those that match the ...  We do it for all
   3344         // arguments, seems to work.
   3345         while (ArgOffset % 16 !=0) {
   3346           ArgOffset += PtrByteSize;
   3347           if (GPR_idx != NumGPRs)
   3348             GPR_idx++;
   3349         }
   3350         // We could elide this store in the case where the object fits
   3351         // entirely in R registers.  Maybe later.
   3352         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
   3353                             DAG.getConstant(ArgOffset, PtrVT));
   3354         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
   3355                                      MachinePointerInfo(), false, false, 0);
   3356         MemOpChains.push_back(Store);
   3357         if (VR_idx != NumVRs) {
   3358           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
   3359                                      MachinePointerInfo(),
   3360                                      false, false, false, 0);
   3361           MemOpChains.push_back(Load.getValue(1));
   3362           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
   3363         }
   3364         ArgOffset += 16;
   3365         for (unsigned i=0; i<16; i+=PtrByteSize) {
   3366           if (GPR_idx == NumGPRs)
   3367             break;
   3368           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
   3369                                   DAG.getConstant(i, PtrVT));
   3370           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
   3371                                      false, false, false, 0);
   3372           MemOpChains.push_back(Load.getValue(1));
   3373           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   3374         }
   3375         break;
   3376       }
   3377 
   3378       // Non-varargs Altivec params generally go in registers, but have
   3379       // stack space allocated at the end.
   3380       if (VR_idx != NumVRs) {
   3381         // Doesn't have GPR space allocated.
   3382         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
   3383       } else if (nAltivecParamsAtEnd==0) {
   3384         // We are emitting Altivec params in order.
   3385         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   3386                          isPPC64, isTailCall, true, MemOpChains,
   3387                          TailCallArguments, dl);
   3388         ArgOffset += 16;
   3389       }
   3390       break;
   3391     }
   3392   }
   3393   // If all Altivec parameters fit in registers, as they usually do,
   3394   // they get stack space following the non-Altivec parameters.  We
   3395   // don't track this here because nobody below needs it.
   3396   // If there are more Altivec parameters than fit in registers emit
   3397   // the stores here.
   3398   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
   3399     unsigned j = 0;
   3400     // Offset is aligned; skip 1st 12 params which go in V registers.
   3401     ArgOffset = ((ArgOffset+15)/16)*16;
   3402     ArgOffset += 12*16;
   3403     for (unsigned i = 0; i != NumOps; ++i) {
   3404       SDValue Arg = OutVals[i];
   3405       EVT ArgType = Outs[i].VT;
   3406       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
   3407           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
   3408         if (++j > NumVRs) {
   3409           SDValue PtrOff;
   3410           // We are emitting Altivec params in order.
   3411           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   3412                            isPPC64, isTailCall, true, MemOpChains,
   3413                            TailCallArguments, dl);
   3414           ArgOffset += 16;
   3415         }
   3416       }
   3417     }
   3418   }
   3419 
   3420   if (!MemOpChains.empty())
   3421     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   3422                         &MemOpChains[0], MemOpChains.size());
   3423 
   3424   // Check if this is an indirect call (MTCTR/BCTRL).
   3425   // See PrepareCall() for more information about calls through function
   3426   // pointers in the 64-bit SVR4 ABI.
   3427   if (!isTailCall && isPPC64 && PPCSubTarget.isSVR4ABI() &&
   3428       !dyn_cast<GlobalAddressSDNode>(Callee) &&
   3429       !dyn_cast<ExternalSymbolSDNode>(Callee) &&
   3430       !isBLACompatibleAddress(Callee, DAG)) {
   3431     // Load r2 into a virtual register and store it to the TOC save area.
   3432     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
   3433     // TOC save area offset.
   3434     SDValue PtrOff = DAG.getIntPtrConstant(40);
   3435     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
   3436     Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
   3437                          false, false, 0);
   3438   }
   3439 
   3440   // On Darwin, R12 must contain the address of an indirect callee.  This does
   3441   // not mean the MTCTR instruction must use R12; it's easier to model this as
   3442   // an extra parameter, so do that.
   3443   if (!isTailCall &&
   3444       !dyn_cast<GlobalAddressSDNode>(Callee) &&
   3445       !dyn_cast<ExternalSymbolSDNode>(Callee) &&
   3446       !isBLACompatibleAddress(Callee, DAG))
   3447     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
   3448                                                    PPC::R12), Callee));
   3449 
   3450   // Build a sequence of copy-to-reg nodes chained together with token chain
   3451   // and flag operands which copy the outgoing args into the appropriate regs.
   3452   SDValue InFlag;
   3453   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   3454     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   3455                              RegsToPass[i].second, InFlag);
   3456     InFlag = Chain.getValue(1);
   3457   }
   3458 
   3459   if (isTailCall)
   3460     PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
   3461                     FPOp, true, TailCallArguments);
   3462 
   3463   return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
   3464                     RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
   3465                     Ins, InVals);
   3466 }
   3467 
   3468 bool
   3469 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
   3470                                   MachineFunction &MF, bool isVarArg,
   3471                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
   3472                                   LLVMContext &Context) const {
   3473   SmallVector<CCValAssign, 16> RVLocs;
   3474   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
   3475                  RVLocs, Context);
   3476   return CCInfo.CheckReturn(Outs, RetCC_PPC);
   3477 }
   3478 
   3479 SDValue
   3480 PPCTargetLowering::LowerReturn(SDValue Chain,
   3481                                CallingConv::ID CallConv, bool isVarArg,
   3482                                const SmallVectorImpl<ISD::OutputArg> &Outs,
   3483                                const SmallVectorImpl<SDValue> &OutVals,
   3484                                DebugLoc dl, SelectionDAG &DAG) const {
   3485 
   3486   SmallVector<CCValAssign, 16> RVLocs;
   3487   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   3488 		 getTargetMachine(), RVLocs, *DAG.getContext());
   3489   CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
   3490 
   3491   // If this is the first return lowered for this function, add the regs to the
   3492   // liveout set for the function.
   3493   if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
   3494     for (unsigned i = 0; i != RVLocs.size(); ++i)
   3495       DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
   3496   }
   3497 
   3498   SDValue Flag;
   3499 
   3500   // Copy the result values into the output registers.
   3501   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   3502     CCValAssign &VA = RVLocs[i];
   3503     assert(VA.isRegLoc() && "Can only return in registers!");
   3504     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
   3505                              OutVals[i], Flag);
   3506     Flag = Chain.getValue(1);
   3507   }
   3508 
   3509   if (Flag.getNode())
   3510     return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
   3511   else
   3512     return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
   3513 }
   3514 
   3515 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
   3516                                    const PPCSubtarget &Subtarget) const {
   3517   // When we pop the dynamic allocation we need to restore the SP link.
   3518   DebugLoc dl = Op.getDebugLoc();
   3519 
   3520   // Get the corect type for pointers.
   3521   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   3522 
   3523   // Construct the stack pointer operand.
   3524   bool isPPC64 = Subtarget.isPPC64();
   3525   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
   3526   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
   3527 
   3528   // Get the operands for the STACKRESTORE.
   3529   SDValue Chain = Op.getOperand(0);
   3530   SDValue SaveSP = Op.getOperand(1);
   3531 
   3532   // Load the old link SP.
   3533   SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
   3534                                    MachinePointerInfo(),
   3535                                    false, false, false, 0);
   3536 
   3537   // Restore the stack pointer.
   3538   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
   3539 
   3540   // Store the old link SP.
   3541   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
   3542                       false, false, 0);
   3543 }
   3544 
   3545 
   3546 
   3547 SDValue
   3548 PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
   3549   MachineFunction &MF = DAG.getMachineFunction();
   3550   bool isPPC64 = PPCSubTarget.isPPC64();
   3551   bool isDarwinABI = PPCSubTarget.isDarwinABI();
   3552   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   3553 
   3554   // Get current frame pointer save index.  The users of this index will be
   3555   // primarily DYNALLOC instructions.
   3556   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
   3557   int RASI = FI->getReturnAddrSaveIndex();
   3558 
   3559   // If the frame pointer save index hasn't been defined yet.
   3560   if (!RASI) {
   3561     // Find out what the fix offset of the frame pointer save area.
   3562     int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
   3563     // Allocate the frame index for frame pointer save area.
   3564     RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
   3565     // Save the result.
   3566     FI->setReturnAddrSaveIndex(RASI);
   3567   }
   3568   return DAG.getFrameIndex(RASI, PtrVT);
   3569 }
   3570 
   3571 SDValue
   3572 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
   3573   MachineFunction &MF = DAG.getMachineFunction();
   3574   bool isPPC64 = PPCSubTarget.isPPC64();
   3575   bool isDarwinABI = PPCSubTarget.isDarwinABI();
   3576   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   3577 
   3578   // Get current frame pointer save index.  The users of this index will be
   3579   // primarily DYNALLOC instructions.
   3580   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
   3581   int FPSI = FI->getFramePointerSaveIndex();
   3582 
   3583   // If the frame pointer save index hasn't been defined yet.
   3584   if (!FPSI) {
   3585     // Find out what the fix offset of the frame pointer save area.
   3586     int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
   3587                                                            isDarwinABI);
   3588 
   3589     // Allocate the frame index for frame pointer save area.
   3590     FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
   3591     // Save the result.
   3592     FI->setFramePointerSaveIndex(FPSI);
   3593   }
   3594   return DAG.getFrameIndex(FPSI, PtrVT);
   3595 }
   3596 
   3597 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
   3598                                          SelectionDAG &DAG,
   3599                                          const PPCSubtarget &Subtarget) const {
   3600   // Get the inputs.
   3601   SDValue Chain = Op.getOperand(0);
   3602   SDValue Size  = Op.getOperand(1);
   3603   DebugLoc dl = Op.getDebugLoc();
   3604 
   3605   // Get the corect type for pointers.
   3606   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   3607   // Negate the size.
   3608   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
   3609                                   DAG.getConstant(0, PtrVT), Size);
   3610   // Construct a node for the frame pointer save index.
   3611   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
   3612   // Build a DYNALLOC node.
   3613   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
   3614   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
   3615   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
   3616 }
   3617 
   3618 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
   3619 /// possible.
   3620 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
   3621   // Not FP? Not a fsel.
   3622   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
   3623       !Op.getOperand(2).getValueType().isFloatingPoint())
   3624     return Op;
   3625 
   3626   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
   3627 
   3628   // Cannot handle SETEQ/SETNE.
   3629   if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
   3630 
   3631   EVT ResVT = Op.getValueType();
   3632   EVT CmpVT = Op.getOperand(0).getValueType();
   3633   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   3634   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
   3635   DebugLoc dl = Op.getDebugLoc();
   3636 
   3637   // If the RHS of the comparison is a 0.0, we don't need to do the
   3638   // subtraction at all.
   3639   if (isFloatingPointZero(RHS))
   3640     switch (CC) {
   3641     default: break;       // SETUO etc aren't handled by fsel.
