Home | History | Annotate | Download | only in SelectionDAG
      1 //===----- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler --===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements bottom-up and top-down register pressure reduction list
     11 // schedulers, using standard algorithms.  The basic approach uses a priority
     12 // queue of available nodes to schedule.  One at a time, nodes are taken from
     13 // the priority queue (thus in priority order), checked for legality to
     14 // schedule, and emitted if legal.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #define DEBUG_TYPE "pre-RA-sched"
     19 #include "ScheduleDAGSDNodes.h"
     20 #include "llvm/InlineAsm.h"
     21 #include "llvm/CodeGen/SchedulerRegistry.h"
     22 #include "llvm/CodeGen/SelectionDAGISel.h"
     23 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
     24 #include "llvm/Target/TargetRegisterInfo.h"
     25 #include "llvm/Target/TargetData.h"
     26 #include "llvm/Target/TargetMachine.h"
     27 #include "llvm/Target/TargetInstrInfo.h"
     28 #include "llvm/Target/TargetLowering.h"
     29 #include "llvm/ADT/SmallSet.h"
     30 #include "llvm/ADT/Statistic.h"
     31 #include "llvm/ADT/STLExtras.h"
     32 #include "llvm/Support/Debug.h"
     33 #include "llvm/Support/ErrorHandling.h"
     34 #include "llvm/Support/raw_ostream.h"
     35 #include <climits>
     36 using namespace llvm;
     37 
     38 STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
     39 STATISTIC(NumUnfolds,    "Number of nodes unfolded");
     40 STATISTIC(NumDups,       "Number of duplicated nodes");
     41 STATISTIC(NumPRCopies,   "Number of physical register copies");
     42 
     43 static RegisterScheduler
     44   burrListDAGScheduler("list-burr",
     45                        "Bottom-up register reduction list scheduling",
     46                        createBURRListDAGScheduler);
     47 static RegisterScheduler
     48   sourceListDAGScheduler("source",
     49                          "Similar to list-burr but schedules in source "
     50                          "order when possible",
     51                          createSourceListDAGScheduler);
     52 
     53 static RegisterScheduler
     54   hybridListDAGScheduler("list-hybrid",
     55                          "Bottom-up register pressure aware list scheduling "
     56                          "which tries to balance latency and register pressure",
     57                          createHybridListDAGScheduler);
     58 
     59 static RegisterScheduler
     60   ILPListDAGScheduler("list-ilp",
     61                       "Bottom-up register pressure aware list scheduling "
     62                       "which tries to balance ILP and register pressure",
     63                       createILPListDAGScheduler);
     64 
     65 static cl::opt<bool> DisableSchedCycles(
     66   "disable-sched-cycles", cl::Hidden, cl::init(false),
     67   cl::desc("Disable cycle-level precision during preRA scheduling"));
     68 
     69 // Temporary sched=list-ilp flags until the heuristics are robust.
     70 // Some options are also available under sched=list-hybrid.
     71 static cl::opt<bool> DisableSchedRegPressure(
     72   "disable-sched-reg-pressure", cl::Hidden, cl::init(false),
     73   cl::desc("Disable regpressure priority in sched=list-ilp"));
     74 static cl::opt<bool> DisableSchedLiveUses(
     75   "disable-sched-live-uses", cl::Hidden, cl::init(true),
     76   cl::desc("Disable live use priority in sched=list-ilp"));
     77 static cl::opt<bool> DisableSchedVRegCycle(
     78   "disable-sched-vrcycle", cl::Hidden, cl::init(false),
     79   cl::desc("Disable virtual register cycle interference checks"));
     80 static cl::opt<bool> DisableSchedPhysRegJoin(
     81   "disable-sched-physreg-join", cl::Hidden, cl::init(false),
     82   cl::desc("Disable physreg def-use affinity"));
     83 static cl::opt<bool> DisableSchedStalls(
     84   "disable-sched-stalls", cl::Hidden, cl::init(true),
     85   cl::desc("Disable no-stall priority in sched=list-ilp"));
     86 static cl::opt<bool> DisableSchedCriticalPath(
     87   "disable-sched-critical-path", cl::Hidden, cl::init(false),
     88   cl::desc("Disable critical path priority in sched=list-ilp"));
     89 static cl::opt<bool> DisableSchedHeight(
     90   "disable-sched-height", cl::Hidden, cl::init(false),
     91   cl::desc("Disable scheduled-height priority in sched=list-ilp"));
     92 static cl::opt<bool> Disable2AddrHack(
     93   "disable-2addr-hack", cl::Hidden, cl::init(true),
     94   cl::desc("Disable scheduler's two-address hack"));
     95 
     96 static cl::opt<int> MaxReorderWindow(
     97   "max-sched-reorder", cl::Hidden, cl::init(6),
     98   cl::desc("Number of instructions to allow ahead of the critical path "
     99            "in sched=list-ilp"));
    100 
    101 static cl::opt<unsigned> AvgIPC(
    102   "sched-avg-ipc", cl::Hidden, cl::init(1),
    103   cl::desc("Average inst/cycle whan no target itinerary exists."));
    104 
    105 namespace {
    106 //===----------------------------------------------------------------------===//
    107 /// ScheduleDAGRRList - The actual register reduction list scheduler
    108 /// implementation.  This supports both top-down and bottom-up scheduling.
    109 ///
    110 class ScheduleDAGRRList : public ScheduleDAGSDNodes {
    111 private:
    112   /// NeedLatency - True if the scheduler will make use of latency information.
    113   ///
    114   bool NeedLatency;
    115 
    116   /// AvailableQueue - The priority queue to use for the available SUnits.
    117   SchedulingPriorityQueue *AvailableQueue;
    118 
    119   /// PendingQueue - This contains all of the instructions whose operands have
    120   /// been issued, but their results are not ready yet (due to the latency of
    121   /// the operation).  Once the operands becomes available, the instruction is
    122   /// added to the AvailableQueue.
    123   std::vector<SUnit*> PendingQueue;
    124 
    125   /// HazardRec - The hazard recognizer to use.
    126   ScheduleHazardRecognizer *HazardRec;
    127 
    128   /// CurCycle - The current scheduler state corresponds to this cycle.
    129   unsigned CurCycle;
    130 
    131   /// MinAvailableCycle - Cycle of the soonest available instruction.
    132   unsigned MinAvailableCycle;
    133 
    134   /// IssueCount - Count instructions issued in this cycle
    135   /// Currently valid only for bottom-up scheduling.
    136   unsigned IssueCount;
    137 
    138   /// LiveRegDefs - A set of physical registers and their definition
    139   /// that are "live". These nodes must be scheduled before any other nodes that
    140   /// modifies the registers can be scheduled.
    141   unsigned NumLiveRegs;
    142   std::vector<SUnit*> LiveRegDefs;
    143   std::vector<SUnit*> LiveRegGens;
    144 
    145   /// Topo - A topological ordering for SUnits which permits fast IsReachable
    146   /// and similar queries.
    147   ScheduleDAGTopologicalSort Topo;
    148 
    149   // Hack to keep track of the inverse of FindCallSeqStart without more crazy
    150   // DAG crawling.
    151   DenseMap<SUnit*, SUnit*> CallSeqEndForStart;
    152 
    153 public:
    154   ScheduleDAGRRList(MachineFunction &mf, bool needlatency,
    155                     SchedulingPriorityQueue *availqueue,
    156                     CodeGenOpt::Level OptLevel)
    157     : ScheduleDAGSDNodes(mf),
    158       NeedLatency(needlatency), AvailableQueue(availqueue), CurCycle(0),
    159       Topo(SUnits) {
    160 
    161     const TargetMachine &tm = mf.getTarget();
    162     if (DisableSchedCycles || !NeedLatency)
    163       HazardRec = new ScheduleHazardRecognizer();
    164     else
    165       HazardRec = tm.getInstrInfo()->CreateTargetHazardRecognizer(&tm, this);
    166   }
    167 
    168   ~ScheduleDAGRRList() {
    169     delete HazardRec;
    170     delete AvailableQueue;
    171   }
    172 
    173   void Schedule();
    174 
    175   ScheduleHazardRecognizer *getHazardRec() { return HazardRec; }
    176 
    177   /// IsReachable - Checks if SU is reachable from TargetSU.
    178   bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
    179     return Topo.IsReachable(SU, TargetSU);
    180   }
    181 
    182   /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
    183   /// create a cycle.
    184   bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
    185     return Topo.WillCreateCycle(SU, TargetSU);
    186   }
    187 
    188   /// AddPred - adds a predecessor edge to SUnit SU.
    189   /// This returns true if this is a new predecessor.
    190   /// Updates the topological ordering if required.
    191   void AddPred(SUnit *SU, const SDep &D) {
    192     Topo.AddPred(SU, D.getSUnit());
    193     SU->addPred(D);
    194   }
    195 
    196   /// RemovePred - removes a predecessor edge from SUnit SU.
    197   /// This returns true if an edge was removed.
    198   /// Updates the topological ordering if required.
    199   void RemovePred(SUnit *SU, const SDep &D) {
    200     Topo.RemovePred(SU, D.getSUnit());
    201     SU->removePred(D);
    202   }
    203 
    204 private:
    205   bool isReady(SUnit *SU) {
    206     return DisableSchedCycles || !AvailableQueue->hasReadyFilter() ||
    207       AvailableQueue->isReady(SU);
    208   }
    209 
    210   void ReleasePred(SUnit *SU, const SDep *PredEdge);
    211   void ReleasePredecessors(SUnit *SU);
    212   void ReleasePending();
    213   void AdvanceToCycle(unsigned NextCycle);
    214   void AdvancePastStalls(SUnit *SU);
    215   void EmitNode(SUnit *SU);
    216   void ScheduleNodeBottomUp(SUnit*);
    217   void CapturePred(SDep *PredEdge);
    218   void UnscheduleNodeBottomUp(SUnit*);
    219   void RestoreHazardCheckerBottomUp();
    220   void BacktrackBottomUp(SUnit*, SUnit*);
    221   SUnit *CopyAndMoveSuccessors(SUnit*);
    222   void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
    223                                 const TargetRegisterClass*,
    224                                 const TargetRegisterClass*,
    225                                 SmallVector<SUnit*, 2>&);
    226   bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
    227 
    228   SUnit *PickNodeToScheduleBottomUp();
    229   void ListScheduleBottomUp();
    230 
    231   /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
    232   /// Updates the topological ordering if required.
    233   SUnit *CreateNewSUnit(SDNode *N) {
    234     unsigned NumSUnits = SUnits.size();
    235     SUnit *NewNode = newSUnit(N);
    236     // Update the topological ordering.
    237     if (NewNode->NodeNum >= NumSUnits)
    238       Topo.InitDAGTopologicalSorting();
    239     return NewNode;
    240   }
    241 
    242   /// CreateClone - Creates a new SUnit from an existing one.
    243   /// Updates the topological ordering if required.
    244   SUnit *CreateClone(SUnit *N) {
    245     unsigned NumSUnits = SUnits.size();
    246     SUnit *NewNode = Clone(N);
    247     // Update the topological ordering.
    248     if (NewNode->NodeNum >= NumSUnits)
    249       Topo.InitDAGTopologicalSorting();
    250     return NewNode;
    251   }
    252 
    253   /// forceUnitLatencies - Register-pressure-reducing scheduling doesn't
    254   /// need actual latency information but the hybrid scheduler does.
    255   bool forceUnitLatencies() const {
    256     return !NeedLatency;
    257   }
    258 };
    259 }  // end anonymous namespace
    260 
    261 /// GetCostForDef - Looks up the register class and cost for a given definition.
    262 /// Typically this just means looking up the representative register class,
    263 /// but for untyped values (MVT::Untyped) it means inspecting the node's
    264 /// opcode to determine what register class is being generated.
    265 static void GetCostForDef(const ScheduleDAGSDNodes::RegDefIter &RegDefPos,
    266                           const TargetLowering *TLI,
    267                           const TargetInstrInfo *TII,
    268                           const TargetRegisterInfo *TRI,
    269                           unsigned &RegClass, unsigned &Cost) {
    270   EVT VT = RegDefPos.GetValue();
    271 
    272   // Special handling for untyped values.  These values can only come from
    273   // the expansion of custom DAG-to-DAG patterns.
    274   if (VT == MVT::Untyped) {
    275     const SDNode *Node = RegDefPos.GetNode();
    276     unsigned Opcode = Node->getMachineOpcode();
    277 
    278     if (Opcode == TargetOpcode::REG_SEQUENCE) {
    279       unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
    280       const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
    281       RegClass = RC->getID();
    282       Cost = 1;
    283       return;
    284     }
    285 
    286     unsigned Idx = RegDefPos.GetIdx();
    287     const MCInstrDesc Desc = TII->get(Opcode);
    288     const TargetRegisterClass *RC = TII->getRegClass(Desc, Idx, TRI);
    289     RegClass = RC->getID();
    290     // FIXME: Cost arbitrarily set to 1 because there doesn't seem to be a
    291     // better way to determine it.
    292     Cost = 1;
    293   } else {
    294     RegClass = TLI->getRepRegClassFor(VT)->getID();
    295     Cost = TLI->getRepRegClassCostFor(VT);
    296   }
    297 }
    298 
    299 /// Schedule - Schedule the DAG using list scheduling.
    300 void ScheduleDAGRRList::Schedule() {
    301   DEBUG(dbgs()
    302         << "********** List Scheduling BB#" << BB->getNumber()
    303         << " '" << BB->getName() << "' **********\n");
    304 
    305   CurCycle = 0;
    306   IssueCount = 0;
    307   MinAvailableCycle = DisableSchedCycles ? 0 : UINT_MAX;
    308   NumLiveRegs = 0;
    309   // Allocate slots for each physical register, plus one for a special register
    310   // to track the virtual resource of a calling sequence.
    311   LiveRegDefs.resize(TRI->getNumRegs() + 1, NULL);
    312   LiveRegGens.resize(TRI->getNumRegs() + 1, NULL);
    313   CallSeqEndForStart.clear();
    314 
    315   // Build the scheduling graph.
    316   BuildSchedGraph(NULL);
    317 
    318   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
    319           SUnits[su].dumpAll(this));
    320   Topo.InitDAGTopologicalSorting();
    321 
    322   AvailableQueue->initNodes(SUnits);
    323 
    324   HazardRec->Reset();
    325 
    326   // Execute the actual scheduling loop.
    327   ListScheduleBottomUp();
    328 
    329   AvailableQueue->releaseState();
    330 
    331   DEBUG({
    332       dbgs() << "*** Final schedule ***\n";
    333       dumpSchedule();
    334       dbgs() << '\n';
    335     });
    336 }
    337 
    338 //===----------------------------------------------------------------------===//
    339 //  Bottom-Up Scheduling
    340 //===----------------------------------------------------------------------===//
    341 
    342 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
    343 /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
    344 void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
    345   SUnit *PredSU = PredEdge->getSUnit();
    346 
    347 #ifndef NDEBUG
    348   if (PredSU->NumSuccsLeft == 0) {
    349     dbgs() << "*** Scheduling failed! ***\n";
    350     PredSU->dump(this);
    351     dbgs() << " has been released too many times!\n";
    352     llvm_unreachable(0);
    353   }
    354 #endif
    355   --PredSU->NumSuccsLeft;
    356 
    357   if (!forceUnitLatencies()) {
    358     // Updating predecessor's height. This is now the cycle when the
    359     // predecessor can be scheduled without causing a pipeline stall.
    360     PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge->getLatency());
    361   }
    362 
    363   // If all the node's successors are scheduled, this node is ready
    364   // to be scheduled. Ignore the special EntrySU node.
    365   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
    366     PredSU->isAvailable = true;
    367 
    368     unsigned Height = PredSU->getHeight();
    369     if (Height < MinAvailableCycle)
    370       MinAvailableCycle = Height;
    371 
    372     if (isReady(PredSU)) {
    373       AvailableQueue->push(PredSU);
    374     }
    375     // CapturePred and others may have left the node in the pending queue, avoid
    376     // adding it twice.
