Home | History | Annotate | Download | only in Scalar
      1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This transformation analyzes and transforms the induction variables (and
     11 // computations derived from them) into simpler forms suitable for subsequent
     12 // analysis and transformation.
     13 //
     14 // If the trip count of a loop is computable, this pass also makes the following
     15 // changes:
     16 //   1. The exit condition for the loop is canonicalized to compare the
     17 //      induction value against the exit value.  This turns loops like:
     18 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
     19 //   2. Any use outside of the loop of an expression derived from the indvar
     20 //      is changed to compute the derived value outside of the loop, eliminating
     21 //      the dependence on the exit value of the induction variable.  If the only
     22 //      purpose of the loop is to compute the exit value of some derived
     23 //      expression, this transformation will make the loop dead.
     24 //
     25 //===----------------------------------------------------------------------===//
     26 
     27 #define DEBUG_TYPE "indvars"
     28 #include "llvm/Transforms/Scalar.h"
     29 #include "llvm/BasicBlock.h"
     30 #include "llvm/Constants.h"
     31 #include "llvm/Instructions.h"
     32 #include "llvm/IntrinsicInst.h"
     33 #include "llvm/LLVMContext.h"
     34 #include "llvm/Type.h"
     35 #include "llvm/Analysis/Dominators.h"
     36 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     37 #include "llvm/Analysis/LoopInfo.h"
     38 #include "llvm/Analysis/LoopPass.h"
     39 #include "llvm/Support/CFG.h"
     40 #include "llvm/Support/CommandLine.h"
     41 #include "llvm/Support/Debug.h"
     42 #include "llvm/Support/raw_ostream.h"
     43 #include "llvm/Transforms/Utils/Local.h"
     44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     45 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
     46 #include "llvm/Target/TargetData.h"
     47 #include "llvm/ADT/DenseMap.h"
     48 #include "llvm/ADT/SmallVector.h"
     49 #include "llvm/ADT/Statistic.h"
     50 using namespace llvm;
     51 
     52 STATISTIC(NumWidened     , "Number of indvars widened");
     53 STATISTIC(NumReplaced    , "Number of exit values replaced");
     54 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
     55 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
     56 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
     57 
     58 // Trip count verification can be enabled by default under NDEBUG if we
     59 // implement a strong expression equivalence checker in SCEV. Until then, we
     60 // use the verify-indvars flag, which may assert in some cases.
     61 static cl::opt<bool> VerifyIndvars(
     62   "verify-indvars", cl::Hidden,
     63   cl::desc("Verify the ScalarEvolution result after running indvars"));
     64 
     65 namespace {
     66   class IndVarSimplify : public LoopPass {
     67     LoopInfo        *LI;
     68     ScalarEvolution *SE;
     69     DominatorTree   *DT;
     70     TargetData      *TD;
     71 
     72     SmallVector<WeakVH, 16> DeadInsts;
     73     bool Changed;
     74   public:
     75 
     76     static char ID; // Pass identification, replacement for typeid
     77     IndVarSimplify() : LoopPass(ID), LI(0), SE(0), DT(0), TD(0),
     78                        Changed(false) {
     79       initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
     80     }
     81 
     82     virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
     83 
     84     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     85       AU.addRequired<DominatorTree>();
     86       AU.addRequired<LoopInfo>();
     87       AU.addRequired<ScalarEvolution>();
     88       AU.addRequiredID(LoopSimplifyID);
     89       AU.addRequiredID(LCSSAID);
     90       AU.addPreserved<ScalarEvolution>();
     91       AU.addPreservedID(LoopSimplifyID);
     92       AU.addPreservedID(LCSSAID);
     93       AU.setPreservesCFG();
     94     }
     95 
     96   private:
     97     virtual void releaseMemory() {
     98       DeadInsts.clear();
     99     }
    100 
    101     bool isValidRewrite(Value *FromVal, Value *ToVal);
    102 
    103     void HandleFloatingPointIV(Loop *L, PHINode *PH);
    104     void RewriteNonIntegerIVs(Loop *L);
    105 
    106     void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
    107 
    108     void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
    109 
    110     Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
    111                                      PHINode *IndVar, SCEVExpander &Rewriter);
    112 
    113     void SinkUnusedInvariants(Loop *L);
    114   };
    115 }
    116 
    117 char IndVarSimplify::ID = 0;
    118 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
    119                 "Induction Variable Simplification", false, false)
    120 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
    121 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
    122 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
    123 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
    124 INITIALIZE_PASS_DEPENDENCY(LCSSA)
    125 INITIALIZE_PASS_END(IndVarSimplify, "indvars",
    126                 "Induction Variable Simplification", false, false)
    127 
    128 Pass *llvm::createIndVarSimplifyPass() {
    129   return new IndVarSimplify();
    130 }
    131 
    132 /// isValidRewrite - Return true if the SCEV expansion generated by the
    133 /// rewriter can replace the original value. SCEV guarantees that it
    134 /// produces the same value, but the way it is produced may be illegal IR.
    135 /// Ideally, this function will only be called for verification.
    136 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
    137   // If an SCEV expression subsumed multiple pointers, its expansion could
    138   // reassociate the GEP changing the base pointer. This is illegal because the
    139   // final address produced by a GEP chain must be inbounds relative to its
    140   // underlying object. Otherwise basic alias analysis, among other things,
    141   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
    142   // producing an expression involving multiple pointers. Until then, we must
    143   // bail out here.
    144   //
    145   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
    146   // because it understands lcssa phis while SCEV does not.
    147   Value *FromPtr = FromVal;
    148   Value *ToPtr = ToVal;
    149   if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
    150     FromPtr = GEP->getPointerOperand();
    151   }
    152   if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
    153     ToPtr = GEP->getPointerOperand();
    154   }
    155   if (FromPtr != FromVal || ToPtr != ToVal) {
    156     // Quickly check the common case
    157     if (FromPtr == ToPtr)
    158       return true;
    159 
    160     // SCEV may have rewritten an expression that produces the GEP's pointer
    161     // operand. That's ok as long as the pointer operand has the same base
    162     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
    163     // base of a recurrence. This handles the case in which SCEV expansion
    164     // converts a pointer type recurrence into a nonrecurrent pointer base
    165     // indexed by an integer recurrence.
    166 
    167     // If the GEP base pointer is a vector of pointers, abort.
    168     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
    169       return false;
    170 
    171     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
    172     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
    173     if (FromBase == ToBase)
    174       return true;
    175 
    176     DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
    177           << *FromBase << " != " << *ToBase << "\n");
    178 
    179     return false;
    180   }
    181   return true;
    182 }
    183 
    184 /// Determine the insertion point for this user. By default, insert immediately
    185 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
    186 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
    187 /// common dominator for the incoming blocks.
    188 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
    189                                           DominatorTree *DT) {
    190   PHINode *PHI = dyn_cast<PHINode>(User);
    191   if (!PHI)
    192     return User;
    193 
    194   Instruction *InsertPt = 0;
    195   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
    196     if (PHI->getIncomingValue(i) != Def)
    197       continue;
    198 
    199     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
    200     if (!InsertPt) {
    201       InsertPt = InsertBB->getTerminator();
    202       continue;
    203     }
    204     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
    205     InsertPt = InsertBB->getTerminator();
    206   }
    207   assert(InsertPt && "Missing phi operand");
    208   assert((!isa<Instruction>(Def) ||
    209           DT->dominates(cast<Instruction>(Def), InsertPt)) &&
    210          "def does not dominate all uses");
    211   return InsertPt;
    212 }
    213 
    214 //===----------------------------------------------------------------------===//
    215 // RewriteNonIntegerIVs and helpers. Prefer integer IVs.
    216 //===----------------------------------------------------------------------===//
    217 
    218 /// ConvertToSInt - Convert APF to an integer, if possible.
    219 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
    220   bool isExact = false;
    221   if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
    222     return false;
    223   // See if we can convert this to an int64_t
    224   uint64_t UIntVal;
    225   if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
    226                            &isExact) != APFloat::opOK || !isExact)
    227     return false;
    228   IntVal = UIntVal;
    229   return true;
    230 }
    231 
    232 /// HandleFloatingPointIV - If the loop has floating induction variable
    233 /// then insert corresponding integer induction variable if possible.