   3642     case ISD::SETULT:
   3643     case ISD::SETLT:
   3644       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
   3645     case ISD::SETOGE:
   3646     case ISD::SETGE:
   3647       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
   3648         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
   3649       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
   3650     case ISD::SETUGT:
   3651     case ISD::SETGT:
   3652       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
   3653     case ISD::SETOLE:
   3654     case ISD::SETLE:
   3655       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
   3656         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
   3657       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
   3658                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
   3659     }
   3660 
   3661   SDValue Cmp;
   3662   switch (CC) {
   3663   default: break;       // SETUO etc aren't handled by fsel.
   3664   case ISD::SETULT:
   3665   case ISD::SETLT:
   3666     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
   3667     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   3668       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   3669       return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
   3670   case ISD::SETOGE:
   3671   case ISD::SETGE:
   3672     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
   3673     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   3674       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   3675       return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
   3676   case ISD::SETUGT:
   3677   case ISD::SETGT:
   3678     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
   3679     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   3680       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   3681       return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
   3682   case ISD::SETOLE:
   3683   case ISD::SETLE:
   3684     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
   3685     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   3686       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   3687       return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
   3688   }
   3689   return Op;
   3690 }
   3691 
   3692 // FIXME: Split this code up when LegalizeDAGTypes lands.
   3693 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
   3694                                            DebugLoc dl) const {
   3695   assert(Op.getOperand(0).getValueType().isFloatingPoint());
   3696   SDValue Src = Op.getOperand(0);
   3697   if (Src.getValueType() == MVT::f32)
   3698     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
   3699 
   3700   SDValue Tmp;
   3701   switch (Op.getValueType().getSimpleVT().SimpleTy) {
   3702   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
   3703   case MVT::i32:
   3704     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
   3705                                                          PPCISD::FCTIDZ,
   3706                       dl, MVT::f64, Src);
   3707     break;
   3708   case MVT::i64:
   3709     Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
   3710     break;
   3711   }
   3712 
   3713   // Convert the FP value to an int value through memory.
   3714   SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
   3715 
   3716   // Emit a store to the stack slot.
   3717   SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
   3718                                MachinePointerInfo(), false, false, 0);
   3719 
   3720   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
   3721   // add in a bias.
   3722   if (Op.getValueType() == MVT::i32)
   3723     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
   3724                         DAG.getConstant(4, FIPtr.getValueType()));
   3725   return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(),
   3726                      false, false, false, 0);
   3727 }
   3728 
   3729 SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op,
   3730                                            SelectionDAG &DAG) const {
   3731   DebugLoc dl = Op.getDebugLoc();
   3732   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
   3733   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
   3734     return SDValue();
   3735 
   3736   if (Op.getOperand(0).getValueType() == MVT::i64) {
   3737     SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op.getOperand(0));
   3738     SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
   3739     if (Op.getValueType() == MVT::f32)
   3740       FP = DAG.getNode(ISD::FP_ROUND, dl,
   3741                        MVT::f32, FP, DAG.getIntPtrConstant(0));
   3742     return FP;
   3743   }
   3744 
   3745   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
   3746          "Unhandled SINT_TO_FP type in custom expander!");
   3747   // Since we only generate this in 64-bit mode, we can take advantage of
   3748   // 64-bit registers.  In particular, sign extend the input value into the
   3749   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
   3750   // then lfd it and fcfid it.
   3751   MachineFunction &MF = DAG.getMachineFunction();
   3752   MachineFrameInfo *FrameInfo = MF.getFrameInfo();
   3753   int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
   3754   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   3755   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   3756 
   3757   SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
   3758                                 Op.getOperand(0));
   3759 
   3760   // STD the extended value into the stack slot.
   3761   MachineMemOperand *MMO =
   3762     MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
   3763                             MachineMemOperand::MOStore, 8, 8);
   3764   SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx };
   3765   SDValue Store =
   3766     DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other),
   3767                             Ops, 4, MVT::i64, MMO);
   3768   // Load the value as a double.
   3769   SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(),
   3770                            false, false, false, 0);
   3771 
   3772   // FCFID it and return it.
   3773   SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
   3774   if (Op.getValueType() == MVT::f32)
   3775     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
   3776   return FP;
   3777 }
   3778 
   3779 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
   3780                                             SelectionDAG &DAG) const {
   3781   DebugLoc dl = Op.getDebugLoc();
   3782   /*
   3783    The rounding mode is in bits 30:31 of FPSR, and has the following
   3784    settings:
   3785      00 Round to nearest
   3786      01 Round to 0
   3787      10 Round to +inf
   3788      11 Round to -inf
   3789 
   3790   FLT_ROUNDS, on the other hand, expects the following:
   3791     -1 Undefined
   3792      0 Round to 0
   3793      1 Round to nearest
   3794      2 Round to +inf
   3795      3 Round to -inf
   3796 
   3797   To perform the conversion, we do:
   3798     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
   3799   */
   3800 
   3801   MachineFunction &MF = DAG.getMachineFunction();
   3802   EVT VT = Op.getValueType();
   3803   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   3804   std::vector<EVT> NodeTys;
   3805   SDValue MFFSreg, InFlag;
   3806 
   3807   // Save FP Control Word to register
   3808   NodeTys.push_back(MVT::f64);    // return register
   3809   NodeTys.push_back(MVT::Glue);   // unused in this context
   3810   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
   3811 
   3812   // Save FP register to stack slot
   3813   int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
   3814   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
   3815   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
   3816                                StackSlot, MachinePointerInfo(), false, false,0);
   3817 
   3818   // Load FP Control Word from low 32 bits of stack slot.
   3819   SDValue Four = DAG.getConstant(4, PtrVT);
   3820   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
   3821   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
   3822                             false, false, false, 0);
   3823 
   3824   // Transform as necessary
   3825   SDValue CWD1 =
   3826     DAG.getNode(ISD::AND, dl, MVT::i32,
   3827                 CWD, DAG.getConstant(3, MVT::i32));
   3828   SDValue CWD2 =
   3829     DAG.getNode(ISD::SRL, dl, MVT::i32,
   3830                 DAG.getNode(ISD::AND, dl, MVT::i32,
   3831                             DAG.getNode(ISD::XOR, dl, MVT::i32,
   3832                                         CWD, DAG.getConstant(3, MVT::i32)),
   3833                             DAG.getConstant(3, MVT::i32)),
   3834                 DAG.getConstant(1, MVT::i32));
   3835 
   3836   SDValue RetVal =
   3837     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
   3838 
   3839   return DAG.getNode((VT.getSizeInBits() < 16 ?
   3840                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
   3841 }
   3842 
   3843 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
   3844   EVT VT = Op.getValueType();
   3845   unsigned BitWidth = VT.getSizeInBits();
   3846   DebugLoc dl = Op.getDebugLoc();
   3847   assert(Op.getNumOperands() == 3 &&
   3848          VT == Op.getOperand(1).getValueType() &&
   3849          "Unexpected SHL!");
   3850 
   3851   // Expand into a bunch of logical ops.  Note that these ops
   3852   // depend on the PPC behavior for oversized shift amounts.
   3853   SDValue Lo = Op.getOperand(0);
   3854   SDValue Hi = Op.getOperand(1);
   3855   SDValue Amt = Op.getOperand(2);
   3856   EVT AmtVT = Amt.getValueType();
   3857 
   3858   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
   3859                              DAG.getConstant(BitWidth, AmtVT), Amt);
   3860   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
   3861   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
   3862   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
   3863   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
   3864                              DAG.getConstant(-BitWidth, AmtVT));
   3865   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
   3866   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
   3867   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
   3868   SDValue OutOps[] = { OutLo, OutHi };
   3869   return DAG.getMergeValues(OutOps, 2, dl);
   3870 }
   3871 
   3872 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
   3873   EVT VT = Op.getValueType();
   3874   DebugLoc dl = Op.getDebugLoc();
   3875   unsigned BitWidth = VT.getSizeInBits();
   3876   assert(Op.getNumOperands() == 3 &&
   3877          VT == Op.getOperand(1).getValueType() &&
   3878          "Unexpected SRL!");
   3879 
   3880   // Expand into a bunch of logical ops.  Note that these ops
   3881   // depend on the PPC behavior for oversized shift amounts.
   3882   SDValue Lo = Op.getOperand(0);
   3883   SDValue Hi = Op.getOperand(1);
   3884   SDValue Amt = Op.getOperand(2);
   3885   EVT AmtVT = Amt.getValueType();
   3886 
   3887   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
   3888                              DAG.getConstant(BitWidth, AmtVT), Amt);
   3889   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
   3890   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
   3891   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
   3892   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
   3893                              DAG.getConstant(-BitWidth, AmtVT));
   3894   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
   3895   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
   3896   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
   3897   SDValue OutOps[] = { OutLo, OutHi };
   3898   return DAG.getMergeValues(OutOps, 2, dl);
   3899 }
   3900 
   3901 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
   3902   DebugLoc dl = Op.getDebugLoc();
   3903   EVT VT = Op.getValueType();
   3904   unsigned BitWidth = VT.getSizeInBits();
   3905   assert(Op.getNumOperands() == 3 &&
   3906          VT == Op.getOperand(1).getValueType() &&
   3907          "Unexpected SRA!");
   3908 
   3909   // Expand into a bunch of logical ops, followed by a select_cc.
   3910   SDValue Lo = Op.getOperand(0);
   3911   SDValue Hi = Op.getOperand(1);
   3912   SDValue Amt = Op.getOperand(2);
   3913   EVT AmtVT = Amt.getValueType();
   3914 
   3915   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
   3916                              DAG.getConstant(BitWidth, AmtVT), Amt);
   3917   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
   3918   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
   3919   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
   3920   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
   3921                              DAG.getConstant(-BitWidth, AmtVT));
   3922   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
   3923   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
   3924   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
   3925                                   Tmp4, Tmp6, ISD::SETLE);
   3926   SDValue OutOps[] = { OutLo, OutHi };
   3927   return DAG.getMergeValues(OutOps, 2, dl);
   3928 }
   3929 
   3930 //===----------------------------------------------------------------------===//
   3931 // Vector related lowering.
   3932 //
   3933 
   3934 /// BuildSplatI - Build a canonical splati of Val with an element size of
   3935 /// SplatSize.  Cast the result to VT.
   3936 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
   3937                              SelectionDAG &DAG, DebugLoc dl) {
   3938   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
   3939 
   3940   static const EVT VTys[] = { // canonical VT to use for each size.
   3941     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
   3942   };
   3943 
   3944   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
   3945 
   3946   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
   3947   if (Val == -1)
   3948     SplatSize = 1;
   3949 
   3950   EVT CanonicalVT = VTys[SplatSize-1];
   3951 
   3952   // Build a canonical splat for this value.
   3953   SDValue Elt = DAG.getConstant(Val, MVT::i32);
   3954   SmallVector<SDValue, 8> Ops;
   3955   Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
   3956   SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
   3957                               &Ops[0], Ops.size());
   3958   return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
   3959 }
   3960 
   3961 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
   3962 /// specified intrinsic ID.
