Home | History | Annotate | Download | only in Scalar
      1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements sparse conditional constant propagation and merging:
     11 //
     12 // Specifically, this:
     13 //   * Assumes values are constant unless proven otherwise
     14 //   * Assumes BasicBlocks are dead unless proven otherwise
     15 //   * Proves values to be constant, and replaces them with constants
     16 //   * Proves conditional branches to be unconditional
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #define DEBUG_TYPE "sccp"
     21 #include "llvm/Transforms/Scalar.h"
     22 #include "llvm/Transforms/IPO.h"
     23 #include "llvm/Constants.h"
     24 #include "llvm/DerivedTypes.h"
     25 #include "llvm/Instructions.h"
     26 #include "llvm/Pass.h"
     27 #include "llvm/Analysis/ConstantFolding.h"
     28 #include "llvm/Transforms/Utils/Local.h"
     29 #include "llvm/Target/TargetData.h"
     30 #include "llvm/Target/TargetLibraryInfo.h"
     31 #include "llvm/Support/CallSite.h"
     32 #include "llvm/Support/Debug.h"
     33 #include "llvm/Support/ErrorHandling.h"
     34 #include "llvm/Support/InstVisitor.h"
     35 #include "llvm/Support/raw_ostream.h"
     36 #include "llvm/ADT/DenseMap.h"
     37 #include "llvm/ADT/DenseSet.h"
     38 #include "llvm/ADT/PointerIntPair.h"
     39 #include "llvm/ADT/SmallPtrSet.h"
     40 #include "llvm/ADT/SmallVector.h"
     41 #include "llvm/ADT/Statistic.h"
     42 #include <algorithm>
     43 using namespace llvm;
     44 
     45 STATISTIC(NumInstRemoved, "Number of instructions removed");
     46 STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
     47 
     48 STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
     49 STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
     50 STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
     51 
     52 namespace {
     53 /// LatticeVal class - This class represents the different lattice values that
     54 /// an LLVM value may occupy.  It is a simple class with value semantics.
     55 ///
     56 class LatticeVal {
     57   enum LatticeValueTy {
     58     /// undefined - This LLVM Value has no known value yet.
     59     undefined,
     60 
     61     /// constant - This LLVM Value has a specific constant value.
     62     constant,
     63 
     64     /// forcedconstant - This LLVM Value was thought to be undef until
     65     /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
     66     /// with another (different) constant, it goes to overdefined, instead of
     67     /// asserting.
     68     forcedconstant,
     69 
     70     /// overdefined - This instruction is not known to be constant, and we know
     71     /// it has a value.
     72     overdefined
     73   };
     74 
     75   /// Val: This stores the current lattice value along with the Constant* for
     76   /// the constant if this is a 'constant' or 'forcedconstant' value.
     77   PointerIntPair<Constant *, 2, LatticeValueTy> Val;
     78 
     79   LatticeValueTy getLatticeValue() const {
     80     return Val.getInt();
     81   }
     82 
     83 public:
     84   LatticeVal() : Val(0, undefined) {}
     85 
     86   bool isUndefined() const { return getLatticeValue() == undefined; }
     87   bool isConstant() const {
     88     return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
     89   }
     90   bool isOverdefined() const { return getLatticeValue() == overdefined; }
     91 
     92   Constant *getConstant() const {
     93     assert(isConstant() && "Cannot get the constant of a non-constant!");
     94     return Val.getPointer();
     95   }
     96 
     97   /// markOverdefined - Return true if this is a change in status.
     98   bool markOverdefined() {
     99     if (isOverdefined())
    100       return false;
    101 
    102     Val.setInt(overdefined);
    103     return true;
    104   }
    105 
    106   /// markConstant - Return true if this is a change in status.
    107   bool markConstant(Constant *V) {
    108     if (getLatticeValue() == constant) { // Constant but not forcedconstant.
    109       assert(getConstant() == V && "Marking constant with different value");
    110       return false;
    111     }
    112 
    113     if (isUndefined()) {
    114       Val.setInt(constant);
    115       assert(V && "Marking constant with NULL");
    116       Val.setPointer(V);
    117     } else {
    118       assert(getLatticeValue() == forcedconstant &&
    119              "Cannot move from overdefined to constant!");
    120       // Stay at forcedconstant if the constant is the same.
    121       if (V == getConstant()) return false;
    122 
    123       // Otherwise, we go to overdefined.  Assumptions made based on the
    124       // forced value are possibly wrong.  Assuming this is another constant
    125       // could expose a contradiction.
    126       Val.setInt(overdefined);
    127     }
    128     return true;
    129   }
    130 
    131   /// getConstantInt - If this is a constant with a ConstantInt value, return it
    132   /// otherwise return null.
    133   ConstantInt *getConstantInt() const {
    134     if (isConstant())
    135       return dyn_cast<ConstantInt>(getConstant());
    136     return 0;
    137   }
    138 
    139   void markForcedConstant(Constant *V) {
    140     assert(isUndefined() && "Can't force a defined value!");
    141     Val.setInt(forcedconstant);
    142     Val.setPointer(V);
    143   }
    144 };
    145 } // end anonymous namespace.
    146 
    147 
    148 namespace {
    149 
    150 //===----------------------------------------------------------------------===//
    151 //
    152 /// SCCPSolver - This class is a general purpose solver for Sparse Conditional
    153 /// Constant Propagation.
    154 ///
    155 class SCCPSolver : public InstVisitor<SCCPSolver> {
    156   const TargetData *TD;
    157   const TargetLibraryInfo *TLI;
    158   SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable.
    159   DenseMap<Value*, LatticeVal> ValueState;  // The state each value is in.
    160 
    161   /// StructValueState - This maintains ValueState for values that have
    162   /// StructType, for example for formal arguments, calls, insertelement, etc.
    163   ///
    164   DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState;
    165 
    166   /// GlobalValue - If we are tracking any values for the contents of a global
    167   /// variable, we keep a mapping from the constant accessor to the element of
    168   /// the global, to the currently known value.  If the value becomes
    169   /// overdefined, it's entry is simply removed from this map.
    170   DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
    171 
    172   /// TrackedRetVals - If we are tracking arguments into and the return
    173   /// value out of a function, it will have an entry in this map, indicating
    174   /// what the known return value for the function is.
    175   DenseMap<Function*, LatticeVal> TrackedRetVals;
    176 
    177   /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
    178   /// that return multiple values.
    179   DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
    180 
    181   /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
    182   /// represented here for efficient lookup.
    183   SmallPtrSet<Function*, 16> MRVFunctionsTracked;
    184 
    185   /// TrackingIncomingArguments - This is the set of functions for whose
    186   /// arguments we make optimistic assumptions about and try to prove as
    187   /// constants.
    188   SmallPtrSet<Function*, 16> TrackingIncomingArguments;
    189 
    190   /// The reason for two worklists is that overdefined is the lowest state
    191   /// on the lattice, and moving things to overdefined as fast as possible
    192   /// makes SCCP converge much faster.
    193   ///
    194   /// By having a separate worklist, we accomplish this because everything
    195   /// possibly overdefined will become overdefined at the soonest possible
    196   /// point.
    197   SmallVector<Value*, 64> OverdefinedInstWorkList;
    198   SmallVector<Value*, 64> InstWorkList;
    199 
    200 
    201   SmallVector<BasicBlock*, 64>  BBWorkList;  // The BasicBlock work list
    202 
    203   /// KnownFeasibleEdges - Entries in this set are edges which have already had
    204   /// PHI nodes retriggered.
    205   typedef std::pair<BasicBlock*, BasicBlock*> Edge;
    206   DenseSet<Edge> KnownFeasibleEdges;
    207 public:
    208   SCCPSolver(const TargetData *td, const TargetLibraryInfo *tli)
    209     : TD(td), TLI(tli) {}
    210 
    211   /// MarkBlockExecutable - This method can be used by clients to mark all of
    212   /// the blocks that are known to be intrinsically live in the processed unit.
    213   ///
    214   /// This returns true if the block was not considered live before.
    215   bool MarkBlockExecutable(BasicBlock *BB) {
    216     if (!BBExecutable.insert(BB)) return false;
    217     DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n");
    218     BBWorkList.push_back(BB);  // Add the block to the work list!
    219     return true;
    220   }
    221 
    222   /// TrackValueOfGlobalVariable - Clients can use this method to
    223   /// inform the SCCPSolver that it should track loads and stores to the
    224   /// specified global variable if it can.  This is only legal to call if
    225   /// performing Interprocedural SCCP.
    226   void TrackValueOfGlobalVariable(GlobalVariable *GV) {
    227     // We only track the contents of scalar globals.
    228     if (GV->getType()->getElementType()->isSingleValueType()) {
    229       LatticeVal &IV = TrackedGlobals[GV];
    230       if (!isa<UndefValue>(GV->getInitializer()))
    231         IV.markConstant(GV->getInitializer());
    232     }
    233   }
    234 
    235   /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
    236   /// and out of the specified function (which cannot have its address taken),
    237   /// this method must be called.
    238   void AddTrackedFunction(Function *F) {
    239     // Add an entry, F -> undef.
    240     if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
    241       MRVFunctionsTracked.insert(F);
    242       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
    243         TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
    244                                                      LatticeVal()));
    245     } else
    246       TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
    247   }
    248 
    249   void AddArgumentTrackedFunction(Function *F) {
    250     TrackingIncomingArguments.insert(F);
    251   }
    252 
    253   /// Solve - Solve for constants and executable blocks.
