Home | History | Annotate | Download | only in CodeGen
      1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines several CodeGen-specific LLVM IR analysis utilties.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/CodeGen/Analysis.h"
     15 #include "llvm/Analysis/ValueTracking.h"
     16 #include "llvm/DerivedTypes.h"
     17 #include "llvm/Function.h"
     18 #include "llvm/Instructions.h"
     19 #include "llvm/IntrinsicInst.h"
     20 #include "llvm/LLVMContext.h"
     21 #include "llvm/Module.h"
     22 #include "llvm/CodeGen/MachineFunction.h"
     23 #include "llvm/CodeGen/SelectionDAG.h"
     24 #include "llvm/Target/TargetData.h"
     25 #include "llvm/Target/TargetLowering.h"
     26 #include "llvm/Target/TargetOptions.h"
     27 #include "llvm/Support/ErrorHandling.h"
     28 #include "llvm/Support/MathExtras.h"
     29 using namespace llvm;
     30 
     31 /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
     32 /// of insertvalue or extractvalue indices that identify a member, return
     33 /// the linearized index of the start of the member.
     34 ///
     35 unsigned llvm::ComputeLinearIndex(Type *Ty,
     36                                   const unsigned *Indices,
     37                                   const unsigned *IndicesEnd,
     38                                   unsigned CurIndex) {
     39   // Base case: We're done.
     40   if (Indices && Indices == IndicesEnd)
     41     return CurIndex;
     42 
     43   // Given a struct type, recursively traverse the elements.
     44   if (StructType *STy = dyn_cast<StructType>(Ty)) {
     45     for (StructType::element_iterator EB = STy->element_begin(),
     46                                       EI = EB,
     47                                       EE = STy->element_end();
     48         EI != EE; ++EI) {
     49       if (Indices && *Indices == unsigned(EI - EB))
     50         return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
     51       CurIndex = ComputeLinearIndex(*EI, 0, 0, CurIndex);
     52     }
     53     return CurIndex;
     54   }
     55   // Given an array type, recursively traverse the elements.
     56   else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
     57     Type *EltTy = ATy->getElementType();
     58     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
     59       if (Indices && *Indices == i)
     60         return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
     61       CurIndex = ComputeLinearIndex(EltTy, 0, 0, CurIndex);
     62     }
     63     return CurIndex;
     64   }
     65   // We haven't found the type we're looking for, so keep searching.
     66   return CurIndex + 1;
     67 }
     68 
     69 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
     70 /// EVTs that represent all the individual underlying
     71 /// non-aggregate types that comprise it.
     72 ///
     73 /// If Offsets is non-null, it points to a vector to be filled in
     74 /// with the in-memory offsets of each of the individual values.
     75 ///
     76 void llvm::ComputeValueVTs(const TargetLowering &TLI, Type *Ty,
     77                            SmallVectorImpl<EVT> &ValueVTs,
     78                            SmallVectorImpl<uint64_t> *Offsets,
     79                            uint64_t StartingOffset) {
     80   // Given a struct type, recursively traverse the elements.
     81   if (StructType *STy = dyn_cast<StructType>(Ty)) {
     82     const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
     83     for (StructType::element_iterator EB = STy->element_begin(),
     84                                       EI = EB,
     85                                       EE = STy->element_end();
     86          EI != EE; ++EI)
     87       ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
     88                       StartingOffset + SL->getElementOffset(EI - EB));
     89     return;
     90   }
     91   // Given an array type, recursively traverse the elements.
     92   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
     93     Type *EltTy = ATy->getElementType();
     94     uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy);
     95     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
     96       ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
     97                       StartingOffset + i * EltSize);
     98     return;
     99   }
    100   // Interpret void as zero return values.
    101   if (Ty->isVoidTy())
    102     return;
    103   // Base case: we can get an EVT for this LLVM IR type.