   3963 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
   3964                                 SelectionDAG &DAG, DebugLoc dl,
   3965                                 EVT DestVT = MVT::Other) {
   3966   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
   3967   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
   3968                      DAG.getConstant(IID, MVT::i32), LHS, RHS);
   3969 }
   3970 
   3971 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
   3972 /// specified intrinsic ID.
   3973 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
   3974                                 SDValue Op2, SelectionDAG &DAG,
   3975                                 DebugLoc dl, EVT DestVT = MVT::Other) {
   3976   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
   3977   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
   3978                      DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
   3979 }
   3980 
   3981 
   3982 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
   3983 /// amount.  The result has the specified value type.
   3984 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
   3985                              EVT VT, SelectionDAG &DAG, DebugLoc dl) {
   3986   // Force LHS/RHS to be the right type.
   3987   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
   3988   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
   3989 
   3990   int Ops[16];
   3991   for (unsigned i = 0; i != 16; ++i)
   3992     Ops[i] = i + Amt;
   3993   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
   3994   return DAG.getNode(ISD::BITCAST, dl, VT, T);
   3995 }
   3996 
   3997 // If this is a case we can't handle, return null and let the default
   3998 // expansion code take care of it.  If we CAN select this case, and if it
   3999 // selects to a single instruction, return Op.  Otherwise, if we can codegen
   4000 // this case more efficiently than a constant pool load, lower it to the
   4001 // sequence of ops that should be used.
   4002 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
   4003                                              SelectionDAG &DAG) const {
   4004   DebugLoc dl = Op.getDebugLoc();
   4005   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
   4006   assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
   4007 
   4008   // Check if this is a splat of a constant value.
   4009   APInt APSplatBits, APSplatUndef;
   4010   unsigned SplatBitSize;
   4011   bool HasAnyUndefs;
   4012   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
   4013                              HasAnyUndefs, 0, true) || SplatBitSize > 32)
   4014     return SDValue();
   4015 
   4016   unsigned SplatBits = APSplatBits.getZExtValue();
   4017   unsigned SplatUndef = APSplatUndef.getZExtValue();
   4018   unsigned SplatSize = SplatBitSize / 8;
   4019 
   4020   // First, handle single instruction cases.
   4021 
   4022   // All zeros?
   4023   if (SplatBits == 0) {
   4024     // Canonicalize all zero vectors to be v4i32.
   4025     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
   4026       SDValue Z = DAG.getConstant(0, MVT::i32);
   4027       Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
   4028       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
   4029     }
   4030     return Op;
   4031   }
   4032 
   4033   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
   4034   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
   4035                     (32-SplatBitSize));
   4036   if (SextVal >= -16 && SextVal <= 15)
   4037     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
   4038 
   4039 
   4040   // Two instruction sequences.
   4041 
   4042   // If this value is in the range [-32,30] and is even, use:
   4043   //    tmp = VSPLTI[bhw], result = add tmp, tmp
   4044   if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
   4045     SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
   4046     Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
   4047     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   4048   }
   4049 
   4050   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
   4051   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
   4052   // for fneg/fabs.
   4053   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
   4054     // Make -1 and vspltisw -1:
   4055     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
   4056 
   4057     // Make the VSLW intrinsic, computing 0x8000_0000.
   4058     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
   4059                                    OnesV, DAG, dl);
   4060 
   4061     // xor by OnesV to invert it.
   4062     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
   4063     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   4064   }
   4065 
   4066   // Check to see if this is a wide variety of vsplti*, binop self cases.
   4067   static const signed char SplatCsts[] = {
   4068     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
   4069     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
   4070   };
   4071 
   4072   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
   4073     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
   4074     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
   4075     int i = SplatCsts[idx];
   4076 
   4077     // Figure out what shift amount will be used by altivec if shifted by i in
   4078     // this splat size.
   4079     unsigned TypeShiftAmt = i & (SplatBitSize-1);
   4080 
   4081     // vsplti + shl self.
   4082     if (SextVal == (i << (int)TypeShiftAmt)) {
   4083       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   4084       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   4085         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
   4086         Intrinsic::ppc_altivec_vslw
   4087       };
   4088       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   4089       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   4090     }
   4091 
   4092     // vsplti + srl self.
   4093     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
   4094       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   4095       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   4096         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
   4097         Intrinsic::ppc_altivec_vsrw
   4098       };
   4099       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   4100       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   4101     }
   4102 
   4103     // vsplti + sra self.
   4104     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
   4105       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   4106       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   4107         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
   4108         Intrinsic::ppc_altivec_vsraw
   4109       };
   4110       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   4111       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   4112     }
   4113 
   4114     // vsplti + rol self.
   4115     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
   4116                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
   4117       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   4118       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   4119         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
   4120         Intrinsic::ppc_altivec_vrlw
   4121       };
   4122       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   4123       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   4124     }
   4125 
   4126     // t = vsplti c, result = vsldoi t, t, 1
   4127     if (SextVal == ((i << 8) | (i < 0 ? 0xFF : 0))) {
   4128       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
   4129       return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
   4130     }
   4131     // t = vsplti c, result = vsldoi t, t, 2
   4132     if (SextVal == ((i << 16) | (i < 0 ? 0xFFFF : 0))) {
   4133       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
   4134       return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
   4135     }
   4136     // t = vsplti c, result = vsldoi t, t, 3
   4137     if (SextVal == ((i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
   4138       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
   4139       return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
   4140     }
   4141   }
   4142 
   4143   // Three instruction sequences.
   4144 
   4145   // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
   4146   if (SextVal >= 0 && SextVal <= 31) {
   4147     SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
   4148     SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
   4149     LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
   4150     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
   4151   }
   4152   // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
   4153   if (SextVal >= -31 && SextVal <= 0) {
   4154     SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
   4155     SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
   4156     LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
   4157     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
   4158   }
   4159 
   4160   return SDValue();
   4161 }
   4162 
   4163 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
   4164 /// the specified operations to build the shuffle.
   4165 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
   4166                                       SDValue RHS, SelectionDAG &DAG,
   4167                                       DebugLoc dl) {
   4168   unsigned OpNum = (PFEntry >> 26) & 0x0F;
   4169   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
   4170   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
   4171 
   4172   enum {
   4173     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
   4174     OP_VMRGHW,
   4175     OP_VMRGLW,
   4176     OP_VSPLTISW0,
   4177     OP_VSPLTISW1,
   4178     OP_VSPLTISW2,
   4179     OP_VSPLTISW3,
   4180     OP_VSLDOI4,
   4181     OP_VSLDOI8,
   4182     OP_VSLDOI12
   4183   };
   4184 
   4185   if (OpNum == OP_COPY) {
   4186     if (LHSID == (1*9+2)*9+3) return LHS;
   4187     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
   4188     return RHS;
   4189   }
   4190 
   4191   SDValue OpLHS, OpRHS;
   4192   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
   4193   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
   4194 
   4195   int ShufIdxs[16];
   4196   switch (OpNum) {
   4197   default: llvm_unreachable("Unknown i32 permute!");
   4198   case OP_VMRGHW:
   4199     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
   4200     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
   4201     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
   4202     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
   4203     break;
   4204   case OP_VMRGLW:
   4205     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
   4206     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
   4207     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
   4208     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
   4209     break;
   4210   case OP_VSPLTISW0:
   4211     for (unsigned i = 0; i != 16; ++i)
   4212       ShufIdxs[i] = (i&3)+0;
   4213     break;
   4214   case OP_VSPLTISW1:
   4215     for (unsigned i = 0; i != 16; ++i)
   4216       ShufIdxs[i] = (i&3)+4;
   4217     break;
   4218   case OP_VSPLTISW2:
   4219     for (unsigned i = 0; i != 16; ++i)
   4220       ShufIdxs[i] = (i&3)+8;
   4221     break;
   4222   case OP_VSPLTISW3:
   4223     for (unsigned i = 0; i != 16; ++i)
   4224       ShufIdxs[i] = (i&3)+12;
   4225     break;
   4226   case OP_VSLDOI4:
   4227     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
   4228   case OP_VSLDOI8:
   4229     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
   4230   case OP_VSLDOI12:
   4231     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
   4232   }
   4233   EVT VT = OpLHS.getValueType();
   4234   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
   4235   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
   4236   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
   4237   return DAG.getNode(ISD::BITCAST, dl, VT, T);
   4238 }
   4239 
   4240 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
   4241 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
   4242 /// return the code it can be lowered into.  Worst case, it can always be
   4243 /// lowered into a vperm.
   4244 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
   4245                                                SelectionDAG &DAG) const {
   4246   DebugLoc dl = Op.getDebugLoc();
   4247   SDValue V1 = Op.getOperand(0);
   4248   SDValue V2 = Op.getOperand(1);
   4249   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
   4250   EVT VT = Op.getValueType();
   4251 
   4252   // Cases that are handled by instructions that take permute immediates
   4253   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
   4254   // selected by the instruction selector.
   4255   if (V2.getOpcode() == ISD::UNDEF) {
   4256     if (PPC::isSplatShuffleMask(SVOp, 1) ||
   4257         PPC::isSplatShuffleMask(SVOp, 2) ||
   4258         PPC::isSplatShuffleMask(SVOp, 4) ||
   4259         PPC::isVPKUWUMShuffleMask(SVOp, true) ||
   4260         PPC::isVPKUHUMShuffleMask(SVOp, true) ||
   4261         PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
   4262         PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
   4263         PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
   4264         PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
   4265         PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
   4266         PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
   4267         PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
   4268       return Op;
   4269     }
   4270   }
   4271 
   4272   // Altivec has a variety of "shuffle immediates" that take two vector inputs
   4273   // and produce a fixed permutation.  If any of these match, do not lower to
   4274   // VPERM.
   4275   if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
   4276       PPC::isVPKUHUMShuffleMask(SVOp, false) ||
   4277       PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
   4278       PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
   4279       PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
   4280       PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
   4281       PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
   4282       PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
   4283       PPC::isVMRGHShuffleMask(SVOp, 4, false))
   4284     return Op;
   4285 
   4286   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
   4287   // perfect shuffle table to emit an optimal matching sequence.
   4288   ArrayRef<int> PermMask = SVOp->getMask();
   4289 
   4290   unsigned PFIndexes[4];
   4291   bool isFourElementShuffle = true;
   4292   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
   4293     unsigned EltNo = 8;   // Start out undef.
   4294     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
   4295       if (PermMask[i*4+j] < 0)
   4296         continue;   // Undef, ignore it.
   4297 
   4298       unsigned ByteSource = PermMask[i*4+j];
   4299       if ((ByteSource & 3) != j) {
   4300         isFourElementShuffle = false;
   4301         break;
   4302       }
   4303 
   4304       if (EltNo == 8) {
   4305         EltNo = ByteSource/4;
   4306       } else if (EltNo != ByteSource/4) {
   4307         isFourElementShuffle = false;
   4308         break;
   4309       }
   4310     }
   4311     PFIndexes[i] = EltNo;
   4312   }
   4313 
   4314   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
   4315   // perfect shuffle vector to determine if it is cost effective to do this as
   4316   // discrete instructions, or whether we should use a vperm.