    254   ///
    255   void Solve();
    256 
    257   /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
    258   /// that branches on undef values cannot reach any of their successors.
    259   /// However, this is not a safe assumption.  After we solve dataflow, this
    260   /// method should be use to handle this.  If this returns true, the solver
    261   /// should be rerun.
    262   bool ResolvedUndefsIn(Function &F);
    263 
    264   bool isBlockExecutable(BasicBlock *BB) const {
    265     return BBExecutable.count(BB);
    266   }
    267 
    268   LatticeVal getLatticeValueFor(Value *V) const {
    269     DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V);
    270     assert(I != ValueState.end() && "V is not in valuemap!");
    271     return I->second;
    272   }
    273 
    274   /*LatticeVal getStructLatticeValueFor(Value *V, unsigned i) const {
    275     DenseMap<std::pair<Value*, unsigned>, LatticeVal>::const_iterator I =
    276       StructValueState.find(std::make_pair(V, i));
    277     assert(I != StructValueState.end() && "V is not in valuemap!");
    278     return I->second;
    279   }*/
    280 
    281   /// getTrackedRetVals - Get the inferred return value map.
    282   ///
    283   const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
    284     return TrackedRetVals;
    285   }
    286 
    287   /// getTrackedGlobals - Get and return the set of inferred initializers for
    288   /// global variables.
    289   const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
    290     return TrackedGlobals;
    291   }
    292 
    293   void markOverdefined(Value *V) {
    294     assert(!V->getType()->isStructTy() && "Should use other method");
    295     markOverdefined(ValueState[V], V);
    296   }
    297 
    298   /// markAnythingOverdefined - Mark the specified value overdefined.  This
    299   /// works with both scalars and structs.
    300   void markAnythingOverdefined(Value *V) {
    301     if (StructType *STy = dyn_cast<StructType>(V->getType()))
    302       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
    303         markOverdefined(getStructValueState(V, i), V);
    304     else
    305       markOverdefined(V);
    306   }
    307 
    308 private:
    309   // markConstant - Make a value be marked as "constant".  If the value
    310   // is not already a constant, add it to the instruction work list so that
    311   // the users of the instruction are updated later.
    312   //
    313   void markConstant(LatticeVal &IV, Value *V, Constant *C) {
    314     if (!IV.markConstant(C)) return;
    315     DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
    316     if (IV.isOverdefined())
    317       OverdefinedInstWorkList.push_back(V);
    318     else
    319       InstWorkList.push_back(V);
    320   }
    321 
    322   void markConstant(Value *V, Constant *C) {
    323     assert(!V->getType()->isStructTy() && "Should use other method");
    324     markConstant(ValueState[V], V, C);
    325   }
    326 
    327   void markForcedConstant(Value *V, Constant *C) {
    328     assert(!V->getType()->isStructTy() && "Should use other method");
    329     LatticeVal &IV = ValueState[V];
    330     IV.markForcedConstant(C);
    331     DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n');
    332     if (IV.isOverdefined())
    333       OverdefinedInstWorkList.push_back(V);
    334     else
    335       InstWorkList.push_back(V);
    336   }
    337 
    338 
    339   // markOverdefined - Make a value be marked as "overdefined". If the
    340   // value is not already overdefined, add it to the overdefined instruction
    341   // work list so that the users of the instruction are updated later.
    342   void markOverdefined(LatticeVal &IV, Value *V) {
    343     if (!IV.markOverdefined()) return;
    344 
    345     DEBUG(dbgs() << "markOverdefined: ";
    346           if (Function *F = dyn_cast<Function>(V))
    347             dbgs() << "Function '" << F->getName() << "'\n";
    348           else
    349             dbgs() << *V << '\n');
    350     // Only instructions go on the work list
    351     OverdefinedInstWorkList.push_back(V);
    352   }
    353 
    354   void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) {
    355     if (IV.isOverdefined() || MergeWithV.isUndefined())
    356       return;  // Noop.
    357     if (MergeWithV.isOverdefined())
    358       markOverdefined(IV, V);
    359     else if (IV.isUndefined())
    360       markConstant(IV, V, MergeWithV.getConstant());
    361     else if (IV.getConstant() != MergeWithV.getConstant())
    362       markOverdefined(IV, V);
    363   }
    364 
    365   void mergeInValue(Value *V, LatticeVal MergeWithV) {
    366     assert(!V->getType()->isStructTy() && "Should use other method");
    367     mergeInValue(ValueState[V], V, MergeWithV);
    368   }
    369 
    370 
    371   /// getValueState - Return the LatticeVal object that corresponds to the
    372   /// value.  This function handles the case when the value hasn't been seen yet
    373   /// by properly seeding constants etc.
    374   LatticeVal &getValueState(Value *V) {
    375     assert(!V->getType()->isStructTy() && "Should use getStructValueState");
    376 
    377     std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I =
    378       ValueState.insert(std::make_pair(V, LatticeVal()));
    379     LatticeVal &LV = I.first->second;
    380 
    381     if (!I.second)
    382       return LV;  // Common case, already in the map.
    383 
    384     if (Constant *C = dyn_cast<Constant>(V)) {
    385       // Undef values remain undefined.
    386       if (!isa<UndefValue>(V))
    387         LV.markConstant(C);          // Constants are constant
    388     }
    389 
    390     // All others are underdefined by default.
    391     return LV;
    392   }
    393 
    394   /// getStructValueState - Return the LatticeVal object that corresponds to the
    395   /// value/field pair.  This function handles the case when the value hasn't
    396   /// been seen yet by properly seeding constants etc.
    397   LatticeVal &getStructValueState(Value *V, unsigned i) {
    398     assert(V->getType()->isStructTy() && "Should use getValueState");
    399     assert(i < cast<StructType>(V->getType())->getNumElements() &&
    400            "Invalid element #");
    401 
    402     std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator,
    403               bool> I = StructValueState.insert(
    404                         std::make_pair(std::make_pair(V, i), LatticeVal()));
    405     LatticeVal &LV = I.first->second;
    406 
    407     if (!I.second)
    408       return LV;  // Common case, already in the map.
    409 
    410     if (Constant *C = dyn_cast<Constant>(V)) {
    411       Constant *Elt = C->getAggregateElement(i);
    412 
    413       if (Elt == 0)
    414         LV.markOverdefined();      // Unknown sort of constant.
    415       else if (isa<UndefValue>(Elt))
    416         ; // Undef values remain undefined.
    417       else
    418         LV.markConstant(Elt);      // Constants are constant.
    419     }
    420 
    421     // All others are underdefined by default.
    422     return LV;
    423   }
    424 
    425 
    426   /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
    427   /// work list if it is not already executable.
    428   void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
    429     if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
    430       return;  // This edge is already known to be executable!
    431 
    432     if (!MarkBlockExecutable(Dest)) {
    433       // If the destination is already executable, we just made an *edge*
    434       // feasible that wasn't before.  Revisit the PHI nodes in the block
    435       // because they have potentially new operands.
    436       DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
    437             << " -> " << Dest->getName() << "\n");
    438 
    439       PHINode *PN;
    440       for (BasicBlock::iterator I = Dest->begin();
    441            (PN = dyn_cast<PHINode>(I)); ++I)
    442         visitPHINode(*PN);
    443     }
    444   }
    445 
    446   // getFeasibleSuccessors - Return a vector of booleans to indicate which
    447   // successors are reachable from a given terminator instruction.
    448   //
    449   void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs);
    450 
    451   // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
    452   // block to the 'To' basic block is currently feasible.
    453   //
    454   bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
    455 
    456   // OperandChangedState - This method is invoked on all of the users of an
    457   // instruction that was just changed state somehow.  Based on this
    458   // information, we need to update the specified user of this instruction.
    459   //
    460   void OperandChangedState(Instruction *I) {
    461     if (BBExecutable.count(I->getParent()))   // Inst is executable?
    462       visit(*I);
    463   }
    464 
    465 private:
    466   friend class InstVisitor<SCCPSolver>;
    467 
    468   // visit implementations - Something changed in this instruction.  Either an
    469   // operand made a transition, or the instruction is newly executable.  Change
    470   // the value type of I to reflect these changes if appropriate.
    471   void visitPHINode(PHINode &I);
    472 
    473   // Terminators
    474   void visitReturnInst(ReturnInst &I);
    475   void visitTerminatorInst(TerminatorInst &TI);
    476 
    477   void visitCastInst(CastInst &I);
    478   void visitSelectInst(SelectInst &I);
    479   void visitBinaryOperator(Instruction &I);
    480   void visitCmpInst(CmpInst &I);
    481   void visitExtractElementInst(ExtractElementInst &I);
    482   void visitInsertElementInst(InsertElementInst &I);
    483   void visitShuffleVectorInst(ShuffleVectorInst &I);
    484   void visitExtractValueInst(ExtractValueInst &EVI);
    485   void visitInsertValueInst(InsertValueInst &IVI);
    486   void visitLandingPadInst(LandingPadInst &I) { markAnythingOverdefined(&I); }
    487 
    488   // Instructions that cannot be folded away.