    377     else if (!PredSU->isPending) {
    378       PredSU->isPending = true;
    379       PendingQueue.push_back(PredSU);
    380     }
    381   }
    382 }
    383 
    384 /// IsChainDependent - Test if Outer is reachable from Inner through
    385 /// chain dependencies.
    386 static bool IsChainDependent(SDNode *Outer, SDNode *Inner,
    387                              unsigned NestLevel,
    388                              const TargetInstrInfo *TII) {
    389   SDNode *N = Outer;
    390   for (;;) {
    391     if (N == Inner)
    392       return true;
    393     // For a TokenFactor, examine each operand. There may be multiple ways
    394     // to get to the CALLSEQ_BEGIN, but we need to find the path with the
    395     // most nesting in order to ensure that we find the corresponding match.
    396     if (N->getOpcode() == ISD::TokenFactor) {
    397       for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
    398         if (IsChainDependent(N->getOperand(i).getNode(), Inner, NestLevel, TII))
    399           return true;
    400       return false;
    401     }
    402     // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
    403     if (N->isMachineOpcode()) {
    404       if (N->getMachineOpcode() ==
    405           (unsigned)TII->getCallFrameDestroyOpcode()) {
    406         ++NestLevel;
    407       } else if (N->getMachineOpcode() ==
    408                  (unsigned)TII->getCallFrameSetupOpcode()) {
    409         if (NestLevel == 0)
    410           return false;
    411         --NestLevel;
    412       }
    413     }
    414     // Otherwise, find the chain and continue climbing.
    415     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
    416       if (N->getOperand(i).getValueType() == MVT::Other) {
    417         N = N->getOperand(i).getNode();
    418         goto found_chain_operand;
    419       }
    420     return false;
    421   found_chain_operand:;
    422     if (N->getOpcode() == ISD::EntryToken)
    423       return false;
    424   }
    425 }
    426 
    427 /// FindCallSeqStart - Starting from the (lowered) CALLSEQ_END node, locate
    428 /// the corresponding (lowered) CALLSEQ_BEGIN node.
    429 ///
    430 /// NestLevel and MaxNested are used in recursion to indcate the current level
    431 /// of nesting of CALLSEQ_BEGIN and CALLSEQ_END pairs, as well as the maximum
    432 /// level seen so far.
    433 ///
    434 /// TODO: It would be better to give CALLSEQ_END an explicit operand to point
    435 /// to the corresponding CALLSEQ_BEGIN to avoid needing to search for it.
    436 static SDNode *
    437 FindCallSeqStart(SDNode *N, unsigned &NestLevel, unsigned &MaxNest,
    438                  const TargetInstrInfo *TII) {
    439   for (;;) {
    440     // For a TokenFactor, examine each operand. There may be multiple ways
    441     // to get to the CALLSEQ_BEGIN, but we need to find the path with the
    442     // most nesting in order to ensure that we find the corresponding match.
    443     if (N->getOpcode() == ISD::TokenFactor) {
    444       SDNode *Best = 0;
    445       unsigned BestMaxNest = MaxNest;
    446       for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    447         unsigned MyNestLevel = NestLevel;
    448         unsigned MyMaxNest = MaxNest;
    449         if (SDNode *New = FindCallSeqStart(N->getOperand(i).getNode(),
    450                                            MyNestLevel, MyMaxNest, TII))
    451           if (!Best || (MyMaxNest > BestMaxNest)) {
    452             Best = New;
    453             BestMaxNest = MyMaxNest;
    454           }
    455       }
    456       assert(Best);
    457       MaxNest = BestMaxNest;
    458       return Best;
    459     }
    460     // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
    461     if (N->isMachineOpcode()) {
    462       if (N->getMachineOpcode() ==
    463           (unsigned)TII->getCallFrameDestroyOpcode()) {
    464         ++NestLevel;
    465         MaxNest = std::max(MaxNest, NestLevel);
    466       } else if (N->getMachineOpcode() ==
    467                  (unsigned)TII->getCallFrameSetupOpcode()) {
    468         assert(NestLevel != 0);
    469         --NestLevel;
    470         if (NestLevel == 0)
    471           return N;
    472       }
    473     }
    474     // Otherwise, find the chain and continue climbing.
    475     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
    476       if (N->getOperand(i).getValueType() == MVT::Other) {
    477         N = N->getOperand(i).getNode();
    478         goto found_chain_operand;
    479       }
    480     return 0;
    481   found_chain_operand:;
    482     if (N->getOpcode() == ISD::EntryToken)
    483       return 0;
    484   }
    485 }
    486 
    487 /// Call ReleasePred for each predecessor, then update register live def/gen.
    488 /// Always update LiveRegDefs for a register dependence even if the current SU
    489 /// also defines the register. This effectively create one large live range
    490 /// across a sequence of two-address node. This is important because the
    491 /// entire chain must be scheduled together. Example:
    492 ///
    493 /// flags = (3) add
    494 /// flags = (2) addc flags
    495 /// flags = (1) addc flags
    496 ///
    497 /// results in
    498 ///
    499 /// LiveRegDefs[flags] = 3
    500 /// LiveRegGens[flags] = 1
    501 ///
    502 /// If (2) addc is unscheduled, then (1) addc must also be unscheduled to avoid
    503 /// interference on flags.
    504 void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU) {
    505   // Bottom up: release predecessors
    506   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    507        I != E; ++I) {
    508     ReleasePred(SU, &*I);
    509     if (I->isAssignedRegDep()) {
    510       // This is a physical register dependency and it's impossible or
    511       // expensive to copy the register. Make sure nothing that can
    512       // clobber the register is scheduled between the predecessor and
    513       // this node.
    514       SUnit *RegDef = LiveRegDefs[I->getReg()]; (void)RegDef;
    515       assert((!RegDef || RegDef == SU || RegDef == I->getSUnit()) &&
    516              "interference on register dependence");
    517       LiveRegDefs[I->getReg()] = I->getSUnit();
    518       if (!LiveRegGens[I->getReg()]) {
    519         ++NumLiveRegs;
    520         LiveRegGens[I->getReg()] = SU;
    521       }
    522     }
    523   }
    524 
    525   // If we're scheduling a lowered CALLSEQ_END, find the corresponding
    526   // CALLSEQ_BEGIN. Inject an artificial physical register dependence between
    527   // these nodes, to prevent other calls from being interscheduled with them.
    528   unsigned CallResource = TRI->getNumRegs();
    529   if (!LiveRegDefs[CallResource])
    530     for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode())
    531       if (Node->isMachineOpcode() &&
    532           Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
    533         unsigned NestLevel = 0;
    534         unsigned MaxNest = 0;
    535         SDNode *N = FindCallSeqStart(Node, NestLevel, MaxNest, TII);
    536 
    537         SUnit *Def = &SUnits[N->getNodeId()];
    538         CallSeqEndForStart[Def] = SU;
    539 
    540         ++NumLiveRegs;
    541         LiveRegDefs[CallResource] = Def;
    542         LiveRegGens[CallResource] = SU;
    543         break;
    544       }
    545 }
    546 
    547 /// Check to see if any of the pending instructions are ready to issue.  If
    548 /// so, add them to the available queue.
    549 void ScheduleDAGRRList::ReleasePending() {
    550   if (DisableSchedCycles) {
    551     assert(PendingQueue.empty() && "pending instrs not allowed in this mode");
    552     return;
    553   }
    554 
    555   // If the available queue is empty, it is safe to reset MinAvailableCycle.
    556   if (AvailableQueue->empty())
    557     MinAvailableCycle = UINT_MAX;
    558 
    559   // Check to see if any of the pending instructions are ready to issue.  If
    560   // so, add them to the available queue.
    561   for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
    562     unsigned ReadyCycle = PendingQueue[i]->getHeight();
    563     if (ReadyCycle < MinAvailableCycle)
    564       MinAvailableCycle = ReadyCycle;
    565 
    566     if (PendingQueue[i]->isAvailable) {
    567       if (!isReady(PendingQueue[i]))
    568           continue;
    569       AvailableQueue->push(PendingQueue[i]);
    570     }
    571     PendingQueue[i]->isPending = false;
    572     PendingQueue[i] = PendingQueue.back();
    573     PendingQueue.pop_back();
    574     --i; --e;
    575   }
    576 }
    577 
    578 /// Move the scheduler state forward by the specified number of Cycles.
    579 void ScheduleDAGRRList::AdvanceToCycle(unsigned NextCycle) {
    580   if (NextCycle <= CurCycle)
    581     return;
    582 
    583   IssueCount = 0;
    584   AvailableQueue->setCurCycle(NextCycle);
    585   if (!HazardRec->isEnabled()) {
    586     // Bypass lots of virtual calls in case of long latency.
    587     CurCycle = NextCycle;
    588   }
    589   else {
    590     for (; CurCycle != NextCycle; ++CurCycle) {
    591       HazardRec->RecedeCycle();
    592     }
    593   }
    594   // FIXME: Instead of visiting the pending Q each time, set a dirty flag on the
    595   // available Q to release pending nodes at least once before popping.
    596   ReleasePending();
    597 }
    598 
    599 /// Move the scheduler state forward until the specified node's dependents are
    600 /// ready and can be scheduled with no resource conflicts.
    601 void ScheduleDAGRRList::AdvancePastStalls(SUnit *SU) {
    602   if (DisableSchedCycles)
    603     return;
    604 
    605   // FIXME: Nodes such as CopyFromReg probably should not advance the current
    606   // cycle. Otherwise, we can wrongly mask real stalls. If the non-machine node
    607   // has predecessors the cycle will be advanced when they are scheduled.
    608   // But given the crude nature of modeling latency though such nodes, we
    609   // currently need to treat these nodes like real instructions.
    610   // if (!SU->getNode() || !SU->getNode()->isMachineOpcode()) return;
    611 
    612   unsigned ReadyCycle = SU->getHeight();
    613 
    614   // Bump CurCycle to account for latency. We assume the latency of other
    615   // available instructions may be hidden by the stall (not a full pipe stall).
    616   // This updates the hazard recognizer's cycle before reserving resources for
    617   // this instruction.
    618   AdvanceToCycle(ReadyCycle);
    619 
    620   // Calls are scheduled in their preceding cycle, so don't conflict with
    621   // hazards from instructions after the call. EmitNode will reset the
    622   // scoreboard state before emitting the call.
    623   if (SU->isCall)
    624     return;
    625 
    626   // FIXME: For resource conflicts in very long non-pipelined stages, we
    627   // should probably skip ahead here to avoid useless scoreboard checks.
    628   int Stalls = 0;
    629   while (true) {
    630     ScheduleHazardRecognizer::HazardType HT =
    631       HazardRec->getHazardType(SU, -Stalls);
    632 
    633     if (HT == ScheduleHazardRecognizer::NoHazard)
    634       break;
    635 
    636     ++Stalls;
    637   }
    638   AdvanceToCycle(CurCycle + Stalls);
    639 }
    640 
    641 /// Record this SUnit in the HazardRecognizer.
    642 /// Does not update CurCycle.
    643 void ScheduleDAGRRList::EmitNode(SUnit *SU) {
    644   if (!HazardRec->isEnabled())
    645     return;
    646 
    647   // Check for phys reg copy.
    648   if (!SU->getNode())
    649     return;
    650 
    651   switch (SU->getNode()->getOpcode()) {
    652   default:
    653     assert(SU->getNode()->isMachineOpcode() &&
    654            "This target-independent node should not be scheduled.");
    655     break;
    656   case ISD::MERGE_VALUES:
    657   case ISD::TokenFactor:
    658   case ISD::CopyToReg:
    659   case ISD::CopyFromReg:
    660   case ISD::EH_LABEL:
    661     // Noops don't affect the scoreboard state. Copies are likely to be
    662     // removed.
    663     return;
    664   case ISD::INLINEASM:
    665     // For inline asm, clear the pipeline state.
    666     HazardRec->Reset();
    667     return;
    668   }
    669   if (SU->isCall) {
    670     // Calls are scheduled with their preceding instructions. For bottom-up
    671     // scheduling, clear the pipeline state before emitting.
    672     HazardRec->Reset();
    673   }
    674 
    675   HazardRec->EmitInstruction(SU);
    676 }
    677 
    678 static void resetVRegCycle(SUnit *SU);
    679 
    680 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
    681 /// count of its predecessors. If a predecessor pending count is zero, add it to
    682 /// the Available queue.
    683 void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU) {
    684   DEBUG(dbgs() << "\n*** Scheduling [" << CurCycle << "]: ");
    685   DEBUG(SU->dump(this));
    686 
    687 #ifndef NDEBUG
    688   if (CurCycle < SU->getHeight())
    689     DEBUG(dbgs() << "   Height [" << SU->getHeight()
    690           << "] pipeline stall!\n");
    691 #endif
    692 
    693   // FIXME: Do not modify node height. It may interfere with
    694   // backtracking. Instead add a "ready cycle" to SUnit. Before scheduling the
    695   // node its ready cycle can aid heuristics, and after scheduling it can
    696   // indicate the scheduled cycle.
    697   SU->setHeightToAtLeast(CurCycle);
    698 
    699   // Reserve resources for the scheduled intruction.
    700   EmitNode(SU);
    701 
    702   Sequence.push_back(SU);
    703 
    704   AvailableQueue->scheduledNode(SU);
    705 
    706   // If HazardRec is disabled, and each inst counts as one cycle, then
    707   // advance CurCycle before ReleasePredecessors to avoid useless pushes to
    708   // PendingQueue for schedulers that implement HasReadyFilter.
    709   if (!HazardRec->isEnabled() && AvgIPC < 2)
    710     AdvanceToCycle(CurCycle + 1);
    711 
    712   // Update liveness of predecessors before successors to avoid treating a
    713   // two-address node as a live range def.
    714   ReleasePredecessors(SU);
    715 
    716   // Release all the implicit physical register defs that are live.
    717   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    718        I != E; ++I) {
    719     // LiveRegDegs[I->getReg()] != SU when SU is a two-address node.
    720     if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] == SU) {
    721       assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
    722       --NumLiveRegs;
    723       LiveRegDefs[I->getReg()] = NULL;
    724       LiveRegGens[I->getReg()] = NULL;
    725     }
    726   }
    727   // Release the special call resource dependence, if this is the beginning
    728   // of a call.
    729   unsigned CallResource = TRI->getNumRegs();
    730   if (LiveRegDefs[CallResource] == SU)
    731     for (const SDNode *SUNode = SU->getNode(); SUNode;
    732          SUNode = SUNode->getGluedNode()) {
    733       if (SUNode->isMachineOpcode() &&
    734           SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
    735         assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
    736         --NumLiveRegs;
    737         LiveRegDefs[CallResource] = NULL;
    738         LiveRegGens[CallResource] = NULL;
    739       }
    740     }
    741 
    742   resetVRegCycle(SU);
    743 
    744   SU->isScheduled = true;
    745 
    746   // Conditions under which the scheduler should eagerly advance the cycle:
    747   // (1) No available instructions
    748   // (2) All pipelines full, so available instructions must have hazards.
    749   //
    750   // If HazardRec is disabled, the cycle was pre-advanced before calling
    751   // ReleasePredecessors. In that case, IssueCount should remain 0.
    752   //
    753   // Check AvailableQueue after ReleasePredecessors in case of zero latency.
    754   if (HazardRec->isEnabled() || AvgIPC > 1) {
    755     if (SU->getNode() && SU->getNode()->isMachineOpcode())
    756       ++IssueCount;
    757     if ((HazardRec->isEnabled() && HazardRec->atIssueLimit())
    758         || (!HazardRec->isEnabled() && IssueCount == AvgIPC))
    759       AdvanceToCycle(CurCycle + 1);
    760   }
    761 }
    762 
    763 /// CapturePred - This does the opposite of ReleasePred. Since SU is being
    764 /// unscheduled, incrcease the succ left count of its predecessors. Remove
    765 /// them from AvailableQueue if necessary.