   4317   if (isFourElementShuffle) {
   4318     // Compute the index in the perfect shuffle table.
   4319     unsigned PFTableIndex =
   4320       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
   4321 
   4322     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
   4323     unsigned Cost  = (PFEntry >> 30);
   4324 
   4325     // Determining when to avoid vperm is tricky.  Many things affect the cost
   4326     // of vperm, particularly how many times the perm mask needs to be computed.
   4327     // For example, if the perm mask can be hoisted out of a loop or is already
   4328     // used (perhaps because there are multiple permutes with the same shuffle
   4329     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
   4330     // the loop requires an extra register.
   4331     //
   4332     // As a compromise, we only emit discrete instructions if the shuffle can be
   4333     // generated in 3 or fewer operations.  When we have loop information
   4334     // available, if this block is within a loop, we should avoid using vperm
   4335     // for 3-operation perms and use a constant pool load instead.
   4336     if (Cost < 3)
   4337       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
   4338   }
   4339 
   4340   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
   4341   // vector that will get spilled to the constant pool.
   4342   if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
   4343 
   4344   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
   4345   // that it is in input element units, not in bytes.  Convert now.
   4346   EVT EltVT = V1.getValueType().getVectorElementType();
   4347   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
   4348 
   4349   SmallVector<SDValue, 16> ResultMask;
   4350   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
   4351     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
   4352 
   4353     for (unsigned j = 0; j != BytesPerElement; ++j)
   4354       ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
   4355                                            MVT::i32));
   4356   }
   4357 
   4358   SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
   4359                                     &ResultMask[0], ResultMask.size());
   4360   return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
   4361 }
   4362 
   4363 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
   4364 /// altivec comparison.  If it is, return true and fill in Opc/isDot with
   4365 /// information about the intrinsic.
   4366 static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
   4367                                   bool &isDot) {
   4368   unsigned IntrinsicID =
   4369     cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
   4370   CompareOpc = -1;
   4371   isDot = false;
   4372   switch (IntrinsicID) {
   4373   default: return false;
   4374     // Comparison predicates.
   4375   case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
   4376   case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
   4377   case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
   4378   case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
   4379   case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
   4380   case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
   4381   case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
   4382   case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
   4383   case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
   4384   case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
   4385   case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
   4386   case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
   4387   case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
   4388 
   4389     // Normal Comparisons.
   4390   case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
   4391   case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
   4392   case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
   4393   case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
   4394   case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
   4395   case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
   4396   case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
   4397   case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
   4398   case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
   4399   case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
   4400   case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
   4401   case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
   4402   case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
   4403   }
   4404   return true;
   4405 }
   4406 
   4407 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
   4408 /// lower, do it, otherwise return null.
   4409 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
   4410                                                    SelectionDAG &DAG) const {
   4411   // If this is a lowered altivec predicate compare, CompareOpc is set to the
   4412   // opcode number of the comparison.
   4413   DebugLoc dl = Op.getDebugLoc();
   4414   int CompareOpc;
   4415   bool isDot;
   4416   if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
   4417     return SDValue();    // Don't custom lower most intrinsics.
   4418 
   4419   // If this is a non-dot comparison, make the VCMP node and we are done.
   4420   if (!isDot) {
   4421     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
   4422                               Op.getOperand(1), Op.getOperand(2),
   4423                               DAG.getConstant(CompareOpc, MVT::i32));
   4424     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
   4425   }
   4426 
   4427   // Create the PPCISD altivec 'dot' comparison node.
   4428   SDValue Ops[] = {
   4429     Op.getOperand(2),  // LHS
   4430     Op.getOperand(3),  // RHS
   4431     DAG.getConstant(CompareOpc, MVT::i32)
   4432   };
   4433   std::vector<EVT> VTs;
   4434   VTs.push_back(Op.getOperand(2).getValueType());
   4435   VTs.push_back(MVT::Glue);
   4436   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
   4437 
   4438   // Now that we have the comparison, emit a copy from the CR to a GPR.
   4439   // This is flagged to the above dot comparison.
   4440   SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
   4441                                 DAG.getRegister(PPC::CR6, MVT::i32),
   4442                                 CompNode.getValue(1));
   4443 
   4444   // Unpack the result based on how the target uses it.
   4445   unsigned BitNo;   // Bit # of CR6.
   4446   bool InvertBit;   // Invert result?
   4447   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
   4448   default:  // Can't happen, don't crash on invalid number though.
   4449   case 0:   // Return the value of the EQ bit of CR6.
   4450     BitNo = 0; InvertBit = false;
   4451     break;
   4452   case 1:   // Return the inverted value of the EQ bit of CR6.
   4453     BitNo = 0; InvertBit = true;
   4454     break;
   4455   case 2:   // Return the value of the LT bit of CR6.
   4456     BitNo = 2; InvertBit = false;
   4457     break;
   4458   case 3:   // Return the inverted value of the LT bit of CR6.
   4459     BitNo = 2; InvertBit = true;
   4460     break;
   4461   }
   4462 
   4463   // Shift the bit into the low position.
   4464   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
   4465                       DAG.getConstant(8-(3-BitNo), MVT::i32));
   4466   // Isolate the bit.
   4467   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
   4468                       DAG.getConstant(1, MVT::i32));
   4469 
   4470   // If we are supposed to, toggle the bit.
   4471   if (InvertBit)
   4472     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
   4473                         DAG.getConstant(1, MVT::i32));
   4474   return Flags;
   4475 }
   4476 
   4477 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
   4478                                                    SelectionDAG &DAG) const {
   4479   DebugLoc dl = Op.getDebugLoc();
   4480   // Create a stack slot that is 16-byte aligned.
   4481   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
   4482   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
   4483   EVT PtrVT = getPointerTy();
   4484   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   4485 
   4486   // Store the input value into Value#0 of the stack slot.
   4487   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
   4488                                Op.getOperand(0), FIdx, MachinePointerInfo(),
   4489                                false, false, 0);
   4490   // Load it out.
   4491   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
   4492                      false, false, false, 0);
   4493 }
   4494 
   4495 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
   4496   DebugLoc dl = Op.getDebugLoc();
   4497   if (Op.getValueType() == MVT::v4i32) {
   4498     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   4499 
   4500     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
   4501     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
   4502 
   4503     SDValue RHSSwap =   // = vrlw RHS, 16
   4504       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
   4505 
   4506     // Shrinkify inputs to v8i16.
   4507     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
   4508     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
   4509     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
   4510 
   4511     // Low parts multiplied together, generating 32-bit results (we ignore the
   4512     // top parts).
   4513     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
   4514                                         LHS, RHS, DAG, dl, MVT::v4i32);
   4515 
   4516     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
   4517                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
   4518     // Shift the high parts up 16 bits.
   4519     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
   4520                               Neg16, DAG, dl);
   4521     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
   4522   } else if (Op.getValueType() == MVT::v8i16) {
   4523     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   4524 
   4525     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
   4526 
   4527     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
   4528                             LHS, RHS, Zero, DAG, dl);
   4529   } else if (Op.getValueType() == MVT::v16i8) {
   4530     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   4531 
   4532     // Multiply the even 8-bit parts, producing 16-bit sums.
   4533     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
   4534                                            LHS, RHS, DAG, dl, MVT::v8i16);
   4535     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
   4536 
   4537     // Multiply the odd 8-bit parts, producing 16-bit sums.
   4538     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
   4539                                           LHS, RHS, DAG, dl, MVT::v8i16);
   4540     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
   4541 
   4542     // Merge the results together.
   4543     int Ops[16];
   4544     for (unsigned i = 0; i != 8; ++i) {
   4545       Ops[i*2  ] = 2*i+1;
   4546       Ops[i*2+1] = 2*i+1+16;
   4547     }
   4548     return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
   4549   } else {
   4550     llvm_unreachable("Unknown mul to lower!");
   4551   }
   4552 }
   4553 
   4554 /// LowerOperation - Provide custom lowering hooks for some operations.
   4555 ///
   4556 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
   4557   switch (Op.getOpcode()) {
   4558   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
   4559   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
   4560   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
   4561   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
   4562   case ISD::GlobalTLSAddress:   llvm_unreachable("TLS not implemented for PPC");
   4563   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
   4564   case ISD::SETCC:              return LowerSETCC(Op, DAG);
   4565   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
   4566   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
   4567   case ISD::VASTART:
   4568     return LowerVASTART(Op, DAG, PPCSubTarget);
   4569 
   4570   case ISD::VAARG:
   4571     return LowerVAARG(Op, DAG, PPCSubTarget);
   4572 
   4573   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
   4574   case ISD::DYNAMIC_STACKALLOC:
   4575     return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
   4576 
   4577   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
   4578   case ISD::FP_TO_UINT:
   4579   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
   4580                                                        Op.getDebugLoc());
   4581   case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
   4582   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
   4583 
   4584   // Lower 64-bit shifts.
   4585   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
   4586   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
   4587   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
   4588 
   4589   // Vector-related lowering.
   4590   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
   4591   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
   4592   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
   4593   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
   4594   case ISD::MUL:                return LowerMUL(Op, DAG);
   4595 
   4596   // Frame & Return address.
   4597   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
   4598   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
   4599   }
   4600 }
   4601 
   4602 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
   4603                                            SmallVectorImpl<SDValue>&Results,
   4604                                            SelectionDAG &DAG) const {
   4605   const TargetMachine &TM = getTargetMachine();
   4606   DebugLoc dl = N->getDebugLoc();
   4607   switch (N->getOpcode()) {
   4608   default:
   4609     llvm_unreachable("Do not know how to custom type legalize this operation!");
   4610   case ISD::VAARG: {
   4611     if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
   4612         || TM.getSubtarget<PPCSubtarget>().isPPC64())
   4613       return;
   4614 
   4615     EVT VT = N->getValueType(0);
   4616 
   4617     if (VT == MVT::i64) {
   4618       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget);
   4619 
   4620       Results.push_back(NewNode);
   4621       Results.push_back(NewNode.getValue(1));
   4622     }
   4623     return;
   4624   }
   4625   case ISD::FP_ROUND_INREG: {
   4626     assert(N->getValueType(0) == MVT::ppcf128);
   4627     assert(N->getOperand(0).getValueType() == MVT::ppcf128);
   4628     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
   4629                              MVT::f64, N->getOperand(0),
   4630                              DAG.getIntPtrConstant(0));
   4631     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
   4632                              MVT::f64, N->getOperand(0),
   4633                              DAG.getIntPtrConstant(1));
   4634 
   4635     // This sequence changes FPSCR to do round-to-zero, adds the two halves
   4636     // of the long double, and puts FPSCR back the way it was.  We do not
   4637     // actually model FPSCR.