    104   ValueVTs.push_back(TLI.getValueType(Ty));
    105   if (Offsets)
    106     Offsets->push_back(StartingOffset);
    107 }
    108 
    109 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
    110 GlobalVariable *llvm::ExtractTypeInfo(Value *V) {
    111   V = V->stripPointerCasts();
    112   GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
    113 
    114   if (GV && GV->getName() == "llvm.eh.catch.all.value") {
    115     assert(GV->hasInitializer() &&
    116            "The EH catch-all value must have an initializer");
    117     Value *Init = GV->getInitializer();
    118     GV = dyn_cast<GlobalVariable>(Init);
    119     if (!GV) V = cast<ConstantPointerNull>(Init);
    120   }
    121 
    122   assert((GV || isa<ConstantPointerNull>(V)) &&
    123          "TypeInfo must be a global variable or NULL");
    124   return GV;
    125 }
    126 
    127 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
    128 /// processed uses a memory 'm' constraint.
    129 bool
    130 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos,
    131                                 const TargetLowering &TLI) {
    132   for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
    133     InlineAsm::ConstraintInfo &CI = CInfos[i];
    134     for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
    135       TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
    136       if (CType == TargetLowering::C_Memory)
    137         return true;
    138     }
    139 
    140     // Indirect operand accesses access memory.
    141     if (CI.isIndirect)
    142       return true;
    143   }
    144 
    145   return false;
    146 }
    147 
    148 /// getFCmpCondCode - Return the ISD condition code corresponding to
    149 /// the given LLVM IR floating-point condition code.  This includes
    150 /// consideration of global floating-point math flags.
    151 ///
    152 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
    153   switch (Pred) {
    154   case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
    155   case FCmpInst::FCMP_OEQ:   return ISD::SETOEQ;
    156   case FCmpInst::FCMP_OGT:   return ISD::SETOGT;
    157   case FCmpInst::FCMP_OGE:   return ISD::SETOGE;
    158   case FCmpInst::FCMP_OLT:   return ISD::SETOLT;
    159   case FCmpInst::FCMP_OLE:   return ISD::SETOLE;
    160   case FCmpInst::FCMP_ONE:   return ISD::SETONE;
    161   case FCmpInst::FCMP_ORD:   return ISD::SETO;
    162   case FCmpInst::FCMP_UNO:   return ISD::SETUO;
    163   case FCmpInst::FCMP_UEQ:   return ISD::SETUEQ;
    164   case FCmpInst::FCMP_UGT:   return ISD::SETUGT;
    165   case FCmpInst::FCMP_UGE:   return ISD::SETUGE;
    166   case FCmpInst::FCMP_ULT:   return ISD::SETULT;
    167   case FCmpInst::FCMP_ULE:   return ISD::SETULE;
    168   case FCmpInst::FCMP_UNE:   return ISD::SETUNE;
    169   case FCmpInst::FCMP_TRUE:  return ISD::SETTRUE;
    170   default: llvm_unreachable("Invalid FCmp predicate opcode!");
    171   }
    172 }
    173 
    174 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
    175   switch (CC) {
    176     case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
    177     case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
    178     case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
    179     case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
    180     case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
    181     case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
    182     default: return CC;
    183   }
    184 }
    185 
    186 /// getICmpCondCode - Return the ISD condition code corresponding to
    187 /// the given LLVM IR integer condition code.
    188 ///
    189 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
    190   switch (Pred) {
    191   case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
    192   case ICmpInst::ICMP_NE:  return ISD::SETNE;
    193   case ICmpInst::ICMP_SLE: return ISD::SETLE;
    194   case ICmpInst::ICMP_ULE: return ISD::SETULE;
    195   case ICmpInst::ICMP_SGE: return ISD::SETGE;
    196   case ICmpInst::ICMP_UGE: return ISD::SETUGE;
    197   case ICmpInst::ICMP_SLT: return ISD::SETLT;
    198   case ICmpInst::ICMP_ULT: return ISD::SETULT;
    199   case ICmpInst::ICMP_SGT: return ISD::SETGT;
    200   case ICmpInst::ICMP_UGT: return ISD::SETUGT;
    201   default:
    202     llvm_unreachable("Invalid ICmp predicate opcode!");
    203   }
    204 }
    205 
    206 /// Test if the given instruction is in a position to be optimized
    207 /// with a tail-call. This roughly means that it's in a block with
    208 /// a return and there's nothing that needs to be scheduled
    209 /// between it and the return.