    234 /// For example,
    235 /// for(double i = 0; i < 10000; ++i)
    236 ///   bar(i)
    237 /// is converted into
    238 /// for(int i = 0; i < 10000; ++i)
    239 ///   bar((double)i);
    240 ///
    241 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
    242   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
    243   unsigned BackEdge     = IncomingEdge^1;
    244 
    245   // Check incoming value.
    246   ConstantFP *InitValueVal =
    247     dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
    248 
    249   int64_t InitValue;
    250   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
    251     return;
    252 
    253   // Check IV increment. Reject this PN if increment operation is not
    254   // an add or increment value can not be represented by an integer.
    255   BinaryOperator *Incr =
    256     dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
    257   if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
    258 
    259   // If this is not an add of the PHI with a constantfp, or if the constant fp
    260   // is not an integer, bail out.
    261   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
    262   int64_t IncValue;
    263   if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
    264       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
    265     return;
    266 
    267   // Check Incr uses. One user is PN and the other user is an exit condition
    268   // used by the conditional terminator.
    269   Value::use_iterator IncrUse = Incr->use_begin();
    270   Instruction *U1 = cast<Instruction>(*IncrUse++);
    271   if (IncrUse == Incr->use_end()) return;
    272   Instruction *U2 = cast<Instruction>(*IncrUse++);
    273   if (IncrUse != Incr->use_end()) return;
    274 
    275   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
    276   // only used by a branch, we can't transform it.
    277   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
    278   if (!Compare)
    279     Compare = dyn_cast<FCmpInst>(U2);
    280   if (Compare == 0 || !Compare->hasOneUse() ||
    281       !isa<BranchInst>(Compare->use_back()))
    282     return;
    283 
    284   BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
    285 
    286   // We need to verify that the branch actually controls the iteration count
    287   // of the loop.  If not, the new IV can overflow and no one will notice.
    288   // The branch block must be in the loop and one of the successors must be out
    289   // of the loop.
    290   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
    291   if (!L->contains(TheBr->getParent()) ||
    292       (L->contains(TheBr->getSuccessor(0)) &&
    293        L->contains(TheBr->getSuccessor(1))))
    294     return;
    295 
    296 
    297   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
    298   // transform it.
    299   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
    300   int64_t ExitValue;
    301   if (ExitValueVal == 0 ||
    302       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
    303     return;
    304 
    305   // Find new predicate for integer comparison.
    306   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
    307   switch (Compare->getPredicate()) {
    308   default: return;  // Unknown comparison.
    309   case CmpInst::FCMP_OEQ:
    310   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
    311   case CmpInst::FCMP_ONE:
    312   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
    313   case CmpInst::FCMP_OGT:
    314   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
    315   case CmpInst::FCMP_OGE:
    316   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
    317   case CmpInst::FCMP_OLT:
    318   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
    319   case CmpInst::FCMP_OLE:
    320   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
    321   }
    322 
    323   // We convert the floating point induction variable to a signed i32 value if
    324   // we can.  This is only safe if the comparison will not overflow in a way
    325   // that won't be trapped by the integer equivalent operations.  Check for this
    326   // now.
    327   // TODO: We could use i64 if it is native and the range requires it.
    328 
    329   // The start/stride/exit values must all fit in signed i32.
    330   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
    331     return;
    332 
    333   // If not actually striding (add x, 0.0), avoid touching the code.
    334   if (IncValue == 0)
    335     return;
    336 
    337   // Positive and negative strides have different safety conditions.
    338   if (IncValue > 0) {
    339     // If we have a positive stride, we require the init to be less than the
    340     // exit value.
    341     if (InitValue >= ExitValue)
    342       return;
    343 
    344     uint32_t Range = uint32_t(ExitValue-InitValue);
    345     // Check for infinite loop, either:
    346     // while (i <= Exit) or until (i > Exit)
    347     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
    348       if (++Range == 0) return;  // Range overflows.
    349     }
    350 
    351     unsigned Leftover = Range % uint32_t(IncValue);
    352 
    353     // If this is an equality comparison, we require that the strided value
    354     // exactly land on the exit value, otherwise the IV condition will wrap
    355     // around and do things the fp IV wouldn't.
    356     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
    357         Leftover != 0)
    358       return;
    359 
    360     // If the stride would wrap around the i32 before exiting, we can't
    361     // transform the IV.
    362     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
    363       return;
    364 
    365   } else {
    366     // If we have a negative stride, we require the init to be greater than the
    367     // exit value.
    368     if (InitValue <= ExitValue)
    369       return;
    370 
    371     uint32_t Range = uint32_t(InitValue-ExitValue);
    372     // Check for infinite loop, either:
    373     // while (i >= Exit) or until (i < Exit)
    374     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
    375       if (++Range == 0) return;  // Range overflows.
    376     }
    377 
    378     unsigned Leftover = Range % uint32_t(-IncValue);
    379 
    380     // If this is an equality comparison, we require that the strided value
    381     // exactly land on the exit value, otherwise the IV condition will wrap
    382     // around and do things the fp IV wouldn't.
    383     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
    384         Leftover != 0)
    385       return;
    386 
    387     // If the stride would wrap around the i32 before exiting, we can't
    388     // transform the IV.
    389     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
    390       return;
    391   }
    392 
    393   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
    394 
    395   // Insert new integer induction variable.
    396   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
    397   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
    398                       PN->getIncomingBlock(IncomingEdge));
    399 
    400   Value *NewAdd =
    401     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
    402                               Incr->getName()+".int", Incr);
    403   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
    404 
    405   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
    406                                       ConstantInt::get(Int32Ty, ExitValue),
    407                                       Compare->getName());
    408 
    409   // In the following deletions, PN may become dead and may be deleted.
    410   // Use a WeakVH to observe whether this happens.
    411   WeakVH WeakPH = PN;
    412 
    413   // Delete the old floating point exit comparison.  The branch starts using the
    414   // new comparison.
    415   NewCompare->takeName(Compare);
    416   Compare->replaceAllUsesWith(NewCompare);
    417   RecursivelyDeleteTriviallyDeadInstructions(Compare);
    418 
    419   // Delete the old floating point increment.
    420   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
    421   RecursivelyDeleteTriviallyDeadInstructions(Incr);
    422 
    423   // If the FP induction variable still has uses, this is because something else
    424   // in the loop uses its value.  In order to canonicalize the induction
    425   // variable, we chose to eliminate the IV and rewrite it in terms of an
    426   // int->fp cast.
    427   //
    428   // We give preference to sitofp over uitofp because it is faster on most
    429   // platforms.
    430   if (WeakPH) {
    431     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
    432                                  PN->getParent()->getFirstInsertionPt());
    433     PN->replaceAllUsesWith(Conv);
    434     RecursivelyDeleteTriviallyDeadInstructions(PN);
    435   }
    436   Changed = true;
    437 }
    438 
    439 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
    440   // First step.  Check to see if there are any floating-point recurrences.
    441   // If there are, change them into integer recurrences, permitting analysis by
    442   // the SCEV routines.
    443   //
    444   BasicBlock *Header = L->getHeader();
    445 
    446   SmallVector<WeakVH, 8> PHIs;
    447   for (BasicBlock::iterator I = Header->begin();
    448        PHINode *PN = dyn_cast<PHINode>(I); ++I)
    449     PHIs.push_back(PN);
    450 
    451   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
    452     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
    453       HandleFloatingPointIV(L, PN);
    454 
    455   // If the loop previously had floating-point IV, ScalarEvolution
    456   // may not have been able to compute a trip count. Now that we've done some
    457   // re-writing, the trip count may be computable.
    458   if (Changed)
    459     SE->forgetLoop(L);
    460 }
    461 
    462 //===----------------------------------------------------------------------===//
    463 // RewriteLoopExitValues - Optimize IV users outside the loop.
    464 // As a side effect, reduces the amount of IV processing within the loop.