   4638     std::vector<EVT> NodeTys;
   4639     SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
   4640 
   4641     NodeTys.push_back(MVT::f64);   // Return register
   4642     NodeTys.push_back(MVT::Glue);    // Returns a flag for later insns
   4643     Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
   4644     MFFSreg = Result.getValue(0);
   4645     InFlag = Result.getValue(1);
   4646 
   4647     NodeTys.clear();
   4648     NodeTys.push_back(MVT::Glue);   // Returns a flag
   4649     Ops[0] = DAG.getConstant(31, MVT::i32);
   4650     Ops[1] = InFlag;
   4651     Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
   4652     InFlag = Result.getValue(0);
   4653 
   4654     NodeTys.clear();
   4655     NodeTys.push_back(MVT::Glue);   // Returns a flag
   4656     Ops[0] = DAG.getConstant(30, MVT::i32);
   4657     Ops[1] = InFlag;
   4658     Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
   4659     InFlag = Result.getValue(0);
   4660 
   4661     NodeTys.clear();
   4662     NodeTys.push_back(MVT::f64);    // result of add
   4663     NodeTys.push_back(MVT::Glue);   // Returns a flag
   4664     Ops[0] = Lo;
   4665     Ops[1] = Hi;
   4666     Ops[2] = InFlag;
   4667     Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
   4668     FPreg = Result.getValue(0);
   4669     InFlag = Result.getValue(1);
   4670 
   4671     NodeTys.clear();
   4672     NodeTys.push_back(MVT::f64);
   4673     Ops[0] = DAG.getConstant(1, MVT::i32);
   4674     Ops[1] = MFFSreg;
   4675     Ops[2] = FPreg;
   4676     Ops[3] = InFlag;
   4677     Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
   4678     FPreg = Result.getValue(0);
   4679 
   4680     // We know the low half is about to be thrown away, so just use something
   4681     // convenient.
   4682     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
   4683                                 FPreg, FPreg));
   4684     return;
   4685   }
   4686   case ISD::FP_TO_SINT:
   4687     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
   4688     return;
   4689   }
   4690 }
   4691 
   4692 
   4693 //===----------------------------------------------------------------------===//
   4694 //  Other Lowering Code
   4695 //===----------------------------------------------------------------------===//
   4696 
   4697 MachineBasicBlock *
   4698 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
   4699                                     bool is64bit, unsigned BinOpcode) const {
   4700   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
   4701   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   4702 
   4703   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   4704   MachineFunction *F = BB->getParent();
   4705   MachineFunction::iterator It = BB;
   4706   ++It;
   4707 
   4708   unsigned dest = MI->getOperand(0).getReg();
   4709   unsigned ptrA = MI->getOperand(1).getReg();
   4710   unsigned ptrB = MI->getOperand(2).getReg();
   4711   unsigned incr = MI->getOperand(3).getReg();
   4712   DebugLoc dl = MI->getDebugLoc();
   4713 
   4714   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
   4715   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   4716   F->insert(It, loopMBB);
   4717   F->insert(It, exitMBB);
   4718   exitMBB->splice(exitMBB->begin(), BB,
   4719                   llvm::next(MachineBasicBlock::iterator(MI)),
   4720                   BB->end());
   4721   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   4722 
   4723   MachineRegisterInfo &RegInfo = F->getRegInfo();
   4724   unsigned TmpReg = (!BinOpcode) ? incr :
   4725     RegInfo.createVirtualRegister(
   4726        is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
   4727                  (const TargetRegisterClass *) &PPC::GPRCRegClass);
   4728 
   4729   //  thisMBB:
   4730   //   ...
   4731   //   fallthrough --> loopMBB
   4732   BB->addSuccessor(loopMBB);
   4733 
   4734   //  loopMBB:
   4735   //   l[wd]arx dest, ptr
   4736   //   add r0, dest, incr
   4737   //   st[wd]cx. r0, ptr
   4738   //   bne- loopMBB
   4739   //   fallthrough --> exitMBB
   4740   BB = loopMBB;
   4741   BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
   4742     .addReg(ptrA).addReg(ptrB);
   4743   if (BinOpcode)
   4744     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
   4745   BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
   4746     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
   4747   BuildMI(BB, dl, TII->get(PPC::BCC))
   4748     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
   4749   BB->addSuccessor(loopMBB);
   4750   BB->addSuccessor(exitMBB);
   4751 
   4752   //  exitMBB:
   4753   //   ...
   4754   BB = exitMBB;
   4755   return BB;
   4756 }
   4757 
   4758 MachineBasicBlock *
   4759 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
   4760                                             MachineBasicBlock *BB,
   4761                                             bool is8bit,    // operation
   4762                                             unsigned BinOpcode) const {
   4763   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
   4764   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   4765   // In 64 bit mode we have to use 64 bits for addresses, even though the
   4766   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
   4767   // registers without caring whether they're 32 or 64, but here we're
   4768   // doing actual arithmetic on the addresses.
   4769   bool is64bit = PPCSubTarget.isPPC64();
   4770   unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
   4771 
   4772   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   4773   MachineFunction *F = BB->getParent();
   4774   MachineFunction::iterator It = BB;
   4775   ++It;
   4776 
   4777   unsigned dest = MI->getOperand(0).getReg();
   4778   unsigned ptrA = MI->getOperand(1).getReg();
   4779   unsigned ptrB = MI->getOperand(2).getReg();
   4780   unsigned incr = MI->getOperand(3).getReg();
   4781   DebugLoc dl = MI->getDebugLoc();
   4782 
   4783   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
   4784   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   4785   F->insert(It, loopMBB);
   4786   F->insert(It, exitMBB);
   4787   exitMBB->splice(exitMBB->begin(), BB,
   4788                   llvm::next(MachineBasicBlock::iterator(MI)),
   4789                   BB->end());
   4790   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   4791 
   4792   MachineRegisterInfo &RegInfo = F->getRegInfo();
   4793   const TargetRegisterClass *RC =
   4794     is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
   4795               (const TargetRegisterClass *) &PPC::GPRCRegClass;
   4796   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
   4797   unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
   4798   unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
   4799   unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
   4800   unsigned MaskReg = RegInfo.createVirtualRegister(RC);
   4801   unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
   4802   unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
   4803   unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
   4804   unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
   4805   unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
   4806   unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
   4807   unsigned Ptr1Reg;
   4808   unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
   4809 
   4810   //  thisMBB:
   4811   //   ...
   4812   //   fallthrough --> loopMBB
   4813   BB->addSuccessor(loopMBB);
   4814 
   4815   // The 4-byte load must be aligned, while a char or short may be
   4816   // anywhere in the word.  Hence all this nasty bookkeeping code.
   4817   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
   4818   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
   4819   //   xori shift, shift1, 24 [16]
   4820   //   rlwinm ptr, ptr1, 0, 0, 29
   4821   //   slw incr2, incr, shift
   4822   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
   4823   //   slw mask, mask2, shift
   4824   //  loopMBB:
   4825   //   lwarx tmpDest, ptr
   4826   //   add tmp, tmpDest, incr2
   4827   //   andc tmp2, tmpDest, mask
   4828   //   and tmp3, tmp, mask
   4829   //   or tmp4, tmp3, tmp2
   4830   //   stwcx. tmp4, ptr
   4831   //   bne- loopMBB
   4832   //   fallthrough --> exitMBB
   4833   //   srw dest, tmpDest, shift
   4834   if (ptrA != ZeroReg) {
   4835     Ptr1Reg = RegInfo.createVirtualRegister(RC);
   4836     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
   4837       .addReg(ptrA).addReg(ptrB);
   4838   } else {
   4839     Ptr1Reg = ptrB;
   4840   }
   4841   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
   4842       .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
   4843   BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
   4844       .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
   4845   if (is64bit)
   4846     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
   4847       .addReg(Ptr1Reg).addImm(0).addImm(61);
   4848   else
   4849     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
   4850       .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
   4851   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
   4852       .addReg(incr).addReg(ShiftReg);
   4853   if (is8bit)
   4854     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
   4855   else {
   4856     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
   4857     BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
   4858   }
   4859   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
   4860       .addReg(Mask2Reg).addReg(ShiftReg);
   4861 
   4862   BB = loopMBB;
   4863   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
   4864     .addReg(ZeroReg).addReg(PtrReg);
   4865   if (BinOpcode)
   4866     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
   4867       .addReg(Incr2Reg).addReg(TmpDestReg);
   4868   BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
   4869     .addReg(TmpDestReg).addReg(MaskReg);
   4870   BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
   4871     .addReg(TmpReg).addReg(MaskReg);
   4872   BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
   4873     .addReg(Tmp3Reg).addReg(Tmp2Reg);
   4874   BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
   4875     .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
   4876   BuildMI(BB, dl, TII->get(PPC::BCC))
   4877     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
   4878   BB->addSuccessor(loopMBB);
   4879   BB->addSuccessor(exitMBB);
   4880 
   4881   //  exitMBB:
   4882   //   ...
   4883   BB = exitMBB;
   4884   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
   4885     .addReg(ShiftReg);
   4886   return BB;
   4887 }
   4888 
   4889 MachineBasicBlock *
   4890 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
   4891                                                MachineBasicBlock *BB) const {
   4892   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   4893 
   4894   // To "insert" these instructions we actually have to insert their
   4895   // control-flow patterns.
   4896   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   4897   MachineFunction::iterator It = BB;
   4898   ++It;
   4899 
   4900   MachineFunction *F = BB->getParent();
   4901 
   4902   if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
   4903       MI->getOpcode() == PPC::SELECT_CC_I8 ||
   4904       MI->getOpcode() == PPC::SELECT_CC_F4 ||
   4905       MI->getOpcode() == PPC::SELECT_CC_F8 ||
   4906       MI->getOpcode() == PPC::SELECT_CC_VRRC) {
   4907 
   4908     // The incoming instruction knows the destination vreg to set, the
   4909     // condition code register to branch on, the true/false values to
   4910     // select between, and a branch opcode to use.
   4911 
   4912     //  thisMBB:
   4913     //  ...
   4914     //   TrueVal = ...
   4915     //   cmpTY ccX, r1, r2
   4916     //   bCC copy1MBB
   4917     //   fallthrough --> copy0MBB
   4918     MachineBasicBlock *thisMBB = BB;
   4919     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
   4920     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
   4921     unsigned SelectPred = MI->getOperand(4).getImm();
   4922     DebugLoc dl = MI->getDebugLoc();
   4923     F->insert(It, copy0MBB);
   4924     F->insert(It, sinkMBB);
   4925 
   4926     // Transfer the remainder of BB and its successor edges to sinkMBB.
   4927     sinkMBB->splice(sinkMBB->begin(), BB,
   4928                     llvm::next(MachineBasicBlock::iterator(MI)),
   4929                     BB->end());
   4930     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
   4931 
   4932     // Next, add the true and fallthrough blocks as its successors.
   4933     BB->addSuccessor(copy0MBB);
   4934     BB->addSuccessor(sinkMBB);
   4935 
   4936     BuildMI(BB, dl, TII->get(PPC::BCC))
   4937       .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
   4938 
   4939     //  copy0MBB:
   4940     //   %FalseValue = ...