    489   void visitStoreInst     (StoreInst &I);
    490   void visitLoadInst      (LoadInst &I);
    491   void visitGetElementPtrInst(GetElementPtrInst &I);
    492   void visitCallInst      (CallInst &I) {
    493     visitCallSite(&I);
    494   }
    495   void visitInvokeInst    (InvokeInst &II) {
    496     visitCallSite(&II);
    497     visitTerminatorInst(II);
    498   }
    499   void visitCallSite      (CallSite CS);
    500   void visitResumeInst    (TerminatorInst &I) { /*returns void*/ }
    501   void visitUnwindInst    (TerminatorInst &I) { /*returns void*/ }
    502   void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
    503   void visitFenceInst     (FenceInst &I) { /*returns void*/ }
    504   void visitAtomicCmpXchgInst (AtomicCmpXchgInst &I) { markOverdefined(&I); }
    505   void visitAtomicRMWInst (AtomicRMWInst &I) { markOverdefined(&I); }
    506   void visitAllocaInst    (Instruction &I) { markOverdefined(&I); }
    507   void visitVAArgInst     (Instruction &I) { markAnythingOverdefined(&I); }
    508 
    509   void visitInstruction(Instruction &I) {
    510     // If a new instruction is added to LLVM that we don't handle.
    511     dbgs() << "SCCP: Don't know how to handle: " << I;
    512     markAnythingOverdefined(&I);   // Just in case
    513   }
    514 };
    515 
    516 } // end anonymous namespace
    517 
    518 
    519 // getFeasibleSuccessors - Return a vector of booleans to indicate which
    520 // successors are reachable from a given terminator instruction.
    521 //
    522 void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
    523                                        SmallVector<bool, 16> &Succs) {
    524   Succs.resize(TI.getNumSuccessors());
    525   if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
    526     if (BI->isUnconditional()) {
    527       Succs[0] = true;
    528       return;
    529     }
    530 
    531     LatticeVal BCValue = getValueState(BI->getCondition());
    532     ConstantInt *CI = BCValue.getConstantInt();
    533     if (CI == 0) {
    534       // Overdefined condition variables, and branches on unfoldable constant
    535       // conditions, mean the branch could go either way.
    536       if (!BCValue.isUndefined())
    537         Succs[0] = Succs[1] = true;
    538       return;
    539     }
    540 
    541     // Constant condition variables mean the branch can only go a single way.
    542     Succs[CI->isZero()] = true;
    543     return;
    544   }
    545 
    546   if (isa<InvokeInst>(TI)) {
    547     // Invoke instructions successors are always executable.
    548     Succs[0] = Succs[1] = true;
    549     return;
    550   }
    551 
    552   if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
    553     if (!SI->getNumCases()) {
    554       Succs[0] = true;
    555       return;
    556     }
    557     LatticeVal SCValue = getValueState(SI->getCondition());
    558     ConstantInt *CI = SCValue.getConstantInt();
    559 
    560     if (CI == 0) {   // Overdefined or undefined condition?
    561       // All destinations are executable!
    562       if (!SCValue.isUndefined())
    563         Succs.assign(TI.getNumSuccessors(), true);
    564       return;
    565     }
    566 
    567     Succs[SI->findCaseValue(CI).getSuccessorIndex()] = true;
    568     return;
    569   }
    570 
    571   // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
    572   if (isa<IndirectBrInst>(&TI)) {
    573     // Just mark all destinations executable!
    574     Succs.assign(TI.getNumSuccessors(), true);
    575     return;
    576   }
    577 
    578 #ifndef NDEBUG
    579   dbgs() << "Unknown terminator instruction: " << TI << '\n';
    580 #endif
    581   llvm_unreachable("SCCP: Don't know how to handle this terminator!");
    582 }
    583 
    584 
    585 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
    586 // block to the 'To' basic block is currently feasible.
    587 //
    588 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
    589   assert(BBExecutable.count(To) && "Dest should always be alive!");
    590 
    591   // Make sure the source basic block is executable!!
    592   if (!BBExecutable.count(From)) return false;
    593 
    594   // Check to make sure this edge itself is actually feasible now.
    595   TerminatorInst *TI = From->getTerminator();
    596   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    597     if (BI->isUnconditional())
    598       return true;
    599 
    600     LatticeVal BCValue = getValueState(BI->getCondition());
    601 
    602     // Overdefined condition variables mean the branch could go either way,
    603     // undef conditions mean that neither edge is feasible yet.
    604     ConstantInt *CI = BCValue.getConstantInt();
    605     if (CI == 0)
    606       return !BCValue.isUndefined();
    607 
    608     // Constant condition variables mean the branch can only go a single way.
    609     return BI->getSuccessor(CI->isZero()) == To;
    610   }
    611 
    612   // Invoke instructions successors are always executable.
    613   if (isa<InvokeInst>(TI))
    614     return true;
    615 
    616   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    617     if (SI->getNumCases() < 1)
    618       return true;
    619 
    620     LatticeVal SCValue = getValueState(SI->getCondition());
    621     ConstantInt *CI = SCValue.getConstantInt();
    622 
    623     if (CI == 0)
    624       return !SCValue.isUndefined();
    625 
    626     return SI->findCaseValue(CI).getCaseSuccessor() == To;
    627   }
    628 
    629   // Just mark all destinations executable!
    630   // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
    631   if (isa<IndirectBrInst>(TI))
    632     return true;
    633 
    634 #ifndef NDEBUG
    635   dbgs() << "Unknown terminator instruction: " << *TI << '\n';
    636 #endif
    637   llvm_unreachable(0);
    638 }
    639 
    640 // visit Implementations - Something changed in this instruction, either an
    641 // operand made a transition, or the instruction is newly executable.  Change
    642 // the value type of I to reflect these changes if appropriate.  This method
    643 // makes sure to do the following actions:
    644 //
    645 // 1. If a phi node merges two constants in, and has conflicting value coming
    646 //    from different branches, or if the PHI node merges in an overdefined
    647 //    value, then the PHI node becomes overdefined.
    648 // 2. If a phi node merges only constants in, and they all agree on value, the
    649 //    PHI node becomes a constant value equal to that.
    650 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
    651 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
    652 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
    653 // 6. If a conditional branch has a value that is constant, make the selected
    654 //    destination executable
    655 // 7. If a conditional branch has a value that is overdefined, make all
    656 //    successors executable.
    657 //
    658 void SCCPSolver::visitPHINode(PHINode &PN) {
    659   // If this PN returns a struct, just mark the result overdefined.
    660   // TODO: We could do a lot better than this if code actually uses this.
    661   if (PN.getType()->isStructTy())
    662     return markAnythingOverdefined(&PN);
    663 
    664   if (getValueState(&PN).isOverdefined())
    665     return;  // Quick exit
    666 
    667   // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
    668   // and slow us down a lot.  Just mark them overdefined.
    669   if (PN.getNumIncomingValues() > 64)
    670     return markOverdefined(&PN);
    671 
    672   // Look at all of the executable operands of the PHI node.  If any of them
    673   // are overdefined, the PHI becomes overdefined as well.  If they are all
    674   // constant, and they agree with each other, the PHI becomes the identical
    675   // constant.  If they are constant and don't agree, the PHI is overdefined.
    676   // If there are no executable operands, the PHI remains undefined.
    677   //
    678   Constant *OperandVal = 0;
    679   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
    680     LatticeVal IV = getValueState(PN.getIncomingValue(i));
    681     if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
    682 
    683     if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
    684       continue;
    685 
    686     if (IV.isOverdefined())    // PHI node becomes overdefined!
    687       return markOverdefined(&PN);
    688 
    689     if (OperandVal == 0) {   // Grab the first value.
    690       OperandVal = IV.getConstant();
    691       continue;
    692     }
    693 
    694     // There is already a reachable operand.  If we conflict with it,
    695     // then the PHI node becomes overdefined.  If we agree with it, we
    696     // can continue on.
    697 
    698     // Check to see if there are two different constants merging, if so, the PHI
    699     // node is overdefined.
    700     if (IV.getConstant() != OperandVal)
    701       return markOverdefined(&PN);
    702   }
    703 
    704   // If we exited the loop, this means that the PHI node only has constant
    705   // arguments that agree with each other(and OperandVal is the constant) or
    706   // OperandVal is null because there are no defined incoming arguments.  If
    707   // this is the case, the PHI remains undefined.
    708   //
    709   if (OperandVal)
    710     markConstant(&PN, OperandVal);      // Acquire operand value
    711 }
    712 
    713 
    714 
    715 
    716 void SCCPSolver::visitReturnInst(ReturnInst &I) {
    717   if (I.getNumOperands() == 0) return;  // ret void
    718 
    719   Function *F = I.getParent()->getParent();
    720   Value *ResultOp = I.getOperand(0);
    721 
    722   // If we are tracking the return value of this function, merge it in.
    723   if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
    724     DenseMap<Function*, LatticeVal>::iterator TFRVI =
    725       TrackedRetVals.find(F);
    726     if (TFRVI != TrackedRetVals.end()) {
    727       mergeInValue(TFRVI->second, F, getValueState(ResultOp));
    728       return;
    729     }
    730   }
    731 
    732   // Handle functions that return multiple values.
    733   if (!TrackedMultipleRetVals.empty()) {
    734     if (StructType *STy = dyn_cast<StructType>(ResultOp->getType()))
    735       if (MRVFunctionsTracked.count(F))
    736         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
    737           mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
    738                        getStructValueState(ResultOp, i));
    739 
    740   }
    741 }
    742 
    743 void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
    744   SmallVector<bool, 16> SuccFeasible;
    745   getFeasibleSuccessors(TI, SuccFeasible);
    746 
    747   BasicBlock *BB = TI.getParent();
    748 
    749   // Mark all feasible successors executable.
