1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements all of the non-inline methods for the LLVM instruction 11 // classes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "LLVMContextImpl.h" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/Function.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Module.h" 21 #include "llvm/Operator.h" 22 #include "llvm/Support/ErrorHandling.h" 23 #include "llvm/Support/CallSite.h" 24 #include "llvm/Support/ConstantRange.h" 25 #include "llvm/Support/MathExtras.h" 26 using namespace llvm; 27 28 //===----------------------------------------------------------------------===// 29 // CallSite Class 30 //===----------------------------------------------------------------------===// 31 32 User::op_iterator CallSite::getCallee() const { 33 Instruction *II(getInstruction()); 34 return isCall() 35 ? cast<CallInst>(II)->op_end() - 1 // Skip Callee 36 : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee 37 } 38 39 //===----------------------------------------------------------------------===// 40 // TerminatorInst Class 41 //===----------------------------------------------------------------------===// 42 43 // Out of line virtual method, so the vtable, etc has a home. 44 TerminatorInst::~TerminatorInst() { 45 } 46 47 //===----------------------------------------------------------------------===// 48 // UnaryInstruction Class 49 //===----------------------------------------------------------------------===// 50 51 // Out of line virtual method, so the vtable, etc has a home. 52 UnaryInstruction::~UnaryInstruction() { 53 } 54 55 //===----------------------------------------------------------------------===// 56 // SelectInst Class 57 //===----------------------------------------------------------------------===// 58 59 /// areInvalidOperands - Return a string if the specified operands are invalid 60 /// for a select operation, otherwise return null. 61 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) { 62 if (Op1->getType() != Op2->getType()) 63 return "both values to select must have same type"; 64 65 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) { 66 // Vector select. 67 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext())) 68 return "vector select condition element type must be i1"; 69 VectorType *ET = dyn_cast<VectorType>(Op1->getType()); 70 if (ET == 0) 71 return "selected values for vector select must be vectors"; 72 if (ET->getNumElements() != VT->getNumElements()) 73 return "vector select requires selected vectors to have " 74 "the same vector length as select condition"; 75 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) { 76 return "select condition must be i1 or <n x i1>"; 77 } 78 return 0; 79 } 80 81 82 //===----------------------------------------------------------------------===// 83 // PHINode Class 84 //===----------------------------------------------------------------------===// 85 86 PHINode::PHINode(const PHINode &PN) 87 : Instruction(PN.getType(), Instruction::PHI, 88 allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()), 89 ReservedSpace(PN.getNumOperands()) { 90 std::copy(PN.op_begin(), PN.op_end(), op_begin()); 91 std::copy(PN.block_begin(), PN.block_end(), block_begin()); 92 SubclassOptionalData = PN.SubclassOptionalData; 93 } 94 95 PHINode::~PHINode() { 96 dropHungoffUses(); 97 } 98 99 Use *PHINode::allocHungoffUses(unsigned N) const { 100 // Allocate the array of Uses of the incoming values, followed by a pointer 101 // (with bottom bit set) to the User, followed by the array of pointers to 102 // the incoming basic blocks. 103 size_t size = N * sizeof(Use) + sizeof(Use::UserRef) 104 + N * sizeof(BasicBlock*); 105 Use *Begin = static_cast<Use*>(::operator new(size)); 106 Use *End = Begin + N; 107 (void) new(End) Use::UserRef(const_cast<PHINode*>(this), 1); 108 return Use::initTags(Begin, End); 109 } 110 111 // removeIncomingValue - Remove an incoming value. This is useful if a 112 // predecessor basic block is deleted. 113 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) { 114 Value *Removed = getIncomingValue(Idx); 115 116 // Move everything after this operand down. 117 // 118 // FIXME: we could just swap with the end of the list, then erase. However, 119 // clients might not expect this to happen. The code as it is thrashes the 120 // use/def lists, which is kinda lame. 121 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx); 122 std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx); 123 124 // Nuke the last value. 125 Op<-1>().set(0); 126 --NumOperands; 127 128 // If the PHI node is dead, because it has zero entries, nuke it now. 129 if (getNumOperands() == 0 && DeletePHIIfEmpty) { 130 // If anyone is using this PHI, make them use a dummy value instead... 131 replaceAllUsesWith(UndefValue::get(getType())); 132 eraseFromParent(); 133 } 134 return Removed; 135 } 136 137 /// growOperands - grow operands - This grows the operand list in response 138 /// to a push_back style of operation. This grows the number of ops by 1.5 139 /// times. 140 /// 141 void PHINode::growOperands() { 142 unsigned e = getNumOperands(); 143 unsigned NumOps = e + e / 2; 144 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common. 145 146 Use *OldOps = op_begin(); 147 BasicBlock **OldBlocks = block_begin(); 148 149 ReservedSpace = NumOps; 150 OperandList = allocHungoffUses(ReservedSpace); 151 152 std::copy(OldOps, OldOps + e, op_begin()); 153 std::copy(OldBlocks, OldBlocks + e, block_begin()); 154 155 Use::zap(OldOps, OldOps + e, true); 156 } 157 158 /// hasConstantValue - If the specified PHI node always merges together the same 159 /// value, return the value, otherwise return null. 160 Value *PHINode::hasConstantValue() const { 161 // Exploit the fact that phi nodes always have at least one entry. 162 Value *ConstantValue = getIncomingValue(0); 163 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i) 164 if (getIncomingValue(i) != ConstantValue) 165 return 0; // Incoming values not all the same. 166 return ConstantValue; 167 } 168 169 //===----------------------------------------------------------------------===// 170 // LandingPadInst Implementation 171 //===----------------------------------------------------------------------===// 172 173 LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn, 174 unsigned NumReservedValues, const Twine &NameStr, 175 Instruction *InsertBefore) 176 : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertBefore) { 177 init(PersonalityFn, 1 + NumReservedValues, NameStr); 178 } 179 180 LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn, 181 unsigned NumReservedValues, const Twine &NameStr, 182 BasicBlock *InsertAtEnd) 183 : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertAtEnd) { 184 init(PersonalityFn, 1 + NumReservedValues, NameStr); 185 } 186 187 LandingPadInst::LandingPadInst(const LandingPadInst &LP) 188 : Instruction(LP.getType(), Instruction::LandingPad, 189 allocHungoffUses(LP.getNumOperands()), LP.getNumOperands()), 190 ReservedSpace(LP.getNumOperands()) { 191 Use *OL = OperandList, *InOL = LP.OperandList; 192 for (unsigned I = 0, E = ReservedSpace; I != E; ++I) 193 OL[I] = InOL[I]; 194 195 setCleanup(LP.isCleanup()); 196 } 197 198 LandingPadInst::~LandingPadInst() { 199 dropHungoffUses(); 200 } 201 202 LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn, 203 unsigned NumReservedClauses, 204 const Twine &NameStr, 205 Instruction *InsertBefore) { 206 return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr, 207 InsertBefore); 208 } 209 210 LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn, 211 unsigned NumReservedClauses, 212 const Twine &NameStr, 213 BasicBlock *InsertAtEnd) { 214 return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr, 215 InsertAtEnd); 216 } 217 218 void LandingPadInst::init(Value *PersFn, unsigned NumReservedValues, 219 const Twine &NameStr) { 220 ReservedSpace = NumReservedValues; 221 NumOperands = 1; 222 OperandList = allocHungoffUses(ReservedSpace); 223 OperandList[0] = PersFn; 224 setName(NameStr); 225 setCleanup(false); 226 } 227 228 /// growOperands - grow operands - This grows the operand list in response to a 229 /// push_back style of operation. This grows the number of ops by 2 times. 230 void LandingPadInst::growOperands(unsigned Size) { 231 unsigned e = getNumOperands(); 232 if (ReservedSpace >= e + Size) return; 233 ReservedSpace = (e + Size / 2) * 2; 234 235 Use *NewOps = allocHungoffUses(ReservedSpace); 236 Use *OldOps = OperandList; 237 for (unsigned i = 0; i != e; ++i) 238 NewOps[i] = OldOps[i]; 239 240 OperandList = NewOps; 241 Use::zap(OldOps, OldOps + e, true); 242 } 243 244 void LandingPadInst::addClause(Value *Val) { 245 unsigned OpNo = getNumOperands(); 246 growOperands(1); 247 assert(OpNo < ReservedSpace && "Growing didn't work!"); 248 ++NumOperands; 249 OperandList[OpNo] = Val; 250 } 251 252 //===----------------------------------------------------------------------===// 253 // CallInst Implementation 254 //===----------------------------------------------------------------------===// 255 256 CallInst::~CallInst() { 257 } 258 259 void CallInst::init(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr) { 260 assert(NumOperands == Args.size() + 1 && "NumOperands not set up?"); 261 Op<-1>() = Func; 262 263 #ifndef NDEBUG 264 FunctionType *FTy = 265 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType()); 266 267 assert((Args.size() == FTy->getNumParams() || 268 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 269 "Calling a function with bad signature!"); 270 271 for (unsigned i = 0; i != Args.size(); ++i) 272 assert((i >= FTy->getNumParams() || 273 FTy->getParamType(i) == Args[i]->getType()) && 274 "Calling a function with a bad signature!"); 275 #endif 276 277 std::copy(Args.begin(), Args.end(), op_begin()); 278 setName(NameStr); 279 } 280 281 void CallInst::init(Value *Func, const Twine &NameStr) { 282 assert(NumOperands == 1 && "NumOperands not set up?"); 283 Op<-1>() = Func; 284 285 #ifndef NDEBUG 286 FunctionType *FTy = 287 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType()); 288 289 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature"); 290 #endif 291 292 setName(NameStr); 293 } 294 295 CallInst::CallInst(Value *Func, const Twine &Name, 296 Instruction *InsertBefore) 297 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType()) 298 ->getElementType())->getReturnType(), 299 Instruction::Call, 300 OperandTraits<CallInst>::op_end(this) - 1, 301 1, InsertBefore) { 302 init(Func, Name); 303 } 304 305 CallInst::CallInst(Value *Func, const Twine &Name, 306 BasicBlock *InsertAtEnd) 307 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType()) 308 ->getElementType())->getReturnType(), 309 Instruction::Call, 310 OperandTraits<CallInst>::op_end(this) - 1, 311 1, InsertAtEnd) { 312 init(Func, Name); 313 } 314 315 CallInst::CallInst(const CallInst &CI) 316 : Instruction(CI.getType(), Instruction::Call, 317 OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(), 318 CI.getNumOperands()) { 319 setAttributes(CI.getAttributes()); 320 setTailCall(CI.isTailCall()); 321 setCallingConv(CI.getCallingConv()); 322 323 std::copy(CI.op_begin(), CI.op_end(), op_begin()); 324 SubclassOptionalData = CI.SubclassOptionalData; 325 } 326 327 void CallInst::addAttribute(unsigned