Home | History | Annotate | Download | only in x64
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #ifndef V8_X64_ASSEMBLER_X64_INL_H_
     29 #define V8_X64_ASSEMBLER_X64_INL_H_
     30 
     31 #include "x64/assembler-x64.h"
     32 
     33 #include "cpu.h"
     34 #include "debug.h"
     35 #include "v8memory.h"
     36 
     37 namespace v8 {
     38 namespace internal {
     39 
     40 
     41 // -----------------------------------------------------------------------------
     42 // Implementation of Assembler
     43 
     44 
     45 void Assembler::emitl(uint32_t x) {
     46   Memory::uint32_at(pc_) = x;
     47   pc_ += sizeof(uint32_t);
     48 }
     49 
     50 
     51 void Assembler::emitq(uint64_t x, RelocInfo::Mode rmode) {
     52   Memory::uint64_at(pc_) = x;
     53   if (rmode != RelocInfo::NONE) {
     54     RecordRelocInfo(rmode, x);
     55   }
     56   pc_ += sizeof(uint64_t);
     57 }
     58 
     59 
     60 void Assembler::emitw(uint16_t x) {
     61   Memory::uint16_at(pc_) = x;
     62   pc_ += sizeof(uint16_t);
     63 }
     64 
     65 
     66 void Assembler::emit_code_target(Handle<Code> target,
     67                                  RelocInfo::Mode rmode,
     68                                  unsigned ast_id) {
     69   ASSERT(RelocInfo::IsCodeTarget(rmode));
     70   if (rmode == RelocInfo::CODE_TARGET && ast_id != kNoASTId) {
     71     RecordRelocInfo(RelocInfo::CODE_TARGET_WITH_ID, ast_id);
     72   } else {
     73     RecordRelocInfo(rmode);
     74   }
     75   int current = code_targets_.length();
     76   if (current > 0 && code_targets_.last().is_identical_to(target)) {
     77     // Optimization if we keep jumping to the same code target.
     78     emitl(current - 1);
     79   } else {
     80     code_targets_.Add(target);
     81     emitl(current);
     82   }
     83 }
     84 
     85 
     86 void Assembler::emit_rex_64(Register reg, Register rm_reg) {
     87   emit(0x48 | reg.high_bit() << 2 | rm_reg.high_bit());
     88 }
     89 
     90 
     91 void Assembler::emit_rex_64(XMMRegister reg, Register rm_reg) {
     92   emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3);
     93 }
     94 
     95 
     96 void Assembler::emit_rex_64(Register reg, XMMRegister rm_reg) {
     97   emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3);
     98 }
     99 
    100 
    101 void Assembler::emit_rex_64(Register reg, const Operand& op) {
    102   emit(0x48 | reg.high_bit() << 2 | op.rex_);
    103 }
    104 
    105 
    106 void Assembler::emit_rex_64(XMMRegister reg, const Operand& op) {
    107   emit(0x48 | (reg.code() & 0x8) >> 1 | op.rex_);
    108 }
    109 
    110 
    111 void Assembler::emit_rex_64(Register rm_reg) {
    112   ASSERT_EQ(rm_reg.code() & 0xf, rm_reg.code());
    113   emit(0x48 | rm_reg.high_bit());
    114 }
    115 
    116 
    117 void Assembler::emit_rex_64(const Operand& op) {
    118   emit(0x48 | op.rex_);
    119 }
    120 
    121 
    122 void Assembler::emit_rex_32(Register reg, Register rm_reg) {
    123   emit(0x40 | reg.high_bit() << 2 | rm_reg.high_bit());
    124 }
    125 
    126 
    127 void Assembler::emit_rex_32(Register reg, const Operand& op) {
    128   emit(0x40 | reg.high_bit() << 2  | op.rex_);
    129 }
    130 
    131 
    132 void Assembler::emit_rex_32(Register rm_reg) {
    133   emit(0x40 | rm_reg.high_bit());
    134 }
    135 
    136 
    137 void Assembler::emit_rex_32(const Operand& op) {
    138   emit(0x40 | op.rex_);
    139 }
    140 
    141 
    142 void Assembler::emit_optional_rex_32(Register reg, Register rm_reg) {
    143   byte rex_bits = reg.high_bit() << 2 | rm_reg.high_bit();
    144   if (rex_bits != 0) emit(0x40 | rex_bits);
    145 }
    146 
    147 
    148 void Assembler::emit_optional_rex_32(Register reg, const Operand& op) {
    149   byte rex_bits =  reg.high_bit() << 2 | op.rex_;
    150   if (rex_bits != 0) emit(0x40 | rex_bits);
    151 }
    152 
    153 
    154 void Assembler::emit_optional_rex_32(XMMRegister reg, const Operand& op) {
    155   byte rex_bits =  (reg.code() & 0x8) >> 1 | op.rex_;
    156   if (rex_bits != 0) emit(0x40 | rex_bits);
    157 }
    158 
    159 
    160 void Assembler::emit_optional_rex_32(XMMRegister reg, XMMRegister base) {
    161   byte rex_bits =  (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
    162   if (rex_bits != 0) emit(0x40 | rex_bits);
    163 }
    164 
    165 
    166 void Assembler::emit_optional_rex_32(XMMRegister reg, Register base) {
    167   byte rex_bits =  (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