    750   for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
    751     if (SuccFeasible[i])
    752       markEdgeExecutable(BB, TI.getSuccessor(i));
    753 }
    754 
    755 void SCCPSolver::visitCastInst(CastInst &I) {
    756   LatticeVal OpSt = getValueState(I.getOperand(0));
    757   if (OpSt.isOverdefined())          // Inherit overdefinedness of operand
    758     markOverdefined(&I);
    759   else if (OpSt.isConstant())        // Propagate constant value
    760     markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
    761                                            OpSt.getConstant(), I.getType()));
    762 }
    763 
    764 
    765 void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
    766   // If this returns a struct, mark all elements over defined, we don't track
    767   // structs in structs.
    768   if (EVI.getType()->isStructTy())
    769     return markAnythingOverdefined(&EVI);
    770 
    771   // If this is extracting from more than one level of struct, we don't know.
    772   if (EVI.getNumIndices() != 1)
    773     return markOverdefined(&EVI);
    774 
    775   Value *AggVal = EVI.getAggregateOperand();
    776   if (AggVal->getType()->isStructTy()) {
    777     unsigned i = *EVI.idx_begin();
    778     LatticeVal EltVal = getStructValueState(AggVal, i);
    779     mergeInValue(getValueState(&EVI), &EVI, EltVal);
    780   } else {
    781     // Otherwise, must be extracting from an array.
    782     return markOverdefined(&EVI);
    783   }
    784 }
    785 
    786 void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
    787   StructType *STy = dyn_cast<StructType>(IVI.getType());
    788   if (STy == 0)
    789     return markOverdefined(&IVI);
    790 
    791   // If this has more than one index, we can't handle it, drive all results to
    792   // undef.
    793   if (IVI.getNumIndices() != 1)
    794     return markAnythingOverdefined(&IVI);
    795 
    796   Value *Aggr = IVI.getAggregateOperand();
    797   unsigned Idx = *IVI.idx_begin();
    798 
    799   // Compute the result based on what we're inserting.
    800   for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    801     // This passes through all values that aren't the inserted element.
    802     if (i != Idx) {
    803       LatticeVal EltVal = getStructValueState(Aggr, i);
    804       mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
    805       continue;
    806     }
    807 
    808     Value *Val = IVI.getInsertedValueOperand();
    809     if (Val->getType()->isStructTy())
    810       // We don't track structs in structs.
    811       markOverdefined(getStructValueState(&IVI, i), &IVI);
    812     else {
    813       LatticeVal InVal = getValueState(Val);
    814       mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
    815     }
    816   }
    817 }
    818 
    819 void SCCPSolver::visitSelectInst(SelectInst &I) {
    820   // If this select returns a struct, just mark the result overdefined.
    821   // TODO: We could do a lot better than this if code actually uses this.
    822   if (I.getType()->isStructTy())
    823     return markAnythingOverdefined(&I);
    824 
    825   LatticeVal CondValue = getValueState(I.getCondition());
    826   if (CondValue.isUndefined())
    827     return;
    828 
    829   if (ConstantInt *CondCB = CondValue.getConstantInt()) {
    830     Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
    831     mergeInValue(&I, getValueState(OpVal));
    832     return;
    833   }
    834 
    835   // Otherwise, the condition is overdefined or a constant we can't evaluate.
    836   // See if we can produce something better than overdefined based on the T/F
    837   // value.
    838   LatticeVal TVal = getValueState(I.getTrueValue());
    839   LatticeVal FVal = getValueState(I.getFalseValue());
    840 
    841   // select ?, C, C -> C.
    842   if (TVal.isConstant() && FVal.isConstant() &&
    843       TVal.getConstant() == FVal.getConstant())
    844     return markConstant(&I, FVal.getConstant());
    845 
    846   if (TVal.isUndefined())   // select ?, undef, X -> X.
    847     return mergeInValue(&I, FVal);
    848   if (FVal.isUndefined())   // select ?, X, undef -> X.
    849     return mergeInValue(&I, TVal);
    850   markOverdefined(&I);
    851 }
    852 
    853 // Handle Binary Operators.
    854 void SCCPSolver::visitBinaryOperator(Instruction &I) {
    855   LatticeVal V1State = getValueState(I.getOperand(0));
    856   LatticeVal V2State = getValueState(I.getOperand(1));
    857 
    858   LatticeVal &IV = ValueState[&I];
    859   if (IV.isOverdefined()) return;
    860 
    861   if (V1State.isConstant() && V2State.isConstant())
    862     return markConstant(IV, &I,
    863                         ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
    864                                           V2State.getConstant()));
    865 
    866   // If something is undef, wait for it to resolve.
    867   if (!V1State.isOverdefined() && !V2State.isOverdefined())
    868     return;
    869 
    870   // Otherwise, one of our operands is overdefined.  Try to produce something
    871   // better than overdefined with some tricks.
    872 
    873   // If this is an AND or OR with 0 or -1, it doesn't matter that the other
    874   // operand is overdefined.
    875   if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
    876     LatticeVal *NonOverdefVal = 0;
    877     if (!V1State.isOverdefined())
    878       NonOverdefVal = &V1State;
    879     else if (!V2State.isOverdefined())
    880       NonOverdefVal = &V2State;
    881 
    882     if (NonOverdefVal) {
    883       if (NonOverdefVal->isUndefined()) {
    884         // Could annihilate value.
    885         if (I.getOpcode() == Instruction::And)
    886           markConstant(IV, &I, Constant::getNullValue(I.getType()));
    887         else if (VectorType *PT = dyn_cast<VectorType>(I.getType()))
    888           markConstant(IV, &I, Constant::getAllOnesValue(PT));
    889         else
    890           markConstant(IV, &I,
    891                        Constant::getAllOnesValue(I.getType()));
    892         return;
    893       }
    894 
    895       if (I.getOpcode() == Instruction::And) {
    896         // X and 0 = 0
    897         if (NonOverdefVal->getConstant()->isNullValue())
    898           return markConstant(IV, &I, NonOverdefVal->getConstant());
    899       } else {
    900         if (ConstantInt *CI = NonOverdefVal->getConstantInt())
    901           if (CI->isAllOnesValue())     // X or -1 = -1
    902             return markConstant(IV, &I, NonOverdefVal->getConstant());
    903       }
    904     }
    905   }
    906 
    907 
    908   markOverdefined(&I);
    909 }
    910 
    911 // Handle ICmpInst instruction.
    912 void SCCPSolver::visitCmpInst(CmpInst &I) {
    913   LatticeVal V1State = getValueState(I.getOperand(0));
    914   LatticeVal V2State = getValueState(I.getOperand(1));
    915 
    916   LatticeVal &IV = ValueState[&I];
    917   if (IV.isOverdefined()) return;
    918 
    919   if (V1State.isConstant() && V2State.isConstant())
    920     return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
    921                                                          V1State.getConstant(),
    922                                                         V2State.getConstant()));
    923 
    924   // If operands are still undefined, wait for it to resolve.
    925   if (!V1State.isOverdefined() && !V2State.isOverdefined())
    926     return;
    927 
    928   markOverdefined(&I);
    929 }
    930 
    931 void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
    932   // TODO : SCCP does not handle vectors properly.
    933   return markOverdefined(&I);
    934 
    935 #if 0
    936   LatticeVal &ValState = getValueState(I.getOperand(0));
    937   LatticeVal &IdxState = getValueState(I.getOperand(1));
    938 
    939   if (ValState.isOverdefined() || IdxState.isOverdefined())
    940     markOverdefined(&I);
    941   else if(ValState.isConstant() && IdxState.isConstant())
    942     markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
    943                                                      IdxState.getConstant()));
    944 #endif
    945 }
    946 
    947 void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
    948   // TODO : SCCP does not handle vectors properly.
    949   return markOverdefined(&I);
    950 #if 0
    951   LatticeVal &ValState = getValueState(I.getOperand(0));
    952   LatticeVal &EltState = getValueState(I.getOperand(1));
    953   LatticeVal &IdxState = getValueState(I.getOperand(2));
    954 
    955   if (ValState.isOverdefined() || EltState.isOverdefined() ||
    956       IdxState.isOverdefined())
    957     markOverdefined(&I);
    958   else if(ValState.isConstant() && EltState.isConstant() &&
    959           IdxState.isConstant())
    960     markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
    961                                                     EltState.getConstant(),
    962                                                     IdxState.getConstant()));
    963   else if (ValState.isUndefined() && EltState.isConstant() &&
    964            IdxState.isConstant())
    965     markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
    966                                                    EltState.getConstant(),
    967                                                    IdxState.getConstant()));
    968 #endif
    969 }
    970 
    971 void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
    972   // TODO : SCCP does not handle vectors properly.
    973   return markOverdefined(&I);
    974 #if 0
    975   LatticeVal &V1State   = getValueState(I.getOperand(0));
    976   LatticeVal &V2State   = getValueState(I.getOperand(1));
    977   LatticeVal &MaskState = getValueState(I.getOperand(2));
    978 
    979   if (MaskState.isUndefined() ||
    980       (V1State.isUndefined() && V2State.isUndefined()))
    981     return;  // Undefined output if mask or both inputs undefined.
    982 
    983   if (V1State.isOverdefined() || V2State.isOverdefined() ||
    984       MaskState.isOverdefined()) {
    985     markOverdefined(&I);
    986   } else {
    987     // A mix of constant/undef inputs.