i, Attributes attr) { 328 AttrListPtr PAL = getAttributes(); 329 PAL = PAL.addAttr(i, attr); 330 setAttributes(PAL); 331 } 332 333 void CallInst::removeAttribute(unsigned i, Attributes attr) { 334 AttrListPtr PAL = getAttributes(); 335 PAL = PAL.removeAttr(i, attr); 336 setAttributes(PAL); 337 } 338 339 bool CallInst::paramHasAttr(unsigned i, Attributes attr) const { 340 if (AttributeList.paramHasAttr(i, attr)) 341 return true; 342 if (const Function *F = getCalledFunction()) 343 return F->paramHasAttr(i, attr); 344 return false; 345 } 346 347 /// IsConstantOne - Return true only if val is constant int 1 348 static bool IsConstantOne(Value *val) { 349 assert(val && "IsConstantOne does not work with NULL val"); 350 return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne(); 351 } 352 353 static Instruction *createMalloc(Instruction *InsertBefore, 354 BasicBlock *InsertAtEnd, Type *IntPtrTy, 355 Type *AllocTy, Value *AllocSize, 356 Value *ArraySize, Function *MallocF, 357 const Twine &Name) { 358 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && 359 "createMalloc needs either InsertBefore or InsertAtEnd"); 360 361 // malloc(type) becomes: 362 // bitcast (i8* malloc(typeSize)) to type* 363 // malloc(type, arraySize) becomes: 364 // bitcast (i8 *malloc(typeSize*arraySize)) to type* 365 if (!ArraySize) 366 ArraySize = ConstantInt::get(IntPtrTy, 1); 367 else if (ArraySize->getType() != IntPtrTy) { 368 if (InsertBefore) 369 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, 370 "", InsertBefore); 371 else 372 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, 373 "", InsertAtEnd); 374 } 375 376 if (!IsConstantOne(ArraySize)) { 377 if (IsConstantOne(AllocSize)) { 378 AllocSize = ArraySize; // Operand * 1 = Operand 379 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) { 380 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy, 381 false /*ZExt*/); 382 // Malloc arg is constant product of type size and array size 383 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize)); 384 } else { 385 // Multiply type size by the array size... 386 if (InsertBefore) 387 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, 388 "mallocsize", InsertBefore); 389 else 390 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, 391 "mallocsize", InsertAtEnd); 392 } 393 } 394 395 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size"); 396 // Create the call to Malloc. 397 BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; 398 Module* M = BB->getParent()->getParent(); 399 Type *BPTy = Type::getInt8PtrTy(BB->getContext()); 400 Value *MallocFunc = MallocF; 401 if (!MallocFunc) 402 // prototype malloc as "void *malloc(size_t)" 403 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, NULL); 404 PointerType *AllocPtrType = PointerType::getUnqual(AllocTy); 405 CallInst *MCall = NULL; 406 Instruction *Result = NULL; 407 if (InsertBefore) { 408 MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore); 409 Result = MCall; 410 if (Result->getType() != AllocPtrType) 411 // Create a cast instruction to convert to the right type... 412 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore); 413 } else { 414 MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall"); 415 Result = MCall; 416 if (Result->getType() != AllocPtrType) { 417 InsertAtEnd->getInstList().push_back(MCall); 418 // Create a cast instruction to convert to the right type... 419 Result = new BitCastInst(MCall, AllocPtrType, Name); 420 } 421 } 422 MCall->setTailCall(); 423 if (Function *F = dyn_cast<Function>(MallocFunc)) { 424 MCall->setCallingConv(F->getCallingConv()); 425 if (!F->doesNotAlias(0)) F->setDoesNotAlias(0); 426 } 427 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type"); 428 429 return Result; 430 } 431 432 /// CreateMalloc - Generate the IR for a call to malloc: 433 /// 1. Compute the malloc call's argument as the specified type's size, 434 /// possibly multiplied by the array size if the array size is not 435 /// constant 1. 436 /// 2. Call malloc with that argument. 437 /// 3. Bitcast the result of the malloc call to the specified type. 438 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore, 439 Type *IntPtrTy, Type *AllocTy, 440 Value *AllocSize, Value *ArraySize, 441 Function * MallocF, 442 const Twine &Name) { 443 return createMalloc(InsertBefore, NULL, IntPtrTy, AllocTy, AllocSize, 444 ArraySize, MallocF, Name); 445 } 446 447 /// CreateMalloc - Generate the IR for a call to malloc: 448 /// 1. Compute the malloc call's argument as the specified type's size, 449 /// possibly multiplied by the array size if the array size is not 450 /// constant 1. 451 /// 2. Call malloc with that argument. 452 /// 3. Bitcast the result of the malloc call to the specified type. 453 /// Note: This function does not add the bitcast to the basic block, that is the 454 /// responsibility of the caller. 455 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd, 456 Type *IntPtrTy, Type *AllocTy, 457 Value *AllocSize, Value *ArraySize, 458 Function *MallocF, const Twine &Name) { 459 return createMalloc(NULL, InsertAtEnd, IntPtrTy, AllocTy, AllocSize, 460 ArraySize, MallocF, Name); 461 } 462 463 static Instruction* createFree(Value* Source, Instruction *InsertBefore, 464 BasicBlock *InsertAtEnd) { 465 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && 466 "createFree needs either InsertBefore or InsertAtEnd"); 467 assert(Source->getType()->isPointerTy() && 468 "Can not free something of nonpointer type!"); 469 470 BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; 471 Module* M = BB->getParent()->getParent(); 472 473 Type *VoidTy = Type::getVoidTy(M->getContext()); 474 Type *IntPtrTy = Type::getInt8PtrTy(M->getContext()); 475 // prototype free as "void free(void*)" 476 Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, NULL); 477 CallInst* Result = NULL; 478 Value *PtrCast = Source; 479 if (InsertBefore) { 480 if (Source->getType() != IntPtrTy) 481 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore); 482 Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore); 483 } else { 484 if (Source->getType() != IntPtrTy) 485 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd); 486 Result = CallInst::Create(FreeFunc, PtrCast, ""); 487 } 488 Result->setTailCall(); 489 if (Function *F = dyn_cast<Function>(FreeFunc)) 490 Result->setCallingConv(F->getCallingConv()); 491 492 return Result; 493 } 494 495 /// CreateFree - Generate the IR for a call to the builtin free function. 496 Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) { 497 return createFree(Source, InsertBefore, NULL); 498 } 499 500 /// CreateFree - Generate the IR for a call to the builtin free function. 501 /// Note: This function does not add the call to the basic block, that is the 502 /// responsibility of the caller. 503 Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) { 504 Instruction* FreeCall = createFree(Source, NULL, InsertAtEnd); 505 assert(FreeCall && "CreateFree did not create a CallInst"); 506 return FreeCall; 507 } 508 509 //===----------------------------------------------------------------------===// 510 // InvokeInst Implementation 511 //===----------------------------------------------------------------------===// 512 513 void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException, 514 ArrayRef<Value *> Args, const Twine &NameStr) { 515 assert(NumOperands == 3 + Args.size() && "NumOperands not set up?"); 516 Op<-3>() = Fn; 517 Op<-2>() = IfNormal; 518 Op<-1>() = IfException; 519 520 #ifndef NDEBUG 521 FunctionType *FTy = 522 cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType()); 523 524 assert(((Args.size() == FTy->getNumParams()) || 525 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 526 "Invoking a function with bad signature"); 527 528 for (unsigned i = 0, e = Args.size(); i != e; i++) 529 assert((i >= FTy->getNumParams() || 530 FTy->getParamType(i) == Args[i]->getType()) && 531 "Invoking a function with a bad signature!"); 532 #endif 533 534 std::copy(Args.begin(), Args.end(), op_begin()); 535 setName(NameStr); 536 } 537 538 InvokeInst::InvokeInst(const InvokeInst &II) 539 : TerminatorInst(II.getType(), Instruction::Invoke, 540 OperandTraits<InvokeInst>::op_end(this) 541 - II.getNumOperands(), 542 II.getNumOperands()) { 543 setAttributes(II.getAttributes()); 544 setCallingConv(II.getCallingConv()); 545 std::copy(II.op_begin(), II.op_end(), op_begin()); 546 SubclassOptionalData = II.SubclassOptionalData; 547 } 548 549 BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const { 550 return getSuccessor(idx); 551 } 552 unsigned InvokeInst::getNumSuccessorsV() const { 553 return getNumSuccessors(); 554 } 555 void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) { 556 return setSuccessor(idx, B); 557 } 558 559 bool InvokeInst::paramHasAttr(unsigned i, Attributes attr) const { 560 if (AttributeList.paramHasAttr(i, attr)) 561 return true; 562 if (const Function *F = getCalledFunction()) 563 return F->paramHasAttr(i, attr); 564 return false; 565 } 566 567 void InvokeInst::addAttribute(unsigned i, Attributes attr) { 568 AttrListPtr PAL = getAttributes(); 569 PAL = PAL.addAttr(i, attr); 570 setAttributes(PAL); 571 } 572 573 void InvokeInst::removeAttribute(unsigned i, Attributes attr) { 574 AttrListPtr PAL = getAttributes(); 575 PAL = PAL.removeAttr(i, attr); 576 setAttributes(PAL); 577 } 578 579 LandingPadInst *InvokeInst::getLandingPadInst() const { 580 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI()); 581 } 582 583 //===----------------------------------------------------------------------===// 584 // ReturnInst Implementation 585 //===----------------------------------------------------------------------===// 586 587 ReturnInst::ReturnInst(const ReturnInst &RI) 588 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret, 589 OperandTraits<ReturnInst>::op_end(this) - 590 RI.getNumOperands(), 591 RI.getNumOperands()) { 592 if (RI.getNumOperands()) 593 Op<0>() = RI.Op<0>(); 594 SubclassOptionalData = RI.SubclassOptionalData; 595 } 596 597 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore) 598 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret, 599 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, 600 InsertBefore) { 601 if (retVal) 602 Op<0>() = retVal; 603 } 604 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd) 605 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret, 606 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, 607 InsertAtEnd) { 608 if (retVal) 609 Op<0>() = retVal; 610 } 611 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd) 612 : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret, 613 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) { 614 } 615 616 unsigned ReturnInst::getNumSuccessorsV() const { 617 return getNumSuccessors(); 618 } 619 620 /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to 621 /// emit the vtable for the class in this translation unit. 622 void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { 623 llvm_unreachable("ReturnInst has no successors!"); 624 } 625 626 BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const { 627 llvm_unreachable("ReturnInst has no successors!"); 628 } 629 630 ReturnInst::~ReturnInst() { 631 } 632 633 //===----------------------------------------------------------------------===// 634 // ResumeInst Implementation 635 //===----------------------------------------------------------------------===// 636 637 ResumeInst::ResumeInst(const ResumeInst &RI) 638 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume, 639 OperandTraits<ResumeInst>::op_begin(this), 1) { 640 Op<0>() = RI.Op<0>(); 641 } 642 643 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore) 644 : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume, 645 OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) { 646 Op<0>() = Exn; 647 } 648 649 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd) 650 : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume, 651 OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) { 652 Op<0>() = Exn; 653 } 654 655 unsigned ResumeInst::getNumSuccessorsV() const { 656 return getNumSuccessors(); 657 } 658 659 void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { 660 llvm_unreachable("ResumeInst has no successors!"); 661 } 662 663 BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const { 664 llvm_unreachable("ResumeInst has no successors!"); 665 } 666 667 //===----------------------------------------------------------------------===// 668 // UnreachableInst Implementation 669 //===----------------------------------------------------------------------===// 670 671 UnreachableInst::UnreachableInst(LLVMContext &Context, 672 Instruction *InsertBefore) 673 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable, 674 0, 0, InsertBefore) { 675 } 676 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd) 677 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable, 678 0, 0, InsertAtEnd) { 679 } 680 681 unsigned UnreachableInst::getNumSuccessorsV() const { 682 return getNumSuccessors(); 683 } 684 685 void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { 686 llvm_unreachable("UnreachableInst has no successors!"); 687 } 688 689 BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const { 690 llvm_unreachable("UnreachableInst has no successors!"); 691 } 692 693 //===----------------------------------------------------------------------===// 694 // BranchInst Implementation 695 //===----------------------------------------------------------------------===// 696 697 void BranchInst::AssertOK() { 698 if (isConditional()) 699 assert(getCondition()->getType()->isIntegerTy(1) && 700 "May only branch on boolean predicates!"); 701 } 702 703 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore) 704 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 705 OperandTraits<BranchInst>::op_end(this) - 1, 706 1, InsertBefore) { 707 assert(IfTrue != 0 && "Branch destination may not be null!"); 708 Op<-1>() = IfTrue; 709 } 710 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, 711 Instruction *InsertBefore) 712 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 713 OperandTraits<BranchInst>::op_end(this) - 3, 714 3, InsertBefore) { 715 Op<-1>() = IfTrue; 716 Op<-2>() = IfFalse; 717 Op<-3>() = Cond; 718 #ifndef NDEBUG 719 AssertOK(); 720 #endif 721 } 722 723 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) 724 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 725 OperandTraits<BranchInst>::op_end(this) - 1, 726 1, InsertAtEnd) { 727 assert(IfTrue != 0 && "Branch destination may not be null!"); 728 Op<-1>() = IfTrue; 729 } 730 731 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, 732 BasicBlock *InsertAtEnd) 733 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 734 OperandTraits<BranchInst>::op_end(this) - 3, 735 3, InsertAtEnd) { 736 Op<-1>() = IfTrue; 737 Op<-2>() = IfFalse; 738 Op<-3>() = Cond; 739 #ifndef NDEBUG 740 AssertOK(); 741 #endif 742 } 743 744 745 BranchInst::BranchInst(const BranchInst &BI) : 746 TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br, 747 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(), 748 BI.getNumOperands()) { 749 Op<-1>() = BI.Op<-1>(); 750 if (BI.getNumOperands() != 1) { 751 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!"); 752 Op<-3>() = BI.Op<-3>(); 753 Op<-2>() = BI.Op<-2>(); 754 } 755 SubclassOptionalData = BI.SubclassOptionalData; 756 } 757 758 void BranchInst::swapSuccessors() { 759 assert(isConditional() && 760 "Cannot swap successors of an unconditional branch"); 761 Op<-1>().swap(Op<-2>()); 762 763 // Update profile metadata if present and it matches our structural 764 // expectations. 765 MDNode *ProfileData = getMetadata(LLVMContext::MD_prof); 766 if (!ProfileData || ProfileData->getNumOperands() != 3) 767 return; 768 769 // The first operand is the name. Fetch them backwards and build a new one. 770 Value *Ops[] = { 771 ProfileData->getOperand(0), 772 ProfileData->getOperand(2), 773 ProfileData->getOperand(1) 774 }; 775 setMetadata(LLVMContext::MD_prof, 776 MDNode::get(ProfileData->getContext(), Ops)); 777 } 778 779 BasicBlock *BranchInst::getSuccessorV(unsigned idx) const { 780 return getSuccessor(idx); 781 } 782 unsigned BranchInst::getNumSuccessorsV() const { 783 return getNumSuccessors(); 784 } 785 void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) { 786 setSuccessor(idx, B); 787 } 788 789 790 //===----------------------------------------------------------------------===// 791 // AllocaInst Implementation 792 //===----------------------------------------------------------------------===// 793 794 static Value *getAISize(LLVMContext &Context, Value *Amt) { 795 if (!Amt) 796 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1); 797 else { 798 assert(!isa<BasicBlock>(Amt) && 799 "Passed basic block into allocation size parameter! Use other ctor"); 800 assert(Amt->getType()->isIntegerTy() && 801 "Allocation array size is not an integer!"); 802 } 803 return Amt; 804 } 805 806 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, 807 const Twine &Name, Instruction *InsertBefore) 808 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, 809 getAISize(Ty->getContext(), ArraySize), InsertBefore) { 810 setAlignment(0); 811 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 812 setName(Name); 813 } 814 815 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, 816 const Twine &Name, BasicBlock *InsertAtEnd) 817 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, 818 getAISize(Ty->getContext(), ArraySize), InsertAtEnd) { 819 setAlignment(0); 820 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 821 setName(Name); 822 } 823 824 AllocaInst::AllocaInst(Type *Ty, const Twine &Name, 825 Instruction *InsertBefore) 826 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, 827 getAISize(Ty->getContext(), 0), InsertBefore) { 828 setAlignment(0); 829 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 830 setName(Name); 831 } 832 833 AllocaInst::AllocaInst(Type *Ty, const Twine &Name, 834 BasicBlock *InsertAtEnd) 835 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, 836 getAISize(Ty->getContext(), 0), InsertAtEnd) { 837 setAlignment(0); 838 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 839 setName(Name); 840 } 841 842 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align, 843 const Twine &Name, Instruction *InsertBefore) 844 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, 845 getAISize(Ty->getContext(), ArraySize), InsertBefore) { 846 setAlignment(Align); 847 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 848 setName(Name); 849 } 850 851 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align, 852 const Twine &Name, BasicBlock *InsertAtEnd) 853 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, 854 getAISize(Ty->getContext(), ArraySize), InsertAtEnd) { 855 setAlignment(Align); 856 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 857 setName(Name); 858 } 859 860 // Out of line virtual method, so the vtable, etc has a home. 861 AllocaInst::~AllocaInst() { 862 } 863 864 void AllocaInst::setAlignment(unsigned Align) { 865 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); 866 assert(Align <= MaximumAlignment && 867 "Alignment is greater than MaximumAlignment!"); 868 setInstructionSubclassData(Log2_32(Align) + 1); 869 assert(getAlignment() == Align && "Alignment representation error!"); 870 } 871 872 bool AllocaInst::isArrayAllocation() const { 873 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0))) 874 return !CI->isOne(); 875 return true; 876 } 877 878 Type *AllocaInst::getAllocatedType() const { 879 return getType()->getElementType(); 880 } 881 882 /// isStaticAlloca - Return true if this alloca is in the entry block of the 883 /// function and is a constant size. If so, the code generator will fold it 884 /// into the prolog/epilog code, so it is basically free. 885 bool AllocaInst::isStaticAlloca() const { 886 // Must be constant size. 887 if (!isa<ConstantInt>(getArraySize())) return false; 888 889 // Must be in the entry block. 890 const BasicBlock *Parent = getParent(); 891 return Parent == &Parent->getParent()->front(); 892 } 893 894 //===----------------------------------------------------------------------===// 895 // LoadInst Implementation 896 //===----------------------------------------------------------------------===// 897 898 void LoadInst::AssertOK() { 899 assert(getOperand(0)->getType()->isPointerTy() && 900 "Ptr must have pointer type."); 901 assert(!(isAtomic() && getAlignment() == 0) && 902 "Alignment required for atomic load"); 903 } 904 905 LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef) 906 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 907 Load, Ptr, InsertBef) { 908 setVolatile(false); 909 setAlignment(0); 910 setAtomic(NotAtomic); 911 AssertOK(); 912 setName(Name); 913 } 914 915 LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE) 916 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 917 Load, Ptr, InsertAE) { 918 setVolatile(false); 919 setAlignment(0); 920 setAtomic(NotAtomic); 921 AssertOK(); 922 setName(Name); 923 } 924 925 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 926 Instruction *InsertBef) 927 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 928 Load, Ptr, InsertBef) { 929 setVolatile(isVolatile); 930 setAlignment(0); 931 setAtomic(NotAtomic); 932 AssertOK(); 933 setName(Name); 934 } 935 936 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 937 BasicBlock *InsertAE) 938 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 939 Load, Ptr, InsertAE) { 940 setVolatile(isVolatile); 941 setAlignment(0); 942 setAtomic(NotAtomic); 943 AssertOK(); 944 setName(Name); 945 } 946 947 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 948 unsigned Align, Instruction *InsertBef) 949 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 950 Load, Ptr, InsertBef) { 951 setVolatile(isVolatile); 952 setAlignment(Align); 953 setAtomic(NotAtomic); 954 AssertOK(); 955 setName(Name); 956 } 957 958 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 959 unsigned Align, BasicBlock *InsertAE) 960 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 961 Load, Ptr, InsertAE) { 962 setVolatile(isVolatile); 963 setAlignment(Align); 964 setAtomic(NotAtomic); 965 AssertOK(); 966 setName(Name); 967 } 968 969 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 970 unsigned Align, AtomicOrdering Order, 971 SynchronizationScope SynchScope, 972 Instruction *InsertBef) 973 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 974 Load, Ptr, InsertBef) { 975 setVolatile(isVolatile); 976 setAlignment(Align); 