    168   if (rex_bits != 0) emit(0x40 | rex_bits);
    169 }
    170 
    171 
    172 void Assembler::emit_optional_rex_32(Register reg, XMMRegister base) {
    173   byte rex_bits =  (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
    174   if (rex_bits != 0) emit(0x40 | rex_bits);
    175 }
    176 
    177 
    178 void Assembler::emit_optional_rex_32(Register rm_reg) {
    179   if (rm_reg.high_bit()) emit(0x41);
    180 }
    181 
    182 
    183 void Assembler::emit_optional_rex_32(const Operand& op) {
    184   if (op.rex_ != 0) emit(0x40 | op.rex_);
    185 }
    186 
    187 
    188 Address Assembler::target_address_at(Address pc) {
    189   return Memory::int32_at(pc) + pc + 4;
    190 }
    191 
    192 
    193 void Assembler::set_target_address_at(Address pc, Address target) {
    194   Memory::int32_at(pc) = static_cast<int32_t>(target - pc - 4);
    195   CPU::FlushICache(pc, sizeof(int32_t));
    196 }
    197 
    198 Handle<Object> Assembler::code_target_object_handle_at(Address pc) {
    199   return code_targets_[Memory::int32_at(pc)];
    200 }
    201 
    202 // -----------------------------------------------------------------------------
    203 // Implementation of RelocInfo
    204 
    205 // The modes possibly affected by apply must be in kApplyMask.
    206 void RelocInfo::apply(intptr_t delta) {
    207   if (IsInternalReference(rmode_)) {
    208     // absolute code pointer inside code object moves with the code object.
    209     Memory::Address_at(pc_) += static_cast<int32_t>(delta);
    210     CPU::FlushICache(pc_, sizeof(Address));
    211   } else if (IsCodeTarget(rmode_)) {
    212     Memory::int32_at(pc_) -= static_cast<int32_t>(delta);
    213     CPU::FlushICache(pc_, sizeof(int32_t));
    214   }
    215 }
    216 
    217 
    218 Address RelocInfo::target_address() {
    219   ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
    220   if (IsCodeTarget(rmode_)) {
    221     return Assembler::target_address_at(pc_);
    222   } else {
    223     return Memory::Address_at(pc_);
    224   }
    225 }
    226 
    227 
    228 Address RelocInfo::target_address_address() {
    229   ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY
    230                               || rmode_ == EMBEDDED_OBJECT
    231                               || rmode_ == EXTERNAL_REFERENCE);
    232   return reinterpret_cast<Address>(pc_);
    233 }
    234 
    235 
    236 int RelocInfo::target_address_size() {
    237   if (IsCodedSpecially()) {
    238     return Assembler::kSpecialTargetSize;
    239   } else {
    240     return kPointerSize;
    241   }
    242 }
    243 
    244 
    245 void RelocInfo::set_target_address(Address target, WriteBarrierMode mode) {
    246   ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
    247   if (IsCodeTarget(rmode_)) {
    248     Assembler::set_target_address_at(pc_, target);
    249     Object* target_code = Code::GetCodeFromTargetAddress(target);
    250     if (mode == UPDATE_WRITE_BARRIER && host() != NULL) {
    251       host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
    252           host(), this, HeapObject::cast(target_code));
    253     }
    254   } else {
    255     Memory::Address_at(pc_) = target;
    256     CPU::FlushICache(pc_, sizeof(Address));
    257   }
    258 }
    259 
    260 
    261 Object* RelocInfo::target_object() {
    262   ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
    263   return Memory::Object_at(pc_);
    264 }
    265 
    266 
    267 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
    268   ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
    269   if (rmode_ == EMBEDDED_OBJECT) {
    270     return Memory::Object_Handle_at(pc_);
    271   } else {
    272     return origin->code_target_object_handle_at(pc_);
    273   }
    274 }
    275 
    276 
    277 Object** RelocInfo::target_object_address() {
    278   ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
    279   return reinterpret_cast<Object**>(pc_);
    280 }
    281 
    282 
    283 Address* RelocInfo::target_reference_address() {
    284   ASSERT(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
    285   return reinterpret_cast<Address*>(pc_);
    286 }
    287 
    288 
    289 void RelocInfo::set_target_object(Object* target, WriteBarrierMode mode) {
    290   ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
    291   Memory::Object_at(pc_) = target;
    292   CPU::FlushICache(pc_, sizeof(Address));
    293   if (mode == UPDATE_WRITE_BARRIER &&
    294       host() != NULL &&
    295       target->IsHeapObject()) {