    766 void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
    767   SUnit *PredSU = PredEdge->getSUnit();
    768   if (PredSU->isAvailable) {
    769     PredSU->isAvailable = false;
    770     if (!PredSU->isPending)
    771       AvailableQueue->remove(PredSU);
    772   }
    773 
    774   assert(PredSU->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
    775   ++PredSU->NumSuccsLeft;
    776 }
    777 
    778 /// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
    779 /// its predecessor states to reflect the change.
    780 void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
    781   DEBUG(dbgs() << "*** Unscheduling [" << SU->getHeight() << "]: ");
    782   DEBUG(SU->dump(this));
    783 
    784   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    785        I != E; ++I) {
    786     CapturePred(&*I);
    787     if (I->isAssignedRegDep() && SU == LiveRegGens[I->getReg()]){
    788       assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
    789       assert(LiveRegDefs[I->getReg()] == I->getSUnit() &&
    790              "Physical register dependency violated?");
    791       --NumLiveRegs;
    792       LiveRegDefs[I->getReg()] = NULL;
    793       LiveRegGens[I->getReg()] = NULL;
    794     }
    795   }
    796 
    797   // Reclaim the special call resource dependence, if this is the beginning
    798   // of a call.
    799   unsigned CallResource = TRI->getNumRegs();
    800   for (const SDNode *SUNode = SU->getNode(); SUNode;
    801        SUNode = SUNode->getGluedNode()) {
    802     if (SUNode->isMachineOpcode() &&
    803         SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
    804       ++NumLiveRegs;
    805       LiveRegDefs[CallResource] = SU;
    806       LiveRegGens[CallResource] = CallSeqEndForStart[SU];
    807     }
    808   }
    809 
    810   // Release the special call resource dependence, if this is the end
    811   // of a call.
    812   if (LiveRegGens[CallResource] == SU)
    813     for (const SDNode *SUNode = SU->getNode(); SUNode;
    814          SUNode = SUNode->getGluedNode()) {
    815       if (SUNode->isMachineOpcode() &&
    816           SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
    817         assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
    818         --NumLiveRegs;
    819         LiveRegDefs[CallResource] = NULL;
    820         LiveRegGens[CallResource] = NULL;
    821       }
    822     }
    823 
    824   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    825        I != E; ++I) {
    826     if (I->isAssignedRegDep()) {
    827       if (!LiveRegDefs[I->getReg()])
    828         ++NumLiveRegs;
    829       // This becomes the nearest def. Note that an earlier def may still be
    830       // pending if this is a two-address node.
    831       LiveRegDefs[I->getReg()] = SU;
    832       if (LiveRegGens[I->getReg()] == NULL ||
    833           I->getSUnit()->getHeight() < LiveRegGens[I->getReg()]->getHeight())
    834         LiveRegGens[I->getReg()] = I->getSUnit();
    835     }
    836   }
    837   if (SU->getHeight() < MinAvailableCycle)
    838     MinAvailableCycle = SU->getHeight();
    839 
    840   SU->setHeightDirty();
    841   SU->isScheduled = false;
    842   SU->isAvailable = true;
    843   if (!DisableSchedCycles && AvailableQueue->hasReadyFilter()) {
    844     // Don't make available until backtracking is complete.
    845     SU->isPending = true;
    846     PendingQueue.push_back(SU);
    847   }
    848   else {
    849     AvailableQueue->push(SU);
    850   }
    851   AvailableQueue->unscheduledNode(SU);
    852 }
    853 
    854 /// After backtracking, the hazard checker needs to be restored to a state
    855 /// corresponding the the current cycle.
    856 void ScheduleDAGRRList::RestoreHazardCheckerBottomUp() {
    857   HazardRec->Reset();
    858 
    859   unsigned LookAhead = std::min((unsigned)Sequence.size(),
    860                                 HazardRec->getMaxLookAhead());
    861   if (LookAhead == 0)
    862     return;
    863 
    864   std::vector<SUnit*>::const_iterator I = (Sequence.end() - LookAhead);
    865   unsigned HazardCycle = (*I)->getHeight();
    866   for (std::vector<SUnit*>::const_iterator E = Sequence.end(); I != E; ++I) {
    867     SUnit *SU = *I;
    868     for (; SU->getHeight() > HazardCycle; ++HazardCycle) {
    869       HazardRec->RecedeCycle();
    870     }
    871     EmitNode(SU);
    872   }
    873 }
    874 
    875 /// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
    876 /// BTCycle in order to schedule a specific node.
    877 void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, SUnit *BtSU) {
    878   SUnit *OldSU = Sequence.back();
    879   while (true) {
    880     Sequence.pop_back();
    881     if (SU->isSucc(OldSU))
    882       // Don't try to remove SU from AvailableQueue.
    883       SU->isAvailable = false;
    884     // FIXME: use ready cycle instead of height
    885     CurCycle = OldSU->getHeight();
    886     UnscheduleNodeBottomUp(OldSU);
    887     AvailableQueue->setCurCycle(CurCycle);
    888     if (OldSU == BtSU)
    889       break;
    890     OldSU = Sequence.back();
    891   }
    892 
    893   assert(!SU->isSucc(OldSU) && "Something is wrong!");
    894 
    895   RestoreHazardCheckerBottomUp();
    896 
    897   ReleasePending();
    898 
    899   ++NumBacktracks;
    900 }
    901 
    902 static bool isOperandOf(const SUnit *SU, SDNode *N) {
    903   for (const SDNode *SUNode = SU->getNode(); SUNode;
    904        SUNode = SUNode->getGluedNode()) {
    905     if (SUNode->isOperandOf(N))
    906       return true;
    907   }
    908   return false;
    909 }
    910 
    911 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
    912 /// successors to the newly created node.
    913 SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
    914   SDNode *N = SU->getNode();
    915   if (!N)
    916     return NULL;
    917 
    918   if (SU->getNode()->getGluedNode())
    919     return NULL;
    920 
    921   SUnit *NewSU;
    922   bool TryUnfold = false;
    923   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
    924     EVT VT = N->getValueType(i);
    925     if (VT == MVT::Glue)
    926       return NULL;
    927     else if (VT == MVT::Other)
    928       TryUnfold = true;
    929   }
    930   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    931     const SDValue &Op = N->getOperand(i);
    932     EVT VT = Op.getNode()->getValueType(Op.getResNo());
    933     if (VT == MVT::Glue)
    934       return NULL;
    935   }
    936 
    937   if (TryUnfold) {
    938     SmallVector<SDNode*, 2> NewNodes;
    939     if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
    940       return NULL;
    941 
    942     // unfolding an x86 DEC64m operation results in store, dec, load which
    943     // can't be handled here so quit
    944     if (NewNodes.size() == 3)
    945       return NULL;
    946 
    947     DEBUG(dbgs() << "Unfolding SU #" << SU->NodeNum << "\n");
    948     assert(NewNodes.size() == 2 && "Expected a load folding node!");
    949 
    950     N = NewNodes[1];
    951     SDNode *LoadNode = NewNodes[0];
    952     unsigned NumVals = N->getNumValues();
    953     unsigned OldNumVals = SU->getNode()->getNumValues();
    954     for (unsigned i = 0; i != NumVals; ++i)
    955       DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
    956     DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
    957                                    SDValue(LoadNode, 1));
    958 
    959     // LoadNode may already exist. This can happen when there is another
    960     // load from the same location and producing the same type of value
    961     // but it has different alignment or volatileness.
    962     bool isNewLoad = true;
    963     SUnit *LoadSU;
    964     if (LoadNode->getNodeId() != -1) {
    965       LoadSU = &SUnits[LoadNode->getNodeId()];
    966       isNewLoad = false;
    967     } else {
    968       LoadSU = CreateNewSUnit(LoadNode);
    969       LoadNode->setNodeId(LoadSU->NodeNum);
    970 
    971       InitNumRegDefsLeft(LoadSU);
    972       computeLatency(LoadSU);
    973     }
    974 
    975     SUnit *NewSU = CreateNewSUnit(N);
    976     assert(N->getNodeId() == -1 && "Node already inserted!");
    977     N->setNodeId(NewSU->NodeNum);
    978 
    979     const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
    980     for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
    981       if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
    982         NewSU->isTwoAddress = true;
    983         break;
    984       }
    985     }
    986     if (MCID.isCommutable())
    987       NewSU->isCommutable = true;
    988 
    989     InitNumRegDefsLeft(NewSU);
    990     computeLatency(NewSU);
    991 
    992     // Record all the edges to and from the old SU, by category.
    993     SmallVector<SDep, 4> ChainPreds;
    994     SmallVector<SDep, 4> ChainSuccs;
    995     SmallVector<SDep, 4> LoadPreds;
    996     SmallVector<SDep, 4> NodePreds;
    997     SmallVector<SDep, 4> NodeSuccs;
    998     for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    999          I != E; ++I) {
   1000       if (I->isCtrl())
   1001         ChainPreds.push_back(*I);
   1002       else if (isOperandOf(I->getSUnit(), LoadNode))
   1003         LoadPreds.push_back(*I);
   1004       else
   1005         NodePreds.push_back(*I);
   1006     }
   1007     for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
   1008          I != E; ++I) {
   1009       if (I->isCtrl())
   1010         ChainSuccs.push_back(*I);
   1011       else
   1012         NodeSuccs.push_back(*I);
   1013     }
   1014 
   1015     // Now assign edges to the newly-created nodes.
   1016     for (unsigned i = 0, e = ChainPreds.size(); i != e; ++i) {
   1017       const SDep &Pred = ChainPreds[i];
   1018       RemovePred(SU, Pred);
   1019       if (isNewLoad)
   1020         AddPred(LoadSU, Pred);
   1021     }
   1022     for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
   1023       const SDep &Pred = LoadPreds[i];
   1024       RemovePred(SU, Pred);
   1025       if (isNewLoad)
   1026         AddPred(LoadSU, Pred);
   1027     }
   1028     for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
   1029       const SDep &Pred = NodePreds[i];
   1030       RemovePred(SU, Pred);
   1031       AddPred(NewSU, Pred);
   1032     }
   1033     for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
   1034       SDep D = NodeSuccs[i];
   1035       SUnit *SuccDep = D.getSUnit();
   1036       D.setSUnit(SU);
   1037       RemovePred(SuccDep, D);
   1038       D.setSUnit(NewSU);
   1039       AddPred(SuccDep, D);
   1040       // Balance register pressure.
   1041       if (AvailableQueue->tracksRegPressure() && SuccDep->isScheduled
   1042           && !D.isCtrl() && NewSU->NumRegDefsLeft > 0)
   1043         --NewSU->NumRegDefsLeft;
   1044     }
   1045     for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
   1046       SDep D = ChainSuccs[i];
   1047       SUnit *SuccDep = D.getSUnit();
   1048       D.setSUnit(SU);
   1049       RemovePred(SuccDep, D);
   1050       if (isNewLoad) {
   1051         D.setSUnit(LoadSU);
   1052         AddPred(SuccDep, D);
   1053       }
   1054     }
   1055 
   1056     // Add a data dependency to reflect that NewSU reads the value defined
   1057     // by LoadSU.
   1058     AddPred(NewSU, SDep(LoadSU, SDep::Data, LoadSU->Latency));
   1059 
   1060     if (isNewLoad)
   1061       AvailableQueue->addNode(LoadSU);
   1062     AvailableQueue->addNode(NewSU);
   1063 
   1064     ++NumUnfolds;
   1065 
   1066     if (NewSU->NumSuccsLeft == 0) {
   1067       NewSU->isAvailable = true;
   1068       return NewSU;
   1069     }
   1070     SU = NewSU;
   1071   }
   1072 
   1073   DEBUG(dbgs() << "    Duplicating SU #" << SU->NodeNum << "\n");
   1074   NewSU = CreateClone(SU);
   1075 
   1076   // New SUnit has the exact same predecessors.
   1077   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   1078        I != E; ++I)
   1079     if (!I->isArtificial())
   1080       AddPred(NewSU, *I);
   1081 
   1082   // Only copy scheduled successors. Cut them from old node's successor
   1083   // list and move them over.
   1084   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
   1085   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
   1086        I != E; ++I) {
   1087     if (I->isArtificial())
   1088       continue;
   1089     SUnit *SuccSU = I->getSUnit();
   1090     if (SuccSU->isScheduled) {
   1091       SDep D = *I;
   1092       D.setSUnit(NewSU);
   1093       AddPred(SuccSU, D);
   1094       D.setSUnit(SU);
   1095       DelDeps.push_back(std::make_pair(SuccSU, D));
   1096     }
   1097   }
   1098   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
   1099     RemovePred(DelDeps[i].first, DelDeps[i].second);
   1100 
   1101   AvailableQueue->updateNode(SU);
   1102   AvailableQueue->addNode(NewSU);
   1103 
   1104   ++NumDups;
   1105   return NewSU;
   1106 }
   1107 
   1108 /// InsertCopiesAndMoveSuccs - Insert register copies and move all
   1109 /// scheduled successors of the given SUnit to the last copy.
   1110 void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
   1111                                                const TargetRegisterClass *DestRC,
   1112                                                const TargetRegisterClass *SrcRC,
   1113                                                SmallVector<SUnit*, 2> &Copies) {
   1114   SUnit *CopyFromSU = CreateNewSUnit(NULL);
   1115   CopyFromSU->CopySrcRC = SrcRC;
   1116   CopyFromSU->CopyDstRC = DestRC;
   1117 
   1118   SUnit *CopyToSU = CreateNewSUnit(NULL);
   1119   CopyToSU->CopySrcRC = DestRC;
   1120   CopyToSU->CopyDstRC = SrcRC;
   1121 
   1122   // Only copy scheduled successors. Cut them from old node's successor
   1123   // list and move them over.
   1124   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
   1125   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
   1126        I != E; ++I) {
   1127     if (I->isArtificial())
   1128       continue;
   1129     SUnit *SuccSU = I->getSUnit();
   1130     if (SuccSU->isScheduled) {
   1131       SDep D = *I;
   1132       D.setSUnit(CopyToSU);
   1133       AddPred(SuccSU, D);
   1134       DelDeps.push_back(std::make_pair(SuccSU, *I));
   1135     }
   1136     else {
   1137       // Avoid scheduling the def-side copy before other successors. Otherwise
   1138       // we could introduce another physreg interference on the copy and
   1139       // continue inserting copies indefinitely.
   1140       SDep D(CopyFromSU, SDep::Order, /*Latency=*/0,
   1141              /*Reg=*/0, /*isNormalMemory=*/false,
   1142              /*isMustAlias=*/false, /*isArtificial=*/true);
   1143       AddPred(SuccSU, D);
   1144     }
   1145   }
   1146   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
   1147     RemovePred(DelDeps[i].first, DelDeps[i].second);
   1148 
   1149   AddPred(CopyFromSU, SDep(SU, SDep::Data, SU->Latency, Reg));
   1150   AddPred(CopyToSU, SDep(CopyFromSU, SDep::Data, CopyFromSU->Latency, 0));
   1151 
   1152   AvailableQueue->updateNode(SU);
   1153   AvailableQueue->addNode(CopyFromSU);
   1154   AvailableQueue->addNode(CopyToSU);
   1155   Copies.push_back(CopyFromSU);
   1156   Copies.push_back(CopyToSU);
   1157 
   1158   ++NumPRCopies;
   1159 }
   1160 
   1161 /// getPhysicalRegisterVT - Returns the ValueType of the physical register
   1162 /// definition of the specified node.
   1163 /// FIXME: Move to SelectionDAG?
   1164 static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
   1165                                  const TargetInstrInfo *TII) {
   1166   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
   1167   assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
   1168   unsigned NumRes = MCID.getNumDefs();
   1169   for (const uint16_t *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
   1170     if (Reg == *ImpDef)
   1171       break;
   1172     ++NumRes;
   1173   }
   1174   return N->getValueType(NumRes);
   1175 }
   1176 
   1177 /// CheckForLiveRegDef - Return true and update live register vector if the
   1178 /// specified register def of the specified SUnit clobbers any "live" registers.