977 setAtomic(Order, SynchScope); 978 AssertOK(); 979 setName(Name); 980 } 981 982 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 983 unsigned Align, AtomicOrdering Order, 984 SynchronizationScope SynchScope, 985 BasicBlock *InsertAE) 986 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 987 Load, Ptr, InsertAE) { 988 setVolatile(isVolatile); 989 setAlignment(Align); 990 setAtomic(Order, SynchScope); 991 AssertOK(); 992 setName(Name); 993 } 994 995 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef) 996 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 997 Load, Ptr, InsertBef) { 998 setVolatile(false); 999 setAlignment(0); 1000 setAtomic(NotAtomic); 1001 AssertOK(); 1002 if (Name && Name[0]) setName(Name); 1003 } 1004 1005 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE) 1006 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 1007 Load, Ptr, InsertAE) { 1008 setVolatile(false); 1009 setAlignment(0); 1010 setAtomic(NotAtomic); 1011 AssertOK(); 1012 if (Name && Name[0]) setName(Name); 1013 } 1014 1015 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile, 1016 Instruction *InsertBef) 1017 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 1018 Load, Ptr, InsertBef) { 1019 setVolatile(isVolatile); 1020 setAlignment(0); 1021 setAtomic(NotAtomic); 1022 AssertOK(); 1023 if (Name && Name[0]) setName(Name); 1024 } 1025 1026 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile, 1027 BasicBlock *InsertAE) 1028 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 1029 Load, Ptr, InsertAE) { 1030 setVolatile(isVolatile); 1031 setAlignment(0); 1032 setAtomic(NotAtomic); 1033 AssertOK(); 1034 if (Name && Name[0]) setName(Name); 1035 } 1036 1037 void LoadInst::setAlignment(unsigned Align) { 1038 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); 1039 assert(Align <= MaximumAlignment && 1040 "Alignment is greater than MaximumAlignment!"); 1041 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) | 1042 ((Log2_32(Align)+1)<<1)); 1043 assert(getAlignment() == Align && "Alignment representation error!"); 1044 } 1045 1046 //===----------------------------------------------------------------------===// 1047 // StoreInst Implementation 1048 //===----------------------------------------------------------------------===// 1049 1050 void StoreInst::AssertOK() { 1051 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!"); 1052 assert(getOperand(1)->getType()->isPointerTy() && 1053 "Ptr must have pointer type!"); 1054 assert(getOperand(0)->getType() == 1055 cast<PointerType>(getOperand(1)->getType())->getElementType() 1056 && "Ptr must be a pointer to Val type!"); 1057 assert(!(isAtomic() && getAlignment() == 0) && 1058 "Alignment required for atomic load"); 1059 } 1060 1061 1062 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore) 1063 : Instruction(Type::getVoidTy(val->getContext()), Store, 1064 OperandTraits<StoreInst>::op_begin(this), 1065 OperandTraits<StoreInst>::operands(this), 1066 InsertBefore) { 1067 Op<0>() = val; 1068 Op<1>() = addr; 1069 setVolatile(false); 1070 setAlignment(0); 1071 setAtomic(NotAtomic); 1072 AssertOK(); 1073 } 1074 1075 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd) 1076 : Instruction(Type::getVoidTy(val->getContext()), Store, 1077 OperandTraits<StoreInst>::op_begin(this), 1078 OperandTraits<StoreInst>::operands(this), 1079 InsertAtEnd) { 1080 Op<0>() = val; 1081 Op<1>() = addr; 1082 setVolatile(false); 1083 setAlignment(0); 1084 setAtomic(NotAtomic); 1085 AssertOK(); 1086 } 1087 1088 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1089 Instruction *InsertBefore) 1090 : Instruction(Type::getVoidTy(val->getContext()), Store, 1091 OperandTraits<StoreInst>::op_begin(this), 1092 OperandTraits<StoreInst>::operands(this), 1093 InsertBefore) { 1094 Op<0>() = val; 1095 Op<1>() = addr; 1096 setVolatile(isVolatile); 1097 setAlignment(0); 1098 setAtomic(NotAtomic); 1099 AssertOK(); 1100 } 1101 1102 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1103 unsigned Align, Instruction *InsertBefore) 1104 : Instruction(Type::getVoidTy(val->getContext()), Store, 1105 OperandTraits<StoreInst>::op_begin(this), 1106 OperandTraits<StoreInst>::operands(this), 1107 InsertBefore) { 1108 Op<0>() = val; 1109 Op<1>() = addr; 1110 setVolatile(isVolatile); 1111 setAlignment(Align); 1112 setAtomic(NotAtomic); 1113 AssertOK(); 1114 } 1115 1116 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1117 unsigned Align, AtomicOrdering Order, 1118 SynchronizationScope SynchScope, 1119 Instruction *InsertBefore) 1120 : Instruction(Type::getVoidTy(val->getContext()), Store, 1121 OperandTraits<StoreInst>::op_begin(this), 1122 OperandTraits<StoreInst>::operands(this), 1123 InsertBefore) { 1124 Op<0>() = val; 1125 Op<1>() = addr; 1126 setVolatile(isVolatile); 1127 setAlignment(Align); 1128 setAtomic(Order, SynchScope); 1129 AssertOK(); 1130 } 1131 1132 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1133 BasicBlock *InsertAtEnd) 1134 : Instruction(Type::getVoidTy(val->getContext()), Store, 1135 OperandTraits<StoreInst>::op_begin(this), 1136 OperandTraits<StoreInst>::operands(this), 1137 InsertAtEnd) { 1138 Op<0>() = val; 1139 Op<1>() = addr; 1140 setVolatile(isVolatile); 1141 setAlignment(0); 1142 setAtomic(NotAtomic); 1143 AssertOK(); 1144 } 1145 1146 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1147 unsigned Align, BasicBlock *InsertAtEnd) 1148 : Instruction(Type::getVoidTy(val->getContext()), Store, 1149 OperandTraits<StoreInst>::op_begin(this), 1150 OperandTraits<StoreInst>::operands(this), 1151 InsertAtEnd) { 1152 Op<0>() = val; 1153 Op<1>() = addr; 1154 setVolatile(isVolatile); 1155 setAlignment(Align); 1156 setAtomic(NotAtomic); 1157 AssertOK(); 1158 } 1159 1160 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1161 unsigned Align, AtomicOrdering Order, 1162 SynchronizationScope SynchScope, 1163 BasicBlock *InsertAtEnd) 1164 : Instruction(Type::getVoidTy(val->getContext()), Store, 1165 OperandTraits<StoreInst>::op_begin(this), 1166 OperandTraits<StoreInst>::operands(this), 1167 InsertAtEnd) { 1168 Op<0>() = val; 1169 Op<1>() = addr; 1170 setVolatile(isVolatile); 1171 setAlignment(Align); 1172 setAtomic(Order, SynchScope); 1173 AssertOK(); 1174 } 1175 1176 void StoreInst::setAlignment(unsigned Align) { 1177 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); 1178 assert(Align <= MaximumAlignment && 1179 "Alignment is greater than MaximumAlignment!"); 1180 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) | 1181 ((Log2_32(Align)+1) << 1)); 1182 assert(getAlignment() == Align && "Alignment representation error!"); 1183 } 1184 1185 //===----------------------------------------------------------------------===// 1186 // AtomicCmpXchgInst Implementation 1187 //===----------------------------------------------------------------------===// 1188 1189 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal, 1190 AtomicOrdering Ordering, 1191 SynchronizationScope SynchScope) { 1192 Op<0>() = Ptr; 1193 Op<1>() = Cmp; 1194 Op<2>() = NewVal; 1195 setOrdering(Ordering); 1196 setSynchScope(SynchScope); 1197 1198 assert(getOperand(0) && getOperand(1) && getOperand(2) && 1199 "All operands must be non-null!"); 1200 assert(getOperand(0)->getType()->isPointerTy() && 1201 "Ptr must have pointer type!"); 1202 assert(getOperand(1)->getType() == 1203 cast<PointerType>(getOperand(0)->getType())->getElementType() 1204 && "Ptr must be a pointer to Cmp type!"); 1205 assert(getOperand(2)->getType() == 1206 cast<PointerType>(getOperand(0)->getType())->getElementType() 1207 && "Ptr must be a pointer to NewVal type!"); 1208 assert(Ordering != NotAtomic && 1209 "AtomicCmpXchg instructions must be atomic!"); 1210 } 1211 1212 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, 1213 AtomicOrdering Ordering, 1214 SynchronizationScope SynchScope, 1215 Instruction *InsertBefore) 1216 : Instruction(Cmp->getType(), AtomicCmpXchg, 1217 OperandTraits<AtomicCmpXchgInst>::op_begin(this), 1218 OperandTraits<AtomicCmpXchgInst>::operands(this), 1219 InsertBefore) { 1220 Init(Ptr, Cmp, NewVal, Ordering, SynchScope); 1221 } 1222 1223 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, 1224 AtomicOrdering Ordering, 1225 SynchronizationScope SynchScope, 1226 BasicBlock *InsertAtEnd) 1227 : Instruction(Cmp->getType(), AtomicCmpXchg, 1228 OperandTraits<AtomicCmpXchgInst>::op_begin(this), 1229 OperandTraits<AtomicCmpXchgInst>::operands(this), 1230 InsertAtEnd) { 1231 Init(Ptr, Cmp, NewVal, Ordering, SynchScope); 1232 } 1233 1234 //===----------------------------------------------------------------------===// 1235 // AtomicRMWInst Implementation 1236 //===----------------------------------------------------------------------===// 1237 1238 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val, 1239 AtomicOrdering Ordering, 1240 SynchronizationScope SynchScope) { 1241 Op<0>() = Ptr; 1242 Op<1>() = Val; 1243 setOperation(Operation); 1244 setOrdering(Ordering); 1245 setSynchScope(SynchScope); 1246 1247 assert(getOperand(0) && getOperand(1) && 1248 "All operands must be non-null!"); 1249 assert(getOperand(0)->getType()->isPointerTy() && 1250 "Ptr must have pointer type!"); 1251 assert(getOperand(1)->getType() == 1252 cast<PointerType>(getOperand(0)->getType())->getElementType() 1253 && "Ptr must be a pointer to Val type!"); 1254 assert(Ordering != NotAtomic && 1255 "AtomicRMW instructions must be atomic!"); 1256 } 1257 1258 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, 1259 AtomicOrdering Ordering, 1260 SynchronizationScope SynchScope, 1261 Instruction *InsertBefore) 1262 : Instruction(Val->getType(), AtomicRMW, 1263 OperandTraits<AtomicRMWInst>::op_begin(this), 1264 OperandTraits<AtomicRMWInst>::operands(this), 1265 InsertBefore) { 1266 Init(Operation, Ptr, Val, Ordering, SynchScope); 1267 } 1268 1269 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, 1270 AtomicOrdering Ordering, 1271 SynchronizationScope SynchScope, 1272 BasicBlock *InsertAtEnd) 1273 : Instruction(Val->getType(), AtomicRMW, 1274 OperandTraits<AtomicRMWInst>::op_begin(this), 1275 OperandTraits<AtomicRMWInst>::operands(this), 1276 InsertAtEnd) { 1277 Init(Operation, Ptr, Val, Ordering, SynchScope); 1278 } 1279 1280 //===----------------------------------------------------------------------===// 1281 // FenceInst Implementation 1282 //===----------------------------------------------------------------------===// 1283 1284 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 1285 SynchronizationScope SynchScope, 1286 Instruction *InsertBefore) 1287 : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertBefore) { 1288 setOrdering(Ordering); 1289 setSynchScope(SynchScope); 1290 } 1291 1292 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 1293 SynchronizationScope SynchScope, 1294 BasicBlock *InsertAtEnd) 1295 : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertAtEnd) { 1296 setOrdering(Ordering); 1297 setSynchScope(SynchScope); 1298 } 1299 1300 //===----------------------------------------------------------------------===// 1301 // GetElementPtrInst Implementation 1302 //===----------------------------------------------------------------------===// 1303 1304 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList, 1305 const Twine &Name) { 1306 assert(NumOperands == 1 + IdxList.size() && "NumOperands not initialized?"); 1307 OperandList[0] = Ptr; 1308 std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1); 1309 setName(Name); 1310 } 1311 1312 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI) 1313 : Instruction(GEPI.getType(), GetElementPtr, 1314 OperandTraits<GetElementPtrInst>::op_end(this) 1315 - GEPI.getNumOperands(), 1316 GEPI.getNumOperands()) { 1317 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin()); 1318 SubclassOptionalData = GEPI.SubclassOptionalData; 1319 } 1320 1321 /// getIndexedType - Returns the type of the element that would be accessed with 1322 /// a gep instruction with the specified parameters. 