   4941     //   # fallthrough to sinkMBB
   4942     BB = copy0MBB;
   4943 
   4944     // Update machine-CFG edges
   4945     BB->addSuccessor(sinkMBB);
   4946 
   4947     //  sinkMBB:
   4948     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
   4949     //  ...
   4950     BB = sinkMBB;
   4951     BuildMI(*BB, BB->begin(), dl,
   4952             TII->get(PPC::PHI), MI->getOperand(0).getReg())
   4953       .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
   4954       .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
   4955   }
   4956   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
   4957     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
   4958   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
   4959     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
   4960   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
   4961     BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
   4962   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
   4963     BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
   4964 
   4965   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
   4966     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
   4967   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
   4968     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
   4969   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
   4970     BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
   4971   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
   4972     BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
   4973 
   4974   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
   4975     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
   4976   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
   4977     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
   4978   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
   4979     BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
   4980   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
   4981     BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
   4982 
   4983   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
   4984     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
   4985   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
   4986     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
   4987   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
   4988     BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
   4989   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
   4990     BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
   4991 
   4992   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
   4993     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
   4994   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
   4995     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
   4996   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
   4997     BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
   4998   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
   4999     BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
   5000 
   5001   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
   5002     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
   5003   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
   5004     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
   5005   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
   5006     BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
   5007   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
   5008     BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
   5009 
   5010   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
   5011     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
   5012   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
   5013     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
   5014   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
   5015     BB = EmitAtomicBinary(MI, BB, false, 0);
   5016   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
   5017     BB = EmitAtomicBinary(MI, BB, true, 0);
   5018 
   5019   else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
   5020            MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
   5021     bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
   5022 
   5023     unsigned dest   = MI->getOperand(0).getReg();
   5024     unsigned ptrA   = MI->getOperand(1).getReg();
   5025     unsigned ptrB   = MI->getOperand(2).getReg();
   5026     unsigned oldval = MI->getOperand(3).getReg();
   5027     unsigned newval = MI->getOperand(4).getReg();
   5028     DebugLoc dl     = MI->getDebugLoc();
   5029 
   5030     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
   5031     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
   5032     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
   5033     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   5034     F->insert(It, loop1MBB);
   5035     F->insert(It, loop2MBB);
   5036     F->insert(It, midMBB);
   5037     F->insert(It, exitMBB);
   5038     exitMBB->splice(exitMBB->begin(), BB,
   5039                     llvm::next(MachineBasicBlock::iterator(MI)),
   5040                     BB->end());
   5041     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   5042 
   5043     //  thisMBB:
   5044     //   ...
   5045     //   fallthrough --> loopMBB
   5046     BB->addSuccessor(loop1MBB);
   5047 
   5048     // loop1MBB:
   5049     //   l[wd]arx dest, ptr
   5050     //   cmp[wd] dest, oldval
   5051     //   bne- midMBB
   5052     // loop2MBB:
   5053     //   st[wd]cx. newval, ptr
   5054     //   bne- loopMBB
   5055     //   b exitBB
   5056     // midMBB:
   5057     //   st[wd]cx. dest, ptr
   5058     // exitBB:
   5059     BB = loop1MBB;
   5060     BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
   5061       .addReg(ptrA).addReg(ptrB);
   5062     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
   5063       .addReg(oldval).addReg(dest);
   5064     BuildMI(BB, dl, TII->get(PPC::BCC))
   5065       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
   5066     BB->addSuccessor(loop2MBB);
   5067     BB->addSuccessor(midMBB);
   5068 
   5069     BB = loop2MBB;
   5070     BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
   5071       .addReg(newval).addReg(ptrA).addReg(ptrB);
   5072     BuildMI(BB, dl, TII->get(PPC::BCC))
   5073       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
   5074     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
   5075     BB->addSuccessor(loop1MBB);
   5076     BB->addSuccessor(exitMBB);
   5077 
   5078     BB = midMBB;
   5079     BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
   5080       .addReg(dest).addReg(ptrA).addReg(ptrB);
   5081     BB->addSuccessor(exitMBB);
   5082 
   5083     //  exitMBB:
   5084     //   ...
   5085     BB = exitMBB;
   5086   } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
   5087              MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
   5088     // We must use 64-bit registers for addresses when targeting 64-bit,
   5089     // since we're actually doing arithmetic on them.  Other registers
   5090     // can be 32-bit.
   5091     bool is64bit = PPCSubTarget.isPPC64();
   5092     bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
   5093 
   5094     unsigned dest   = MI->getOperand(0).getReg();
   5095     unsigned ptrA   = MI->getOperand(1).getReg();
   5096     unsigned ptrB   = MI->getOperand(2).getReg();
   5097     unsigned oldval = MI->getOperand(3).getReg();
   5098     unsigned newval = MI->getOperand(4).getReg();
   5099     DebugLoc dl     = MI->getDebugLoc();
   5100 
   5101     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
   5102     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
   5103     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
   5104     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   5105     F->insert(It, loop1MBB);
   5106     F->insert(It, loop2MBB);
   5107     F->insert(It, midMBB);
   5108     F->insert(It, exitMBB);
   5109     exitMBB->splice(exitMBB->begin(), BB,
   5110                     llvm::next(MachineBasicBlock::iterator(MI)),
   5111                     BB->end());
   5112     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   5113 
   5114     MachineRegisterInfo &RegInfo = F->getRegInfo();
   5115     const TargetRegisterClass *RC =
   5116       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
   5117                 (const TargetRegisterClass *) &PPC::GPRCRegClass;
   5118     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
   5119     unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
   5120     unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
   5121     unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
   5122     unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
   5123     unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
   5124     unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
   5125     unsigned MaskReg = RegInfo.createVirtualRegister(RC);
   5126     unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
   5127     unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
   5128     unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
   5129     unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
   5130     unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
   5131     unsigned Ptr1Reg;
   5132     unsigned TmpReg = RegInfo.createVirtualRegister(RC);
   5133     unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
   5134     //  thisMBB:
   5135     //   ...
   5136     //   fallthrough --> loopMBB
   5137     BB->addSuccessor(loop1MBB);
   5138 
   5139     // The 4-byte load must be aligned, while a char or short may be
   5140     // anywhere in the word.  Hence all this nasty bookkeeping code.
   5141     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
   5142     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
   5143     //   xori shift, shift1, 24 [16]
   5144     //   rlwinm ptr, ptr1, 0, 0, 29
   5145     //   slw newval2, newval, shift
   5146     //   slw oldval2, oldval,shift
   5147     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
   5148     //   slw mask, mask2, shift
   5149     //   and newval3, newval2, mask
   5150     //   and oldval3, oldval2, mask
   5151     // loop1MBB:
   5152     //   lwarx tmpDest, ptr
   5153     //   and tmp, tmpDest, mask
   5154     //   cmpw tmp, oldval3
   5155     //   bne- midMBB
   5156     // loop2MBB:
   5157     //   andc tmp2, tmpDest, mask
   5158     //   or tmp4, tmp2, newval3
   5159     //   stwcx. tmp4, ptr
   5160     //   bne- loop1MBB
   5161     //   b exitBB
   5162     // midMBB:
   5163     //   stwcx. tmpDest, ptr
   5164     // exitBB:
   5165     //   srw dest, tmpDest, shift
   5166     if (ptrA != ZeroReg) {
   5167       Ptr1Reg = RegInfo.createVirtualRegister(RC);
   5168       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
   5169         .addReg(ptrA).addReg(ptrB);
   5170     } else {
   5171       Ptr1Reg = ptrB;
   5172     }
   5173     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
   5174         .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
   5175     BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
   5176         .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
   5177     if (is64bit)
   5178       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
   5179         .addReg(Ptr1Reg).addImm(0).addImm(61);
   5180     else
   5181       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
   5182         .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
   5183     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
   5184         .addReg(newval).addReg(ShiftReg);
   5185     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
   5186         .addReg(oldval).addReg(ShiftReg);
   5187     if (is8bit)
   5188       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
   5189     else {
   5190       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
   5191       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
   5192         .addReg(Mask3Reg).addImm(65535);
   5193     }
   5194     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
   5195         .addReg(Mask2Reg).addReg(ShiftReg);
   5196     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
   5197         .addReg(NewVal2Reg).addReg(MaskReg);
   5198     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
   5199         .addReg(OldVal2Reg).addReg(MaskReg);
   5200 
   5201     BB = loop1MBB;
   5202     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
   5203         .addReg(ZeroReg).addReg(PtrReg);
   5204     BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
   5205         .addReg(TmpDestReg).addReg(MaskReg);
   5206     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
   5207         .addReg(TmpReg).addReg(OldVal3Reg);
   5208     BuildMI(BB, dl, TII->get(PPC::BCC))
   5209         .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
   5210     BB->addSuccessor(loop2MBB);
   5211     BB->addSuccessor(midMBB);
   5212 
   5213     BB = loop2MBB;
   5214     BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
   5215         .addReg(TmpDestReg).addReg(MaskReg);
   5216     BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
   5217         .addReg(Tmp2Reg).addReg(NewVal3Reg);
   5218     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
   5219         .addReg(ZeroReg).addReg(PtrReg);
   5220     BuildMI(BB, dl, TII->get(PPC::BCC))
   5221       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
   5222     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
   5223     BB->addSuccessor(loop1MBB);
   5224     BB->addSuccessor(exitMBB);
   5225 
   5226     BB = midMBB;
   5227     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
   5228       .addReg(ZeroReg).addReg(PtrReg);
   5229     BB->addSuccessor(exitMBB);
   5230 
   5231     //  exitMBB:
   5232     //   ...
   5233     BB = exitMBB;
   5234     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
   5235       .addReg(ShiftReg);
   5236   } else {
   5237     llvm_unreachable("Unexpected instr type to insert");
   5238   }
   5239 
   5240   MI->eraseFromParent();   // The pseudo instruction is gone now.
   5241   return BB;
   5242 }
   5243 
   5244 //===----------------------------------------------------------------------===//
   5245 // Target Optimization Hooks
   5246 //===----------------------------------------------------------------------===//
   5247 
   5248 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
   5249                                              DAGCombinerInfo &DCI) const {
   5250   const TargetMachine &TM = getTargetMachine();
   5251   SelectionDAG &DAG = DCI.DAG;
   5252   DebugLoc dl = N->getDebugLoc();
   5253   switch (N->getOpcode()) {
   5254   default: break;
   5255   case PPCISD::SHL:
   5256     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
   5257       if (C->isNullValue())   // 0 << V -> 0.
   5258         return N->getOperand(0);
   5259     }
   5260     break;
   5261   case PPCISD::SRL:
   5262     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
   5263       if (C->isNullValue())   // 0 >>u V -> 0.
   5264         return N->getOperand(0);
   5265     }
   5266     break;
   5267   case PPCISD::SRA:
   5268     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
   5269       if (C->isNullValue() ||   //  0 >>s V -> 0.