    465 //===----------------------------------------------------------------------===//
    466 
    467 /// RewriteLoopExitValues - Check to see if this loop has a computable
    468 /// loop-invariant execution count.  If so, this means that we can compute the
    469 /// final value of any expressions that are recurrent in the loop, and
    470 /// substitute the exit values from the loop into any instructions outside of
    471 /// the loop that use the final values of the current expressions.
    472 ///
    473 /// This is mostly redundant with the regular IndVarSimplify activities that
    474 /// happen later, except that it's more powerful in some cases, because it's
    475 /// able to brute-force evaluate arbitrary instructions as long as they have
    476 /// constant operands at the beginning of the loop.
    477 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
    478   // Verify the input to the pass in already in LCSSA form.
    479   assert(L->isLCSSAForm(*DT));
    480 
    481   SmallVector<BasicBlock*, 8> ExitBlocks;
    482   L->getUniqueExitBlocks(ExitBlocks);
    483 
    484   // Find all values that are computed inside the loop, but used outside of it.
    485   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
    486   // the exit blocks of the loop to find them.
    487   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
    488     BasicBlock *ExitBB = ExitBlocks[i];
    489 
    490     // If there are no PHI nodes in this exit block, then no values defined
    491     // inside the loop are used on this path, skip it.
    492     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
    493     if (!PN) continue;
    494 
    495     unsigned NumPreds = PN->getNumIncomingValues();
    496 
    497     // Iterate over all of the PHI nodes.
    498     BasicBlock::iterator BBI = ExitBB->begin();
    499     while ((PN = dyn_cast<PHINode>(BBI++))) {
    500       if (PN->use_empty())
    501         continue; // dead use, don't replace it
    502 
    503       // SCEV only supports integer expressions for now.
    504       if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
    505         continue;
    506 
    507       // It's necessary to tell ScalarEvolution about this explicitly so that
    508       // it can walk the def-use list and forget all SCEVs, as it may not be
    509       // watching the PHI itself. Once the new exit value is in place, there
    510       // may not be a def-use connection between the loop and every instruction
    511       // which got a SCEVAddRecExpr for that loop.
    512       SE->forgetValue(PN);
    513 
    514       // Iterate over all of the values in all the PHI nodes.
    515       for (unsigned i = 0; i != NumPreds; ++i) {
    516         // If the value being merged in is not integer or is not defined
    517         // in the loop, skip it.
    518         Value *InVal = PN->getIncomingValue(i);
    519         if (!isa<Instruction>(InVal))
    520           continue;
    521 
    522         // If this pred is for a subloop, not L itself, skip it.
    523         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
    524           continue; // The Block is in a subloop, skip it.
    525 
    526         // Check that InVal is defined in the loop.
    527         Instruction *Inst = cast<Instruction>(InVal);
    528         if (!L->contains(Inst))
    529           continue;
    530 
    531         // Okay, this instruction has a user outside of the current loop
    532         // and varies predictably *inside* the loop.  Evaluate the value it
    533         // contains when the loop exits, if possible.
    534         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
    535         if (!SE->isLoopInvariant(ExitValue, L))
    536           continue;
    537 
    538         Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
    539 
    540         DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
    541                      << "  LoopVal = " << *Inst << "\n");
    542 
    543         if (!isValidRewrite(Inst, ExitVal)) {
    544           DeadInsts.push_back(ExitVal);
    545           continue;
    546         }
    547         Changed = true;
    548         ++NumReplaced;
    549 
    550         PN->setIncomingValue(i, ExitVal);
    551 
    552         // If this instruction is dead now, delete it.
    553         RecursivelyDeleteTriviallyDeadInstructions(Inst);
    554 
    555         if (NumPreds == 1) {
    556           // Completely replace a single-pred PHI. This is safe, because the
    557           // NewVal won't be variant in the loop, so we don't need an LCSSA phi
    558           // node anymore.
    559           PN->replaceAllUsesWith(ExitVal);
    560           RecursivelyDeleteTriviallyDeadInstructions(PN);
    561         }
    562       }
    563       if (NumPreds != 1) {
    564         // Clone the PHI and delete the original one. This lets IVUsers and
    565         // any other maps purge the original user from their records.
    566         PHINode *NewPN = cast<PHINode>(PN->clone());
    567         NewPN->takeName(PN);
    568         NewPN->insertBefore(PN);
    569         PN->replaceAllUsesWith(NewPN);
    570         PN->eraseFromParent();
    571       }
    572     }
    573   }
    574 
    575   // The insertion point instruction may have been deleted; clear it out
    576   // so that the rewriter doesn't trip over it later.
    577   Rewriter.clearInsertPoint();
    578 }
    579 
    580 //===----------------------------------------------------------------------===//
    581 //  IV Widening - Extend the width of an IV to cover its widest uses.
    582 //===----------------------------------------------------------------------===//
    583 
    584 namespace {
    585   // Collect information about induction variables that are used by sign/zero
    586   // extend operations. This information is recorded by CollectExtend and
    587   // provides the input to WidenIV.
    588   struct WideIVInfo {
    589     PHINode *NarrowIV;
    590     Type *WidestNativeType; // Widest integer type created [sz]ext
    591     bool IsSigned;          // Was an sext user seen before a zext?
    592 
    593     WideIVInfo() : NarrowIV(0), WidestNativeType(0), IsSigned(false) {}
    594   };
    595 
    596   class WideIVVisitor : public IVVisitor {
    597     ScalarEvolution *SE;
    598     const TargetData *TD;
    599 
    600   public:
    601     WideIVInfo WI;
    602 
    603     WideIVVisitor(PHINode *NarrowIV, ScalarEvolution *SCEV,
    604                   const TargetData *TData) :
    605       SE(SCEV), TD(TData) { WI.NarrowIV = NarrowIV; }
    606 
    607     // Implement the interface used by simplifyUsersOfIV.
    608     virtual void visitCast(CastInst *Cast);
    609   };
    610 }
    611 
    612 /// visitCast - Update information about the induction variable that is
    613 /// extended by this sign or zero extend operation. This is used to determine
    614 /// the final width of the IV before actually widening it.
    615 void WideIVVisitor::visitCast(CastInst *Cast) {
    616   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
    617   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
    618     return;
    619 
    620   Type *Ty = Cast->getType();
    621   uint64_t Width = SE->getTypeSizeInBits(Ty);
    622   if (TD && !TD->isLegalInteger(Width))
    623     return;
    624 
    625   if (!WI.WidestNativeType) {
    626     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
    627     WI.IsSigned = IsSigned;
    628     return;
    629   }
    630 
    631   // We extend the IV to satisfy the sign of its first user, arbitrarily.
    632   if (WI.IsSigned != IsSigned)
    633     return;
    634 
    635   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
    636     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
    637 }
    638 
    639 namespace {
    640 
    641 /// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
    642 /// WideIV that computes the same value as the Narrow IV def.  This avoids
    643 /// caching Use* pointers.
    644 struct NarrowIVDefUse {
    645   Instruction *NarrowDef;
    646   Instruction *NarrowUse;
    647   Instruction *WideDef;
    648 
    649   NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {}
    650 
    651   NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
    652     NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
    653 };
    654 
    655 /// WidenIV - The goal of this transform is to remove sign and zero extends
    656 /// without creating any new induction variables. To do this, it creates a new
    657 /// phi of the wider type and redirects all users, either removing extends or
    658 /// inserting truncs whenever we stop propagating the type.