1323 /// 1324 /// The Idxs pointer should point to a continuous piece of memory containing the 1325 /// indices, either as Value* or uint64_t. 1326 /// 1327 /// A null type is returned if the indices are invalid for the specified 1328 /// pointer type. 1329 /// 1330 template <typename IndexTy> 1331 static Type *getIndexedTypeInternal(Type *Ptr, ArrayRef<IndexTy> IdxList) { 1332 if (Ptr->isVectorTy()) { 1333 assert(IdxList.size() == 1 && 1334 "GEP with vector pointers must have a single index"); 1335 PointerType *PTy = dyn_cast<PointerType>( 1336 cast<VectorType>(Ptr)->getElementType()); 1337 assert(PTy && "Gep with invalid vector pointer found"); 1338 return PTy->getElementType(); 1339 } 1340 1341 PointerType *PTy = dyn_cast<PointerType>(Ptr); 1342 if (!PTy) return 0; // Type isn't a pointer type! 1343 Type *Agg = PTy->getElementType(); 1344 1345 // Handle the special case of the empty set index set, which is always valid. 1346 if (IdxList.empty()) 1347 return Agg; 1348 1349 // If there is at least one index, the top level type must be sized, otherwise 1350 // it cannot be 'stepped over'. 1351 if (!Agg->isSized()) 1352 return 0; 1353 1354 unsigned CurIdx = 1; 1355 for (; CurIdx != IdxList.size(); ++CurIdx) { 1356 CompositeType *CT = dyn_cast<CompositeType>(Agg); 1357 if (!CT || CT->isPointerTy()) return 0; 1358 IndexTy Index = IdxList[CurIdx]; 1359 if (!CT->indexValid(Index)) return 0; 1360 Agg = CT->getTypeAtIndex(Index); 1361 } 1362 return CurIdx == IdxList.size() ? Agg : 0; 1363 } 1364 1365 Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<Value *> IdxList) { 1366 return getIndexedTypeInternal(Ptr, IdxList); 1367 } 1368 1369 Type *GetElementPtrInst::getIndexedType(Type *Ptr, 1370 ArrayRef<Constant *> IdxList) { 1371 return getIndexedTypeInternal(Ptr, IdxList); 1372 } 1373 1374 Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<uint64_t> IdxList) { 1375 return getIndexedTypeInternal(Ptr, IdxList); 1376 } 1377 1378 unsigned GetElementPtrInst::getAddressSpace(Value *Ptr) { 1379 Type *Ty = Ptr->getType(); 1380 1381 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1382 Ty = VTy->getElementType(); 1383 1384 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 1385 return PTy->getAddressSpace(); 1386 1387 llvm_unreachable("Invalid GEP pointer type"); 1388 } 1389 1390 /// hasAllZeroIndices - Return true if all of the indices of this GEP are 1391 /// zeros. If so, the result pointer and the first operand have the same 1392 /// value, just potentially different types. 1393 bool GetElementPtrInst::hasAllZeroIndices() const { 1394 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1395 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) { 1396 if (!CI->isZero()) return false; 1397 } else { 1398 return false; 1399 } 1400 } 1401 return true; 1402 } 1403 1404 /// hasAllConstantIndices - Return true if all of the indices of this GEP are 1405 /// constant integers. If so, the result pointer and the first operand have 1406 /// a constant offset between them. 1407 bool GetElementPtrInst::hasAllConstantIndices() const { 1408 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1409 if (!isa<ConstantInt>(getOperand(i))) 1410 return false; 1411 } 1412 return true; 1413 } 1414 1415 void GetElementPtrInst::setIsInBounds(bool B) { 1416 cast<GEPOperator>(this)->setIsInBounds(B); 1417 } 1418 1419 bool GetElementPtrInst::isInBounds() const { 1420 return cast<GEPOperator>(this)->isInBounds(); 1421 } 1422 1423 //===----------------------------------------------------------------------===// 1424 // ExtractElementInst Implementation 1425 //===----------------------------------------------------------------------===// 1426 1427 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, 1428 const Twine &Name, 1429 Instruction *InsertBef) 1430 : Instruction(cast<VectorType>(Val->getType())->getElementType(), 1431 ExtractElement, 1432 OperandTraits<ExtractElementInst>::op_begin(this), 1433 2, InsertBef) { 1434 assert(isValidOperands(Val, Index) && 1435 "Invalid extractelement instruction operands!"); 1436 Op<0>() = Val; 1437 Op<1>() = Index; 1438 setName(Name); 1439 } 1440 1441 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, 1442 const Twine &Name, 1443 BasicBlock *InsertAE) 1444 : Instruction(cast<VectorType>(Val->getType())->getElementType(), 1445 ExtractElement, 1446 OperandTraits<ExtractElementInst>::op_begin(this), 1447 2, InsertAE) { 1448 assert(isValidOperands(Val, Index) && 1449 "Invalid extractelement instruction operands!"); 1450 1451 Op<0>() = Val; 1452 Op<1>() = Index; 1453 setName(Name); 1454 } 1455 1456 1457 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) { 1458 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy(32)) 1459 return false; 1460 return true; 1461 } 1462 1463 1464 //===----------------------------------------------------------------------===// 1465 // InsertElementInst Implementation 1466 //===----------------------------------------------------------------------===// 1467 1468 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, 1469 const Twine &Name, 1470 Instruction *InsertBef) 1471 : Instruction(Vec->getType(), InsertElement, 1472 OperandTraits<InsertElementInst>::op_begin(this), 1473 3, InsertBef) { 1474 assert(isValidOperands(Vec, Elt, Index) && 1475 "Invalid insertelement instruction operands!"); 1476 Op<0>() = Vec; 1477 Op<1>() = Elt; 1478 Op<2>() = Index; 1479 setName(Name); 1480 } 1481 1482 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, 1483 const Twine &Name, 1484 BasicBlock *InsertAE) 1485 : Instruction(Vec->getType(), InsertElement, 1486 OperandTraits<InsertElementInst>::op_begin(this), 1487 3, InsertAE) { 1488 assert(isValidOperands(Vec, Elt, Index) && 1489 "Invalid insertelement instruction operands!"); 1490 1491 Op<0>() = Vec; 1492 Op<1>() = Elt; 1493 Op<2>() = Index; 1494 setName(Name); 1495 } 1496 1497 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt, 1498 const Value *Index) { 1499 if (!Vec->getType()->isVectorTy()) 1500 return false; // First operand of insertelement must be vector type. 1501 1502 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType()) 1503 return false;// Second operand of insertelement must be vector element type. 1504 1505 if (!Index->getType()->isIntegerTy(32)) 1506 return false; // Third operand of insertelement must be i32. 1507 return true; 1508 } 1509 1510 1511 //===----------------------------------------------------------------------===// 1512 // ShuffleVectorInst Implementation 1513 //===----------------------------------------------------------------------===// 1514 1515 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, 1516 const Twine &Name, 1517 Instruction *InsertBefore) 1518 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1519 cast<VectorType>(Mask->getType())->getNumElements()), 1520 ShuffleVector, 1521 OperandTraits<ShuffleVectorInst>::op_begin(this), 1522 OperandTraits<ShuffleVectorInst>::operands(this), 1523 InsertBefore) { 1524 assert(isValidOperands(V1, V2, Mask) && 1525 "Invalid shuffle vector instruction operands!"); 1526 Op<0>() = V1; 1527 Op<1>() = V2; 1528 Op<2>() = Mask; 1529 setName(Name); 1530 } 1531 1532 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, 1533 const Twine &Name, 1534 BasicBlock *InsertAtEnd) 1535 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1536 cast<VectorType>(Mask->getType())->getNumElements()), 1537 ShuffleVector, 1538 OperandTraits<ShuffleVectorInst>::op_begin(this), 1539 OperandTraits<ShuffleVectorInst>::operands(this), 1540 InsertAtEnd) { 1541 assert(isValidOperands(V1, V2, Mask) && 1542 "Invalid shuffle vector instruction operands!"); 1543 1544 Op<0>() = V1; 1545 Op<1>() = V2; 1546 Op<2>() = Mask; 1547 setName(Name); 1548 } 1549 1550 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2, 1551 const Value *Mask) { 1552 // V1 and V2 must be vectors of the same type. 1553 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType()) 1554 return false; 1555 1556 // Mask must be vector of i32. 1557 VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType()); 1558 if (MaskTy == 0 || !MaskTy->getElementType()->isIntegerTy(32)) 1559 return false; 1560 1561 // Check to see if Mask is valid. 1562 if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask)) 1563 return true; 1564 1565 if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) { 1566 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements(); 1567 for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) { 1568 if (ConstantInt *CI = dyn_cast<ConstantInt>(MV->getOperand(i))) { 1569 if (CI->uge(V1Size*2)) 1570 return false; 1571 } else if (!isa<UndefValue>(MV->getOperand(i))) { 1572 return false; 1573 } 1574 } 1575 return true; 1576 } 1577 1578 if (const ConstantDataSequential *CDS = 1579 dyn_cast<ConstantDataSequential>(Mask)) { 1580 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements(); 1581 for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i) 1582 if (CDS->getElementAsInteger(i) >= V1Size*2) 1583 return false; 1584 return true; 1585 } 1586 1587 // The bitcode reader can create a place holder for a forward reference 1588 // used as the shuffle mask. When this occurs, the shuffle mask will 1589 // fall into this case and fail. To avoid this error, do this bit of 1590 // ugliness to allow such a mask pass. 1591 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Mask)) 1592 if (CE->getOpcode() == Instruction::UserOp1) 1593 return true; 1594 1595 return false; 1596 } 1597 1598 /// getMaskValue - Return the index from the shuffle mask for the specified 1599 /// output result. This is either -1 if the element is undef or a number less 1600 /// than 2*numelements. 1601 int ShuffleVectorInst::getMaskValue(Constant *Mask, unsigned i) { 1602 assert(i < Mask->getType()->getVectorNumElements() && "Index out of range"); 1603 if (ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(Mask)) 1604 return CDS->getElementAsInteger(i); 1605 Constant *C = Mask->getAggregateElement(i); 1606 if (isa<UndefValue>(C)) 1607 return -1; 1608 return cast<ConstantInt>(C)->getZExtValue(); 1609 } 1610 1611 /// getShuffleMask - Return the full mask for this instruction, where each 1612 /// element is the element number and undef's are returned as -1. 