   1179 static void CheckForLiveRegDef(SUnit *SU, unsigned Reg,
   1180                                std::vector<SUnit*> &LiveRegDefs,
   1181                                SmallSet<unsigned, 4> &RegAdded,
   1182                                SmallVector<unsigned, 4> &LRegs,
   1183                                const TargetRegisterInfo *TRI) {
   1184   for (const uint16_t *AliasI = TRI->getOverlaps(Reg); *AliasI; ++AliasI) {
   1185 
   1186     // Check if Ref is live.
   1187     if (!LiveRegDefs[*AliasI]) continue;
   1188 
   1189     // Allow multiple uses of the same def.
   1190     if (LiveRegDefs[*AliasI] == SU) continue;
   1191 
   1192     // Add Reg to the set of interfering live regs.
   1193     if (RegAdded.insert(*AliasI)) {
   1194       LRegs.push_back(*AliasI);
   1195     }
   1196   }
   1197 }
   1198 
   1199 /// CheckForLiveRegDefMasked - Check for any live physregs that are clobbered
   1200 /// by RegMask, and add them to LRegs.
   1201 static void CheckForLiveRegDefMasked(SUnit *SU, const uint32_t *RegMask,
   1202                                      std::vector<SUnit*> &LiveRegDefs,
   1203                                      SmallSet<unsigned, 4> &RegAdded,
   1204                                      SmallVector<unsigned, 4> &LRegs) {
   1205   // Look at all live registers. Skip Reg0 and the special CallResource.
   1206   for (unsigned i = 1, e = LiveRegDefs.size()-1; i != e; ++i) {
   1207     if (!LiveRegDefs[i]) continue;
   1208     if (LiveRegDefs[i] == SU) continue;
   1209     if (!MachineOperand::clobbersPhysReg(RegMask, i)) continue;
   1210     if (RegAdded.insert(i))
   1211       LRegs.push_back(i);
   1212   }
   1213 }
   1214 
   1215 /// getNodeRegMask - Returns the register mask attached to an SDNode, if any.
   1216 static const uint32_t *getNodeRegMask(const SDNode *N) {
   1217   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
   1218     if (const RegisterMaskSDNode *Op =
   1219         dyn_cast<RegisterMaskSDNode>(N->getOperand(i).getNode()))
   1220       return Op->getRegMask();
   1221   return NULL;
   1222 }
   1223 
   1224 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
   1225 /// scheduling of the given node to satisfy live physical register dependencies.
   1226 /// If the specific node is the last one that's available to schedule, do
   1227 /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
   1228 bool ScheduleDAGRRList::
   1229 DelayForLiveRegsBottomUp(SUnit *SU, SmallVector<unsigned, 4> &LRegs) {
   1230   if (NumLiveRegs == 0)
   1231     return false;
   1232 
   1233   SmallSet<unsigned, 4> RegAdded;
   1234   // If this node would clobber any "live" register, then it's not ready.
   1235   //
   1236   // If SU is the currently live definition of the same register that it uses,
   1237   // then we are free to schedule it.
   1238   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   1239        I != E; ++I) {
   1240     if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] != SU)
   1241       CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs,
   1242                          RegAdded, LRegs, TRI);
   1243   }
   1244 
   1245   for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
   1246     if (Node->getOpcode() == ISD::INLINEASM) {
   1247       // Inline asm can clobber physical defs.
   1248       unsigned NumOps = Node->getNumOperands();
   1249       if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
   1250         --NumOps;  // Ignore the glue operand.
   1251 
   1252       for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
   1253         unsigned Flags =
   1254           cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
   1255         unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
   1256 
   1257         ++i; // Skip the ID value.
   1258         if (InlineAsm::isRegDefKind(Flags) ||
   1259             InlineAsm::isRegDefEarlyClobberKind(Flags) ||
   1260             InlineAsm::isClobberKind(Flags)) {
   1261           // Check for def of register or earlyclobber register.
   1262           for (; NumVals; --NumVals, ++i) {
   1263             unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
   1264             if (TargetRegisterInfo::isPhysicalRegister(Reg))
   1265               CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
   1266           }
   1267         } else
   1268           i += NumVals;
   1269       }
   1270       continue;
   1271     }
   1272 
   1273     if (!Node->isMachineOpcode())
   1274       continue;
   1275     // If we're in the middle of scheduling a call, don't begin scheduling
   1276     // another call. Also, don't allow any physical registers to be live across
   1277     // the call.
   1278     if (Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
   1279       // Check the special calling-sequence resource.
   1280       unsigned CallResource = TRI->getNumRegs();
   1281       if (LiveRegDefs[CallResource]) {
   1282         SDNode *Gen = LiveRegGens[CallResource]->getNode();
   1283         while (SDNode *Glued = Gen->getGluedNode())
   1284           Gen = Glued;
   1285         if (!IsChainDependent(Gen, Node, 0, TII) && RegAdded.insert(CallResource))
   1286           LRegs.push_back(CallResource);
   1287       }
   1288     }
   1289     if (const uint32_t *RegMask = getNodeRegMask(Node))
   1290       CheckForLiveRegDefMasked(SU, RegMask, LiveRegDefs, RegAdded, LRegs);
   1291 
   1292     const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
   1293     if (!MCID.ImplicitDefs)
   1294       continue;
   1295     for (const uint16_t *Reg = MCID.getImplicitDefs(); *Reg; ++Reg)
   1296       CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
   1297   }
   1298 
   1299   return !LRegs.empty();
   1300 }
   1301 
   1302 /// Return a node that can be scheduled in this cycle. Requirements:
   1303 /// (1) Ready: latency has been satisfied
   1304 /// (2) No Hazards: resources are available
   1305 /// (3) No Interferences: may unschedule to break register interferences.
   1306 SUnit *ScheduleDAGRRList::PickNodeToScheduleBottomUp() {
   1307   SmallVector<SUnit*, 4> Interferences;
   1308   DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
   1309 
   1310   SUnit *CurSU = AvailableQueue->pop();
   1311   while (CurSU) {
   1312     SmallVector<unsigned, 4> LRegs;
   1313     if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
   1314       break;
   1315     LRegsMap.insert(std::make_pair(CurSU, LRegs));
   1316 
   1317     CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
   1318     Interferences.push_back(CurSU);
   1319     CurSU = AvailableQueue->pop();
   1320   }
   1321   if (CurSU) {
   1322     // Add the nodes that aren't ready back onto the available list.
   1323     for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
   1324       Interferences[i]->isPending = false;
   1325       assert(Interferences[i]->isAvailable && "must still be available");
   1326       AvailableQueue->push(Interferences[i]);
   1327     }
   1328     return CurSU;
   1329   }
   1330 
   1331   // All candidates are delayed due to live physical reg dependencies.
   1332   // Try backtracking, code duplication, or inserting cross class copies
   1333   // to resolve it.
   1334   for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
   1335     SUnit *TrySU = Interferences[i];
   1336     SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
   1337 
   1338     // Try unscheduling up to the point where it's safe to schedule
   1339     // this node.
   1340     SUnit *BtSU = NULL;
   1341     unsigned LiveCycle = UINT_MAX;
   1342     for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
   1343       unsigned Reg = LRegs[j];
   1344       if (LiveRegGens[Reg]->getHeight() < LiveCycle) {
   1345         BtSU = LiveRegGens[Reg];
   1346         LiveCycle = BtSU->getHeight();
   1347       }
   1348     }
   1349     if (!WillCreateCycle(TrySU, BtSU))  {
   1350       BacktrackBottomUp(TrySU, BtSU);
   1351 
   1352       // Force the current node to be scheduled before the node that
   1353       // requires the physical reg dep.
   1354       if (BtSU->isAvailable) {
   1355         BtSU->isAvailable = false;
   1356         if (!BtSU->isPending)
   1357           AvailableQueue->remove(BtSU);
   1358       }
   1359       AddPred(TrySU, SDep(BtSU, SDep::Order, /*Latency=*/1,
   1360                           /*Reg=*/0, /*isNormalMemory=*/false,
   1361                           /*isMustAlias=*/false, /*isArtificial=*/true));
   1362 
   1363       // If one or more successors has been unscheduled, then the current
   1364       // node is no longer avaialable. Schedule a successor that's now
   1365       // available instead.
   1366       if (!TrySU->isAvailable) {
   1367         CurSU = AvailableQueue->pop();
   1368       }
   1369       else {
   1370         CurSU = TrySU;
   1371         TrySU->isPending = false;
   1372         Interferences.erase(Interferences.begin()+i);
   1373       }
   1374       break;
   1375     }
   1376   }
   1377 
   1378   if (!CurSU) {
   1379     // Can't backtrack. If it's too expensive to copy the value, then try
   1380     // duplicate the nodes that produces these "too expensive to copy"
   1381     // values to break the dependency. In case even that doesn't work,
   1382     // insert cross class copies.
   1383     // If it's not too expensive, i.e. cost != -1, issue copies.
   1384     SUnit *TrySU = Interferences[0];
   1385     SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
   1386     assert(LRegs.size() == 1 && "Can't handle this yet!");
   1387     unsigned Reg = LRegs[0];
   1388     SUnit *LRDef = LiveRegDefs[Reg];
   1389     EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
   1390     const TargetRegisterClass *RC =
   1391       TRI->getMinimalPhysRegClass(Reg, VT);
   1392     const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
   1393 
   1394     // If cross copy register class is the same as RC, then it must be possible
   1395     // copy the value directly. Do not try duplicate the def.
   1396     // If cross copy register class is not the same as RC, then it's possible to
   1397     // copy the value but it require cross register class copies and it is
   1398     // expensive.
   1399     // If cross copy register class is null, then it's not possible to copy
   1400     // the value at all.
   1401     SUnit *NewDef = 0;
   1402     if (DestRC != RC) {
   1403       NewDef = CopyAndMoveSuccessors(LRDef);
   1404       if (!DestRC && !NewDef)
   1405         report_fatal_error("Can't handle live physical register dependency!");
   1406     }
   1407     if (!NewDef) {
   1408       // Issue copies, these can be expensive cross register class copies.
   1409       SmallVector<SUnit*, 2> Copies;
   1410       InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
   1411       DEBUG(dbgs() << "    Adding an edge from SU #" << TrySU->NodeNum
   1412             << " to SU #" << Copies.front()->NodeNum << "\n");
   1413       AddPred(TrySU, SDep(Copies.front(), SDep::Order, /*Latency=*/1,
   1414                           /*Reg=*/0, /*isNormalMemory=*/false,
   1415                           /*isMustAlias=*/false,
   1416                           /*isArtificial=*/true));
   1417       NewDef = Copies.back();
   1418     }
   1419 
   1420     DEBUG(dbgs() << "    Adding an edge from SU #" << NewDef->NodeNum
   1421           << " to SU #" << TrySU->NodeNum << "\n");
   1422     LiveRegDefs[Reg] = NewDef;
   1423     AddPred(NewDef, SDep(TrySU, SDep::Order, /*Latency=*/1,
   1424                          /*Reg=*/0, /*isNormalMemory=*/false,
   1425                          /*isMustAlias=*/false,
   1426                          /*isArtificial=*/true));
   1427     TrySU->isAvailable = false;
   1428     CurSU = NewDef;
   1429   }
   1430 
   1431   assert(CurSU && "Unable to resolve live physical register dependencies!");
   1432 
   1433   // Add the nodes that aren't ready back onto the available list.
   1434   for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
   1435     Interferences[i]->isPending = false;
   1436     // May no longer be available due to backtracking.
   1437     if (Interferences[i]->isAvailable) {
   1438       AvailableQueue->push(Interferences[i]);
   1439     }
   1440   }
   1441   return CurSU;
   1442 }
   1443 
   1444 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
   1445 /// schedulers.
   1446 void ScheduleDAGRRList::ListScheduleBottomUp() {
   1447   // Release any predecessors of the special Exit node.
   1448   ReleasePredecessors(&ExitSU);
   1449 
   1450   // Add root to Available queue.
   1451   if (!SUnits.empty()) {
   1452     SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
   1453     assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
   1454     RootSU->isAvailable = true;
   1455     AvailableQueue->push(RootSU);
   1456   }
   1457 
   1458   // While Available queue is not empty, grab the node with the highest
   1459   // priority. If it is not ready put it back.  Schedule the node.
   1460   Sequence.reserve(SUnits.size());
   1461   while (!AvailableQueue->empty()) {
   1462     DEBUG(dbgs() << "\nExamining Available:\n";
   1463           AvailableQueue->dump(this));
   1464 
   1465     // Pick the best node to schedule taking all constraints into
   1466     // consideration.
   1467     SUnit *SU = PickNodeToScheduleBottomUp();
   1468 
   1469     AdvancePastStalls(SU);
   1470 
   1471     ScheduleNodeBottomUp(SU);
   1472 
   1473     while (AvailableQueue->empty() && !PendingQueue.empty()) {
   1474       // Advance the cycle to free resources. Skip ahead to the next ready SU.
   1475       assert(MinAvailableCycle < UINT_MAX && "MinAvailableCycle uninitialized");
   1476       AdvanceToCycle(std::max(CurCycle + 1, MinAvailableCycle));
   1477     }
   1478   }
   1479 
   1480   // Reverse the order if it is bottom up.
   1481   std::reverse(Sequence.begin(), Sequence.end());
   1482 
   1483 #ifndef NDEBUG
   1484   VerifyScheduledSequence(/*isBottomUp=*/true);
   1485 #endif
   1486 }
   1487 
   1488 //===----------------------------------------------------------------------===//
   1489 //                RegReductionPriorityQueue Definition
   1490 //===----------------------------------------------------------------------===//
   1491 //
   1492 // This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
   1493 // to reduce register pressure.
   1494 //
   1495 namespace {
   1496 class RegReductionPQBase;
   1497 
   1498 struct queue_sort : public std::binary_function<SUnit*, SUnit*, bool> {
   1499   bool isReady(SUnit* SU, unsigned CurCycle) const { return true; }
   1500 };
   1501 
   1502 #ifndef NDEBUG
   1503 template<class SF>
   1504 struct reverse_sort : public queue_sort {
   1505   SF &SortFunc;
   1506   reverse_sort(SF &sf) : SortFunc(sf) {}
   1507   reverse_sort(const reverse_sort &RHS) : SortFunc(RHS.SortFunc) {}
   1508 
   1509   bool operator()(SUnit* left, SUnit* right) const {
   1510     // reverse left/right rather than simply !SortFunc(left, right)
   1511     // to expose different paths in the comparison logic.
   1512     return SortFunc(right, left);
   1513   }
   1514 };
   1515 #endif // NDEBUG
   1516 
   1517 /// bu_ls_rr_sort - Priority function for bottom up register pressure
   1518 // reduction scheduler.
   1519 struct bu_ls_rr_sort : public queue_sort {
   1520   enum {
   1521     IsBottomUp = true,
   1522     HasReadyFilter = false
   1523   };
   1524 
   1525   RegReductionPQBase *SPQ;
   1526   bu_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
   1527   bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
   1528 
   1529   bool operator()(SUnit* left, SUnit* right) const;
   1530 };
   1531 
   1532 // src_ls_rr_sort - Priority function for source order scheduler.
   1533 struct src_ls_rr_sort : public queue_sort {
   1534   enum {
   1535     IsBottomUp = true,
   1536     HasReadyFilter = false
   1537   };
   1538 
   1539   RegReductionPQBase *SPQ;
   1540   src_ls_rr_sort(RegReductionPQBase *spq)
   1541     : SPQ(spq) {}
   1542   src_ls_rr_sort(const src_ls_rr_sort &RHS)
   1543     : SPQ(RHS.SPQ) {}
   1544 
   1545   bool operator()(SUnit* left, SUnit* right) const;
   1546 };
   1547 
   1548 // hybrid_ls_rr_sort - Priority function for hybrid scheduler.