    296     host()->GetHeap()->incremental_marking()->RecordWrite(
    297         host(), &Memory::Object_at(pc_), HeapObject::cast(target));
    298   }
    299 }
    300 
    301 
    302 Handle<JSGlobalPropertyCell> RelocInfo::target_cell_handle() {
    303   ASSERT(rmode_ == RelocInfo::GLOBAL_PROPERTY_CELL);
    304   Address address = Memory::Address_at(pc_);
    305   return Handle<JSGlobalPropertyCell>(
    306       reinterpret_cast<JSGlobalPropertyCell**>(address));
    307 }
    308 
    309 
    310 JSGlobalPropertyCell* RelocInfo::target_cell() {
    311   ASSERT(rmode_ == RelocInfo::GLOBAL_PROPERTY_CELL);
    312   Address address = Memory::Address_at(pc_);
    313   Object* object = HeapObject::FromAddress(
    314       address - JSGlobalPropertyCell::kValueOffset);
    315   return reinterpret_cast<JSGlobalPropertyCell*>(object);
    316 }
    317 
    318 
    319 void RelocInfo::set_target_cell(JSGlobalPropertyCell* cell,
    320                                 WriteBarrierMode mode) {
    321   ASSERT(rmode_ == RelocInfo::GLOBAL_PROPERTY_CELL);
    322   Address address = cell->address() + JSGlobalPropertyCell::kValueOffset;
    323   Memory::Address_at(pc_) = address;
    324   CPU::FlushICache(pc_, sizeof(Address));
    325   if (mode == UPDATE_WRITE_BARRIER &&
    326       host() != NULL) {
    327     // TODO(1550) We are passing NULL as a slot because cell can never be on
    328     // evacuation candidate.
    329     host()->GetHeap()->incremental_marking()->RecordWrite(
    330         host(), NULL, cell);
    331   }
    332 }
    333 
    334 
    335 bool RelocInfo::IsPatchedReturnSequence() {
    336   // The recognized call sequence is:
    337   //  movq(kScratchRegister, immediate64); call(kScratchRegister);
    338   // It only needs to be distinguished from a return sequence
    339   //  movq(rsp, rbp); pop(rbp); ret(n); int3 *6
    340   // The 11th byte is int3 (0xCC) in the return sequence and
    341   // REX.WB (0x48+register bit) for the call sequence.
    342 #ifdef ENABLE_DEBUGGER_SUPPORT
    343   return pc_[10] != 0xCC;
    344 #else
    345   return false;
    346 #endif
    347 }
    348 
    349 
    350 bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
    351   return !Assembler::IsNop(pc());
    352 }
    353 
    354 
    355 Address RelocInfo::call_address() {
    356   ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
    357          (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
    358   return Memory::Address_at(
    359       pc_ + Assembler::kRealPatchReturnSequenceAddressOffset);
    360 }
    361 
    362 
    363 void RelocInfo::set_call_address(Address target) {
    364   ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
    365          (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
    366   Memory::Address_at(pc_ + Assembler::kRealPatchReturnSequenceAddressOffset) =
    367       target;
    368   CPU::FlushICache(pc_ + Assembler::kRealPatchReturnSequenceAddressOffset,
    369                    sizeof(Address));
    370   if (host() != NULL) {
    371     Object* target_code = Code::GetCodeFromTargetAddress(target);
    372     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
    373         host(), this, HeapObject::cast(target_code));
    374   }
    375 }
    376 
    377 
    378 Object* RelocInfo::call_object() {
    379   return *call_object_address();
    380 }
    381 
    382 
    383 void RelocInfo::set_call_object(Object* target) {
    384   *call_object_address() = target;
    385 }
    386 
    387 
    388 Object** RelocInfo::call_object_address() {
    389   ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
    390          (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
    391   return reinterpret_cast<Object**>(
    392       pc_ + Assembler::kPatchReturnSequenceAddressOffset);
    393 }
    394 
    395 
    396 void RelocInfo::Visit(ObjectVisitor* visitor) {
    397   RelocInfo::Mode mode = rmode();
    398   if (mode == RelocInfo::EMBEDDED_OBJECT) {
    399     visitor->VisitEmbeddedPointer(this);
    400     CPU::FlushICache(pc_, sizeof(Address));
    401   } else if (RelocInfo::IsCodeTarget(mode)) {
    402     visitor->VisitCodeTarget(this);
    403   } else if (mode == RelocInfo::GLOBAL_PROPERTY_CELL) {
    404     visitor->VisitGlobalPropertyCell(this);
    405   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
    406     visitor->VisitExternalReference(this);
    407     CPU::FlushICache(pc_, sizeof(Address));
    408 #ifdef ENABLE_DEBUGGER_SUPPORT
    409   // TODO(isolates): Get a cached isolate below.