1613 void ShuffleVectorInst::getShuffleMask(Constant *Mask, 1614 SmallVectorImpl<int> &Result) { 1615 unsigned NumElts = Mask->getType()->getVectorNumElements(); 1616 1617 if (ConstantDataSequential *CDS=dyn_cast<ConstantDataSequential>(Mask)) { 1618 for (unsigned i = 0; i != NumElts; ++i) 1619 Result.push_back(CDS->getElementAsInteger(i)); 1620 return; 1621 } 1622 for (unsigned i = 0; i != NumElts; ++i) { 1623 Constant *C = Mask->getAggregateElement(i); 1624 Result.push_back(isa<UndefValue>(C) ? -1 : 1625 cast<ConstantInt>(C)->getZExtValue()); 1626 } 1627 } 1628 1629 1630 //===----------------------------------------------------------------------===// 1631 // InsertValueInst Class 1632 //===----------------------------------------------------------------------===// 1633 1634 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, 1635 const Twine &Name) { 1636 assert(NumOperands == 2 && "NumOperands not initialized?"); 1637 1638 // There's no fundamental reason why we require at least one index 1639 // (other than weirdness with &*IdxBegin being invalid; see 1640 // getelementptr's init routine for example). But there's no 1641 // present need to support it. 1642 assert(Idxs.size() > 0 && "InsertValueInst must have at least one index"); 1643 1644 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) == 1645 Val->getType() && "Inserted value must match indexed type!"); 1646 Op<0>() = Agg; 1647 Op<1>() = Val; 1648 1649 Indices.append(Idxs.begin(), Idxs.end()); 1650 setName(Name); 1651 } 1652 1653 InsertValueInst::InsertValueInst(const InsertValueInst &IVI) 1654 : Instruction(IVI.getType(), InsertValue, 1655 OperandTraits<InsertValueInst>::op_begin(this), 2), 1656 Indices(IVI.Indices) { 1657 Op<0>() = IVI.getOperand(0); 1658 Op<1>() = IVI.getOperand(1); 1659 SubclassOptionalData = IVI.SubclassOptionalData; 1660 } 1661 1662 //===----------------------------------------------------------------------===// 1663 // ExtractValueInst Class 1664 //===----------------------------------------------------------------------===// 1665 1666 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) { 1667 assert(NumOperands == 1 && "NumOperands not initialized?"); 1668 1669 // There's no fundamental reason why we require at least one index. 1670 // But there's no present need to support it. 1671 assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index"); 1672 1673 Indices.append(Idxs.begin(), Idxs.end()); 1674 setName(Name); 1675 } 1676 1677 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI) 1678 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)), 1679 Indices(EVI.Indices) { 1680 SubclassOptionalData = EVI.SubclassOptionalData; 1681 } 1682 1683 // getIndexedType - Returns the type of the element that would be extracted 1684 // with an extractvalue instruction with the specified parameters. 1685 // 1686 // A null type is returned if the indices are invalid for the specified 1687 // pointer type. 1688 // 1689 Type *ExtractValueInst::getIndexedType(Type *Agg, 1690 ArrayRef<unsigned> Idxs) { 1691 for (unsigned CurIdx = 0; CurIdx != Idxs.size(); ++CurIdx) { 1692 unsigned Index = Idxs[CurIdx]; 1693 // We can't use CompositeType::indexValid(Index) here. 1694 // indexValid() always returns true for arrays because getelementptr allows 1695 // out-of-bounds indices. Since we don't allow those for extractvalue and 1696 // insertvalue we need to check array indexing manually. 1697 // Since the only other types we can index into are struct types it's just 1698 // as easy to check those manually as well. 1699 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) { 1700 if (Index >= AT->getNumElements()) 1701 return 0; 1702 } else if (StructType *ST = dyn_cast<StructType>(Agg)) { 1703 if (Index >= ST->getNumElements()) 1704 return 0; 1705 } else { 1706 // Not a valid type to index into. 1707 return 0; 1708 } 1709 1710 Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index); 1711 } 1712 return const_cast<Type*>(Agg); 1713 } 1714 1715 //===----------------------------------------------------------------------===// 1716 // BinaryOperator Class 1717 //===----------------------------------------------------------------------===// 1718 1719 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 1720 Type *Ty, const Twine &Name, 1721 Instruction *InsertBefore) 1722 : Instruction(Ty, iType, 1723 OperandTraits<BinaryOperator>::op_begin(this), 1724 OperandTraits<BinaryOperator>::operands(this), 1725 InsertBefore) { 1726 Op<0>() = S1; 1727 Op<1>() = S2; 1728 init(iType); 1729 setName(Name); 1730 } 1731 1732 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 1733 Type *Ty, const Twine &Name, 1734 BasicBlock *InsertAtEnd) 1735 : Instruction(Ty, iType, 1736 OperandTraits<BinaryOperator>::op_begin(this), 1737 OperandTraits<BinaryOperator>::operands(this), 1738 InsertAtEnd) { 1739 Op<0>() = S1; 1740 Op<1>() = S2; 1741 init(iType); 1742 setName(Name); 1743 } 1744 1745 1746 void BinaryOperator::init(BinaryOps iType) { 1747 Value *LHS = getOperand(0), *RHS = getOperand(1); 1748 (void)LHS; (void)RHS; // Silence warnings. 1749 assert(LHS->getType() == RHS->getType() && 1750 "Binary operator operand types must match!"); 1751 #ifndef NDEBUG 1752 switch (iType) { 1753 case Add: case Sub: 1754 case Mul: 1755 assert(getType() == LHS->getType() && 1756 "Arithmetic operation should return same type as operands!"); 1757 assert(getType()->isIntOrIntVectorTy() && 1758 "Tried to create an integer operation on a non-integer type!"); 1759 break; 1760 case FAdd: case FSub: 1761 case FMul: 1762 assert(getType() == LHS->getType() && 1763 "Arithmetic operation should return same type as operands!"); 1764 assert(getType()->isFPOrFPVectorTy() && 1765 "Tried to create a floating-point operation on a " 1766 "non-floating-point type!"); 1767 break; 1768 case UDiv: 1769 case SDiv: 1770 assert(getType() == LHS->getType() && 1771 "Arithmetic operation should return same type as operands!"); 1772 assert((getType()->isIntegerTy() || (getType()->isVectorTy() && 1773 cast<VectorType>(getType())->getElementType()->isIntegerTy())) && 1774 "Incorrect operand type (not integer) for S/UDIV"); 1775 break; 1776 case FDiv: 1777 assert(getType() == LHS->getType() && 1778 "Arithmetic operation should return same type as operands!"); 1779 assert(getType()->isFPOrFPVectorTy() && 1780 "Incorrect operand type (not floating point) for FDIV"); 1781 break; 1782 case URem: 1783 case SRem: 1784 assert(getType() == LHS->getType() && 1785 "Arithmetic operation should return same type as operands!"); 1786 assert((getType()->isIntegerTy() || (getType()->isVectorTy() && 1787 cast<VectorType>(getType())->getElementType()->isIntegerTy())) && 1788 "Incorrect operand type (not integer) for S/UREM"); 1789 break; 1790 case FRem: 1791 assert(getType() == LHS->getType() && 1792 "Arithmetic operation should return same type as operands!"); 1793 assert(getType()->isFPOrFPVectorTy() && 1794 "Incorrect operand type (not floating point) for FREM"); 1795 break; 1796 case Shl: 1797 case LShr: 1798 case AShr: 1799 assert(getType() == LHS->getType() && 1800 "Shift operation should return same type as operands!"); 1801 assert((getType()->isIntegerTy() || 1802 (getType()->isVectorTy() && 1803 cast<VectorType>(getType())->getElementType()->isIntegerTy())) && 1804 "Tried to create a shift operation on a non-integral type!"); 1805 break; 1806 case And: case Or: 1807 case Xor: 1808 assert(getType() == LHS->getType() && 1809 "Logical operation should return same type as operands!"); 1810 assert((getType()->isIntegerTy() || 1811 (getType()->isVectorTy() && 1812 cast<VectorType>(getType())->getElementType()->isIntegerTy())) && 1813 "Tried to create a logical operation on a non-integral type!"); 1814 break; 1815 default: 1816 break; 1817 } 1818 #endif 1819 } 1820 1821 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, 1822 const Twine &Name, 1823 Instruction *InsertBefore) { 1824 assert(S1->getType() == S2->getType() && 1825 "Cannot create binary operator with two operands of differing type!"); 1826 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore); 1827 } 1828 1829 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, 1830 const Twine &Name, 1831 BasicBlock *InsertAtEnd) { 1832 BinaryOperator *Res = Create(Op, S1, S2, Name); 1833 InsertAtEnd->getInstList().push_back(Res); 1834 return Res; 1835 } 1836 1837 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, 1838 Instruction *InsertBefore) { 1839 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 1840 return new BinaryOperator(Instruction::Sub, 1841 zero, Op, 1842 Op->getType(), Name, InsertBefore); 1843 } 1844 1845 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, 1846 BasicBlock *InsertAtEnd) { 1847 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 1848 return new BinaryOperator(Instruction::Sub, 1849 zero, Op, 1850 Op->getType(), Name, InsertAtEnd); 1851 } 1852 1853 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, 1854 Instruction *InsertBefore) { 1855 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 1856 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore); 1857 } 1858 1859 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, 1860 BasicBlock *InsertAtEnd) { 1861 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 1862 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd); 1863 } 1864 1865 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, 1866 Instruction *InsertBefore) { 1867 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 1868 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore); 1869 } 1870 1871 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, 1872 BasicBlock *InsertAtEnd) { 1873 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 1874 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd); 1875 } 1876 1877 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name, 1878 Instruction *InsertBefore) { 1879 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 1880 return new BinaryOperator(Instruction::FSub, zero, Op, 1881 Op->getType(), Name, InsertBefore); 1882 } 1883 1884 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name, 1885 BasicBlock *InsertAtEnd) { 1886 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 1887 return new BinaryOperator(Instruction::FSub, zero, Op, 1888 Op->getType(), Name, InsertAtEnd); 1889 } 1890 1891 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, 1892 Instruction *InsertBefore) { 1893 Constant *C = Constant::getAllOnesValue(Op->getType()); 1894 return new BinaryOperator(Instruction::Xor, Op, C, 1895 Op->getType(), Name, InsertBefore); 1896 } 1897 1898 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, 1899 BasicBlock *InsertAtEnd) { 1900 Constant *AllOnes = Constant::getAllOnesValue(Op->getType()); 1901 return new BinaryOperator(Instruction::Xor, Op, AllOnes, 1902 Op->getType(), Name, InsertAtEnd); 1903 } 1904 1905 1906 // isConstantAllOnes - Helper function for several functions below 1907 static inline bool isConstantAllOnes(const Value *V) { 1908 if (const Constant *C = dyn_cast<Constant>(V)) 1909 return C->isAllOnesValue(); 1910 return false; 1911 } 1912 1913 bool BinaryOperator::isNeg(const Value *V) { 1914 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) 1915 if (Bop->getOpcode() == Instruction::Sub) 1916 if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0))) 1917 return C->isNegativeZeroValue(); 1918 return false; 1919 } 1920 1921 bool BinaryOperator::isFNeg(const Value *V) { 1922 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) 1923 if (Bop->getOpcode() == Instruction::FSub) 1924 if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0))) 1925 return C->isNegativeZeroValue(); 1926 return false; 1927 } 1928 1929 bool BinaryOperator::isNot(const Value *V) { 1930 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) 1931 return (Bop->getOpcode() == Instruction::Xor && 1932 (isConstantAllOnes(Bop->getOperand(1)) || 1933 isConstantAllOnes(Bop->getOperand(0)))); 1934 return false; 1935 } 1936 1937 Value *BinaryOperator::getNegArgument(Value *BinOp) { 1938 return cast<BinaryOperator>(BinOp)->getOperand(1); 1939 } 1940 1941 const Value *BinaryOperator::getNegArgument(const Value *BinOp) { 1942 return getNegArgument(const_cast<Value*>(BinOp)); 1943 } 1944 1945 Value *BinaryOperator::getFNegArgument(Value *BinOp) { 1946 return cast<BinaryOperator>(BinOp)->getOperand(1); 1947 } 1948 1949 const Value *BinaryOperator::getFNegArgument(const Value *BinOp) { 1950 return getFNegArgument(const_cast<Value*>(BinOp)); 1951 } 1952 1953 Value *BinaryOperator::getNotArgument(Value *BinOp) { 1954 assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!"); 1955 BinaryOperator *BO = cast<BinaryOperator>(BinOp); 1956 Value *Op0 = BO->getOperand(0); 1957 Value *Op1 = BO->getOperand(1); 1958 if (isConstantAllOnes(Op0)) return Op1; 1959 1960 assert(isConstantAllOnes(Op1)); 1961 return Op0; 1962 } 1963 1964 const Value *BinaryOperator::getNotArgument(const Value *BinOp) { 1965 return getNotArgument(const_cast<Value*>(BinOp)); 1966 } 1967 1968 1969 // swapOperands - Exchange the two operands to this instruction. This 1970 // instruction is safe to use on any binary instruction and does not 1971 // modify the semantics of the instruction. If the instruction is 1972 // order dependent (SetLT f.e.) the opcode is changed. 