    659 ///
    660 class WidenIV {
    661   // Parameters
    662   PHINode *OrigPhi;
    663   Type *WideType;
    664   bool IsSigned;
    665 
    666   // Context
    667   LoopInfo        *LI;
    668   Loop            *L;
    669   ScalarEvolution *SE;
    670   DominatorTree   *DT;
    671 
    672   // Result
    673   PHINode *WidePhi;
    674   Instruction *WideInc;
    675   const SCEV *WideIncExpr;
    676   SmallVectorImpl<WeakVH> &DeadInsts;
    677 
    678   SmallPtrSet<Instruction*,16> Widened;
    679   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
    680 
    681 public:
    682   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
    683           ScalarEvolution *SEv, DominatorTree *DTree,
    684           SmallVectorImpl<WeakVH> &DI) :
    685     OrigPhi(WI.NarrowIV),
    686     WideType(WI.WidestNativeType),
    687     IsSigned(WI.IsSigned),
    688     LI(LInfo),
    689     L(LI->getLoopFor(OrigPhi->getParent())),
    690     SE(SEv),
    691     DT(DTree),
    692     WidePhi(0),
    693     WideInc(0),
    694     WideIncExpr(0),
    695     DeadInsts(DI) {
    696     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
    697   }
    698 
    699   PHINode *CreateWideIV(SCEVExpander &Rewriter);
    700 
    701 protected:
    702   Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
    703                    Instruction *Use);
    704 
    705   Instruction *CloneIVUser(NarrowIVDefUse DU);
    706 
    707   const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
    708 
    709   const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU);
    710 
    711   Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
    712 
    713   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
    714 };
    715 } // anonymous namespace
    716 
    717 /// isLoopInvariant - Perform a quick domtree based check for loop invariance
    718 /// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
    719 /// gratuitous for this purpose.
    720 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
    721   Instruction *Inst = dyn_cast<Instruction>(V);
    722   if (!Inst)
    723     return true;
    724 
    725   return DT->properlyDominates(Inst->getParent(), L->getHeader());
    726 }
    727 
    728 Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
    729                           Instruction *Use) {
    730   // Set the debug location and conservative insertion point.
    731   IRBuilder<> Builder(Use);
    732   // Hoist the insertion point into loop preheaders as far as possible.
    733   for (const Loop *L = LI->getLoopFor(Use->getParent());
    734        L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
    735        L = L->getParentLoop())
    736     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
    737 
    738   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
    739                     Builder.CreateZExt(NarrowOper, WideType);
    740 }
    741 
    742 /// CloneIVUser - Instantiate a wide operation to replace a narrow
    743 /// operation. This only needs to handle operations that can evaluation to
    744 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
    745 Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
    746   unsigned Opcode = DU.NarrowUse->getOpcode();
    747   switch (Opcode) {
    748   default:
    749     return 0;
    750   case Instruction::Add:
    751   case Instruction::Mul:
    752   case Instruction::UDiv:
    753   case Instruction::Sub:
    754   case Instruction::And:
    755   case Instruction::Or:
    756   case Instruction::Xor:
    757   case Instruction::Shl:
    758   case Instruction::LShr:
    759   case Instruction::AShr:
    760     DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
    761 
    762     // Replace NarrowDef operands with WideDef. Otherwise, we don't know
    763     // anything about the narrow operand yet so must insert a [sz]ext. It is
    764     // probably loop invariant and will be folded or hoisted. If it actually
    765     // comes from a widened IV, it should be removed during a future call to
    766     // WidenIVUse.
    767     Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
    768       getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse);
    769     Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
    770       getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse);
    771 
    772     BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
    773     BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
    774                                                     LHS, RHS,
    775                                                     NarrowBO->getName());
    776     IRBuilder<> Builder(DU.NarrowUse);
    777     Builder.Insert(WideBO);
    778     if (const OverflowingBinaryOperator *OBO =
    779         dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
    780       if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
    781       if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
    782     }
    783     return WideBO;
    784   }
    785 }
    786 
    787 /// No-wrap operations can transfer sign extension of their result to their
    788 /// operands. Generate the SCEV value for the widened operation without
    789 /// actually modifying the IR yet. If the expression after extending the
    790 /// operands is an AddRec for this loop, return it.
    791 const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
    792   // Handle the common case of add<nsw/nuw>
    793   if (DU.NarrowUse->getOpcode() != Instruction::Add)
    794     return 0;
    795 
    796   // One operand (NarrowDef) has already been extended to WideDef. Now determine
    797   // if extending the other will lead to a recurrence.
    798   unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
    799   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
    800 
    801   const SCEV *ExtendOperExpr = 0;
    802   const OverflowingBinaryOperator *OBO =
    803     cast<OverflowingBinaryOperator>(DU.NarrowUse);
    804   if (IsSigned && OBO->hasNoSignedWrap())
    805     ExtendOperExpr = SE->getSignExtendExpr(
    806       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
    807   else if(!IsSigned && OBO->hasNoUnsignedWrap())
    808     ExtendOperExpr = SE->getZeroExtendExpr(
    809       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
    810   else
    811     return 0;
    812 
    813   // When creating this AddExpr, don't apply the current operations NSW or NUW
    814   // flags. This instruction may be guarded by control flow that the no-wrap
    815   // behavior depends on. Non-control-equivalent instructions can be mapped to
    816   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
    817   // semantics to those operations.
    818   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(
    819     SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr));
    820 
    821   if (!AddRec || AddRec->getLoop() != L)
    822     return 0;
    823   return AddRec;
    824 }
    825 
    826 /// GetWideRecurrence - Is this instruction potentially interesting from
    827 /// IVUsers' perspective after widening it's type? In other words, can the
    828 /// extend be safely hoisted out of the loop with SCEV reducing the value to a
    829 /// recurrence on the same loop. If so, return the sign or zero extended
    830 /// recurrence. Otherwise return NULL.
    831 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
    832   if (!SE->isSCEVable(NarrowUse->getType()))
    833     return 0;
    834 
    835   const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
    836   if (SE->getTypeSizeInBits(NarrowExpr->getType())
    837       >= SE->getTypeSizeInBits(WideType)) {
    838     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
    839     // index. So don't follow this use.
    840     return 0;
    841   }
    842 
    843   const SCEV *WideExpr = IsSigned ?
    844     SE->getSignExtendExpr(NarrowExpr, WideType) :
    845     SE->getZeroExtendExpr(NarrowExpr, WideType);
    846   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
    847   if (!AddRec || AddRec->getLoop() != L)
    848     return 0;
    849   return AddRec;
    850 }
    851 
    852 /// WidenIVUse - Determine whether an individual user of the narrow IV can be
    853 /// widened. If so, return the wide clone of the user.
    854 Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
    855 
    856   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
    857   if (isa<PHINode>(DU.NarrowUse) &&
    858       LI->getLoopFor(DU.NarrowUse->getParent()) != L)
    859     return 0;
    860 
    861   // Our raison d'etre! Eliminate sign and zero extension.
    862   if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
    863     Value *NewDef = DU.WideDef;
    864     if (DU.NarrowUse->getType() != WideType) {
    865       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
    866       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
    867       if (CastWidth < IVWidth) {
    868         // The cast isn't as wide as the IV, so insert a Trunc.
    869         IRBuilder<> Builder(DU.NarrowUse);
    870         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
    871       }
    872       else {
    873         // A wider extend was hidden behind a narrower one. This may induce
    874         // another round of IV widening in which the intermediate IV becomes
    875         // dead. It should be very rare.
    876         DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
    877               << " not wide enough to subsume " << *DU.NarrowUse << "\n");
    878         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
    879         NewDef = DU.NarrowUse;
    880       }
    881     }
    882     if (NewDef != DU.NarrowUse) {
    883       DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
    884             << " replaced by " << *DU.WideDef << "\n");
    885       ++NumElimExt;
    886       DU.NarrowUse->replaceAllUsesWith(NewDef);
    887       DeadInsts.push_back(DU.NarrowUse);
    888     }
    889     // Now that the extend is gone, we want to expose it's uses for potential
    890     // further simplification. We don't need to directly inform SimplifyIVUsers
    891     // of the new users, because their parent IV will be processed later as a
    892     // new loop phi. If we preserved IVUsers analysis, we would also want to
    893     // push the uses of WideDef here.
    894 
    895     // No further widening is needed. The deceased [sz]ext had done it for us.
    896     return 0;
    897   }
    898 
    899   // Does this user itself evaluate to a recurrence after widening?
    900   const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
    901   if (!WideAddRec) {
    902       WideAddRec = GetExtendedOperandRecurrence(DU);
    903   }
    904   if (!WideAddRec) {
    905     // This user does not evaluate to a recurence after widening, so don't
    906     // follow it. Instead insert a Trunc to kill off the original use,
    907     // eventually isolating the original narrow IV so it can be removed.