   1549 struct hybrid_ls_rr_sort : public queue_sort {
   1550   enum {
   1551     IsBottomUp = true,
   1552     HasReadyFilter = false
   1553   };
   1554 
   1555   RegReductionPQBase *SPQ;
   1556   hybrid_ls_rr_sort(RegReductionPQBase *spq)
   1557     : SPQ(spq) {}
   1558   hybrid_ls_rr_sort(const hybrid_ls_rr_sort &RHS)
   1559     : SPQ(RHS.SPQ) {}
   1560 
   1561   bool isReady(SUnit *SU, unsigned CurCycle) const;
   1562 
   1563   bool operator()(SUnit* left, SUnit* right) const;
   1564 };
   1565 
   1566 // ilp_ls_rr_sort - Priority function for ILP (instruction level parallelism)
   1567 // scheduler.
   1568 struct ilp_ls_rr_sort : public queue_sort {
   1569   enum {
   1570     IsBottomUp = true,
   1571     HasReadyFilter = false
   1572   };
   1573 
   1574   RegReductionPQBase *SPQ;
   1575   ilp_ls_rr_sort(RegReductionPQBase *spq)
   1576     : SPQ(spq) {}
   1577   ilp_ls_rr_sort(const ilp_ls_rr_sort &RHS)
   1578     : SPQ(RHS.SPQ) {}
   1579 
   1580   bool isReady(SUnit *SU, unsigned CurCycle) const;
   1581 
   1582   bool operator()(SUnit* left, SUnit* right) const;
   1583 };
   1584 
   1585 class RegReductionPQBase : public SchedulingPriorityQueue {
   1586 protected:
   1587   std::vector<SUnit*> Queue;
   1588   unsigned CurQueueId;
   1589   bool TracksRegPressure;
   1590   bool SrcOrder;
   1591 
   1592   // SUnits - The SUnits for the current graph.
   1593   std::vector<SUnit> *SUnits;
   1594 
   1595   MachineFunction &MF;
   1596   const TargetInstrInfo *TII;
   1597   const TargetRegisterInfo *TRI;
   1598   const TargetLowering *TLI;
   1599   ScheduleDAGRRList *scheduleDAG;
   1600 
   1601   // SethiUllmanNumbers - The SethiUllman number for each node.
   1602   std::vector<unsigned> SethiUllmanNumbers;
   1603 
   1604   /// RegPressure - Tracking current reg pressure per register class.
   1605   ///
   1606   std::vector<unsigned> RegPressure;
   1607 
   1608   /// RegLimit - Tracking the number of allocatable registers per register
   1609   /// class.
   1610   std::vector<unsigned> RegLimit;
   1611 
   1612 public:
   1613   RegReductionPQBase(MachineFunction &mf,
   1614                      bool hasReadyFilter,
   1615                      bool tracksrp,
   1616                      bool srcorder,
   1617                      const TargetInstrInfo *tii,
   1618                      const TargetRegisterInfo *tri,
   1619                      const TargetLowering *tli)
   1620     : SchedulingPriorityQueue(hasReadyFilter),
   1621       CurQueueId(0), TracksRegPressure(tracksrp), SrcOrder(srcorder),
   1622       MF(mf), TII(tii), TRI(tri), TLI(tli), scheduleDAG(NULL) {
   1623     if (TracksRegPressure) {
   1624       unsigned NumRC = TRI->getNumRegClasses();
   1625       RegLimit.resize(NumRC);
   1626       RegPressure.resize(NumRC);
   1627       std::fill(RegLimit.begin(), RegLimit.end(), 0);
   1628       std::fill(RegPressure.begin(), RegPressure.end(), 0);
   1629       for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
   1630              E = TRI->regclass_end(); I != E; ++I)
   1631         RegLimit[(*I)->getID()] = tri->getRegPressureLimit(*I, MF);
   1632     }
   1633   }
   1634 
   1635   void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
   1636     scheduleDAG = scheduleDag;
   1637   }
   1638 
   1639   ScheduleHazardRecognizer* getHazardRec() {
   1640     return scheduleDAG->getHazardRec();
   1641   }
   1642 
   1643   void initNodes(std::vector<SUnit> &sunits);
   1644 
   1645   void addNode(const SUnit *SU);
   1646 
   1647   void updateNode(const SUnit *SU);
   1648 
   1649   void releaseState() {
   1650     SUnits = 0;
   1651     SethiUllmanNumbers.clear();
   1652     std::fill(RegPressure.begin(), RegPressure.end(), 0);
   1653   }
   1654 
   1655   unsigned getNodePriority(const SUnit *SU) const;
   1656 
   1657   unsigned getNodeOrdering(const SUnit *SU) const {
   1658     if (!SU->getNode()) return 0;
   1659 
   1660     return scheduleDAG->DAG->GetOrdering(SU->getNode());
   1661   }
   1662 
   1663   bool empty() const { return Queue.empty(); }
   1664 
   1665   void push(SUnit *U) {
   1666     assert(!U->NodeQueueId && "Node in the queue already");
   1667     U->NodeQueueId = ++CurQueueId;
   1668     Queue.push_back(U);
   1669   }
   1670 
   1671   void remove(SUnit *SU) {
   1672     assert(!Queue.empty() && "Queue is empty!");
   1673     assert(SU->NodeQueueId != 0 && "Not in queue!");
   1674     std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(),
   1675                                                  SU);
   1676     if (I != prior(Queue.end()))
   1677       std::swap(*I, Queue.back());
   1678     Queue.pop_back();
   1679     SU->NodeQueueId = 0;
   1680   }
   1681 
   1682   bool tracksRegPressure() const { return TracksRegPressure; }
   1683 
   1684   void dumpRegPressure() const;
   1685 
   1686   bool HighRegPressure(const SUnit *SU) const;
   1687 
   1688   bool MayReduceRegPressure(SUnit *SU) const;
   1689 
   1690   int RegPressureDiff(SUnit *SU, unsigned &LiveUses) const;
   1691 
   1692   void scheduledNode(SUnit *SU);
   1693 
   1694   void unscheduledNode(SUnit *SU);
   1695 
   1696 protected:
   1697   bool canClobber(const SUnit *SU, const SUnit *Op);
   1698   void AddPseudoTwoAddrDeps();
   1699   void PrescheduleNodesWithMultipleUses();
   1700   void CalculateSethiUllmanNumbers();
   1701 };
   1702 
   1703 template<class SF>
   1704 static SUnit *popFromQueueImpl(std::vector<SUnit*> &Q, SF &Picker) {
   1705   std::vector<SUnit *>::iterator Best = Q.begin();
   1706   for (std::vector<SUnit *>::iterator I = llvm::next(Q.begin()),
   1707          E = Q.end(); I != E; ++I)
   1708     if (Picker(*Best, *I))
   1709       Best = I;
   1710   SUnit *V = *Best;
   1711   if (Best != prior(Q.end()))
   1712     std::swap(*Best, Q.back());
   1713   Q.pop_back();
   1714   return V;
   1715 }
   1716 
   1717 template<class SF>
   1718 SUnit *popFromQueue(std::vector<SUnit*> &Q, SF &Picker, ScheduleDAG *DAG) {
   1719 #ifndef NDEBUG
   1720   if (DAG->StressSched) {
   1721     reverse_sort<SF> RPicker(Picker);
   1722     return popFromQueueImpl(Q, RPicker);
   1723   }
   1724 #endif
   1725   (void)DAG;
   1726   return popFromQueueImpl(Q, Picker);
   1727 }
   1728 
   1729 template<class SF>
   1730 class RegReductionPriorityQueue : public RegReductionPQBase {
   1731   SF Picker;
   1732 
   1733 public:
   1734   RegReductionPriorityQueue(MachineFunction &mf,
   1735                             bool tracksrp,
   1736                             bool srcorder,
   1737                             const TargetInstrInfo *tii,
   1738                             const TargetRegisterInfo *tri,
   1739                             const TargetLowering *tli)
   1740     : RegReductionPQBase(mf, SF::HasReadyFilter, tracksrp, srcorder,
   1741                          tii, tri, tli),
   1742       Picker(this) {}
   1743 
   1744   bool isBottomUp() const { return SF::IsBottomUp; }
   1745 
   1746   bool isReady(SUnit *U) const {
   1747     return Picker.HasReadyFilter && Picker.isReady(U, getCurCycle());
   1748   }
   1749 
   1750   SUnit *pop() {
   1751     if (Queue.empty()) return NULL;
   1752 
   1753     SUnit *V = popFromQueue(Queue, Picker, scheduleDAG);
   1754     V->NodeQueueId = 0;
   1755     return V;
   1756   }
   1757 
   1758   void dump(ScheduleDAG *DAG) const {
   1759     // Emulate pop() without clobbering NodeQueueIds.
   1760     std::vector<SUnit*> DumpQueue = Queue;
   1761     SF DumpPicker = Picker;
   1762     while (!DumpQueue.empty()) {
   1763       SUnit *SU = popFromQueue(DumpQueue, DumpPicker, scheduleDAG);
   1764       dbgs() << "Height " << SU->getHeight() << ": ";
   1765       SU->dump(DAG);
   1766     }
   1767   }
   1768 };
   1769 
   1770 typedef RegReductionPriorityQueue<bu_ls_rr_sort>
   1771 BURegReductionPriorityQueue;
   1772 
   1773 typedef RegReductionPriorityQueue<src_ls_rr_sort>
   1774 SrcRegReductionPriorityQueue;
   1775 
   1776 typedef RegReductionPriorityQueue<hybrid_ls_rr_sort>
   1777 HybridBURRPriorityQueue;
   1778 
   1779 typedef RegReductionPriorityQueue<ilp_ls_rr_sort>
   1780 ILPBURRPriorityQueue;
   1781 } // end anonymous namespace
   1782 
   1783 //===----------------------------------------------------------------------===//
   1784 //           Static Node Priority for Register Pressure Reduction
   1785 //===----------------------------------------------------------------------===//
   1786 
   1787 // Check for special nodes that bypass scheduling heuristics.
   1788 // Currently this pushes TokenFactor nodes down, but may be used for other
   1789 // pseudo-ops as well.
   1790 //
   1791 // Return -1 to schedule right above left, 1 for left above right.
   1792 // Return 0 if no bias exists.
   1793 static int checkSpecialNodes(const SUnit *left, const SUnit *right) {
   1794   bool LSchedLow = left->isScheduleLow;
   1795   bool RSchedLow = right->isScheduleLow;
   1796   if (LSchedLow != RSchedLow)
   1797     return LSchedLow < RSchedLow ? 1 : -1;
   1798   return 0;
   1799 }
   1800 
   1801 /// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
   1802 /// Smaller number is the higher priority.
   1803 static unsigned
   1804 CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
   1805   unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
   1806   if (SethiUllmanNumber != 0)
   1807     return SethiUllmanNumber;
   1808 
   1809   unsigned Extra = 0;
   1810   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   1811        I != E; ++I) {
   1812     if (I->isCtrl()) continue;  // ignore chain preds
   1813     SUnit *PredSU = I->getSUnit();
   1814     unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU, SUNumbers);
   1815     if (PredSethiUllman > SethiUllmanNumber) {
   1816       SethiUllmanNumber = PredSethiUllman;
   1817       Extra = 0;
   1818     } else if (PredSethiUllman == SethiUllmanNumber)
   1819       ++Extra;
   1820   }
   1821 
   1822   SethiUllmanNumber += Extra;
   1823 
   1824   if (SethiUllmanNumber == 0)
   1825     SethiUllmanNumber = 1;
   1826 
   1827   return SethiUllmanNumber;
   1828 }
   1829 
   1830 /// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
   1831 /// scheduling units.
   1832 void RegReductionPQBase::CalculateSethiUllmanNumbers() {
   1833   SethiUllmanNumbers.assign(SUnits->size(), 0);
   1834 
   1835   for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
   1836     CalcNodeSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
   1837 }
   1838 
   1839 void RegReductionPQBase::addNode(const SUnit *SU) {
   1840   unsigned SUSize = SethiUllmanNumbers.size();
   1841   if (SUnits->size() > SUSize)
   1842     SethiUllmanNumbers.resize(SUSize*2, 0);
   1843   CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
   1844 }
   1845 
   1846 void RegReductionPQBase::updateNode(const SUnit *SU) {
   1847   SethiUllmanNumbers[SU->NodeNum] = 0;
   1848   CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
   1849 }
   1850 
   1851 // Lower priority means schedule further down. For bottom-up scheduling, lower
   1852 // priority SUs are scheduled before higher priority SUs.
   1853 unsigned RegReductionPQBase::getNodePriority(const SUnit *SU) const {
   1854   assert(SU->NodeNum < SethiUllmanNumbers.size());
   1855   unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
   1856   if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
   1857     // CopyToReg should be close to its uses to facilitate coalescing and
   1858     // avoid spilling.
   1859     return 0;
   1860   if (Opc == TargetOpcode::EXTRACT_SUBREG ||
   1861       Opc == TargetOpcode::SUBREG_TO_REG ||
   1862       Opc == TargetOpcode::INSERT_SUBREG)
   1863     // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
   1864     // close to their uses to facilitate coalescing.
   1865     return 0;
   1866   if (SU->NumSuccs == 0 && SU->NumPreds != 0)
   1867     // If SU does not have a register use, i.e. it doesn't produce a value
   1868     // that would be consumed (e.g. store), then it terminates a chain of
   1869     // computation.  Give it a large SethiUllman number so it will be
   1870     // scheduled right before its predecessors that it doesn't lengthen
   1871     // their live ranges.
   1872     return 0xffff;
   1873   if (SU->NumPreds == 0 && SU->NumSuccs != 0)
   1874     // If SU does not have a register def, schedule it close to its uses
   1875     // because it does not lengthen any live ranges.
   1876     return 0;
   1877 #if 1
   1878   return SethiUllmanNumbers[SU->NodeNum];
   1879 #else
   1880   unsigned Priority = SethiUllmanNumbers[SU->NodeNum];
   1881   if (SU->isCallOp) {
   1882     // FIXME: This assumes all of the defs are used as call operands.
   1883     int NP = (int)Priority - SU->getNode()->getNumValues();
   1884     return (NP > 0) ? NP : 0;
   1885   }
   1886   return Priority;
   1887 #endif
   1888 }
   1889 
   1890 //===----------------------------------------------------------------------===//
   1891 //                     Register Pressure Tracking
   1892 //===----------------------------------------------------------------------===//
   1893 
   1894 void RegReductionPQBase::dumpRegPressure() const {
   1895   for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
   1896          E = TRI->regclass_end(); I != E; ++I) {
   1897     const TargetRegisterClass *RC = *I;
   1898     unsigned Id = RC->getID();
   1899     unsigned RP = RegPressure[Id];
   1900     if (!RP) continue;
   1901     DEBUG(dbgs() << RC->getName() << ": " << RP << " / " << RegLimit[Id]
   1902           << '\n');
   1903   }
   1904 }
   1905 
   1906 bool RegReductionPQBase::HighRegPressure(const SUnit *SU) const {
   1907   if (!TLI)
   1908     return false;
   1909 
   1910   for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
   1911        I != E; ++I) {
   1912     if (I->isCtrl())
   1913       continue;
   1914     SUnit *PredSU = I->getSUnit();
   1915     // NumRegDefsLeft is zero when enough uses of this node have been scheduled
   1916     // to cover the number of registers defined (they are all live).