1973 // 1974 bool BinaryOperator::swapOperands() { 1975 if (!isCommutative()) 1976 return true; // Can't commute operands 1977 Op<0>().swap(Op<1>()); 1978 return false; 1979 } 1980 1981 void BinaryOperator::setHasNoUnsignedWrap(bool b) { 1982 cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b); 1983 } 1984 1985 void BinaryOperator::setHasNoSignedWrap(bool b) { 1986 cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b); 1987 } 1988 1989 void BinaryOperator::setIsExact(bool b) { 1990 cast<PossiblyExactOperator>(this)->setIsExact(b); 1991 } 1992 1993 bool BinaryOperator::hasNoUnsignedWrap() const { 1994 return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap(); 1995 } 1996 1997 bool BinaryOperator::hasNoSignedWrap() const { 1998 return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap(); 1999 } 2000 2001 bool BinaryOperator::isExact() const { 2002 return cast<PossiblyExactOperator>(this)->isExact(); 2003 } 2004 2005 //===----------------------------------------------------------------------===// 2006 // FPMathOperator Class 2007 //===----------------------------------------------------------------------===// 2008 2009 /// getFPAccuracy - Get the maximum error permitted by this operation in ULPs. 2010 /// An accuracy of 0.0 means that the operation should be performed with the 2011 /// default precision. 2012 float FPMathOperator::getFPAccuracy() const { 2013 const MDNode *MD = 2014 cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath); 2015 if (!MD) 2016 return 0.0; 2017 ConstantFP *Accuracy = cast<ConstantFP>(MD->getOperand(0)); 2018 return Accuracy->getValueAPF().convertToFloat(); 2019 } 2020 2021 2022 //===----------------------------------------------------------------------===// 2023 // CastInst Class 2024 //===----------------------------------------------------------------------===// 2025 2026 void CastInst::anchor() {} 2027 2028 // Just determine if this cast only deals with integral->integral conversion. 2029 bool CastInst::isIntegerCast() const { 2030 switch (getOpcode()) { 2031 default: return false; 2032 case Instruction::ZExt: 2033 case Instruction::SExt: 2034 case Instruction::Trunc: 2035 return true; 2036 case Instruction::BitCast: 2037 return getOperand(0)->getType()->isIntegerTy() && 2038 getType()->isIntegerTy(); 2039 } 2040 } 2041 2042 bool CastInst::isLosslessCast() const { 2043 // Only BitCast can be lossless, exit fast if we're not BitCast 2044 if (getOpcode() != Instruction::BitCast) 2045 return false; 2046 2047 // Identity cast is always lossless 2048 Type* SrcTy = getOperand(0)->getType(); 2049 Type* DstTy = getType(); 2050 if (SrcTy == DstTy) 2051 return true; 2052 2053 // Pointer to pointer is always lossless. 2054 if (SrcTy->isPointerTy()) 2055 return DstTy->isPointerTy(); 2056 return false; // Other types have no identity values 2057 } 2058 2059 /// This function determines if the CastInst does not require any bits to be 2060 /// changed in order to effect the cast. Essentially, it identifies cases where 2061 /// no code gen is necessary for the cast, hence the name no-op cast. For 2062 /// example, the following are all no-op casts: 2063 /// # bitcast i32* %x to i8* 2064 /// # bitcast <2 x i32> %x to <4 x i16> 2065 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only 2066 /// @brief Determine if the described cast is a no-op. 2067 bool CastInst::isNoopCast(Instruction::CastOps Opcode, 2068 Type *SrcTy, 2069 Type *DestTy, 2070 Type *IntPtrTy) { 2071 switch (Opcode) { 2072 default: llvm_unreachable("Invalid CastOp"); 2073 case Instruction::Trunc: 2074 case Instruction::ZExt: 2075 case Instruction::SExt: 2076 case Instruction::FPTrunc: 2077 case Instruction::FPExt: 2078 case Instruction::UIToFP: 2079 case Instruction::SIToFP: 2080 case Instruction::FPToUI: 2081 case Instruction::FPToSI: 2082 return false; // These always modify bits 2083 case Instruction::BitCast: 2084 return true; // BitCast never modifies bits. 2085 case Instruction::PtrToInt: 2086 return IntPtrTy->getScalarSizeInBits() == 2087 DestTy->getScalarSizeInBits(); 2088 case Instruction::IntToPtr: 2089 return IntPtrTy->getScalarSizeInBits() == 2090 SrcTy->getScalarSizeInBits(); 2091 } 2092 } 2093 2094 /// @brief Determine if a cast is a no-op. 2095 bool CastInst::isNoopCast(Type *IntPtrTy) const { 2096 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy); 2097 } 2098 2099 /// This function determines if a pair of casts can be eliminated and what 2100 /// opcode should be used in the elimination. This assumes that there are two 2101 /// instructions like this: 2102 /// * %F = firstOpcode SrcTy %x to MidTy 2103 /// * %S = secondOpcode MidTy %F to DstTy 2104 /// The function returns a resultOpcode so these two casts can be replaced with: 2105 /// * %Replacement = resultOpcode %SrcTy %x to DstTy 2106 /// If no such cast is permited, the function returns 0. 2107 unsigned CastInst::isEliminableCastPair( 2108 Instruction::CastOps firstOp, Instruction::CastOps secondOp, 2109 Type *SrcTy, Type *MidTy, Type *DstTy, Type *IntPtrTy) { 2110 // Define the 144 possibilities for these two cast instructions. The values 2111 // in this matrix determine what to do in a given situation and select the 2112 // case in the switch below. The rows correspond to firstOp, the columns 2113 // correspond to secondOp. In looking at the table below, keep in mind 2114 // the following cast properties: 2115 // 2116 // Size Compare Source Destination 2117 // Operator Src ? Size Type Sign Type Sign 2118 // -------- ------------ ------------------- --------------------- 2119 // TRUNC > Integer Any Integral Any 2120 // ZEXT < Integral Unsigned Integer Any 2121 // SEXT < Integral Signed Integer Any 2122 // FPTOUI n/a FloatPt n/a Integral Unsigned 2123 // FPTOSI n/a FloatPt n/a Integral Signed 2124 // UITOFP n/a Integral Unsigned FloatPt n/a 2125 // SITOFP n/a Integral Signed FloatPt n/a 2126 // FPTRUNC > FloatPt n/a FloatPt n/a 2127 // FPEXT < FloatPt n/a FloatPt n/a 2128 // PTRTOINT n/a Pointer n/a Integral Unsigned 2129 // INTTOPTR n/a Integral Unsigned Pointer n/a 2130 // BITCAST = FirstClass n/a FirstClass n/a 2131 // 2132 // NOTE: some transforms are safe, but we consider them to be non-profitable. 2133 // For example, we could merge "fptoui double to i32" + "zext i32 to i64", 2134 // into "fptoui double to i64", but this loses information about the range 2135 // of the produced value (we no longer know the top-part is all zeros). 2136 // Further this conversion is often much more expensive for typical hardware, 2137 // and causes issues when building libgcc. We disallow fptosi+sext for the 2138 // same reason. 2139 const unsigned numCastOps = 2140 Instruction::CastOpsEnd - Instruction::CastOpsBegin; 2141 static const uint8_t CastResults[numCastOps][numCastOps] = { 2142 // T F F U S F F P I B -+ 2143 // R Z S P P I I T P 2 N T | 2144 // U E E 2 2 2 2 R E I T C +- secondOp 2145 // N X X U S F F N X N 2 V | 2146 // C T T I I P P C T T P T -+ 2147 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc -+ 2148 { 8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt | 2149 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt | 2150 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI | 2151 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI | 2152 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP +- firstOp 2153 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP | 2154 { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc | 2155 { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt | 2156 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt | 2157 { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr | 2158 { 5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast -+ 2159 }; 2160 2161 // If either of the casts are a bitcast from scalar to vector, disallow the 2162 // merging. However, bitcast of A->B->A are allowed. 2163 bool isFirstBitcast = (firstOp == Instruction::BitCast); 2164 bool isSecondBitcast = (secondOp == Instruction::BitCast); 2165 bool chainedBitcast = (SrcTy == DstTy && isFirstBitcast && isSecondBitcast); 2166 2167 // Check if any of the bitcasts convert scalars<->vectors. 2168 if ((isFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) || 2169 (isSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy))) 2170 // Unless we are bitcasing to the original type, disallow optimizations. 2171 if (!chainedBitcast) return 0; 2172 2173 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin] 2174 [secondOp-Instruction::CastOpsBegin]; 2175 switch (ElimCase) { 2176 case 0: 2177 // categorically disallowed 2178 return 0; 2179 case 1: 2180 // allowed, use first cast's opcode 2181 return firstOp; 2182 case 2: 2183 // allowed, use second cast's opcode 2184 return secondOp; 2185 case 3: 2186 // no-op cast in second op implies firstOp as long as the DestTy 2187 // is integer and we are not converting between a vector and a 2188 // non vector type. 2189 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy()) 2190 return firstOp; 2191 return 0; 2192 case 4: 2193 // no-op cast in second op implies firstOp as long as the DestTy 2194 // is floating point. 2195 if (DstTy->isFloatingPointTy()) 2196 return firstOp; 2197 return 0; 2198 case 5: 2199 // no-op cast in first op implies secondOp as long as the SrcTy 2200 // is an integer. 2201 if (SrcTy->isIntegerTy()) 2202 return secondOp; 2203 return 0; 2204 case 6: 2205 // no-op cast in first op implies secondOp as long as the SrcTy 2206 // is a floating point. 