    908     IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
    909     Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
    910     DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
    911     return 0;
    912   }
    913   // Assume block terminators cannot evaluate to a recurrence. We can't to
    914   // insert a Trunc after a terminator if there happens to be a critical edge.
    915   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
    916          "SCEV is not expected to evaluate a block terminator");
    917 
    918   // Reuse the IV increment that SCEVExpander created as long as it dominates
    919   // NarrowUse.
    920   Instruction *WideUse = 0;
    921   if (WideAddRec == WideIncExpr
    922       && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
    923     WideUse = WideInc;
    924   else {
    925     WideUse = CloneIVUser(DU);
    926     if (!WideUse)
    927       return 0;
    928   }
    929   // Evaluation of WideAddRec ensured that the narrow expression could be
    930   // extended outside the loop without overflow. This suggests that the wide use
    931   // evaluates to the same expression as the extended narrow use, but doesn't
    932   // absolutely guarantee it. Hence the following failsafe check. In rare cases
    933   // where it fails, we simply throw away the newly created wide use.
    934   if (WideAddRec != SE->getSCEV(WideUse)) {
    935     DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
    936           << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
    937     DeadInsts.push_back(WideUse);
    938     return 0;
    939   }
    940 
    941   // Returning WideUse pushes it on the worklist.
    942   return WideUse;
    943 }
    944 
    945 /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
    946 ///
    947 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
    948   for (Value::use_iterator UI = NarrowDef->use_begin(),
    949          UE = NarrowDef->use_end(); UI != UE; ++UI) {
    950     Instruction *NarrowUse = cast<Instruction>(*UI);
    951 
    952     // Handle data flow merges and bizarre phi cycles.
    953     if (!Widened.insert(NarrowUse))
    954       continue;
    955 
    956     NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef));
    957   }
    958 }
    959 
    960 /// CreateWideIV - Process a single induction variable. First use the
    961 /// SCEVExpander to create a wide induction variable that evaluates to the same
    962 /// recurrence as the original narrow IV. Then use a worklist to forward
    963 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
    964 /// interesting IV users, the narrow IV will be isolated for removal by
    965 /// DeleteDeadPHIs.
    966 ///
    967 /// It would be simpler to delete uses as they are processed, but we must avoid
    968 /// invalidating SCEV expressions.
    969 ///
    970 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
    971   // Is this phi an induction variable?
    972   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
    973   if (!AddRec)
    974     return NULL;
    975 
    976   // Widen the induction variable expression.
    977   const SCEV *WideIVExpr = IsSigned ?
    978     SE->getSignExtendExpr(AddRec, WideType) :
    979     SE->getZeroExtendExpr(AddRec, WideType);
    980 
    981   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
    982          "Expect the new IV expression to preserve its type");
    983 
    984   // Can the IV be extended outside the loop without overflow?
    985   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
    986   if (!AddRec || AddRec->getLoop() != L)
    987     return NULL;
    988 
    989   // An AddRec must have loop-invariant operands. Since this AddRec is
    990   // materialized by a loop header phi, the expression cannot have any post-loop
    991   // operands, so they must dominate the loop header.
    992   assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
    993          SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
    994          && "Loop header phi recurrence inputs do not dominate the loop");
    995 
    996   // The rewriter provides a value for the desired IV expression. This may
    997   // either find an existing phi or materialize a new one. Either way, we
    998   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
    999   // of the phi-SCC dominates the loop entry.
   1000   Instruction *InsertPt = L->getHeader()->begin();
   1001   WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
   1002 
   1003   // Remembering the WideIV increment generated by SCEVExpander allows
   1004   // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
   1005   // employ a general reuse mechanism because the call above is the only call to
   1006   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
   1007   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
   1008     WideInc =
   1009       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
   1010     WideIncExpr = SE->getSCEV(WideInc);
   1011   }
   1012 
   1013   DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
   1014   ++NumWidened;
   1015 
   1016   // Traverse the def-use chain using a worklist starting at the original IV.
   1017   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
   1018 
   1019   Widened.insert(OrigPhi);
   1020   pushNarrowIVUsers(OrigPhi, WidePhi);
   1021 
   1022   while (!NarrowIVUsers.empty()) {
   1023     NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
   1024 
   1025     // Process a def-use edge. This may replace the use, so don't hold a
   1026     // use_iterator across it.
   1027     Instruction *WideUse = WidenIVUse(DU, Rewriter);
   1028 
   1029     // Follow all def-use edges from the previous narrow use.
   1030     if (WideUse)
   1031       pushNarrowIVUsers(DU.NarrowUse, WideUse);
   1032 
   1033     // WidenIVUse may have removed the def-use edge.
   1034     if (DU.NarrowDef->use_empty())
   1035       DeadInsts.push_back(DU.NarrowDef);
   1036   }
   1037   return WidePhi;
   1038 }
   1039 
   1040 //===----------------------------------------------------------------------===//
   1041 //  Simplification of IV users based on SCEV evaluation.
   1042 //===----------------------------------------------------------------------===//
   1043 
   1044 
   1045 /// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
   1046 /// users. Each successive simplification may push more users which may
   1047 /// themselves be candidates for simplification.
   1048 ///
   1049 /// Sign/Zero extend elimination is interleaved with IV simplification.
   1050 ///
   1051 void IndVarSimplify::SimplifyAndExtend(Loop *L,
   1052                                        SCEVExpander &Rewriter,
   1053                                        LPPassManager &LPM) {
   1054   SmallVector<WideIVInfo, 8> WideIVs;
   1055 
   1056   SmallVector<PHINode*, 8> LoopPhis;
   1057   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
   1058     LoopPhis.push_back(cast<PHINode>(I));
   1059   }
   1060   // Each round of simplification iterates through the SimplifyIVUsers worklist
   1061   // for all current phis, then determines whether any IVs can be
   1062   // widened. Widening adds new phis to LoopPhis, inducing another round of
   1063   // simplification on the wide IVs.
   1064   while (!LoopPhis.empty()) {
   1065     // Evaluate as many IV expressions as possible before widening any IVs. This
   1066     // forces SCEV to set no-wrap flags before evaluating sign/zero
   1067     // extension. The first time SCEV attempts to normalize sign/zero extension,
   1068     // the result becomes final. So for the most predictable results, we delay
   1069     // evaluation of sign/zero extend evaluation until needed, and avoid running
   1070     // other SCEV based analysis prior to SimplifyAndExtend.
   1071     do {
   1072       PHINode *CurrIV = LoopPhis.pop_back_val();
   1073 
   1074       // Information about sign/zero extensions of CurrIV.
   1075       WideIVVisitor WIV(CurrIV, SE, TD);
   1076 
   1077       Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &WIV);
   1078 
   1079       if (WIV.WI.WidestNativeType) {
   1080         WideIVs.push_back(WIV.WI);
   1081       }
   1082     } while(!LoopPhis.empty());
   1083 
   1084     for (; !WideIVs.empty(); WideIVs.pop_back()) {
   1085       WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
   1086       if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
   1087         Changed = true;
   1088         LoopPhis.push_back(WidePhi);
   1089       }
   1090     }
   1091   }
   1092 }
   1093 
   1094 //===----------------------------------------------------------------------===//
   1095 //  LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
   1096 //===----------------------------------------------------------------------===//
   1097 
   1098 /// Check for expressions that ScalarEvolution generates to compute
   1099 /// BackedgeTakenInfo. If these expressions have not been reduced, then
   1100 /// expanding them may incur additional cost (albeit in the loop preheader).
   1101 static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
   1102                                 SmallPtrSet<const SCEV*, 8> &Processed,
   1103                                 ScalarEvolution *SE) {
   1104   if (!Processed.insert(S))
   1105     return false;
   1106 
   1107   // If the backedge-taken count is a UDiv, it's very likely a UDiv that
   1108   // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
   1109   // precise expression, rather than a UDiv from the user's code. If we can't
   1110   // find a UDiv in the code with some simple searching, assume the former and
   1111   // forego rewriting the loop.