    988     Constant *V1 = V1State.isConstant() ?
    989         V1State.getConstant() : UndefValue::get(I.getType());
    990     Constant *V2 = V2State.isConstant() ?
    991         V2State.getConstant() : UndefValue::get(I.getType());
    992     Constant *Mask = MaskState.isConstant() ?
    993       MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
    994     markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
    995   }
    996 #endif
    997 }
    998 
    999 // Handle getelementptr instructions.  If all operands are constants then we
   1000 // can turn this into a getelementptr ConstantExpr.
   1001 //
   1002 void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
   1003   if (ValueState[&I].isOverdefined()) return;
   1004 
   1005   SmallVector<Constant*, 8> Operands;
   1006   Operands.reserve(I.getNumOperands());
   1007 
   1008   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
   1009     LatticeVal State = getValueState(I.getOperand(i));
   1010     if (State.isUndefined())
   1011       return;  // Operands are not resolved yet.
   1012 
   1013     if (State.isOverdefined())
   1014       return markOverdefined(&I);
   1015 
   1016     assert(State.isConstant() && "Unknown state!");
   1017     Operands.push_back(State.getConstant());
   1018   }
   1019 
   1020   Constant *Ptr = Operands[0];
   1021   ArrayRef<Constant *> Indices(Operands.begin() + 1, Operands.end());
   1022   markConstant(&I, ConstantExpr::getGetElementPtr(Ptr, Indices));
   1023 }
   1024 
   1025 void SCCPSolver::visitStoreInst(StoreInst &SI) {
   1026   // If this store is of a struct, ignore it.
   1027   if (SI.getOperand(0)->getType()->isStructTy())
   1028     return;
   1029 
   1030   if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
   1031     return;
   1032 
   1033   GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
   1034   DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
   1035   if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
   1036 
   1037   // Get the value we are storing into the global, then merge it.
   1038   mergeInValue(I->second, GV, getValueState(SI.getOperand(0)));
   1039   if (I->second.isOverdefined())
   1040     TrackedGlobals.erase(I);      // No need to keep tracking this!
   1041 }
   1042 
   1043 
   1044 // Handle load instructions.  If the operand is a constant pointer to a constant
   1045 // global, we can replace the load with the loaded constant value!
   1046 void SCCPSolver::visitLoadInst(LoadInst &I) {
   1047   // If this load is of a struct, just mark the result overdefined.
   1048   if (I.getType()->isStructTy())
   1049     return markAnythingOverdefined(&I);
   1050 
   1051   LatticeVal PtrVal = getValueState(I.getOperand(0));
   1052   if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
   1053 
   1054   LatticeVal &IV = ValueState[&I];
   1055   if (IV.isOverdefined()) return;
   1056 
   1057   if (!PtrVal.isConstant() || I.isVolatile())
   1058     return markOverdefined(IV, &I);
   1059 
   1060   Constant *Ptr = PtrVal.getConstant();
   1061 
   1062   // load null -> null
   1063   if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0)
   1064     return markConstant(IV, &I, Constant::getNullValue(I.getType()));
   1065 
   1066   // Transform load (constant global) into the value loaded.
   1067   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
   1068     if (!TrackedGlobals.empty()) {
   1069       // If we are tracking this global, merge in the known value for it.
   1070       DenseMap<GlobalVariable*, LatticeVal>::iterator It =
   1071         TrackedGlobals.find(GV);
   1072       if (It != TrackedGlobals.end()) {
   1073         mergeInValue(IV, &I, It->second);
   1074         return;
   1075       }
   1076     }
   1077   }
   1078 
   1079   // Transform load from a constant into a constant if possible.
   1080   if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, TD))
   1081     return markConstant(IV, &I, C);
   1082 
   1083   // Otherwise we cannot say for certain what value this load will produce.
   1084   // Bail out.
   1085   markOverdefined(IV, &I);
   1086 }
   1087 
   1088 void SCCPSolver::visitCallSite(CallSite CS) {
   1089   Function *F = CS.getCalledFunction();
   1090   Instruction *I = CS.getInstruction();
   1091 
   1092   // The common case is that we aren't tracking the callee, either because we
   1093   // are not doing interprocedural analysis or the callee is indirect, or is
   1094   // external.  Handle these cases first.
   1095   if (F == 0 || F->isDeclaration()) {
   1096 CallOverdefined:
   1097     // Void return and not tracking callee, just bail.
   1098     if (I->getType()->isVoidTy()) return;
   1099 
   1100     // Otherwise, if we have a single return value case, and if the function is
   1101     // a declaration, maybe we can constant fold it.
   1102     if (F && F->isDeclaration() && !I->getType()->isStructTy() &&
   1103         canConstantFoldCallTo(F)) {
   1104 
   1105       SmallVector<Constant*, 8> Operands;
   1106       for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
   1107            AI != E; ++AI) {
   1108         LatticeVal State = getValueState(*AI);
   1109 
   1110         if (State.isUndefined())
   1111           return;  // Operands are not resolved yet.
   1112         if (State.isOverdefined())
   1113           return markOverdefined(I);
   1114         assert(State.isConstant() && "Unknown state!");
   1115         Operands.push_back(State.getConstant());
   1116       }
   1117 
   1118       // If we can constant fold this, mark the result of the call as a
   1119       // constant.
   1120       if (Constant *C = ConstantFoldCall(F, Operands, TLI))
   1121         return markConstant(I, C);
   1122     }
   1123 
   1124     // Otherwise, we don't know anything about this call, mark it overdefined.
   1125     return markAnythingOverdefined(I);
   1126   }
   1127 
   1128   // If this is a local function that doesn't have its address taken, mark its
   1129   // entry block executable and merge in the actual arguments to the call into
   1130   // the formal arguments of the function.
   1131   if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){
   1132     MarkBlockExecutable(F->begin());
   1133 
   1134     // Propagate information from this call site into the callee.
   1135     CallSite::arg_iterator CAI = CS.arg_begin();
   1136     for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
   1137          AI != E; ++AI, ++CAI) {
   1138       // If this argument is byval, and if the function is not readonly, there
   1139       // will be an implicit copy formed of the input aggregate.
   1140       if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
   1141         markOverdefined(AI);
   1142         continue;
   1143       }
   1144 
   1145       if (StructType *STy = dyn_cast<StructType>(AI->getType())) {
   1146         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1147           LatticeVal CallArg = getStructValueState(*CAI, i);
   1148           mergeInValue(getStructValueState(AI, i), AI, CallArg);
   1149         }
   1150       } else {
   1151         mergeInValue(AI, getValueState(*CAI));
   1152       }
   1153     }
   1154   }
   1155 
   1156   // If this is a single/zero retval case, see if we're tracking the function.
   1157   if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
   1158     if (!MRVFunctionsTracked.count(F))
   1159       goto CallOverdefined;  // Not tracking this callee.
   1160 
   1161     // If we are tracking this callee, propagate the result of the function
   1162     // into this call site.
   1163     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
   1164       mergeInValue(getStructValueState(I, i), I,
   1165                    TrackedMultipleRetVals[std::make_pair(F, i)]);
   1166   } else {
   1167     DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
   1168     if (TFRVI == TrackedRetVals.end())
   1169       goto CallOverdefined;  // Not tracking this callee.
   1170 
   1171     // If so, propagate the return value of the callee into this call result.
   1172     mergeInValue(I, TFRVI->second);
   1173   }
   1174 }
   1175 
   1176 void SCCPSolver::Solve() {
   1177   // Process the work lists until they are empty!
   1178   while (!BBWorkList.empty() || !InstWorkList.empty() ||
   1179          !OverdefinedInstWorkList.empty()) {
   1180     // Process the overdefined instruction's work list first, which drives other
   1181     // things to overdefined more quickly.
   1182     while (!OverdefinedInstWorkList.empty()) {
   1183       Value *I = OverdefinedInstWorkList.pop_back_val();
   1184 
   1185       DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
   1186 
   1187       // "I" got into the work list because it either made the transition from
   1188       // bottom to constant
   1189       //
   1190       // Anything on this worklist that is overdefined need not be visited
   1191       // since all of its users will have already been marked as overdefined
   1192       // Update all of the users of this instruction's value.
   1193       //
   1194       for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
   1195            UI != E; ++UI)
   1196         if (Instruction *I = dyn_cast<Instruction>(*UI))
   1197           OperandChangedState(I);
   1198     }
   1199 
   1200     // Process the instruction work list.
   1201     while (!InstWorkList.empty()) {
   1202       Value *I = InstWorkList.pop_back_val();
   1203 
   1204       DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
   1205 
   1206       // "I" got into the work list because it made the transition from undef to
   1207       // constant.
   1208       //
   1209       // Anything on this worklist that is overdefined need not be visited
   1210       // since all of its users will have already been marked as overdefined.
   1211       // Update all of the users of this instruction's value.
   1212       //
   1213       if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
   1214         for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
   1215              UI != E; ++UI)
   1216           if (Instruction *I = dyn_cast<Instruction>(*UI))
   1217             OperandChangedState(I);
   1218     }
   1219 
   1220     // Process the basic block work list.
   1221     while (!BBWorkList.empty()) {
   1222       BasicBlock *BB = BBWorkList.back();
   1223       BBWorkList.pop_back();
   1224 
   1225       DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
   1226 
   1227       // Notify all instructions in this basic block that they are newly
   1228       // executable.