    410   } else if (((RelocInfo::IsJSReturn(mode) &&
    411               IsPatchedReturnSequence()) ||
    412              (RelocInfo::IsDebugBreakSlot(mode) &&
    413               IsPatchedDebugBreakSlotSequence())) &&
    414              Isolate::Current()->debug()->has_break_points()) {
    415     visitor->VisitDebugTarget(this);
    416 #endif
    417   } else if (mode == RelocInfo::RUNTIME_ENTRY) {
    418     visitor->VisitRuntimeEntry(this);
    419   }
    420 }
    421 
    422 
    423 template<typename StaticVisitor>
    424 void RelocInfo::Visit(Heap* heap) {
    425   RelocInfo::Mode mode = rmode();
    426   if (mode == RelocInfo::EMBEDDED_OBJECT) {
    427     StaticVisitor::VisitEmbeddedPointer(heap, this);
    428     CPU::FlushICache(pc_, sizeof(Address));
    429   } else if (RelocInfo::IsCodeTarget(mode)) {
    430     StaticVisitor::VisitCodeTarget(heap, this);
    431   } else if (mode == RelocInfo::GLOBAL_PROPERTY_CELL) {
    432     StaticVisitor::VisitGlobalPropertyCell(heap, this);
    433   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
    434     StaticVisitor::VisitExternalReference(this);
    435     CPU::FlushICache(pc_, sizeof(Address));
    436 #ifdef ENABLE_DEBUGGER_SUPPORT
    437   } else if (heap->isolate()->debug()->has_break_points() &&
    438              ((RelocInfo::IsJSReturn(mode) &&
    439               IsPatchedReturnSequence()) ||
    440              (RelocInfo::IsDebugBreakSlot(mode) &&
    441               IsPatchedDebugBreakSlotSequence()))) {
    442     StaticVisitor::VisitDebugTarget(heap, this);
    443 #endif
    444   } else if (mode == RelocInfo::RUNTIME_ENTRY) {
    445     StaticVisitor::VisitRuntimeEntry(this);
    446   }
    447 }
    448 
    449 
    450 // -----------------------------------------------------------------------------
    451 // Implementation of Operand
    452 
    453 void Operand::set_modrm(int mod, Register rm_reg) {
    454   ASSERT(is_uint2(mod));
    455   buf_[0] = mod << 6 | rm_reg.low_bits();
    456   // Set REX.B to the high bit of rm.code().
    457   rex_ |= rm_reg.high_bit();
    458 }
    459 
    460 
    461 void Operand::set_sib(ScaleFactor scale, Register index, Register base) {
    462   ASSERT(len_ == 1);
    463   ASSERT(is_uint2(scale));
    464   // Use SIB with no index register only for base rsp or r12. Otherwise we
    465   // would skip the SIB byte entirely.
    466   ASSERT(!index.is(rsp) || base.is(rsp) || base.is(r12));
    467   buf_[1] = (scale << 6) | (index.low_bits() << 3) | base.low_bits();
    468   rex_ |= index.high_bit() << 1 | base.high_bit();
    469   len_ = 2;
    470 }
    471 
    472 void Operand::set_disp8(int disp) {
    473   ASSERT(is_int8(disp));
    474   ASSERT(len_ == 1 || len_ == 2);
    475   int8_t* p = reinterpret_cast<int8_t*>(&buf_[len_]);
    476   *p = disp;
    477   len_ += sizeof(int8_t);
    478 }
    479 
    480 void Operand::set_disp32(int disp) {
    481   ASSERT(len_ == 1 || len_ == 2);
    482   int32_t* p = reinterpret_cast<int32_t*>(&buf_[len_]);
    483   *p = disp;
    484   len_ += sizeof(int32_t);
    485 }
    486 
    487 
    488 } }  // namespace v8::internal
    489 
    490 #endif  // V8_X64_ASSEMBLER_X64_INL_H_
    491