   1112   if (isa<SCEVUDivExpr>(S)) {
   1113     ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
   1114     if (!OrigCond) return true;
   1115     const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
   1116     R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
   1117     if (R != S) {
   1118       const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
   1119       L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
   1120       if (L != S)
   1121         return true;
   1122     }
   1123   }
   1124 
   1125   // Recurse past add expressions, which commonly occur in the
   1126   // BackedgeTakenCount. They may already exist in program code, and if not,
   1127   // they are not too expensive rematerialize.
   1128   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
   1129     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
   1130          I != E; ++I) {
   1131       if (isHighCostExpansion(*I, BI, Processed, SE))
   1132         return true;
   1133     }
   1134     return false;
   1135   }
   1136 
   1137   // HowManyLessThans uses a Max expression whenever the loop is not guarded by
   1138   // the exit condition.
   1139   if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
   1140     return true;
   1141 
   1142   // If we haven't recognized an expensive SCEV pattern, assume it's an
   1143   // expression produced by program code.
   1144   return false;
   1145 }
   1146 
   1147 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
   1148 /// count expression can be safely and cheaply expanded into an instruction
   1149 /// sequence that can be used by LinearFunctionTestReplace.
   1150 ///
   1151 /// TODO: This fails for pointer-type loop counters with greater than one byte
   1152 /// strides, consequently preventing LFTR from running. For the purpose of LFTR
   1153 /// we could skip this check in the case that the LFTR loop counter (chosen by
   1154 /// FindLoopCounter) is also pointer type. Instead, we could directly convert
   1155 /// the loop test to an inequality test by checking the target data's alignment
   1156 /// of element types (given that the initial pointer value originates from or is
   1157 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
   1158 /// However, we don't yet have a strong motivation for converting loop tests
   1159 /// into inequality tests.
   1160 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
   1161   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
   1162   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
   1163       BackedgeTakenCount->isZero())
   1164     return false;
   1165 
   1166   if (!L->getExitingBlock())
   1167     return false;
   1168 
   1169   // Can't rewrite non-branch yet.
   1170   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
   1171   if (!BI)
   1172     return false;
   1173 
   1174   SmallPtrSet<const SCEV*, 8> Processed;
   1175   if (isHighCostExpansion(BackedgeTakenCount, BI, Processed, SE))
   1176     return false;
   1177 
   1178   return true;
   1179 }
   1180 
   1181 /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
   1182 /// invariant value to the phi.
   1183 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
   1184   Instruction *IncI = dyn_cast<Instruction>(IncV);
   1185   if (!IncI)
   1186     return 0;
   1187 
   1188   switch (IncI->getOpcode()) {
   1189   case Instruction::Add:
   1190   case Instruction::Sub:
   1191     break;
   1192   case Instruction::GetElementPtr:
   1193     // An IV counter must preserve its type.
   1194     if (IncI->getNumOperands() == 2)
   1195       break;
   1196   default:
   1197     return 0;
   1198   }
   1199 
   1200   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
   1201   if (Phi && Phi->getParent() == L->getHeader()) {
   1202     if (isLoopInvariant(IncI->getOperand(1), L, DT))
   1203       return Phi;
   1204     return 0;
   1205   }
   1206   if (IncI->getOpcode() == Instruction::GetElementPtr)
   1207     return 0;
   1208 
   1209   // Allow add/sub to be commuted.
   1210   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
   1211   if (Phi && Phi->getParent() == L->getHeader()) {
   1212     if (isLoopInvariant(IncI->getOperand(0), L, DT))
   1213       return Phi;
   1214   }
   1215   return 0;
   1216 }
   1217 
   1218 /// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
   1219 /// that the current exit test is already sufficiently canonical.
   1220 static bool needsLFTR(Loop *L, DominatorTree *DT) {
   1221   assert(L->getExitingBlock() && "expected loop exit");
   1222 
   1223   BasicBlock *LatchBlock = L->getLoopLatch();
   1224   // Don't bother with LFTR if the loop is not properly simplified.
   1225   if (!LatchBlock)
   1226     return false;
   1227 
   1228   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
   1229   assert(BI && "expected exit branch");
   1230 
   1231   // Do LFTR to simplify the exit condition to an ICMP.
   1232   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
   1233   if (!Cond)
   1234     return true;
   1235 
   1236   // Do LFTR to simplify the exit ICMP to EQ/NE
   1237   ICmpInst::Predicate Pred = Cond->getPredicate();
   1238   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
   1239     return true;
   1240 
   1241   // Look for a loop invariant RHS
   1242   Value *LHS = Cond->getOperand(0);
   1243   Value *RHS = Cond->getOperand(1);
   1244   if (!isLoopInvariant(RHS, L, DT)) {
   1245     if (!isLoopInvariant(LHS, L, DT))
   1246       return true;
   1247     std::swap(LHS, RHS);
   1248   }
   1249   // Look for a simple IV counter LHS
   1250   PHINode *Phi = dyn_cast<PHINode>(LHS);
   1251   if (!Phi)
   1252     Phi = getLoopPhiForCounter(LHS, L, DT);
   1253 
   1254   if (!Phi)
   1255     return true;
   1256 
   1257   // Do LFTR if the exit condition's IV is *not* a simple counter.
   1258   Value *IncV = Phi->getIncomingValueForBlock(L->getLoopLatch());
   1259   return Phi != getLoopPhiForCounter(IncV, L, DT);
   1260 }
   1261 
   1262 /// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
   1263 /// be rewritten) loop exit test.
   1264 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
   1265   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
   1266   Value *IncV = Phi->getIncomingValue(LatchIdx);
   1267 
   1268   for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end();
   1269        UI != UE; ++UI) {
   1270     if (*UI != Cond && *UI != IncV) return false;
   1271   }
   1272 
   1273   for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end();
   1274        UI != UE; ++UI) {
   1275     if (*UI != Cond && *UI != Phi) return false;
   1276   }
   1277   return true;
   1278 }
   1279 
   1280 /// FindLoopCounter - Find an affine IV in canonical form.
   1281 ///
   1282 /// BECount may be an i8* pointer type. The pointer difference is already
   1283 /// valid count without scaling the address stride, so it remains a pointer
   1284 /// expression as far as SCEV is concerned.
   1285 ///
   1286 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
   1287 ///
   1288 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
   1289 /// This is difficult in general for SCEV because of potential overflow. But we
   1290 /// could at least handle constant BECounts.
   1291 static PHINode *
   1292 FindLoopCounter(Loop *L, const SCEV *BECount,
   1293                 ScalarEvolution *SE, DominatorTree *DT, const TargetData *TD) {
   1294   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
   1295 
   1296   Value *Cond =
   1297     cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
   1298 
   1299   // Loop over all of the PHI nodes, looking for a simple counter.
   1300   PHINode *BestPhi = 0;
   1301   const SCEV *BestInit = 0;
   1302   BasicBlock *LatchBlock = L->getLoopLatch();
   1303   assert(LatchBlock && "needsLFTR should guarantee a loop latch");
   1304 
   1305   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
   1306     PHINode *Phi = cast<PHINode>(I);
   1307     if (!SE->isSCEVable(Phi->getType()))
   1308       continue;
   1309 
   1310     // Avoid comparing an integer IV against a pointer Limit.
   1311     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
   1312       continue;
   1313 
   1314     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
   1315     if (!AR || AR->getLoop() != L || !AR->isAffine())
   1316       continue;
   1317 
   1318     // AR may be a pointer type, while BECount is an integer type.
   1319     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
   1320     // AR may not be a narrower type, or we may never exit.
   1321     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
   1322     if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth)))
   1323       continue;
   1324 
   1325     const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
   1326     if (!Step || !Step->isOne())
   1327       continue;
   1328 
   1329     int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
   1330     Value *IncV = Phi->getIncomingValue(LatchIdx);
   1331     if (getLoopPhiForCounter(IncV, L, DT) != Phi)
   1332       continue;
   1333 
   1334     const SCEV *Init = AR->getStart();
   1335 
   1336     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
   1337       // Don't force a live loop counter if another IV can be used.