   1917     if (PredSU->NumRegDefsLeft == 0) {
   1918       continue;
   1919     }
   1920     for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
   1921          RegDefPos.IsValid(); RegDefPos.Advance()) {
   1922       unsigned RCId, Cost;
   1923       GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost);
   1924 
   1925       if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
   1926         return true;
   1927     }
   1928   }
   1929   return false;
   1930 }
   1931 
   1932 bool RegReductionPQBase::MayReduceRegPressure(SUnit *SU) const {
   1933   const SDNode *N = SU->getNode();
   1934 
   1935   if (!N->isMachineOpcode() || !SU->NumSuccs)
   1936     return false;
   1937 
   1938   unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
   1939   for (unsigned i = 0; i != NumDefs; ++i) {
   1940     EVT VT = N->getValueType(i);
   1941     if (!N->hasAnyUseOfValue(i))
   1942       continue;
   1943     unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
   1944     if (RegPressure[RCId] >= RegLimit[RCId])
   1945       return true;
   1946   }
   1947   return false;
   1948 }
   1949 
   1950 // Compute the register pressure contribution by this instruction by count up
   1951 // for uses that are not live and down for defs. Only count register classes
   1952 // that are already under high pressure. As a side effect, compute the number of
   1953 // uses of registers that are already live.
   1954 //
   1955 // FIXME: This encompasses the logic in HighRegPressure and MayReduceRegPressure
   1956 // so could probably be factored.
   1957 int RegReductionPQBase::RegPressureDiff(SUnit *SU, unsigned &LiveUses) const {
   1958   LiveUses = 0;
   1959   int PDiff = 0;
   1960   for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
   1961        I != E; ++I) {
   1962     if (I->isCtrl())
   1963       continue;
   1964     SUnit *PredSU = I->getSUnit();
   1965     // NumRegDefsLeft is zero when enough uses of this node have been scheduled
   1966     // to cover the number of registers defined (they are all live).
   1967     if (PredSU->NumRegDefsLeft == 0) {
   1968       if (PredSU->getNode()->isMachineOpcode())
   1969         ++LiveUses;
   1970       continue;
   1971     }
   1972     for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
   1973          RegDefPos.IsValid(); RegDefPos.Advance()) {
   1974       EVT VT = RegDefPos.GetValue();
   1975       unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
   1976       if (RegPressure[RCId] >= RegLimit[RCId])
   1977         ++PDiff;
   1978     }
   1979   }
   1980   const SDNode *N = SU->getNode();
   1981 
   1982   if (!N || !N->isMachineOpcode() || !SU->NumSuccs)
   1983     return PDiff;
   1984 
   1985   unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
   1986   for (unsigned i = 0; i != NumDefs; ++i) {
   1987     EVT VT = N->getValueType(i);
   1988     if (!N->hasAnyUseOfValue(i))
   1989       continue;
   1990     unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
   1991     if (RegPressure[RCId] >= RegLimit[RCId])
   1992       --PDiff;
   1993   }
   1994   return PDiff;
   1995 }
   1996 
   1997 void RegReductionPQBase::scheduledNode(SUnit *SU) {
   1998   if (!TracksRegPressure)
   1999     return;
   2000 
   2001   if (!SU->getNode())
   2002     return;
   2003 
   2004   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   2005        I != E; ++I) {
   2006     if (I->isCtrl())
   2007       continue;
   2008     SUnit *PredSU = I->getSUnit();
   2009     // NumRegDefsLeft is zero when enough uses of this node have been scheduled
   2010     // to cover the number of registers defined (they are all live).
   2011     if (PredSU->NumRegDefsLeft == 0) {
   2012       continue;
   2013     }
   2014     // FIXME: The ScheduleDAG currently loses information about which of a
   2015     // node's values is consumed by each dependence. Consequently, if the node
   2016     // defines multiple register classes, we don't know which to pressurize
   2017     // here. Instead the following loop consumes the register defs in an
   2018     // arbitrary order. At least it handles the common case of clustered loads
   2019     // to the same class. For precise liveness, each SDep needs to indicate the
   2020     // result number. But that tightly couples the ScheduleDAG with the
   2021     // SelectionDAG making updates tricky. A simpler hack would be to attach a
   2022     // value type or register class to SDep.
   2023     //
   2024     // The most important aspect of register tracking is balancing the increase
   2025     // here with the reduction further below. Note that this SU may use multiple
   2026     // defs in PredSU. The can't be determined here, but we've already
   2027     // compensated by reducing NumRegDefsLeft in PredSU during
   2028     // ScheduleDAGSDNodes::AddSchedEdges.
   2029     --PredSU->NumRegDefsLeft;
   2030     unsigned SkipRegDefs = PredSU->NumRegDefsLeft;
   2031     for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
   2032          RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
   2033       if (SkipRegDefs)
   2034         continue;
   2035 
   2036       unsigned RCId, Cost;
   2037       GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost);
   2038       RegPressure[RCId] += Cost;
   2039       break;
   2040     }
   2041   }
   2042 
   2043   // We should have this assert, but there may be dead SDNodes that never
   2044   // materialize as SUnits, so they don't appear to generate liveness.
   2045   //assert(SU->NumRegDefsLeft == 0 && "not all regdefs have scheduled uses");
   2046   int SkipRegDefs = (int)SU->NumRegDefsLeft;
   2047   for (ScheduleDAGSDNodes::RegDefIter RegDefPos(SU, scheduleDAG);
   2048        RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
   2049     if (SkipRegDefs > 0)
   2050       continue;
   2051     unsigned RCId, Cost;
   2052     GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost);
   2053     if (RegPressure[RCId] < Cost) {
   2054       // Register pressure tracking is imprecise. This can happen. But we try
   2055       // hard not to let it happen because it likely results in poor scheduling.
   2056       DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") has too many regdefs\n");
   2057       RegPressure[RCId] = 0;
   2058     }
   2059     else {
   2060       RegPressure[RCId] -= Cost;
   2061     }
   2062   }
   2063   dumpRegPressure();
   2064 }
   2065 
   2066 void RegReductionPQBase::unscheduledNode(SUnit *SU) {
   2067   if (!TracksRegPressure)
   2068     return;
   2069 
   2070   const SDNode *N = SU->getNode();
   2071   if (!N) return;
   2072 
   2073   if (!N->isMachineOpcode()) {
   2074     if (N->getOpcode() != ISD::CopyToReg)
   2075       return;
   2076   } else {
   2077     unsigned Opc = N->getMachineOpcode();
   2078     if (Opc == TargetOpcode::EXTRACT_SUBREG ||
   2079         Opc == TargetOpcode::INSERT_SUBREG ||
   2080         Opc == TargetOpcode::SUBREG_TO_REG ||
   2081         Opc == TargetOpcode::REG_SEQUENCE ||
   2082         Opc == TargetOpcode::IMPLICIT_DEF)
   2083       return;
   2084   }
   2085 
   2086   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   2087        I != E; ++I) {
   2088     if (I->isCtrl())
   2089       continue;
   2090     SUnit *PredSU = I->getSUnit();
   2091     // NumSuccsLeft counts all deps. Don't compare it with NumSuccs which only
   2092     // counts data deps.
   2093     if (PredSU->NumSuccsLeft != PredSU->Succs.size())
   2094       continue;
   2095     const SDNode *PN = PredSU->getNode();
   2096     if (!PN->isMachineOpcode()) {
   2097       if (PN->getOpcode() == ISD::CopyFromReg) {
   2098         EVT VT = PN->getValueType(0);
   2099         unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
   2100         RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
   2101       }
   2102       continue;
   2103     }
   2104     unsigned POpc = PN->getMachineOpcode();
   2105     if (POpc == TargetOpcode::IMPLICIT_DEF)
   2106       continue;
   2107     if (POpc == TargetOpcode::EXTRACT_SUBREG ||
   2108         POpc == TargetOpcode::INSERT_SUBREG ||
   2109         POpc == TargetOpcode::SUBREG_TO_REG) {
   2110       EVT VT = PN->getValueType(0);
   2111       unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
   2112       RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
   2113       continue;
   2114     }
   2115     unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
   2116     for (unsigned i = 0; i != NumDefs; ++i) {
   2117       EVT VT = PN->getValueType(i);
   2118       if (!PN->hasAnyUseOfValue(i))
   2119         continue;
   2120       unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
   2121       if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT))
   2122         // Register pressure tracking is imprecise. This can happen.
   2123         RegPressure[RCId] = 0;
   2124       else
   2125         RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
   2126     }
   2127   }
   2128 
   2129   // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses()
   2130   // may transfer data dependencies to CopyToReg.
   2131   if (SU->NumSuccs && N->isMachineOpcode()) {
   2132     unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
   2133     for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
   2134       EVT VT = N->getValueType(i);
   2135       if (VT == MVT::Glue || VT == MVT::Other)
   2136         continue;
   2137       if (!N->hasAnyUseOfValue(i))
   2138         continue;
   2139       unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
   2140       RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
   2141     }
   2142   }
   2143 
   2144   dumpRegPressure();
   2145 }
   2146 
   2147 //===----------------------------------------------------------------------===//
   2148 //           Dynamic Node Priority for Register Pressure Reduction
   2149 //===----------------------------------------------------------------------===//
   2150 
   2151 /// closestSucc - Returns the scheduled cycle of the successor which is
   2152 /// closest to the current cycle.
   2153 static unsigned closestSucc(const SUnit *SU) {
   2154   unsigned MaxHeight = 0;
   2155   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
   2156        I != E; ++I) {
   2157     if (I->isCtrl()) continue;  // ignore chain succs
   2158     unsigned Height = I->getSUnit()->getHeight();
   2159     // If there are bunch of CopyToRegs stacked up, they should be considered
   2160     // to be at the same position.
   2161     if (I->getSUnit()->getNode() &&
   2162         I->getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
   2163       Height = closestSucc(I->getSUnit())+1;
   2164     if (Height > MaxHeight)
   2165       MaxHeight = Height;
   2166   }
   2167   return MaxHeight;
   2168 }
   2169 
   2170 /// calcMaxScratches - Returns an cost estimate of the worse case requirement
   2171 /// for scratch registers, i.e. number of data dependencies.
   2172 static unsigned calcMaxScratches(const SUnit *SU) {
   2173   unsigned Scratches = 0;
   2174   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   2175        I != E; ++I) {
   2176     if (I->isCtrl()) continue;  // ignore chain preds
   2177     Scratches++;
   2178   }
   2179   return Scratches;
   2180 }
   2181 
   2182 /// hasOnlyLiveInOpers - Return true if SU has only value predecessors that are
   2183 /// CopyFromReg from a virtual register.
   2184 static bool hasOnlyLiveInOpers(const SUnit *SU) {
   2185   bool RetVal = false;
   2186   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   2187        I != E; ++I) {
   2188     if (I->isCtrl()) continue;
   2189     const SUnit *PredSU = I->getSUnit();
   2190     if (PredSU->getNode() &&
   2191         PredSU->getNode()->getOpcode() == ISD::CopyFromReg) {
   2192       unsigned Reg =
   2193         cast<RegisterSDNode>(PredSU->getNode()->getOperand(1))->getReg();
   2194       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   2195         RetVal = true;
   2196         continue;
   2197       }
   2198     }
   2199     return false;
   2200   }
   2201   return RetVal;
   2202 }
   2203 
   2204 /// hasOnlyLiveOutUses - Return true if SU has only value successors that are
   2205 /// CopyToReg to a virtual register. This SU def is probably a liveout and
   2206 /// it has no other use. It should be scheduled closer to the terminator.
   2207 static bool hasOnlyLiveOutUses(const SUnit *SU) {
   2208   bool RetVal = false;
   2209   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
   2210        I != E; ++I) {
   2211     if (I->isCtrl()) continue;
   2212     const SUnit *SuccSU = I->getSUnit();
   2213     if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg) {
   2214       unsigned Reg =
   2215         cast<RegisterSDNode>(SuccSU->getNode()->getOperand(1))->getReg();
   2216       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   2217         RetVal = true;
   2218         continue;
   2219       }
   2220     }
   2221     return false;
   2222   }
   2223   return RetVal;
   2224 }
   2225 
   2226 // Set isVRegCycle for a node with only live in opers and live out uses. Also
   2227 // set isVRegCycle for its CopyFromReg operands.
   2228 //
   2229 // This is only relevant for single-block loops, in which case the VRegCycle
   2230 // node is likely an induction variable in which the operand and target virtual
   2231 // registers should be coalesced (e.g. pre/post increment values). Setting the
   2232 // isVRegCycle flag helps the scheduler prioritize other uses of the same
   2233 // CopyFromReg so that this node becomes the virtual register "kill". This
   2234 // avoids interference between the values live in and out of the block and
   2235 // eliminates a copy inside the loop.
   2236 static void initVRegCycle(SUnit *SU) {
   2237   if (DisableSchedVRegCycle)
   2238     return;
   2239 
   2240   if (!hasOnlyLiveInOpers(SU) || !hasOnlyLiveOutUses(SU))
   2241     return;
   2242 
   2243   DEBUG(dbgs() << "VRegCycle: SU(" << SU->NodeNum << ")\n");
   2244 
   2245   SU->isVRegCycle = true;
   2246 
   2247   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   2248        I != E; ++I) {
   2249     if (I->isCtrl()) continue;
   2250     I->getSUnit()->isVRegCycle = true;
   2251   }
   2252 }
   2253 
   2254 // After scheduling the definition of a VRegCycle, clear the isVRegCycle flag of
   2255 // CopyFromReg operands. We should no longer penalize other uses of this VReg.
   2256 static void resetVRegCycle(SUnit *SU) {
   2257   if (!SU->isVRegCycle)
   2258     return;
   2259 
   2260   for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
   2261        I != E; ++I) {
   2262     if (I->isCtrl()) continue;  // ignore chain preds
   2263     SUnit *PredSU = I->getSUnit();
   2264     if (PredSU->isVRegCycle) {
   2265       assert(PredSU->getNode()->getOpcode() == ISD::CopyFromReg &&
   2266              "VRegCycle def must be CopyFromReg");
   2267       I->getSUnit()->isVRegCycle = 0;
   2268     }
   2269   }
   2270 }
   2271 
   2272 // Return true if this SUnit uses a CopyFromReg node marked as a VRegCycle. This
   2273 // means a node that defines the VRegCycle has not been scheduled yet.
   2274 static bool hasVRegCycleUse(const SUnit *SU) {
   2275   // If this SU also defines the VReg, don't hoist it as a "use".
   2276   if (SU->isVRegCycle)
   2277     return false;
   2278 
   2279   for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
   2280        I != E; ++I) {
   2281     if (I->isCtrl()) continue;  // ignore chain preds
   2282     if (I->getSUnit()->isVRegCycle &&
   2283         I->getSUnit()->getNode()->getOpcode() == ISD::CopyFromReg) {
   2284       DEBUG(dbgs() << "  VReg cycle use: SU (" << SU->NodeNum << ")\n");
   2285       return true;
   2286     }
   2287   }
   2288   return false;
   2289 }
   2290 
   2291 // Check for either a dependence (latency) or resource (hazard) stall.
   2292 //
   2293 // Note: The ScheduleHazardRecognizer interface requires a non-const SU.
   2294 static bool BUHasStall(SUnit *SU, int Height, RegReductionPQBase *SPQ) {
   2295   if ((int)SPQ->getCurCycle() < Height) return true;
   2296   if (SPQ->getHazardRec()->getHazardType(SU, 0)
   2297       != ScheduleHazardRecognizer::NoHazard)
   2298     return true;
   2299   return false;
   2300 }
   2301 
   2302 // Return -1 if left has higher priority, 1 if right has higher priority.
   2303 // Return 0 if latency-based priority is equivalent.
   2304 static int BUCompareLatency(SUnit *left, SUnit *right, bool checkPref,
   2305                             RegReductionPQBase *SPQ) {
   2306   // Scheduling an instruction that uses a VReg whose postincrement has not yet
   2307   // been scheduled will induce a copy. Model this as an extra cycle of latency.