    210 ///
    211 /// This function only tests target-independent requirements.
    212 bool llvm::isInTailCallPosition(ImmutableCallSite CS, Attributes CalleeRetAttr,
    213                                 const TargetLowering &TLI) {
    214   const Instruction *I = CS.getInstruction();
    215   const BasicBlock *ExitBB = I->getParent();
    216   const TerminatorInst *Term = ExitBB->getTerminator();
    217   const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
    218 
    219   // The block must end in a return statement or unreachable.
    220   //
    221   // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
    222   // an unreachable, for now. The way tailcall optimization is currently
    223   // implemented means it will add an epilogue followed by a jump. That is
    224   // not profitable. Also, if the callee is a special function (e.g.
    225   // longjmp on x86), it can end up causing miscompilation that has not
    226   // been fully understood.
    227   if (!Ret &&
    228       (!TLI.getTargetMachine().Options.GuaranteedTailCallOpt ||
    229        !isa<UnreachableInst>(Term))) return false;
    230 
    231   // If I will have a chain, make sure no other instruction that will have a
    232   // chain interposes between I and the return.
    233   if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
    234       !isSafeToSpeculativelyExecute(I))
    235     for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ;
    236          --BBI) {
    237       if (&*BBI == I)
    238         break;
    239       // Debug info intrinsics do not get in the way of tail call optimization.
    240       if (isa<DbgInfoIntrinsic>(BBI))
    241         continue;
    242       if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
    243           !isSafeToSpeculativelyExecute(BBI))
    244         return false;
    245     }
    246 
    247   // If the block ends with a void return or unreachable, it doesn't matter
    248   // what the call's return type is.
    249   if (!Ret || Ret->getNumOperands() == 0) return true;
    250 
    251   // If the return value is undef, it doesn't matter what the call's
    252   // return type is.
    253   if (isa<UndefValue>(Ret->getOperand(0))) return true;
    254 
    255   // Conservatively require the attributes of the call to match those of
    256   // the return. Ignore noalias because it doesn't affect the call sequence.
    257   const Function *F = ExitBB->getParent();
    258   Attributes CallerRetAttr = F->getAttributes().getRetAttributes();
    259   if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias)
    260     return false;
    261 
    262   // It's not safe to eliminate the sign / zero extension of the return value.
    263   if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt))
    264     return false;
    265 
    266   // Otherwise, make sure the unmodified return value of I is the return value.
    267   for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ;
    268        U = dyn_cast<Instruction>(U->getOperand(0))) {
    269     if (!U)
    270       return false;
    271     if (!U->hasOneUse())
    272       return false;
    273     if (U == I)
    274       break;
    275     // Check for a truly no-op truncate.
    276     if (isa<TruncInst>(U) &&
    277         TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType()))
    278       continue;
    279     // Check for a truly no-op bitcast.
    280     if (isa<BitCastInst>(U) &&
    281         (U->getOperand(0)->getType() == U->getType() ||
    282          (U->getOperand(0)->getType()->isPointerTy() &&
    283           U->getType()->isPointerTy())))
    284       continue;
    285     // Otherwise it's not a true no-op.
    286     return false;
    287   }
    288 
    289   return true;
    290 }
    291 
    292 bool llvm::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
    293                                 SDValue &Chain, const TargetLowering &TLI) {
    294   const Function *F = DAG.getMachineFunction().getFunction();
    295 
    296   // Conservatively require the attributes of the call to match those of
    297   // the return. Ignore noalias because it doesn't affect the call sequence.
    298   Attributes CallerRetAttr = F->getAttributes().getRetAttributes();
    299   if (CallerRetAttr & ~Attribute::NoAlias)
    300     return false;
    301 
    302   // It's not safe to eliminate the sign / zero extension of the return value.
    303   if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt))
    304     return false;
    305 
    306   // Check if the only use is a function return node.
    307   return TLI.isUsedByReturnOnly(Node, Chain);
    308 }
    309