   1338       if (AlmostDeadIV(Phi, LatchBlock, Cond))
   1339         continue;
   1340 
   1341       // Prefer to count-from-zero. This is a more "canonical" counter form. It
   1342       // also prefers integer to pointer IVs.
   1343       if (BestInit->isZero() != Init->isZero()) {
   1344         if (BestInit->isZero())
   1345           continue;
   1346       }
   1347       // If two IVs both count from zero or both count from nonzero then the
   1348       // narrower is likely a dead phi that has been widened. Use the wider phi
   1349       // to allow the other to be eliminated.
   1350       if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
   1351         continue;
   1352     }
   1353     BestPhi = Phi;
   1354     BestInit = Init;
   1355   }
   1356   return BestPhi;
   1357 }
   1358 
   1359 /// genLoopLimit - Help LinearFunctionTestReplace by generating a value that
   1360 /// holds the RHS of the new loop test.
   1361 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
   1362                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
   1363   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
   1364   assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
   1365   const SCEV *IVInit = AR->getStart();
   1366 
   1367   // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
   1368   // finds a valid pointer IV. Sign extend BECount in order to materialize a
   1369   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
   1370   // the existing GEPs whenever possible.
   1371   if (IndVar->getType()->isPointerTy()
   1372       && !IVCount->getType()->isPointerTy()) {
   1373 
   1374     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
   1375     const SCEV *IVOffset = SE->getTruncateOrSignExtend(IVCount, OfsTy);
   1376 
   1377     // Expand the code for the iteration count.
   1378     assert(SE->isLoopInvariant(IVOffset, L) &&
   1379            "Computed iteration count is not loop invariant!");
   1380     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
   1381     Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
   1382 
   1383     Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
   1384     assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
   1385     // We could handle pointer IVs other than i8*, but we need to compensate for
   1386     // gep index scaling. See canExpandBackedgeTakenCount comments.
   1387     assert(SE->getSizeOfExpr(
   1388              cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
   1389            && "unit stride pointer IV must be i8*");
   1390 
   1391     IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
   1392     return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit");
   1393   }
   1394   else {
   1395     // In any other case, convert both IVInit and IVCount to integers before
   1396     // comparing. This may result in SCEV expension of pointers, but in practice
   1397     // SCEV will fold the pointer arithmetic away as such:
   1398     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
   1399     //
   1400     // Valid Cases: (1) both integers is most common; (2) both may be pointers
   1401     // for simple memset-style loops; (3) IVInit is an integer and IVCount is a
   1402     // pointer may occur when enable-iv-rewrite generates a canonical IV on top
   1403     // of case #2.
   1404 
   1405     const SCEV *IVLimit = 0;
   1406     // For unit stride, IVCount = Start + BECount with 2's complement overflow.
   1407     // For non-zero Start, compute IVCount here.
   1408     if (AR->getStart()->isZero())
   1409       IVLimit = IVCount;
   1410     else {
   1411       assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
   1412       const SCEV *IVInit = AR->getStart();
   1413 
   1414       // For integer IVs, truncate the IV before computing IVInit + BECount.
   1415       if (SE->getTypeSizeInBits(IVInit->getType())
   1416           > SE->getTypeSizeInBits(IVCount->getType()))
   1417         IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
   1418 
   1419       IVLimit = SE->getAddExpr(IVInit, IVCount);
   1420     }
   1421     // Expand the code for the iteration count.
   1422     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
   1423     IRBuilder<> Builder(BI);
   1424     assert(SE->isLoopInvariant(IVLimit, L) &&
   1425            "Computed iteration count is not loop invariant!");
   1426     // Ensure that we generate the same type as IndVar, or a smaller integer
   1427     // type. In the presence of null pointer values, we have an integer type
   1428     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
   1429     Type *LimitTy = IVCount->getType()->isPointerTy() ?
   1430       IndVar->getType() : IVCount->getType();
   1431     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
   1432   }
   1433 }
   1434 
   1435 /// LinearFunctionTestReplace - This method rewrites the exit condition of the
   1436 /// loop to be a canonical != comparison against the incremented loop induction
   1437 /// variable.  This pass is able to rewrite the exit tests of any loop where the
   1438 /// SCEV analysis can determine a loop-invariant trip count of the loop, which
   1439 /// is actually a much broader range than just linear tests.
   1440 Value *IndVarSimplify::
   1441 LinearFunctionTestReplace(Loop *L,
   1442                           const SCEV *BackedgeTakenCount,
   1443                           PHINode *IndVar,
   1444                           SCEVExpander &Rewriter) {
   1445   assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
   1446 
   1447   // LFTR can ignore IV overflow and truncate to the width of
   1448   // BECount. This avoids materializing the add(zext(add)) expression.
   1449   Type *CntTy = BackedgeTakenCount->getType();
   1450 
   1451   const SCEV *IVCount = BackedgeTakenCount;
   1452 
   1453   // If the exiting block is the same as the backedge block, we prefer to
   1454   // compare against the post-incremented value, otherwise we must compare
   1455   // against the preincremented value.
   1456   Value *CmpIndVar;
   1457   if (L->getExitingBlock() == L->getLoopLatch()) {
   1458     // Add one to the "backedge-taken" count to get the trip count.
   1459     // If this addition may overflow, we have to be more pessimistic and
   1460     // cast the induction variable before doing the add.
   1461     const SCEV *N =
   1462       SE->getAddExpr(IVCount, SE->getConstant(IVCount->getType(), 1));
   1463     if (CntTy == IVCount->getType())
   1464       IVCount = N;
   1465     else {
   1466       const SCEV *Zero = SE->getConstant(IVCount->getType(), 0);
   1467       if ((isa<SCEVConstant>(N) && !N->isZero()) ||
   1468           SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
   1469         // No overflow. Cast the sum.
   1470         IVCount = SE->getTruncateOrZeroExtend(N, CntTy);
   1471       } else {
   1472         // Potential overflow. Cast before doing the add.
   1473         IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
   1474         IVCount = SE->getAddExpr(IVCount, SE->getConstant(CntTy, 1));
   1475       }
   1476     }
   1477     // The BackedgeTaken expression contains the number of times that the
   1478     // backedge branches to the loop header.  This is one less than the
   1479     // number of times the loop executes, so use the incremented indvar.
   1480     CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
   1481   } else {
   1482     // We must use the preincremented value...
   1483     IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
   1484     CmpIndVar = IndVar;
   1485   }
   1486 
   1487   Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
   1488   assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
   1489          && "genLoopLimit missed a cast");
   1490 
   1491   // Insert a new icmp_ne or icmp_eq instruction before the branch.
   1492   BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
   1493   ICmpInst::Predicate P;
   1494   if (L->contains(BI->getSuccessor(0)))
   1495     P = ICmpInst::ICMP_NE;
   1496   else
   1497     P = ICmpInst::ICMP_EQ;
   1498 
   1499   DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
   1500                << "      LHS:" << *CmpIndVar << '\n'
   1501                << "       op:\t"
   1502                << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
   1503                << "      RHS:\t" << *ExitCnt << "\n"
   1504                << "  IVCount:\t" << *IVCount << "\n");
   1505 
   1506   IRBuilder<> Builder(BI);
   1507   if (SE->getTypeSizeInBits(CmpIndVar->getType())
   1508       > SE->getTypeSizeInBits(ExitCnt->getType())) {
   1509     CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
   1510                                     "lftr.wideiv");
   1511   }
   1512 
   1513   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
   1514   Value *OrigCond = BI->getCondition();
   1515   // It's tempting to use replaceAllUsesWith here to fully replace the old
   1516   // comparison, but that's not immediately safe, since users of the old
   1517   // comparison may not be dominated by the new comparison. Instead, just
   1518   // update the branch to use the new comparison; in the common case this
   1519   // will make old comparison dead.