   2308   int LPenalty = hasVRegCycleUse(left) ? 1 : 0;
   2309   int RPenalty = hasVRegCycleUse(right) ? 1 : 0;
   2310   int LHeight = (int)left->getHeight() + LPenalty;
   2311   int RHeight = (int)right->getHeight() + RPenalty;
   2312 
   2313   bool LStall = (!checkPref || left->SchedulingPref == Sched::ILP) &&
   2314     BUHasStall(left, LHeight, SPQ);
   2315   bool RStall = (!checkPref || right->SchedulingPref == Sched::ILP) &&
   2316     BUHasStall(right, RHeight, SPQ);
   2317 
   2318   // If scheduling one of the node will cause a pipeline stall, delay it.
   2319   // If scheduling either one of the node will cause a pipeline stall, sort
   2320   // them according to their height.
   2321   if (LStall) {
   2322     if (!RStall)
   2323       return 1;
   2324     if (LHeight != RHeight)
   2325       return LHeight > RHeight ? 1 : -1;
   2326   } else if (RStall)
   2327     return -1;
   2328 
   2329   // If either node is scheduling for latency, sort them by height/depth
   2330   // and latency.
   2331   if (!checkPref || (left->SchedulingPref == Sched::ILP ||
   2332                      right->SchedulingPref == Sched::ILP)) {
   2333     if (DisableSchedCycles) {
   2334       if (LHeight != RHeight)
   2335         return LHeight > RHeight ? 1 : -1;
   2336     }
   2337     else {
   2338       // If neither instruction stalls (!LStall && !RStall) then
   2339       // its height is already covered so only its depth matters. We also reach
   2340       // this if both stall but have the same height.
   2341       int LDepth = left->getDepth() - LPenalty;
   2342       int RDepth = right->getDepth() - RPenalty;
   2343       if (LDepth != RDepth) {
   2344         DEBUG(dbgs() << "  Comparing latency of SU (" << left->NodeNum
   2345               << ") depth " << LDepth << " vs SU (" << right->NodeNum
   2346               << ") depth " << RDepth << "\n");
   2347         return LDepth < RDepth ? 1 : -1;
   2348       }
   2349     }
   2350     if (left->Latency != right->Latency)
   2351       return left->Latency > right->Latency ? 1 : -1;
   2352   }
   2353   return 0;
   2354 }
   2355 
   2356 static bool BURRSort(SUnit *left, SUnit *right, RegReductionPQBase *SPQ) {
   2357   // Schedule physical register definitions close to their use. This is
   2358   // motivated by microarchitectures that can fuse cmp+jump macro-ops. But as
   2359   // long as shortening physreg live ranges is generally good, we can defer
   2360   // creating a subtarget hook.
   2361   if (!DisableSchedPhysRegJoin) {
   2362     bool LHasPhysReg = left->hasPhysRegDefs;
   2363     bool RHasPhysReg = right->hasPhysRegDefs;
   2364     if (LHasPhysReg != RHasPhysReg) {
   2365       #ifndef NDEBUG
   2366       const char *PhysRegMsg[] = {" has no physreg", " defines a physreg"};
   2367       #endif
   2368       DEBUG(dbgs() << "  SU (" << left->NodeNum << ") "
   2369             << PhysRegMsg[LHasPhysReg] << " SU(" << right->NodeNum << ") "
   2370             << PhysRegMsg[RHasPhysReg] << "\n");
   2371       return LHasPhysReg < RHasPhysReg;
   2372     }
   2373   }
   2374 
   2375   // Prioritize by Sethi-Ulmann number and push CopyToReg nodes down.
   2376   unsigned LPriority = SPQ->getNodePriority(left);
   2377   unsigned RPriority = SPQ->getNodePriority(right);
   2378 
   2379   // Be really careful about hoisting call operands above previous calls.
   2380   // Only allows it if it would reduce register pressure.
   2381   if (left->isCall && right->isCallOp) {
   2382     unsigned RNumVals = right->getNode()->getNumValues();
   2383     RPriority = (RPriority > RNumVals) ? (RPriority - RNumVals) : 0;
   2384   }
   2385   if (right->isCall && left->isCallOp) {
   2386     unsigned LNumVals = left->getNode()->getNumValues();
   2387     LPriority = (LPriority > LNumVals) ? (LPriority - LNumVals) : 0;
   2388   }
   2389 
   2390   if (LPriority != RPriority)
   2391     return LPriority > RPriority;
   2392 
   2393   // One or both of the nodes are calls and their sethi-ullman numbers are the
   2394   // same, then keep source order.
   2395   if (left->isCall || right->isCall) {
   2396     unsigned LOrder = SPQ->getNodeOrdering(left);
   2397     unsigned ROrder = SPQ->getNodeOrdering(right);
   2398 
   2399     // Prefer an ordering where the lower the non-zero order number, the higher
   2400     // the preference.
   2401     if ((LOrder || ROrder) && LOrder != ROrder)
   2402       return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
   2403   }
   2404 
   2405   // Try schedule def + use closer when Sethi-Ullman numbers are the same.
   2406   // e.g.
   2407   // t1 = op t2, c1
   2408   // t3 = op t4, c2
   2409   //
   2410   // and the following instructions are both ready.
   2411   // t2 = op c3
   2412   // t4 = op c4
   2413   //
   2414   // Then schedule t2 = op first.
   2415   // i.e.
   2416   // t4 = op c4
   2417   // t2 = op c3
   2418   // t1 = op t2, c1
   2419   // t3 = op t4, c2
   2420   //
   2421   // This creates more short live intervals.
   2422   unsigned LDist = closestSucc(left);
   2423   unsigned RDist = closestSucc(right);
   2424   if (LDist != RDist)
   2425     return LDist < RDist;
   2426 
   2427   // How many registers becomes live when the node is scheduled.
   2428   unsigned LScratch = calcMaxScratches(left);
   2429   unsigned RScratch = calcMaxScratches(right);
   2430   if (LScratch != RScratch)
   2431     return LScratch > RScratch;
   2432 
   2433   // Comparing latency against a call makes little sense unless the node
   2434   // is register pressure-neutral.
   2435   if ((left->isCall && RPriority > 0) || (right->isCall && LPriority > 0))
   2436     return (left->NodeQueueId > right->NodeQueueId);
   2437 
   2438   // Do not compare latencies when one or both of the nodes are calls.
   2439   if (!DisableSchedCycles &&
   2440       !(left->isCall || right->isCall)) {
   2441     int result = BUCompareLatency(left, right, false /*checkPref*/, SPQ);
   2442     if (result != 0)
   2443       return result > 0;
   2444   }
   2445   else {
   2446     if (left->getHeight() != right->getHeight())
   2447       return left->getHeight() > right->getHeight();
   2448 
   2449     if (left->getDepth() != right->getDepth())
   2450       return left->getDepth() < right->getDepth();
   2451   }
   2452 
   2453   assert(left->NodeQueueId && right->NodeQueueId &&
   2454          "NodeQueueId cannot be zero");
   2455   return (left->NodeQueueId > right->NodeQueueId);
   2456 }
   2457 
   2458 // Bottom up
   2459 bool bu_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
   2460   if (int res = checkSpecialNodes(left, right))
   2461     return res > 0;
   2462 
   2463   return BURRSort(left, right, SPQ);
   2464 }
   2465 
   2466 // Source order, otherwise bottom up.
   2467 bool src_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
   2468   if (int res = checkSpecialNodes(left, right))
   2469     return res > 0;
   2470 
   2471   unsigned LOrder = SPQ->getNodeOrdering(left);
   2472   unsigned ROrder = SPQ->getNodeOrdering(right);
   2473 
   2474   // Prefer an ordering where the lower the non-zero order number, the higher
   2475   // the preference.
   2476   if ((LOrder || ROrder) && LOrder != ROrder)
   2477     return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
   2478 
   2479   return BURRSort(left, right, SPQ);
   2480 }
   2481 
   2482 // If the time between now and when the instruction will be ready can cover
   2483 // the spill code, then avoid adding it to the ready queue. This gives long
   2484 // stalls highest priority and allows hoisting across calls. It should also
   2485 // speed up processing the available queue.
   2486 bool hybrid_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
   2487   static const unsigned ReadyDelay = 3;
   2488 
   2489   if (SPQ->MayReduceRegPressure(SU)) return true;
   2490 
   2491   if (SU->getHeight() > (CurCycle + ReadyDelay)) return false;
   2492 
   2493   if (SPQ->getHazardRec()->getHazardType(SU, -ReadyDelay)
   2494       != ScheduleHazardRecognizer::NoHazard)
   2495     return false;
   2496 
   2497   return true;
   2498 }
   2499 
   2500 // Return true if right should be scheduled with higher priority than left.
   2501 bool hybrid_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
   2502   if (int res = checkSpecialNodes(left, right))
   2503     return res > 0;
   2504 
   2505   if (left->isCall || right->isCall)
   2506     // No way to compute latency of calls.
   2507     return BURRSort(left, right, SPQ);
   2508 
   2509   bool LHigh = SPQ->HighRegPressure(left);
   2510   bool RHigh = SPQ->HighRegPressure(right);
   2511   // Avoid causing spills. If register pressure is high, schedule for
   2512   // register pressure reduction.
   2513   if (LHigh && !RHigh) {
   2514     DEBUG(dbgs() << "  pressure SU(" << left->NodeNum << ") > SU("
   2515           << right->NodeNum << ")\n");
   2516     return true;
   2517   }
   2518   else if (!LHigh && RHigh) {
   2519     DEBUG(dbgs() << "  pressure SU(" << right->NodeNum << ") > SU("
   2520           << left->NodeNum << ")\n");
   2521     return false;
   2522   }
   2523   if (!LHigh && !RHigh) {
   2524     int result = BUCompareLatency(left, right, true /*checkPref*/, SPQ);
   2525     if (result != 0)
   2526       return result > 0;
   2527   }
   2528   return BURRSort(left, right, SPQ);
   2529 }
   2530 
   2531 // Schedule as many instructions in each cycle as possible. So don't make an
   2532 // instruction available unless it is ready in the current cycle.
   2533 bool ilp_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
   2534   if (SU->getHeight() > CurCycle) return false;
   2535 
   2536   if (SPQ->getHazardRec()->getHazardType(SU, 0)
   2537       != ScheduleHazardRecognizer::NoHazard)
   2538     return false;
   2539 
   2540   return true;
   2541 }
   2542 
   2543 static bool canEnableCoalescing(SUnit *SU) {
   2544   unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
   2545   if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
   2546     // CopyToReg should be close to its uses to facilitate coalescing and
   2547     // avoid spilling.
   2548     return true;
   2549 
   2550   if (Opc == TargetOpcode::EXTRACT_SUBREG ||
   2551       Opc == TargetOpcode::SUBREG_TO_REG ||
   2552       Opc == TargetOpcode::INSERT_SUBREG)
   2553     // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
   2554     // close to their uses to facilitate coalescing.
   2555     return true;
   2556 
   2557   if (SU->NumPreds == 0 && SU->NumSuccs != 0)
   2558     // If SU does not have a register def, schedule it close to its uses
   2559     // because it does not lengthen any live ranges.
   2560     return true;
   2561 
   2562   return false;
   2563 }
   2564 
   2565 // list-ilp is currently an experimental scheduler that allows various
   2566 // heuristics to be enabled prior to the normal register reduction logic.
   2567 bool ilp_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
   2568   if (int res = checkSpecialNodes(left, right))
   2569     return res > 0;
   2570 
   2571   if (left->isCall || right->isCall)
   2572     // No way to compute latency of calls.
   2573     return BURRSort(left, right, SPQ);
   2574 
   2575   unsigned LLiveUses = 0, RLiveUses = 0;
   2576   int LPDiff = 0, RPDiff = 0;
   2577   if (!DisableSchedRegPressure || !DisableSchedLiveUses) {
   2578     LPDiff = SPQ->RegPressureDiff(left, LLiveUses);
   2579     RPDiff = SPQ->RegPressureDiff(right, RLiveUses);
   2580   }
   2581   if (!DisableSchedRegPressure && LPDiff != RPDiff) {
   2582     DEBUG(dbgs() << "RegPressureDiff SU(" << left->NodeNum << "): " << LPDiff
   2583           << " != SU(" << right->NodeNum << "): " << RPDiff << "\n");
   2584     return LPDiff > RPDiff;
   2585   }
   2586 
   2587   if (!DisableSchedRegPressure && (LPDiff > 0 || RPDiff > 0)) {
   2588     bool LReduce = canEnableCoalescing(left);
   2589     bool RReduce = canEnableCoalescing(right);
   2590     if (LReduce && !RReduce) return false;
   2591     if (RReduce && !LReduce) return true;
   2592   }
   2593 
   2594   if (!DisableSchedLiveUses && (LLiveUses != RLiveUses)) {
   2595     DEBUG(dbgs() << "Live uses SU(" << left->NodeNum << "): " << LLiveUses
   2596           << " != SU(" << right->NodeNum << "): " << RLiveUses << "\n");
   2597     return LLiveUses < RLiveUses;
   2598   }
   2599 
   2600   if (!DisableSchedStalls) {
   2601     bool LStall = BUHasStall(left, left->getHeight(), SPQ);
   2602     bool RStall = BUHasStall(right, right->getHeight(), SPQ);
   2603     if (LStall != RStall)
   2604       return left->getHeight() > right->getHeight();
   2605   }
   2606 
   2607   if (!DisableSchedCriticalPath) {
   2608     int spread = (int)left->getDepth() - (int)right->getDepth();
   2609     if (std::abs(spread) > MaxReorderWindow) {
   2610       DEBUG(dbgs() << "Depth of SU(" << left->NodeNum << "): "
   2611             << left->getDepth() << " != SU(" << right->NodeNum << "): "
   2612             << right->getDepth() << "\n");
   2613       return left->getDepth() < right->getDepth();
   2614     }
   2615   }
   2616 
   2617   if (!DisableSchedHeight && left->getHeight() != right->getHeight()) {
   2618     int spread = (int)left->getHeight() - (int)right->getHeight();
   2619     if (std::abs(spread) > MaxReorderWindow)
   2620       return left->getHeight() > right->getHeight();
   2621   }
   2622 
   2623   return BURRSort(left, right, SPQ);
   2624 }
   2625 
   2626 void RegReductionPQBase::initNodes(std::vector<SUnit> &sunits) {
   2627   SUnits = &sunits;
   2628   // Add pseudo dependency edges for two-address nodes.
   2629   if (!Disable2AddrHack)
   2630     AddPseudoTwoAddrDeps();
   2631   // Reroute edges to nodes with multiple uses.
   2632   if (!TracksRegPressure && !SrcOrder)
   2633     PrescheduleNodesWithMultipleUses();
   2634   // Calculate node priorities.
   2635   CalculateSethiUllmanNumbers();
   2636 
   2637   // For single block loops, mark nodes that look like canonical IV increments.
   2638   if (scheduleDAG->BB->isSuccessor(scheduleDAG->BB)) {
   2639     for (unsigned i = 0, e = sunits.size(); i != e; ++i) {
   2640       initVRegCycle(&sunits[i]);
   2641     }
   2642   }
   2643 }
   2644 
   2645 //===----------------------------------------------------------------------===//
   2646 //                    Preschedule for Register Pressure
   2647 //===----------------------------------------------------------------------===//
   2648 
   2649 bool RegReductionPQBase::canClobber(const SUnit *SU, const SUnit *Op) {
   2650   if (SU->isTwoAddress) {
   2651     unsigned Opc = SU->getNode()->getMachineOpcode();
   2652     const MCInstrDesc &MCID = TII->get(Opc);
   2653     unsigned NumRes = MCID.getNumDefs();
   2654     unsigned NumOps = MCID.getNumOperands() - NumRes;
   2655     for (unsigned i = 0; i != NumOps; ++i) {
   2656       if (MCID.getOperandConstraint(i+NumRes, MCOI::TIED_TO) != -1) {
   2657         SDNode *DU = SU->getNode()->getOperand(i).getNode();
   2658         if (DU->getNodeId() != -1 &&
   2659             Op->OrigNode == &(*SUnits)[DU->getNodeId()])
   2660           return true;
   2661       }
   2662     }
   2663   }
   2664   return false;
   2665 }
   2666 
   2667 /// canClobberReachingPhysRegUse - True if SU would clobber one of it's
   2668 /// successor's explicit physregs whose definition can reach DepSU.