   1229       visit(BB);
   1230     }
   1231   }
   1232 }
   1233 
   1234 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
   1235 /// that branches on undef values cannot reach any of their successors.
   1236 /// However, this is not a safe assumption.  After we solve dataflow, this
   1237 /// method should be use to handle this.  If this returns true, the solver
   1238 /// should be rerun.
   1239 ///
   1240 /// This method handles this by finding an unresolved branch and marking it one
   1241 /// of the edges from the block as being feasible, even though the condition
   1242 /// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
   1243 /// CFG and only slightly pessimizes the analysis results (by marking one,
   1244 /// potentially infeasible, edge feasible).  This cannot usefully modify the
   1245 /// constraints on the condition of the branch, as that would impact other users
   1246 /// of the value.
   1247 ///
   1248 /// This scan also checks for values that use undefs, whose results are actually
   1249 /// defined.  For example, 'zext i8 undef to i32' should produce all zeros
   1250 /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
   1251 /// even if X isn't defined.
   1252 bool SCCPSolver::ResolvedUndefsIn(Function &F) {
   1253   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
   1254     if (!BBExecutable.count(BB))
   1255       continue;
   1256 
   1257     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
   1258       // Look for instructions which produce undef values.
   1259       if (I->getType()->isVoidTy()) continue;
   1260 
   1261       if (StructType *STy = dyn_cast<StructType>(I->getType())) {
   1262         // Only a few things that can be structs matter for undef.
   1263 
   1264         // Tracked calls must never be marked overdefined in ResolvedUndefsIn.
   1265         if (CallSite CS = CallSite(I))
   1266           if (Function *F = CS.getCalledFunction())
   1267             if (MRVFunctionsTracked.count(F))
   1268               continue;
   1269 
   1270         // extractvalue and insertvalue don't need to be marked; they are
   1271         // tracked as precisely as their operands.
   1272         if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
   1273           continue;
   1274 
   1275         // Send the results of everything else to overdefined.  We could be
   1276         // more precise than this but it isn't worth bothering.
   1277         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1278           LatticeVal &LV = getStructValueState(I, i);
   1279           if (LV.isUndefined())
   1280             markOverdefined(LV, I);
   1281         }
   1282         continue;
   1283       }
   1284 
   1285       LatticeVal &LV = getValueState(I);
   1286       if (!LV.isUndefined()) continue;
   1287 
   1288       // extractvalue is safe; check here because the argument is a struct.
   1289       if (isa<ExtractValueInst>(I))
   1290         continue;
   1291 
   1292       // Compute the operand LatticeVals, for convenience below.
   1293       // Anything taking a struct is conservatively assumed to require
   1294       // overdefined markings.
   1295       if (I->getOperand(0)->getType()->isStructTy()) {
   1296         markOverdefined(I);
   1297         return true;
   1298       }
   1299       LatticeVal Op0LV = getValueState(I->getOperand(0));
   1300       LatticeVal Op1LV;
   1301       if (I->getNumOperands() == 2) {
   1302         if (I->getOperand(1)->getType()->isStructTy()) {
   1303           markOverdefined(I);
   1304           return true;
   1305         }
   1306 
   1307         Op1LV = getValueState(I->getOperand(1));
   1308       }
   1309       // If this is an instructions whose result is defined even if the input is
   1310       // not fully defined, propagate the information.
   1311       Type *ITy = I->getType();
   1312       switch (I->getOpcode()) {
   1313       case Instruction::Add:
   1314       case Instruction::Sub:
   1315       case Instruction::Trunc:
   1316       case Instruction::FPTrunc:
   1317       case Instruction::BitCast:
   1318         break; // Any undef -> undef
   1319       case Instruction::FSub:
   1320       case Instruction::FAdd:
   1321       case Instruction::FMul:
   1322       case Instruction::FDiv:
   1323       case Instruction::FRem:
   1324         // Floating-point binary operation: be conservative.
   1325         if (Op0LV.isUndefined() && Op1LV.isUndefined())
   1326           markForcedConstant(I, Constant::getNullValue(ITy));
   1327         else
   1328           markOverdefined(I);
   1329         return true;
   1330       case Instruction::ZExt:
   1331       case Instruction::SExt:
   1332       case Instruction::FPToUI:
   1333       case Instruction::FPToSI:
   1334       case Instruction::FPExt:
   1335       case Instruction::PtrToInt:
   1336       case Instruction::IntToPtr:
   1337       case Instruction::SIToFP:
   1338       case Instruction::UIToFP:
   1339         // undef -> 0; some outputs are impossible
   1340         markForcedConstant(I, Constant::getNullValue(ITy));
   1341         return true;
   1342       case Instruction::Mul:
   1343       case Instruction::And:
   1344         // Both operands undef -> undef
   1345         if (Op0LV.isUndefined() && Op1LV.isUndefined())
   1346           break;
   1347         // undef * X -> 0.   X could be zero.
   1348         // undef & X -> 0.   X could be zero.
   1349         markForcedConstant(I, Constant::getNullValue(ITy));
   1350         return true;
   1351 
   1352       case Instruction::Or:
   1353         // Both operands undef -> undef
   1354         if (Op0LV.isUndefined() && Op1LV.isUndefined())
   1355           break;
   1356         // undef | X -> -1.   X could be -1.
   1357         markForcedConstant(I, Constant::getAllOnesValue(ITy));
   1358         return true;
   1359 
   1360       case Instruction::Xor:
   1361         // undef ^ undef -> 0; strictly speaking, this is not strictly
   1362         // necessary, but we try to be nice to people who expect this
   1363         // behavior in simple cases
   1364         if (Op0LV.isUndefined() && Op1LV.isUndefined()) {
   1365           markForcedConstant(I, Constant::getNullValue(ITy));
   1366           return true;
   1367         }
   1368         // undef ^ X -> undef
   1369         break;
   1370 
   1371       case Instruction::SDiv:
   1372       case Instruction::UDiv:
   1373       case Instruction::SRem:
   1374       case Instruction::URem:
   1375         // X / undef -> undef.  No change.
   1376         // X % undef -> undef.  No change.
   1377         if (Op1LV.isUndefined()) break;
   1378 
   1379         // undef / X -> 0.   X could be maxint.
   1380         // undef % X -> 0.   X could be 1.
   1381         markForcedConstant(I, Constant::getNullValue(ITy));
   1382         return true;
   1383 
   1384       case Instruction::AShr:
   1385         // X >>a undef -> undef.
   1386         if (Op1LV.isUndefined()) break;
   1387 
   1388         // undef >>a X -> all ones
   1389         markForcedConstant(I, Constant::getAllOnesValue(ITy));
   1390         return true;
   1391       case Instruction::LShr:
   1392       case Instruction::Shl:
   1393         // X << undef -> undef.
   1394         // X >> undef -> undef.
   1395         if (Op1LV.isUndefined()) break;
   1396 
   1397         // undef << X -> 0
   1398         // undef >> X -> 0
   1399         markForcedConstant(I, Constant::getNullValue(ITy));
   1400         return true;
   1401       case Instruction::Select:
   1402         Op1LV = getValueState(I->getOperand(1));
   1403         // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
   1404         if (Op0LV.isUndefined()) {
   1405           if (!Op1LV.isConstant())  // Pick the constant one if there is any.
   1406             Op1LV = getValueState(I->getOperand(2));
   1407         } else if (Op1LV.isUndefined()) {
   1408           // c ? undef : undef -> undef.  No change.
   1409           Op1LV = getValueState(I->getOperand(2));
   1410           if (Op1LV.isUndefined())
   1411             break;
   1412           // Otherwise, c ? undef : x -> x.
   1413         } else {
   1414           // Leave Op1LV as Operand(1)'s LatticeValue.
   1415         }
   1416 
   1417         if (Op1LV.isConstant())
   1418           markForcedConstant(I, Op1LV.getConstant());
   1419         else
   1420           markOverdefined(I);
   1421         return true;
   1422       case Instruction::Load:
   1423         // A load here means one of two things: a load of undef from a global,
   1424         // a load from an unknown pointer.  Either way, having it return undef
   1425         // is okay.
   1426         break;
   1427       case Instruction::ICmp:
   1428         // X == undef -> undef.  Other comparisons get more complicated.
   1429         if (cast<ICmpInst>(I)->isEquality())
   1430           break;
   1431         markOverdefined(I);
   1432         return true;
   1433       case Instruction::Call:
   1434       case Instruction::Invoke: {
   1435         // There are two reasons a call can have an undef result
   1436         // 1. It could be tracked.
   1437         // 2. It could be constant-foldable.
   1438         // Because of the way we solve return values, tracked calls must
   1439         // never be marked overdefined in ResolvedUndefsIn.
   1440         if (Function *F = CallSite(I).getCalledFunction())
   1441           if (TrackedRetVals.count(F))
   1442             break;
   1443 
   1444         // If the call is constant-foldable, we mark it overdefined because
   1445         // we do not know what return values are valid.
   1446         markOverdefined(I);
   1447         return true;
   1448       }
   1449       default:
   1450         // If we don't know what should happen here, conservatively mark it
   1451         // overdefined.
   1452         markOverdefined(I);
   1453         return true;
   1454       }
   1455     }
   1456 
   1457     // Check to see if we have a branch or switch on an undefined value.  If so
   1458     // we force the branch to go one way or the other to make the successor
   1459     // values live.  It doesn't really matter which way we force it.