   5270           C->isAllOnesValue())    // -1 >>s V -> -1.
   5271         return N->getOperand(0);
   5272     }
   5273     break;
   5274 
   5275   case ISD::SINT_TO_FP:
   5276     if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
   5277       if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
   5278         // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
   5279         // We allow the src/dst to be either f32/f64, but the intermediate
   5280         // type must be i64.
   5281         if (N->getOperand(0).getValueType() == MVT::i64 &&
   5282             N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
   5283           SDValue Val = N->getOperand(0).getOperand(0);
   5284           if (Val.getValueType() == MVT::f32) {
   5285             Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
   5286             DCI.AddToWorklist(Val.getNode());
   5287           }
   5288 
   5289           Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
   5290           DCI.AddToWorklist(Val.getNode());
   5291           Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
   5292           DCI.AddToWorklist(Val.getNode());
   5293           if (N->getValueType(0) == MVT::f32) {
   5294             Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
   5295                               DAG.getIntPtrConstant(0));
   5296             DCI.AddToWorklist(Val.getNode());
   5297           }
   5298           return Val;
   5299         } else if (N->getOperand(0).getValueType() == MVT::i32) {
   5300           // If the intermediate type is i32, we can avoid the load/store here
   5301           // too.
   5302         }
   5303       }
   5304     }
   5305     break;
   5306   case ISD::STORE:
   5307     // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
   5308     if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
   5309         !cast<StoreSDNode>(N)->isTruncatingStore() &&
   5310         N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
   5311         N->getOperand(1).getValueType() == MVT::i32 &&
   5312         N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
   5313       SDValue Val = N->getOperand(1).getOperand(0);
   5314       if (Val.getValueType() == MVT::f32) {
   5315         Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
   5316         DCI.AddToWorklist(Val.getNode());
   5317       }
   5318       Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
   5319       DCI.AddToWorklist(Val.getNode());
   5320 
   5321       Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
   5322                         N->getOperand(2), N->getOperand(3));
   5323       DCI.AddToWorklist(Val.getNode());
   5324       return Val;
   5325     }
   5326 
   5327     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
   5328     if (cast<StoreSDNode>(N)->isUnindexed() &&
   5329         N->getOperand(1).getOpcode() == ISD::BSWAP &&
   5330         N->getOperand(1).getNode()->hasOneUse() &&
   5331         (N->getOperand(1).getValueType() == MVT::i32 ||
   5332          N->getOperand(1).getValueType() == MVT::i16)) {
   5333       SDValue BSwapOp = N->getOperand(1).getOperand(0);
   5334       // Do an any-extend to 32-bits if this is a half-word input.
   5335       if (BSwapOp.getValueType() == MVT::i16)
   5336         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
   5337 
   5338       SDValue Ops[] = {
   5339         N->getOperand(0), BSwapOp, N->getOperand(2),
   5340         DAG.getValueType(N->getOperand(1).getValueType())
   5341       };
   5342       return
   5343         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
   5344                                 Ops, array_lengthof(Ops),
   5345                                 cast<StoreSDNode>(N)->getMemoryVT(),
   5346                                 cast<StoreSDNode>(N)->getMemOperand());
   5347     }
   5348     break;
   5349   case ISD::BSWAP:
   5350     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
   5351     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
   5352         N->getOperand(0).hasOneUse() &&
   5353         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
   5354       SDValue Load = N->getOperand(0);
   5355       LoadSDNode *LD = cast<LoadSDNode>(Load);
   5356       // Create the byte-swapping load.
   5357       SDValue Ops[] = {
   5358         LD->getChain(),    // Chain
   5359         LD->getBasePtr(),  // Ptr
   5360         DAG.getValueType(N->getValueType(0)) // VT
   5361       };
   5362       SDValue BSLoad =
   5363         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
   5364                                 DAG.getVTList(MVT::i32, MVT::Other), Ops, 3,
   5365                                 LD->getMemoryVT(), LD->getMemOperand());
   5366 
   5367       // If this is an i16 load, insert the truncate.
   5368       SDValue ResVal = BSLoad;
   5369       if (N->getValueType(0) == MVT::i16)
   5370         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
   5371 
   5372       // First, combine the bswap away.  This makes the value produced by the
   5373       // load dead.
   5374       DCI.CombineTo(N, ResVal);
   5375 
   5376       // Next, combine the load away, we give it a bogus result value but a real
   5377       // chain result.  The result value is dead because the bswap is dead.
   5378       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
   5379 
   5380       // Return N so it doesn't get rechecked!
   5381       return SDValue(N, 0);
   5382     }
   5383 
   5384     break;
   5385   case PPCISD::VCMP: {
   5386     // If a VCMPo node already exists with exactly the same operands as this
   5387     // node, use its result instead of this node (VCMPo computes both a CR6 and
   5388     // a normal output).
   5389     //
   5390     if (!N->getOperand(0).hasOneUse() &&
   5391         !N->getOperand(1).hasOneUse() &&
   5392         !N->getOperand(2).hasOneUse()) {
   5393 
   5394       // Scan all of the users of the LHS, looking for VCMPo's that match.
   5395       SDNode *VCMPoNode = 0;
   5396 
   5397       SDNode *LHSN = N->getOperand(0).getNode();
   5398       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
   5399            UI != E; ++UI)
   5400         if (UI->getOpcode() == PPCISD::VCMPo &&
   5401             UI->getOperand(1) == N->getOperand(1) &&
   5402             UI->getOperand(2) == N->getOperand(2) &&
   5403             UI->getOperand(0) == N->getOperand(0)) {
   5404           VCMPoNode = *UI;
   5405           break;
   5406         }
   5407 
   5408       // If there is no VCMPo node, or if the flag value has a single use, don't
   5409       // transform this.
   5410       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
   5411         break;
   5412 
   5413       // Look at the (necessarily single) use of the flag value.  If it has a
   5414       // chain, this transformation is more complex.  Note that multiple things
   5415       // could use the value result, which we should ignore.
   5416       SDNode *FlagUser = 0;
   5417       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
   5418            FlagUser == 0; ++UI) {
   5419         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
   5420         SDNode *User = *UI;
   5421         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
   5422           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
   5423             FlagUser = User;
   5424             break;
   5425           }
   5426         }
   5427       }
   5428 
   5429       // If the user is a MFCR instruction, we know this is safe.  Otherwise we
   5430       // give up for right now.
   5431       if (FlagUser->getOpcode() == PPCISD::MFCR)
   5432         return SDValue(VCMPoNode, 0);
   5433     }
   5434     break;
   5435   }
   5436   case ISD::BR_CC: {
   5437     // If this is a branch on an altivec predicate comparison, lower this so
   5438     // that we don't have to do a MFCR: instead, branch directly on CR6.  This
   5439     // lowering is done pre-legalize, because the legalizer lowers the predicate
   5440     // compare down to code that is difficult to reassemble.
   5441     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
   5442     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
   5443     int CompareOpc;
   5444     bool isDot;
   5445 
   5446     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
   5447         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
   5448         getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
   5449       assert(isDot && "Can't compare against a vector result!");
   5450 
   5451       // If this is a comparison against something other than 0/1, then we know
   5452       // that the condition is never/always true.
   5453       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
   5454       if (Val != 0 && Val != 1) {
   5455         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
   5456           return N->getOperand(0);
   5457         // Always !=, turn it into an unconditional branch.
   5458         return DAG.getNode(ISD::BR, dl, MVT::Other,
   5459                            N->getOperand(0), N->getOperand(4));
   5460       }
   5461 
   5462       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
   5463 
   5464       // Create the PPCISD altivec 'dot' comparison node.
   5465       std::vector<EVT> VTs;
   5466       SDValue Ops[] = {
   5467         LHS.getOperand(2),  // LHS of compare
   5468         LHS.getOperand(3),  // RHS of compare
   5469         DAG.getConstant(CompareOpc, MVT::i32)
   5470       };
   5471       VTs.push_back(LHS.getOperand(2).getValueType());
   5472       VTs.push_back(MVT::Glue);
   5473       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
   5474 
   5475       // Unpack the result based on how the target uses it.
   5476       PPC::Predicate CompOpc;
   5477       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
   5478       default:  // Can't happen, don't crash on invalid number though.
   5479       case 0:   // Branch on the value of the EQ bit of CR6.
   5480         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
   5481         break;
   5482       case 1:   // Branch on the inverted value of the EQ bit of CR6.
   5483         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
   5484         break;
   5485       case 2:   // Branch on the value of the LT bit of CR6.
   5486         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
   5487         break;
   5488       case 3:   // Branch on the inverted value of the LT bit of CR6.
   5489         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
   5490         break;
   5491       }
   5492 
   5493       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
   5494                          DAG.getConstant(CompOpc, MVT::i32),
   5495                          DAG.getRegister(PPC::CR6, MVT::i32),
   5496                          N->getOperand(4), CompNode.getValue(1));
   5497     }
   5498     break;
   5499   }
   5500   }
   5501 
   5502   return SDValue();
   5503 }
   5504 
   5505 //===----------------------------------------------------------------------===//
   5506 // Inline Assembly Support
   5507 //===----------------------------------------------------------------------===//
   5508 
   5509 void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
   5510                                                        APInt &KnownZero,
   5511                                                        APInt &KnownOne,
   5512                                                        const SelectionDAG &DAG,
   5513                                                        unsigned Depth) const {
   5514   KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
   5515   switch (Op.getOpcode()) {
   5516   default: break;
   5517   case PPCISD::LBRX: {
   5518     // lhbrx is known to have the top bits cleared out.
   5519     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
   5520       KnownZero = 0xFFFF0000;
   5521     break;
   5522   }
   5523   case ISD::INTRINSIC_WO_CHAIN: {
   5524     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
   5525     default: break;
   5526     case Intrinsic::ppc_altivec_vcmpbfp_p:
   5527     case Intrinsic::ppc_altivec_vcmpeqfp_p:
   5528     case Intrinsic::ppc_altivec_vcmpequb_p:
   5529     case Intrinsic::ppc_altivec_vcmpequh_p:
   5530     case Intrinsic::ppc_altivec_vcmpequw_p:
   5531     case Intrinsic::ppc_altivec_vcmpgefp_p:
   5532     case Intrinsic::ppc_altivec_vcmpgtfp_p:
   5533     case Intrinsic::ppc_altivec_vcmpgtsb_p:
   5534     case Intrinsic::ppc_altivec_vcmpgtsh_p:
   5535     case Intrinsic::ppc_altivec_vcmpgtsw_p:
   5536     case Intrinsic::ppc_altivec_vcmpgtub_p:
   5537     case Intrinsic::ppc_altivec_vcmpgtuh_p:
   5538     case Intrinsic::ppc_altivec_vcmpgtuw_p:
   5539       KnownZero = ~1U;  // All bits but the low one are known to be zero.
   5540       break;
   5541     }
   5542   }
   5543   }
   5544 }
   5545 
   5546 
   5547 /// getConstraintType - Given a constraint, return the type of
   5548 /// constraint it is for this target.