   2669 /// i.e. DepSU should not be scheduled above SU.
   2670 static bool canClobberReachingPhysRegUse(const SUnit *DepSU, const SUnit *SU,
   2671                                          ScheduleDAGRRList *scheduleDAG,
   2672                                          const TargetInstrInfo *TII,
   2673                                          const TargetRegisterInfo *TRI) {
   2674   const uint16_t *ImpDefs
   2675     = TII->get(SU->getNode()->getMachineOpcode()).getImplicitDefs();
   2676   const uint32_t *RegMask = getNodeRegMask(SU->getNode());
   2677   if(!ImpDefs && !RegMask)
   2678     return false;
   2679 
   2680   for (SUnit::const_succ_iterator SI = SU->Succs.begin(), SE = SU->Succs.end();
   2681        SI != SE; ++SI) {
   2682     SUnit *SuccSU = SI->getSUnit();
   2683     for (SUnit::const_pred_iterator PI = SuccSU->Preds.begin(),
   2684            PE = SuccSU->Preds.end(); PI != PE; ++PI) {
   2685       if (!PI->isAssignedRegDep())
   2686         continue;
   2687 
   2688       if (RegMask && MachineOperand::clobbersPhysReg(RegMask, PI->getReg()) &&
   2689           scheduleDAG->IsReachable(DepSU, PI->getSUnit()))
   2690         return true;
   2691 
   2692       if (ImpDefs)
   2693         for (const uint16_t *ImpDef = ImpDefs; *ImpDef; ++ImpDef)
   2694           // Return true if SU clobbers this physical register use and the
   2695           // definition of the register reaches from DepSU. IsReachable queries
   2696           // a topological forward sort of the DAG (following the successors).
   2697           if (TRI->regsOverlap(*ImpDef, PI->getReg()) &&
   2698               scheduleDAG->IsReachable(DepSU, PI->getSUnit()))
   2699             return true;
   2700     }
   2701   }
   2702   return false;
   2703 }
   2704 
   2705 /// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
   2706 /// physical register defs.
   2707 static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
   2708                                   const TargetInstrInfo *TII,
   2709                                   const TargetRegisterInfo *TRI) {
   2710   SDNode *N = SuccSU->getNode();
   2711   unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
   2712   const uint16_t *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
   2713   assert(ImpDefs && "Caller should check hasPhysRegDefs");
   2714   for (const SDNode *SUNode = SU->getNode(); SUNode;
   2715        SUNode = SUNode->getGluedNode()) {
   2716     if (!SUNode->isMachineOpcode())
   2717       continue;
   2718     const uint16_t *SUImpDefs =
   2719       TII->get(SUNode->getMachineOpcode()).getImplicitDefs();
   2720     const uint32_t *SURegMask = getNodeRegMask(SUNode);
   2721     if (!SUImpDefs && !SURegMask)
   2722       continue;
   2723     for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
   2724       EVT VT = N->getValueType(i);
   2725       if (VT == MVT::Glue || VT == MVT::Other)
   2726         continue;
   2727       if (!N->hasAnyUseOfValue(i))
   2728         continue;
   2729       unsigned Reg = ImpDefs[i - NumDefs];
   2730       if (SURegMask && MachineOperand::clobbersPhysReg(SURegMask, Reg))
   2731         return true;
   2732       if (!SUImpDefs)
   2733         continue;
   2734       for (;*SUImpDefs; ++SUImpDefs) {
   2735         unsigned SUReg = *SUImpDefs;
   2736         if (TRI->regsOverlap(Reg, SUReg))
   2737           return true;
   2738       }
   2739     }
   2740   }
   2741   return false;
   2742 }
   2743 
   2744 /// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
   2745 /// are not handled well by the general register pressure reduction
   2746 /// heuristics. When presented with code like this:
   2747 ///
   2748 ///      N
   2749 ///    / |
   2750 ///   /  |
   2751 ///  U  store
   2752 ///  |
   2753 /// ...
   2754 ///
   2755 /// the heuristics tend to push the store up, but since the
   2756 /// operand of the store has another use (U), this would increase
   2757 /// the length of that other use (the U->N edge).
   2758 ///
   2759 /// This function transforms code like the above to route U's
   2760 /// dependence through the store when possible, like this:
   2761 ///
   2762 ///      N
   2763 ///      ||
   2764 ///      ||
   2765 ///     store
   2766 ///       |
   2767 ///       U
   2768 ///       |
   2769 ///      ...
   2770 ///
   2771 /// This results in the store being scheduled immediately
   2772 /// after N, which shortens the U->N live range, reducing
   2773 /// register pressure.
   2774 ///
   2775 void RegReductionPQBase::PrescheduleNodesWithMultipleUses() {
   2776   // Visit all the nodes in topological order, working top-down.
   2777   for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
   2778     SUnit *SU = &(*SUnits)[i];
   2779     // For now, only look at nodes with no data successors, such as stores.
   2780     // These are especially important, due to the heuristics in
   2781     // getNodePriority for nodes with no data successors.
   2782     if (SU->NumSuccs != 0)
   2783       continue;
   2784     // For now, only look at nodes with exactly one data predecessor.
   2785     if (SU->NumPreds != 1)
   2786       continue;
   2787     // Avoid prescheduling copies to virtual registers, which don't behave
   2788     // like other nodes from the perspective of scheduling heuristics.
   2789     if (SDNode *N = SU->getNode())
   2790       if (N->getOpcode() == ISD::CopyToReg &&
   2791           TargetRegisterInfo::isVirtualRegister
   2792             (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
   2793         continue;
   2794 
   2795     // Locate the single data predecessor.
   2796     SUnit *PredSU = 0;
   2797     for (SUnit::const_pred_iterator II = SU->Preds.begin(),
   2798          EE = SU->Preds.end(); II != EE; ++II)
   2799       if (!II->isCtrl()) {
   2800         PredSU = II->getSUnit();
   2801         break;
   2802       }
   2803     assert(PredSU);
   2804 
   2805     // Don't rewrite edges that carry physregs, because that requires additional
   2806     // support infrastructure.
   2807     if (PredSU->hasPhysRegDefs)
   2808       continue;
   2809     // Short-circuit the case where SU is PredSU's only data successor.
   2810     if (PredSU->NumSuccs == 1)
   2811       continue;
   2812     // Avoid prescheduling to copies from virtual registers, which don't behave
   2813     // like other nodes from the perspective of scheduling heuristics.
   2814     if (SDNode *N = SU->getNode())
   2815       if (N->getOpcode() == ISD::CopyFromReg &&
   2816           TargetRegisterInfo::isVirtualRegister
   2817             (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
   2818         continue;
   2819 
   2820     // Perform checks on the successors of PredSU.
   2821     for (SUnit::const_succ_iterator II = PredSU->Succs.begin(),
   2822          EE = PredSU->Succs.end(); II != EE; ++II) {
   2823       SUnit *PredSuccSU = II->getSUnit();
   2824       if (PredSuccSU == SU) continue;
   2825       // If PredSU has another successor with no data successors, for
   2826       // now don't attempt to choose either over the other.
   2827       if (PredSuccSU->NumSuccs == 0)
   2828         goto outer_loop_continue;
   2829       // Don't break physical register dependencies.
   2830       if (SU->hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs)
   2831         if (canClobberPhysRegDefs(PredSuccSU, SU, TII, TRI))
   2832           goto outer_loop_continue;
   2833       // Don't introduce graph cycles.
   2834       if (scheduleDAG->IsReachable(SU, PredSuccSU))
   2835         goto outer_loop_continue;
   2836     }
   2837 
   2838     // Ok, the transformation is safe and the heuristics suggest it is
   2839     // profitable. Update the graph.
   2840     DEBUG(dbgs() << "    Prescheduling SU #" << SU->NodeNum
   2841                  << " next to PredSU #" << PredSU->NodeNum
   2842                  << " to guide scheduling in the presence of multiple uses\n");
   2843     for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
   2844       SDep Edge = PredSU->Succs[i];
   2845       assert(!Edge.isAssignedRegDep());
   2846       SUnit *SuccSU = Edge.getSUnit();
   2847       if (SuccSU != SU) {
   2848         Edge.setSUnit(PredSU);
   2849         scheduleDAG->RemovePred(SuccSU, Edge);
   2850         scheduleDAG->AddPred(SU, Edge);
   2851         Edge.setSUnit(SU);
   2852         scheduleDAG->AddPred(SuccSU, Edge);
   2853         --i;
   2854       }
   2855     }
   2856   outer_loop_continue:;
   2857   }
   2858 }
   2859 
   2860 /// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
   2861 /// it as a def&use operand. Add a pseudo control edge from it to the other
   2862 /// node (if it won't create a cycle) so the two-address one will be scheduled
   2863 /// first (lower in the schedule). If both nodes are two-address, favor the
   2864 /// one that has a CopyToReg use (more likely to be a loop induction update).
   2865 /// If both are two-address, but one is commutable while the other is not
   2866 /// commutable, favor the one that's not commutable.
   2867 void RegReductionPQBase::AddPseudoTwoAddrDeps() {
   2868   for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
   2869     SUnit *SU = &(*SUnits)[i];
   2870     if (!SU->isTwoAddress)
   2871       continue;
   2872 
   2873     SDNode *Node = SU->getNode();
   2874     if (!Node || !Node->isMachineOpcode() || SU->getNode()->getGluedNode())
   2875       continue;
   2876 
   2877     bool isLiveOut = hasOnlyLiveOutUses(SU);
   2878     unsigned Opc = Node->getMachineOpcode();
   2879     const MCInstrDesc &MCID = TII->get(Opc);
   2880     unsigned NumRes = MCID.getNumDefs();
   2881     unsigned NumOps = MCID.getNumOperands() - NumRes;
   2882     for (unsigned j = 0; j != NumOps; ++j) {
   2883       if (MCID.getOperandConstraint(j+NumRes, MCOI::TIED_TO) == -1)
   2884         continue;
   2885       SDNode *DU = SU->getNode()->getOperand(j).getNode();
   2886       if (DU->getNodeId() == -1)
   2887         continue;
   2888       const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
   2889       if (!DUSU) continue;
   2890       for (SUnit::const_succ_iterator I = DUSU->Succs.begin(),
   2891            E = DUSU->Succs.end(); I != E; ++I) {
   2892         if (I->isCtrl()) continue;
   2893         SUnit *SuccSU = I->getSUnit();
   2894         if (SuccSU == SU)
   2895           continue;
   2896         // Be conservative. Ignore if nodes aren't at roughly the same
   2897         // depth and height.
   2898         if (SuccSU->getHeight() < SU->getHeight() &&
   2899             (SU->getHeight() - SuccSU->getHeight()) > 1)
   2900           continue;
   2901         // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
   2902         // constrains whatever is using the copy, instead of the copy
   2903         // itself. In the case that the copy is coalesced, this
   2904         // preserves the intent of the pseudo two-address heurietics.
   2905         while (SuccSU->Succs.size() == 1 &&
   2906                SuccSU->getNode()->isMachineOpcode() &&
   2907                SuccSU->getNode()->getMachineOpcode() ==
   2908                  TargetOpcode::COPY_TO_REGCLASS)
   2909           SuccSU = SuccSU->Succs.front().getSUnit();
   2910         // Don't constrain non-instruction nodes.
   2911         if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
   2912           continue;
   2913         // Don't constrain nodes with physical register defs if the
   2914         // predecessor can clobber them.
   2915         if (SuccSU->hasPhysRegDefs && SU->hasPhysRegClobbers) {
   2916           if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
   2917             continue;
   2918         }
   2919         // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
   2920         // these may be coalesced away. We want them close to their uses.
   2921         unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
   2922         if (SuccOpc == TargetOpcode::EXTRACT_SUBREG ||
   2923             SuccOpc == TargetOpcode::INSERT_SUBREG ||
   2924             SuccOpc == TargetOpcode::SUBREG_TO_REG)
   2925           continue;
   2926         if (!canClobberReachingPhysRegUse(SuccSU, SU, scheduleDAG, TII, TRI) &&
   2927             (!canClobber(SuccSU, DUSU) ||
   2928              (isLiveOut && !hasOnlyLiveOutUses(SuccSU)) ||
   2929              (!SU->isCommutable && SuccSU->isCommutable)) &&
   2930             !scheduleDAG->IsReachable(SuccSU, SU)) {
   2931           DEBUG(dbgs() << "    Adding a pseudo-two-addr edge from SU #"
   2932                        << SU->NodeNum << " to SU #" << SuccSU->NodeNum << "\n");
   2933           scheduleDAG->AddPred(SU, SDep(SuccSU, SDep::Order, /*Latency=*/0,
   2934                                         /*Reg=*/0, /*isNormalMemory=*/false,
   2935                                         /*isMustAlias=*/false,
   2936                                         /*isArtificial=*/true));
   2937         }
   2938       }
   2939     }
   2940   }
   2941 }
   2942 
   2943 //===----------------------------------------------------------------------===//
   2944 //                         Public Constructor Functions
   2945 //===----------------------------------------------------------------------===//
   2946 
   2947 llvm::ScheduleDAGSDNodes *
   2948 llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
   2949                                  CodeGenOpt::Level OptLevel) {
   2950   const TargetMachine &TM = IS->TM;
   2951   const TargetInstrInfo *TII = TM.getInstrInfo();
   2952   const TargetRegisterInfo *TRI = TM.getRegisterInfo();
   2953 
   2954   BURegReductionPriorityQueue *PQ =
   2955     new BURegReductionPriorityQueue(*IS->MF, false, false, TII, TRI, 0);
   2956   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
   2957   PQ->setScheduleDAG(SD);
   2958   return SD;
   2959 }
   2960 
   2961 llvm::ScheduleDAGSDNodes *
   2962 llvm::createSourceListDAGScheduler(SelectionDAGISel *IS,
   2963                                    CodeGenOpt::Level OptLevel) {
   2964   const TargetMachine &TM = IS->TM;
   2965   const TargetInstrInfo *TII = TM.getInstrInfo();
   2966   const TargetRegisterInfo *TRI = TM.getRegisterInfo();
   2967 
   2968   SrcRegReductionPriorityQueue *PQ =
   2969     new SrcRegReductionPriorityQueue(*IS->MF, false, true, TII, TRI, 0);
   2970   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
   2971   PQ->setScheduleDAG(SD);
   2972   return SD;
   2973 }
   2974 
   2975 llvm::ScheduleDAGSDNodes *
   2976 llvm::createHybridListDAGScheduler(SelectionDAGISel *IS,
   2977                                    CodeGenOpt::Level OptLevel) {
   2978   const TargetMachine &TM = IS->TM;
   2979   const TargetInstrInfo *TII = TM.getInstrInfo();
   2980   const TargetRegisterInfo *TRI = TM.getRegisterInfo();
   2981   const TargetLowering *TLI = &IS->getTargetLowering();
   2982 
   2983   HybridBURRPriorityQueue *PQ =
   2984     new HybridBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
   2985 
   2986   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
   2987   PQ->setScheduleDAG(SD);
   2988   return SD;
   2989 }
   2990 
   2991 llvm::ScheduleDAGSDNodes *
   2992 llvm::createILPListDAGScheduler(SelectionDAGISel *IS,
   2993                                 CodeGenOpt::Level OptLevel) {
   2994   const TargetMachine &TM = IS->TM;
   2995   const TargetInstrInfo *TII = TM.getInstrInfo();
   2996   const TargetRegisterInfo *TRI = TM.getRegisterInfo();
   2997   const TargetLowering *TLI = &IS->getTargetLowering();
   2998 
   2999   ILPBURRPriorityQueue *PQ =
   3000     new ILPBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
   3001   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
   3002   PQ->setScheduleDAG(SD);
   3003   return SD;
   3004 }
   3005