   1460     TerminatorInst *TI = BB->getTerminator();
   1461     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
   1462       if (!BI->isConditional()) continue;
   1463       if (!getValueState(BI->getCondition()).isUndefined())
   1464         continue;
   1465 
   1466       // If the input to SCCP is actually branch on undef, fix the undef to
   1467       // false.
   1468       if (isa<UndefValue>(BI->getCondition())) {
   1469         BI->setCondition(ConstantInt::getFalse(BI->getContext()));
   1470         markEdgeExecutable(BB, TI->getSuccessor(1));
   1471         return true;
   1472       }
   1473 
   1474       // Otherwise, it is a branch on a symbolic value which is currently
   1475       // considered to be undef.  Handle this by forcing the input value to the
   1476       // branch to false.
   1477       markForcedConstant(BI->getCondition(),
   1478                          ConstantInt::getFalse(TI->getContext()));
   1479       return true;
   1480     }
   1481 
   1482     if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
   1483       if (!SI->getNumCases())
   1484         continue;
   1485       if (!getValueState(SI->getCondition()).isUndefined())
   1486         continue;
   1487 
   1488       // If the input to SCCP is actually switch on undef, fix the undef to
   1489       // the first constant.
   1490       if (isa<UndefValue>(SI->getCondition())) {
   1491         SI->setCondition(SI->case_begin().getCaseValue());
   1492         markEdgeExecutable(BB, SI->case_begin().getCaseSuccessor());
   1493         return true;
   1494       }
   1495 
   1496       markForcedConstant(SI->getCondition(), SI->case_begin().getCaseValue());
   1497       return true;
   1498     }
   1499   }
   1500 
   1501   return false;
   1502 }
   1503 
   1504 
   1505 namespace {
   1506   //===--------------------------------------------------------------------===//
   1507   //
   1508   /// SCCP Class - This class uses the SCCPSolver to implement a per-function
   1509   /// Sparse Conditional Constant Propagator.
   1510   ///
   1511   struct SCCP : public FunctionPass {
   1512     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
   1513       AU.addRequired<TargetLibraryInfo>();
   1514     }
   1515     static char ID; // Pass identification, replacement for typeid
   1516     SCCP() : FunctionPass(ID) {
   1517       initializeSCCPPass(*PassRegistry::getPassRegistry());
   1518     }
   1519 
   1520     // runOnFunction - Run the Sparse Conditional Constant Propagation
   1521     // algorithm, and return true if the function was modified.
   1522     //
   1523     bool runOnFunction(Function &F);
   1524   };
   1525 } // end anonymous namespace
   1526 
   1527 char SCCP::ID = 0;
   1528 INITIALIZE_PASS(SCCP, "sccp",
   1529                 "Sparse Conditional Constant Propagation", false, false)
   1530 
   1531 // createSCCPPass - This is the public interface to this file.
   1532 FunctionPass *llvm::createSCCPPass() {
   1533   return new SCCP();
   1534 }
   1535 
   1536 static void DeleteInstructionInBlock(BasicBlock *BB) {
   1537   DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
   1538   ++NumDeadBlocks;
   1539 
   1540   // Check to see if there are non-terminating instructions to delete.
   1541   if (isa<TerminatorInst>(BB->begin()))
   1542     return;
   1543 
   1544   // Delete the instructions backwards, as it has a reduced likelihood of having
   1545   // to update as many def-use and use-def chains.
   1546   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
   1547   while (EndInst != BB->begin()) {
   1548     // Delete the next to last instruction.
   1549     BasicBlock::iterator I = EndInst;
   1550     Instruction *Inst = --I;
   1551     if (!Inst->use_empty())
   1552       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
   1553     if (isa<LandingPadInst>(Inst)) {
   1554       EndInst = Inst;
   1555       continue;
   1556     }
   1557     BB->getInstList().erase(Inst);
   1558     ++NumInstRemoved;
   1559   }
   1560 }
   1561 
   1562 // runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
   1563 // and return true if the function was modified.
   1564 //
   1565 bool SCCP::runOnFunction(Function &F) {
   1566   DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
   1567   const TargetData *TD = getAnalysisIfAvailable<TargetData>();
   1568   const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>();
   1569   SCCPSolver Solver(TD, TLI);
   1570 
   1571   // Mark the first block of the function as being executable.
   1572   Solver.MarkBlockExecutable(F.begin());
   1573 
   1574   // Mark all arguments to the function as being overdefined.
   1575   for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
   1576     Solver.markAnythingOverdefined(AI);
   1577 
   1578   // Solve for constants.
   1579   bool ResolvedUndefs = true;
   1580   while (ResolvedUndefs) {
   1581     Solver.Solve();
   1582     DEBUG(dbgs() << "RESOLVING UNDEFs\n");
   1583     ResolvedUndefs = Solver.ResolvedUndefsIn(F);
   1584   }
   1585 
   1586   bool MadeChanges = false;
   1587 
   1588   // If we decided that there are basic blocks that are dead in this function,
   1589   // delete their contents now.  Note that we cannot actually delete the blocks,
   1590   // as we cannot modify the CFG of the function.
   1591 
   1592   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
   1593     if (!Solver.isBlockExecutable(BB)) {
   1594       DeleteInstructionInBlock(BB);
   1595       MadeChanges = true;
   1596       continue;
   1597     }
   1598 
   1599     // Iterate over all of the instructions in a function, replacing them with
   1600     // constants if we have found them to be of constant values.
   1601     //
   1602     for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
   1603       Instruction *Inst = BI++;
   1604       if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst))
   1605         continue;
   1606 
   1607       // TODO: Reconstruct structs from their elements.
   1608       if (Inst->getType()->isStructTy())
   1609         continue;
   1610 
   1611       LatticeVal IV = Solver.getLatticeValueFor(Inst);
   1612       if (IV.isOverdefined())
   1613         continue;
   1614 
   1615       Constant *Const = IV.isConstant()
   1616         ? IV.getConstant() : UndefValue::get(Inst->getType());
   1617       DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst);
   1618 
   1619       // Replaces all of the uses of a variable with uses of the constant.
   1620       Inst->replaceAllUsesWith(Const);
   1621 
   1622       // Delete the instruction.
   1623       Inst->eraseFromParent();
   1624 
   1625       // Hey, we just changed something!
   1626       MadeChanges = true;
   1627       ++NumInstRemoved;
   1628     }
   1629   }
   1630 
   1631   return MadeChanges;
   1632 }
   1633 
   1634 namespace {
   1635   //===--------------------------------------------------------------------===//
   1636   //
   1637   /// IPSCCP Class - This class implements interprocedural Sparse Conditional
   1638   /// Constant Propagation.
   1639   ///
   1640   struct IPSCCP : public ModulePass {
   1641     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
   1642       AU.addRequired<TargetLibraryInfo>();
   1643     }
   1644     static char ID;
   1645     IPSCCP() : ModulePass(ID) {
   1646       initializeIPSCCPPass(*PassRegistry::getPassRegistry());
   1647     }
   1648     bool runOnModule(Module &M);
   1649   };
   1650 } // end anonymous namespace
   1651 
   1652 char IPSCCP::ID = 0;
   1653 INITIALIZE_PASS_BEGIN(IPSCCP, "ipsccp",
   1654                 "Interprocedural Sparse Conditional Constant Propagation",
   1655                 false, false)
   1656 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
   1657 INITIALIZE_PASS_END(IPSCCP, "ipsccp",
   1658                 "Interprocedural Sparse Conditional Constant Propagation",
   1659                 false, false)
   1660 
   1661 // createIPSCCPPass - This is the public interface to this file.
   1662 ModulePass *llvm::createIPSCCPPass() {
   1663   return new IPSCCP();
   1664 }
   1665 
   1666 
   1667 static bool AddressIsTaken(const GlobalValue *GV) {
   1668   // Delete any dead constantexpr klingons.
   1669   GV->removeDeadConstantUsers();
   1670 
   1671   for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
   1672        UI != E; ++UI) {
   1673     const User *U = *UI;
   1674     if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
   1675       if (SI->getOperand(0) == GV || SI->isVolatile())
   1676         return true;  // Storing addr of GV.
   1677     } else if (isa<InvokeInst>(U) || isa<CallInst>(U)) {
   1678       // Make sure we are calling the function, not passing the address.
   1679       ImmutableCallSite CS(cast<Instruction>(U));
   1680       if (!CS.isCallee(UI))
   1681         return true;
   1682     } else if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
   1683       if (LI->isVolatile())
   1684         return true;
   1685     } else if (isa<BlockAddress>(U)) {
   1686       // blockaddress doesn't take the address of the function, it takes addr
   1687       // of label.
   1688     } else {
   1689       return true;
   1690     }
   1691   }
   1692   return false;
   1693 }
   1694 
   1695 bool IPSCCP::runOnModule(Module &M) {
   1696   const TargetData *TD = getAnalysisIfAvailable<TargetData>();
   1697   const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>();
   1698   SCCPSolver Solver(TD, TLI);
   1699 
   1700   // AddressTakenFunctions - This set keeps track of the address-taken functions
   1701   // that are in the input.  As IPSCCP runs through and simplifies code,
   1702   // functions that were address taken can end up losing their
   1703   // address-taken-ness.  Because of this, we keep track of their addresses from
   1704   // the first pass so we can use them for the later simplification pass.