   1520   BI->setCondition(Cond);
   1521   DeadInsts.push_back(OrigCond);
   1522 
   1523   ++NumLFTR;
   1524   Changed = true;
   1525   return Cond;
   1526 }
   1527 
   1528 //===----------------------------------------------------------------------===//
   1529 //  SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
   1530 //===----------------------------------------------------------------------===//
   1531 
   1532 /// If there's a single exit block, sink any loop-invariant values that
   1533 /// were defined in the preheader but not used inside the loop into the
   1534 /// exit block to reduce register pressure in the loop.
   1535 void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
   1536   BasicBlock *ExitBlock = L->getExitBlock();
   1537   if (!ExitBlock) return;
   1538 
   1539   BasicBlock *Preheader = L->getLoopPreheader();
   1540   if (!Preheader) return;
   1541 
   1542   Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
   1543   BasicBlock::iterator I = Preheader->getTerminator();
   1544   while (I != Preheader->begin()) {
   1545     --I;
   1546     // New instructions were inserted at the end of the preheader.
   1547     if (isa<PHINode>(I))
   1548       break;
   1549 
   1550     // Don't move instructions which might have side effects, since the side
   1551     // effects need to complete before instructions inside the loop.  Also don't
   1552     // move instructions which might read memory, since the loop may modify
   1553     // memory. Note that it's okay if the instruction might have undefined
   1554     // behavior: LoopSimplify guarantees that the preheader dominates the exit
   1555     // block.
   1556     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
   1557       continue;
   1558 
   1559     // Skip debug info intrinsics.
   1560     if (isa<DbgInfoIntrinsic>(I))
   1561       continue;
   1562 
   1563     // Skip landingpad instructions.
   1564     if (isa<LandingPadInst>(I))
   1565       continue;
   1566 
   1567     // Don't sink alloca: we never want to sink static alloca's out of the
   1568     // entry block, and correctly sinking dynamic alloca's requires
   1569     // checks for stacksave/stackrestore intrinsics.
   1570     // FIXME: Refactor this check somehow?
   1571     if (isa<AllocaInst>(I))
   1572       continue;
   1573 
   1574     // Determine if there is a use in or before the loop (direct or
   1575     // otherwise).
   1576     bool UsedInLoop = false;
   1577     for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
   1578          UI != UE; ++UI) {
   1579       User *U = *UI;
   1580       BasicBlock *UseBB = cast<Instruction>(U)->getParent();
   1581       if (PHINode *P = dyn_cast<PHINode>(U)) {
   1582         unsigned i =
   1583           PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
   1584         UseBB = P->getIncomingBlock(i);
   1585       }
   1586       if (UseBB == Preheader || L->contains(UseBB)) {
   1587         UsedInLoop = true;
   1588         break;
   1589       }
   1590     }
   1591 
   1592     // If there is, the def must remain in the preheader.
   1593     if (UsedInLoop)
   1594       continue;
   1595 
   1596     // Otherwise, sink it to the exit block.
   1597     Instruction *ToMove = I;
   1598     bool Done = false;
   1599 
   1600     if (I != Preheader->begin()) {
   1601       // Skip debug info intrinsics.
   1602       do {
   1603         --I;
   1604       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
   1605 
   1606       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
   1607         Done = true;
   1608     } else {
   1609       Done = true;
   1610     }
   1611 
   1612     ToMove->moveBefore(InsertPt);
   1613     if (Done) break;
   1614     InsertPt = ToMove;
   1615   }
   1616 }
   1617 
   1618 //===----------------------------------------------------------------------===//
   1619 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
   1620 //===----------------------------------------------------------------------===//
   1621 
   1622 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
   1623   // If LoopSimplify form is not available, stay out of trouble. Some notes:
   1624   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
   1625   //    canonicalization can be a pessimization without LSR to "clean up"
   1626   //    afterwards.
   1627   //  - We depend on having a preheader; in particular,
   1628   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
   1629   //    and we're in trouble if we can't find the induction variable even when
   1630   //    we've manually inserted one.
   1631   if (!L->isLoopSimplifyForm())
   1632     return false;
   1633 
   1634   LI = &getAnalysis<LoopInfo>();
   1635   SE = &getAnalysis<ScalarEvolution>();
   1636   DT = &getAnalysis<DominatorTree>();
   1637   TD = getAnalysisIfAvailable<TargetData>();
   1638 
   1639   DeadInsts.clear();
   1640   Changed = false;
   1641 
   1642   // If there are any floating-point recurrences, attempt to
   1643   // transform them to use integer recurrences.
   1644   RewriteNonIntegerIVs(L);
   1645 
   1646   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
   1647 
   1648   // Create a rewriter object which we'll use to transform the code with.
   1649   SCEVExpander Rewriter(*SE, "indvars");
   1650 #ifndef NDEBUG
   1651   Rewriter.setDebugType(DEBUG_TYPE);
   1652 #endif
   1653 
   1654   // Eliminate redundant IV users.
   1655   //
   1656   // Simplification works best when run before other consumers of SCEV. We
   1657   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
   1658   // other expressions involving loop IVs have been evaluated. This helps SCEV
   1659   // set no-wrap flags before normalizing sign/zero extension.
   1660   Rewriter.disableCanonicalMode();
   1661   SimplifyAndExtend(L, Rewriter, LPM);
   1662 
   1663   // Check to see if this loop has a computable loop-invariant execution count.
   1664   // If so, this means that we can compute the final value of any expressions
   1665   // that are recurrent in the loop, and substitute the exit values from the
   1666   // loop into any instructions outside of the loop that use the final values of
   1667   // the current expressions.
   1668   //
   1669   if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
   1670     RewriteLoopExitValues(L, Rewriter);
   1671 
   1672   // Eliminate redundant IV cycles.
   1673   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
   1674 
   1675   // If we have a trip count expression, rewrite the loop's exit condition
   1676   // using it.  We can currently only handle loops with a single exit.
   1677   if (canExpandBackedgeTakenCount(L, SE) && needsLFTR(L, DT)) {
   1678     PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD);
   1679     if (IndVar) {
   1680       // Check preconditions for proper SCEVExpander operation. SCEV does not
   1681       // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
   1682       // pass that uses the SCEVExpander must do it. This does not work well for
   1683       // loop passes because SCEVExpander makes assumptions about all loops, while
   1684       // LoopPassManager only forces the current loop to be simplified.
   1685       //
   1686       // FIXME: SCEV expansion has no way to bail out, so the caller must
   1687       // explicitly check any assumptions made by SCEV. Brittle.
   1688       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
   1689       if (!AR || AR->getLoop()->getLoopPreheader())
   1690         (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
   1691                                         Rewriter);
   1692     }
   1693   }
   1694   // Clear the rewriter cache, because values that are in the rewriter's cache
   1695   // can be deleted in the loop below, causing the AssertingVH in the cache to
   1696   // trigger.
   1697   Rewriter.clear();
   1698 
   1699   // Now that we're done iterating through lists, clean up any instructions
   1700   // which are now dead.
   1701   while (!DeadInsts.empty())
   1702     if (Instruction *Inst =
   1703           dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
   1704       RecursivelyDeleteTriviallyDeadInstructions(Inst);
   1705 
   1706   // The Rewriter may not be used from this point on.
   1707 
   1708   // Loop-invariant instructions in the preheader that aren't used in the
   1709   // loop may be sunk below the loop to reduce register pressure.
   1710   SinkUnusedInvariants(L);
   1711 
   1712   // Clean up dead instructions.
   1713   Changed |= DeleteDeadPHIs(L->getHeader());
   1714   // Check a post-condition.
   1715   assert(L->isLCSSAForm(*DT) &&
   1716          "Indvars did not leave the loop in lcssa form!");
   1717 
   1718   // Verify that LFTR, and any other change have not interfered with SCEV's
   1719   // ability to compute trip count.
   1720 #ifndef NDEBUG
   1721   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
   1722     SE->forgetLoop(L);
   1723     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
   1724     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
   1725         SE->getTypeSizeInBits(NewBECount->getType()))
   1726       NewBECount = SE->getTruncateOrNoop(NewBECount,
   1727                                          BackedgeTakenCount->getType());
   1728     else
   1729       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
   1730                                                  NewBECount->getType());
   1731     assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
   1732   }
   1733 #endif
   1734 
   1735   return Changed;
   1736 }
   1737