   5549 PPCTargetLowering::ConstraintType
   5550 PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
   5551   if (Constraint.size() == 1) {
   5552     switch (Constraint[0]) {
   5553     default: break;
   5554     case 'b':
   5555     case 'r':
   5556     case 'f':
   5557     case 'v':
   5558     case 'y':
   5559       return C_RegisterClass;
   5560     }
   5561   }
   5562   return TargetLowering::getConstraintType(Constraint);
   5563 }
   5564 
   5565 /// Examine constraint type and operand type and determine a weight value.
   5566 /// This object must already have been set up with the operand type
   5567 /// and the current alternative constraint selected.
   5568 TargetLowering::ConstraintWeight
   5569 PPCTargetLowering::getSingleConstraintMatchWeight(
   5570     AsmOperandInfo &info, const char *constraint) const {
   5571   ConstraintWeight weight = CW_Invalid;
   5572   Value *CallOperandVal = info.CallOperandVal;
   5573     // If we don't have a value, we can't do a match,
   5574     // but allow it at the lowest weight.
   5575   if (CallOperandVal == NULL)
   5576     return CW_Default;
   5577   Type *type = CallOperandVal->getType();
   5578   // Look at the constraint type.
   5579   switch (*constraint) {
   5580   default:
   5581     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
   5582     break;
   5583   case 'b':
   5584     if (type->isIntegerTy())
   5585       weight = CW_Register;
   5586     break;
   5587   case 'f':
   5588     if (type->isFloatTy())
   5589       weight = CW_Register;
   5590     break;
   5591   case 'd':
   5592     if (type->isDoubleTy())
   5593       weight = CW_Register;
   5594     break;
   5595   case 'v':
   5596     if (type->isVectorTy())
   5597       weight = CW_Register;
   5598     break;
   5599   case 'y':
   5600     weight = CW_Register;
   5601     break;
   5602   }
   5603   return weight;
   5604 }
   5605 
   5606 std::pair<unsigned, const TargetRegisterClass*>
   5607 PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
   5608                                                 EVT VT) const {
   5609   if (Constraint.size() == 1) {
   5610     // GCC RS6000 Constraint Letters
   5611     switch (Constraint[0]) {
   5612     case 'b':   // R1-R31
   5613     case 'r':   // R0-R31
   5614       if (VT == MVT::i64 && PPCSubTarget.isPPC64())
   5615         return std::make_pair(0U, PPC::G8RCRegisterClass);
   5616       return std::make_pair(0U, PPC::GPRCRegisterClass);
   5617     case 'f':
   5618       if (VT == MVT::f32)
   5619         return std::make_pair(0U, PPC::F4RCRegisterClass);
   5620       else if (VT == MVT::f64)
   5621         return std::make_pair(0U, PPC::F8RCRegisterClass);
   5622       break;
   5623     case 'v':
   5624       return std::make_pair(0U, PPC::VRRCRegisterClass);
   5625     case 'y':   // crrc
   5626       return std::make_pair(0U, PPC::CRRCRegisterClass);
   5627     }
   5628   }
   5629 
   5630   return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
   5631 }
   5632 
   5633 
   5634 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   5635 /// vector.  If it is invalid, don't add anything to Ops.
   5636 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   5637                                                      std::string &Constraint,
   5638                                                      std::vector<SDValue>&Ops,
   5639                                                      SelectionDAG &DAG) const {
   5640   SDValue Result(0,0);
   5641 
   5642   // Only support length 1 constraints.
   5643   if (Constraint.length() > 1) return;
   5644 
   5645   char Letter = Constraint[0];
   5646   switch (Letter) {
   5647   default: break;
   5648   case 'I':
   5649   case 'J':
   5650   case 'K':
   5651   case 'L':
   5652   case 'M':
   5653   case 'N':
   5654   case 'O':
   5655   case 'P': {
   5656     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
   5657     if (!CST) return; // Must be an immediate to match.
   5658     unsigned Value = CST->getZExtValue();
   5659     switch (Letter) {
   5660     default: llvm_unreachable("Unknown constraint letter!");
   5661     case 'I':  // "I" is a signed 16-bit constant.
   5662       if ((short)Value == (int)Value)
   5663         Result = DAG.getTargetConstant(Value, Op.getValueType());
   5664       break;
   5665     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
   5666     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
   5667       if ((short)Value == 0)
   5668         Result = DAG.getTargetConstant(Value, Op.getValueType());
   5669       break;
   5670     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
   5671       if ((Value >> 16) == 0)
   5672         Result = DAG.getTargetConstant(Value, Op.getValueType());
   5673       break;
   5674     case 'M':  // "M" is a constant that is greater than 31.
   5675       if (Value > 31)
   5676         Result = DAG.getTargetConstant(Value, Op.getValueType());
   5677       break;
   5678     case 'N':  // "N" is a positive constant that is an exact power of two.
   5679       if ((int)Value > 0 && isPowerOf2_32(Value))
   5680         Result = DAG.getTargetConstant(Value, Op.getValueType());
   5681       break;
   5682     case 'O':  // "O" is the constant zero.
   5683       if (Value == 0)
   5684         Result = DAG.getTargetConstant(Value, Op.getValueType());
   5685       break;
   5686     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
   5687       if ((short)-Value == (int)-Value)
   5688         Result = DAG.getTargetConstant(Value, Op.getValueType());
   5689       break;
   5690     }
   5691     break;
   5692   }
   5693   }
   5694 
   5695   if (Result.getNode()) {
   5696     Ops.push_back(Result);
   5697     return;
   5698   }
   5699 
   5700   // Handle standard constraint letters.
   5701   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
   5702 }
   5703 
   5704 // isLegalAddressingMode - Return true if the addressing mode represented
   5705 // by AM is legal for this target, for a load/store of the specified type.
   5706 bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
   5707                                               Type *Ty) const {
   5708   // FIXME: PPC does not allow r+i addressing modes for vectors!
   5709 
   5710   // PPC allows a sign-extended 16-bit immediate field.
   5711   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
   5712     return false;
   5713 
   5714   // No global is ever allowed as a base.
   5715   if (AM.BaseGV)
   5716     return false;
   5717 
   5718   // PPC only support r+r,
   5719   switch (AM.Scale) {
   5720   case 0:  // "r+i" or just "i", depending on HasBaseReg.
   5721     break;
   5722   case 1:
   5723     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
   5724       return false;
   5725     // Otherwise we have r+r or r+i.
   5726     break;
   5727   case 2:
   5728     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
   5729       return false;
   5730     // Allow 2*r as r+r.
   5731     break;
   5732   default:
   5733     // No other scales are supported.
   5734     return false;
   5735   }
   5736 
   5737   return true;
   5738 }
   5739 
   5740 /// isLegalAddressImmediate - Return true if the integer value can be used
   5741 /// as the offset of the target addressing mode for load / store of the
   5742 /// given type.
   5743 bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,Type *Ty) const{
   5744   // PPC allows a sign-extended 16-bit immediate field.
   5745   return (V > -(1 << 16) && V < (1 << 16)-1);
   5746 }
   5747 
   5748 bool PPCTargetLowering::isLegalAddressImmediate(GlobalValue* GV) const {
   5749   return false;
   5750 }
   5751 
   5752 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
   5753                                            SelectionDAG &DAG) const {
   5754   MachineFunction &MF = DAG.getMachineFunction();
   5755   MachineFrameInfo *MFI = MF.getFrameInfo();
   5756   MFI->setReturnAddressIsTaken(true);
   5757 
   5758   DebugLoc dl = Op.getDebugLoc();
   5759   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   5760 
   5761   // Make sure the function does not optimize away the store of the RA to
   5762   // the stack.
   5763   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   5764   FuncInfo->setLRStoreRequired();
   5765   bool isPPC64 = PPCSubTarget.isPPC64();
   5766   bool isDarwinABI = PPCSubTarget.isDarwinABI();
   5767 
   5768   if (Depth > 0) {
   5769     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
   5770     SDValue Offset =
   5771 
   5772       DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
   5773                       isPPC64? MVT::i64 : MVT::i32);
   5774     return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
   5775                        DAG.getNode(ISD::ADD, dl, getPointerTy(),
   5776                                    FrameAddr, Offset),
   5777                        MachinePointerInfo(), false, false, false, 0);
   5778   }
   5779 
   5780   // Just load the return address off the stack.
   5781   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
   5782   return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
   5783                      RetAddrFI, MachinePointerInfo(), false, false, false, 0);
   5784 }
   5785 
   5786 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
   5787                                           SelectionDAG &DAG) const {
   5788   DebugLoc dl = Op.getDebugLoc();
   5789   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   5790 
   5791   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   5792   bool isPPC64 = PtrVT == MVT::i64;
   5793 
   5794   MachineFunction &MF = DAG.getMachineFunction();
   5795   MachineFrameInfo *MFI = MF.getFrameInfo();
   5796   MFI->setFrameAddressIsTaken(true);
   5797   bool is31 = (getTargetMachine().Options.DisableFramePointerElim(MF) ||
   5798                MFI->hasVarSizedObjects()) &&
   5799                   MFI->getStackSize() &&
   5800                   !MF.getFunction()->hasFnAttr(Attribute::Naked);
   5801   unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) :
   5802                                 (is31 ? PPC::R31 : PPC::R1);
   5803   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
   5804                                          PtrVT);
   5805   while (Depth--)
   5806     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
   5807                             FrameAddr, MachinePointerInfo(), false, false,
   5808                             false, 0);
   5809   return FrameAddr;
   5810 }
   5811 
   5812 bool
   5813 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
   5814   // The PowerPC target isn't yet aware of offsets.
   5815   return false;
   5816 }
   5817 
   5818 /// getOptimalMemOpType - Returns the target specific optimal type for load
   5819 /// and store operations as a result of memset, memcpy, and memmove
   5820 /// lowering. If DstAlign is zero that means it's safe to destination
   5821 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
   5822 /// means there isn't a need to check it against alignment requirement,
   5823 /// probably because the source does not need to be loaded. If
   5824 /// 'IsZeroVal' is true, that means it's safe to return a
   5825 /// non-scalar-integer type, e.g. empty string source, constant, or loaded
   5826 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
   5827 /// constant so it does not need to be loaded.
   5828 /// It returns EVT::Other if the type should be determined using generic
   5829 /// target-independent logic.
   5830 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
   5831                                            unsigned DstAlign, unsigned SrcAlign,
   5832                                            bool IsZeroVal,
   5833                                            bool MemcpyStrSrc,
   5834                                            MachineFunction &MF) const {
   5835   if (this->PPCSubTarget.isPPC64()) {
   5836     return MVT::i64;
   5837   } else {
   5838     return MVT::i32;
   5839   }
   5840 }
   5841 
   5842 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
   5843   unsigned Directive = PPCSubTarget.getDarwinDirective();
   5844   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2)
   5845     return Sched::ILP;
   5846 
   5847   return TargetLowering::getSchedulingPreference(N);
   5848 }
   5849 
   5850