   1705   SmallPtrSet<Function*, 32> AddressTakenFunctions;
   1706 
   1707   // Loop over all functions, marking arguments to those with their addresses
   1708   // taken or that are external as overdefined.
   1709   //
   1710   for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
   1711     if (F->isDeclaration())
   1712       continue;
   1713 
   1714     // If this is a strong or ODR definition of this function, then we can
   1715     // propagate information about its result into callsites of it.
   1716     if (!F->mayBeOverridden())
   1717       Solver.AddTrackedFunction(F);
   1718 
   1719     // If this function only has direct calls that we can see, we can track its
   1720     // arguments and return value aggressively, and can assume it is not called
   1721     // unless we see evidence to the contrary.
   1722     if (F->hasLocalLinkage()) {
   1723       if (AddressIsTaken(F))
   1724         AddressTakenFunctions.insert(F);
   1725       else {
   1726         Solver.AddArgumentTrackedFunction(F);
   1727         continue;
   1728       }
   1729     }
   1730 
   1731     // Assume the function is called.
   1732     Solver.MarkBlockExecutable(F->begin());
   1733 
   1734     // Assume nothing about the incoming arguments.
   1735     for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
   1736          AI != E; ++AI)
   1737       Solver.markAnythingOverdefined(AI);
   1738   }
   1739 
   1740   // Loop over global variables.  We inform the solver about any internal global
   1741   // variables that do not have their 'addresses taken'.  If they don't have
   1742   // their addresses taken, we can propagate constants through them.
   1743   for (Module::global_iterator G = M.global_begin(), E = M.global_end();
   1744        G != E; ++G)
   1745     if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
   1746       Solver.TrackValueOfGlobalVariable(G);
   1747 
   1748   // Solve for constants.
   1749   bool ResolvedUndefs = true;
   1750   while (ResolvedUndefs) {
   1751     Solver.Solve();
   1752 
   1753     DEBUG(dbgs() << "RESOLVING UNDEFS\n");
   1754     ResolvedUndefs = false;
   1755     for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
   1756       ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
   1757   }
   1758 
   1759   bool MadeChanges = false;
   1760 
   1761   // Iterate over all of the instructions in the module, replacing them with
   1762   // constants if we have found them to be of constant values.
   1763   //
   1764   SmallVector<BasicBlock*, 512> BlocksToErase;
   1765 
   1766   for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
   1767     if (Solver.isBlockExecutable(F->begin())) {
   1768       for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
   1769            AI != E; ++AI) {
   1770         if (AI->use_empty() || AI->getType()->isStructTy()) continue;
   1771 
   1772         // TODO: Could use getStructLatticeValueFor to find out if the entire
   1773         // result is a constant and replace it entirely if so.
   1774 
   1775         LatticeVal IV = Solver.getLatticeValueFor(AI);
   1776         if (IV.isOverdefined()) continue;
   1777 
   1778         Constant *CST = IV.isConstant() ?
   1779         IV.getConstant() : UndefValue::get(AI->getType());
   1780         DEBUG(dbgs() << "***  Arg " << *AI << " = " << *CST <<"\n");
   1781 
   1782         // Replaces all of the uses of a variable with uses of the
   1783         // constant.
   1784         AI->replaceAllUsesWith(CST);
   1785         ++IPNumArgsElimed;
   1786       }
   1787     }
   1788 
   1789     for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
   1790       if (!Solver.isBlockExecutable(BB)) {
   1791         DeleteInstructionInBlock(BB);
   1792         MadeChanges = true;
   1793 
   1794         TerminatorInst *TI = BB->getTerminator();
   1795         for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
   1796           BasicBlock *Succ = TI->getSuccessor(i);
   1797           if (!Succ->empty() && isa<PHINode>(Succ->begin()))
   1798             TI->getSuccessor(i)->removePredecessor(BB);
   1799         }
   1800         if (!TI->use_empty())
   1801           TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
   1802         TI->eraseFromParent();
   1803 
   1804         if (&*BB != &F->front())
   1805           BlocksToErase.push_back(BB);
   1806         else
   1807           new UnreachableInst(M.getContext(), BB);
   1808         continue;
   1809       }
   1810 
   1811       for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
   1812         Instruction *Inst = BI++;
   1813         if (Inst->getType()->isVoidTy() || Inst->getType()->isStructTy())
   1814           continue;
   1815 
   1816         // TODO: Could use getStructLatticeValueFor to find out if the entire
   1817         // result is a constant and replace it entirely if so.
   1818 
   1819         LatticeVal IV = Solver.getLatticeValueFor(Inst);
   1820         if (IV.isOverdefined())
   1821           continue;
   1822 
   1823         Constant *Const = IV.isConstant()
   1824           ? IV.getConstant() : UndefValue::get(Inst->getType());
   1825         DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst);
   1826 
   1827         // Replaces all of the uses of a variable with uses of the
   1828         // constant.
   1829         Inst->replaceAllUsesWith(Const);
   1830 
   1831         // Delete the instruction.
   1832         if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
   1833           Inst->eraseFromParent();
   1834 
   1835         // Hey, we just changed something!
   1836         MadeChanges = true;
   1837         ++IPNumInstRemoved;
   1838       }
   1839     }
   1840 
   1841     // Now that all instructions in the function are constant folded, erase dead
   1842     // blocks, because we can now use ConstantFoldTerminator to get rid of
   1843     // in-edges.
   1844     for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
   1845       // If there are any PHI nodes in this successor, drop entries for BB now.
   1846       BasicBlock *DeadBB = BlocksToErase[i];
   1847       for (Value::use_iterator UI = DeadBB->use_begin(), UE = DeadBB->use_end();
   1848            UI != UE; ) {
   1849         // Grab the user and then increment the iterator early, as the user
   1850         // will be deleted. Step past all adjacent uses from the same user.
   1851         Instruction *I = dyn_cast<Instruction>(*UI);
   1852         do { ++UI; } while (UI != UE && *UI == I);
   1853 
   1854         // Ignore blockaddress users; BasicBlock's dtor will handle them.
   1855         if (!I) continue;
   1856 
   1857         bool Folded = ConstantFoldTerminator(I->getParent());
   1858         if (!Folded) {
   1859           // The constant folder may not have been able to fold the terminator
   1860           // if this is a branch or switch on undef.  Fold it manually as a
   1861           // branch to the first successor.
   1862 #ifndef NDEBUG
   1863           if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
   1864             assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
   1865                    "Branch should be foldable!");
   1866           } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
   1867             assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
   1868           } else {
   1869             llvm_unreachable("Didn't fold away reference to block!");
   1870           }
   1871 #endif
   1872 
   1873           // Make this an uncond branch to the first successor.
   1874           TerminatorInst *TI = I->getParent()->getTerminator();
   1875           BranchInst::Create(TI->getSuccessor(0), TI);
   1876 
   1877           // Remove entries in successor phi nodes to remove edges.
   1878           for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
   1879             TI->getSuccessor(i)->removePredecessor(TI->getParent());
   1880 
   1881           // Remove the old terminator.
   1882           TI->eraseFromParent();
   1883         }
   1884       }
   1885 
   1886       // Finally, delete the basic block.
   1887       F->getBasicBlockList().erase(DeadBB);
   1888     }
   1889     BlocksToErase.clear();
   1890   }
   1891 
   1892   // If we inferred constant or undef return values for a function, we replaced
   1893   // all call uses with the inferred value.  This means we don't need to bother
   1894   // actually returning anything from the function.  Replace all return
   1895   // instructions with return undef.
   1896   //
   1897   // Do this in two stages: first identify the functions we should process, then
   1898   // actually zap their returns.  This is important because we can only do this
   1899   // if the address of the function isn't taken.  In cases where a return is the
   1900   // last use of a function, the order of processing functions would affect
   1901   // whether other functions are optimizable.
   1902   SmallVector<ReturnInst*, 8> ReturnsToZap;
   1903 
   1904   // TODO: Process multiple value ret instructions also.
   1905   const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
   1906   for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
   1907        E = RV.end(); I != E; ++I) {
   1908     Function *F = I->first;
   1909     if (I->second.isOverdefined() || F->getReturnType()->isVoidTy())
   1910       continue;
   1911 
   1912     // We can only do this if we know that nothing else can call the function.
   1913     if (!F->hasLocalLinkage() || AddressTakenFunctions.count(F))
   1914       continue;
   1915 
   1916     for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
   1917       if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
   1918         if (!isa<UndefValue>(RI->getOperand(0)))
   1919           ReturnsToZap.push_back(RI);
   1920   }
   1921 
   1922   // Zap all returns which we've identified as zap to change.
   1923   for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
   1924     Function *F = ReturnsToZap[i]->getParent()->getParent();
   1925     ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
   1926   }
   1927 
   1928   // If we inferred constant or undef values for globals variables, we can
   1929   // delete the global and any stores that remain to it.
   1930   const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
   1931   for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
   1932          E = TG.end(); I != E; ++I) {
   1933     GlobalVariable *GV = I->first;
   1934     assert(!I->second.isOverdefined() &&
   1935            "Overdefined values should have been taken out of the map!");
   1936     DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n");
   1937     while (!GV->use_empty()) {
   1938       StoreInst *SI = cast<StoreInst>(GV->use_back());
   1939       SI->eraseFromParent();
   1940     }
   1941     M.getGlobalList().erase(GV);
   1942     ++IPNumGlobalConst;
   1943   }
   1944 
   1945   return MadeChanges;
   1946 }
   1947