2207 if (SrcTy->isFloatingPointTy()) 2208 return secondOp; 2209 return 0; 2210 case 7: { 2211 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size 2212 if (!IntPtrTy) 2213 return 0; 2214 unsigned PtrSize = IntPtrTy->getScalarSizeInBits(); 2215 unsigned MidSize = MidTy->getScalarSizeInBits(); 2216 if (MidSize >= PtrSize) 2217 return Instruction::BitCast; 2218 return 0; 2219 } 2220 case 8: { 2221 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size 2222 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy) 2223 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy) 2224 unsigned SrcSize = SrcTy->getScalarSizeInBits(); 2225 unsigned DstSize = DstTy->getScalarSizeInBits(); 2226 if (SrcSize == DstSize) 2227 return Instruction::BitCast; 2228 else if (SrcSize < DstSize) 2229 return firstOp; 2230 return secondOp; 2231 } 2232 case 9: // zext, sext -> zext, because sext can't sign extend after zext 2233 return Instruction::ZExt; 2234 case 10: 2235 // fpext followed by ftrunc is allowed if the bit size returned to is 2236 // the same as the original, in which case its just a bitcast 2237 if (SrcTy == DstTy) 2238 return Instruction::BitCast; 2239 return 0; // If the types are not the same we can't eliminate it. 2240 case 11: 2241 // bitcast followed by ptrtoint is allowed as long as the bitcast 2242 // is a pointer to pointer cast. 2243 if (SrcTy->isPointerTy() && MidTy->isPointerTy()) 2244 return secondOp; 2245 return 0; 2246 case 12: 2247 // inttoptr, bitcast -> intptr if bitcast is a ptr to ptr cast 2248 if (MidTy->isPointerTy() && DstTy->isPointerTy()) 2249 return firstOp; 2250 return 0; 2251 case 13: { 2252 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize 2253 if (!IntPtrTy) 2254 return 0; 2255 unsigned PtrSize = IntPtrTy->getScalarSizeInBits(); 2256 unsigned SrcSize = SrcTy->getScalarSizeInBits(); 2257 unsigned DstSize = DstTy->getScalarSizeInBits(); 2258 if (SrcSize <= PtrSize && SrcSize == DstSize) 2259 return Instruction::BitCast; 2260 return 0; 2261 } 2262 case 99: 2263 // cast combination can't happen (error in input). This is for all cases 2264 // where the MidTy is not the same for the two cast instructions. 2265 llvm_unreachable("Invalid Cast Combination"); 2266 default: 2267 llvm_unreachable("Error in CastResults table!!!"); 2268 } 2269 } 2270 2271 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 2272 const Twine &Name, Instruction *InsertBefore) { 2273 assert(castIsValid(op, S, Ty) && "Invalid cast!"); 2274 // Construct and return the appropriate CastInst subclass 2275 switch (op) { 2276 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore); 2277 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore); 2278 case SExt: return new SExtInst (S, Ty, Name, InsertBefore); 2279 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore); 2280 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore); 2281 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore); 2282 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore); 2283 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore); 2284 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore); 2285 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore); 2286 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore); 2287 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore); 2288 default: llvm_unreachable("Invalid opcode provided"); 2289 } 2290 } 2291 2292 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 2293 const Twine &Name, BasicBlock *InsertAtEnd) { 2294 assert(castIsValid(op, S, Ty) && "Invalid cast!"); 2295 // Construct and return the appropriate CastInst subclass 2296 switch (op) { 2297 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd); 2298 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd); 2299 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd); 2300 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd); 2301 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd); 2302 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd); 2303 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd); 2304 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd); 2305 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd); 2306 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd); 2307 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd); 2308 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd); 2309 default: llvm_unreachable("Invalid opcode provided"); 2310 } 2311 } 2312 2313 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 2314 const Twine &Name, 2315 Instruction *InsertBefore) { 2316 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2317 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2318 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore); 2319 } 2320 2321 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 2322 const Twine &Name, 2323 BasicBlock *InsertAtEnd) { 2324 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2325 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2326 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd); 2327 } 2328 2329 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 2330 const Twine &Name, 2331 Instruction *InsertBefore) { 2332 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2333 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2334 return Create(Instruction::SExt, S, Ty, Name, InsertBefore); 2335 } 2336 2337 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 2338 const Twine &Name, 2339 BasicBlock *InsertAtEnd) { 2340 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2341 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2342 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd); 2343 } 2344 2345 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, 2346 const Twine &Name, 2347 Instruction *InsertBefore) { 2348 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2349 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2350 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore); 2351 } 2352 2353 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, 2354 const Twine &Name, 2355 BasicBlock *InsertAtEnd) { 2356 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2357 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2358 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd); 2359 } 2360 2361 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, 2362 const Twine &Name, 2363 BasicBlock *InsertAtEnd) { 2364 assert(S->getType()->isPointerTy() && "Invalid cast"); 2365 assert((Ty->isIntegerTy() || Ty->isPointerTy()) && 2366 "Invalid cast"); 2367 2368 if (Ty->isIntegerTy()) 2369 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd); 2370 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2371 } 2372 2373 /// @brief Create a BitCast or a PtrToInt cast instruction 2374 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, 2375 const Twine &Name, 2376 Instruction *InsertBefore) { 2377 assert(S->getType()->isPointerTy() && "Invalid cast"); 2378 assert((Ty->isIntegerTy() || Ty->isPointerTy()) && 2379 "Invalid cast"); 2380 2381 if (Ty->isIntegerTy()) 2382 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore); 2383 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2384 } 2385 2386 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 2387 bool isSigned, const Twine &Name, 2388 Instruction *InsertBefore) { 2389 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && 2390 "Invalid integer cast"); 2391 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2392 unsigned DstBits = Ty->getScalarSizeInBits(); 2393 Instruction::CastOps opcode = 2394 (SrcBits == DstBits ? Instruction::BitCast : 2395 (SrcBits > DstBits ? Instruction::Trunc : 2396 (isSigned ? Instruction::SExt : Instruction::ZExt))); 2397 return Create(opcode, C, Ty, Name, InsertBefore); 2398 } 2399 2400 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 2401 bool isSigned, const Twine &Name, 2402 BasicBlock *InsertAtEnd) { 2403 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && 2404 "Invalid cast"); 2405 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2406 unsigned DstBits = Ty->getScalarSizeInBits(); 2407 Instruction::CastOps opcode = 2408 (SrcBits == DstBits ? Instruction::BitCast : 2409 (SrcBits > DstBits ? Instruction::Trunc : 2410 (isSigned ? Instruction::SExt : Instruction::ZExt))); 2411 return Create(opcode, C, Ty, Name, InsertAtEnd); 2412 } 2413 2414 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 2415 const Twine &Name, 2416 Instruction *InsertBefore) { 2417 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2418 "Invalid cast"); 2419 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2420 unsigned DstBits = Ty->getScalarSizeInBits(); 2421 Instruction::CastOps opcode = 2422 (SrcBits == DstBits ? Instruction::BitCast : 2423 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); 2424 return Create(opcode, C, Ty, Name, InsertBefore); 2425 } 2426 2427 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 2428 const Twine &Name, 2429 BasicBlock *InsertAtEnd) { 2430 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2431 "Invalid cast"); 2432 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2433 unsigned DstBits = Ty->getScalarSizeInBits(); 2434 Instruction::CastOps opcode = 2435 (SrcBits == DstBits ? Instruction::BitCast : 2436 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); 2437 return Create(opcode, C, Ty, Name, InsertAtEnd); 2438 } 2439 2440 // Check whether it is valid to call getCastOpcode for these types. 2441 // This routine must be kept in sync with getCastOpcode. 2442 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) { 2443 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType()) 2444 return false; 2445 2446 if (SrcTy == DestTy) 2447 return true; 2448 2449 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) 2450 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) 2451 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { 2452 // An element by element cast. Valid if casting the elements is valid. 2453 SrcTy = SrcVecTy->getElementType(); 2454 DestTy = DestVecTy->getElementType(); 2455 } 2456 2457 // Get the bit sizes, we'll need these 2458 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 2459 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 2460 2461 // Run through the possibilities ... 2462 if (DestTy->isIntegerTy()) { // Casting to integral 2463 if (SrcTy->isIntegerTy()) { // Casting from integral 2464 return true; 2465 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 2466 return true; 2467 } else if (SrcTy->isVectorTy()) { // Casting from vector 2468 return DestBits == SrcBits; 2469 } else { // Casting from something else 2470 return SrcTy->isPointerTy(); 2471 } 2472 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt 2473 if (SrcTy->isIntegerTy()) { // Casting from integral 2474 return true; 2475 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 2476 return true; 2477 } else if (SrcTy->isVectorTy()) { // Casting from vector 2478 return DestBits == SrcBits; 2479 } else { // Casting from something else 2480 return false; 2481 } 2482 } else if (DestTy->isVectorTy()) { // Casting to vector 2483 return DestBits == SrcBits; 2484 } else if (DestTy->isPointerTy()) { // Casting to pointer 2485 if (SrcTy->isPointerTy()) { // Casting from pointer 2486 return true; 2487 } else if (SrcTy->isIntegerTy()) { // Casting from integral 2488 return true; 2489 } else { // Casting from something else 2490 return false; 2491 } 2492 } else if (DestTy->isX86_MMXTy()) { 2493 if (SrcTy->isVectorTy()) { 2494 return DestBits == SrcBits; // 64-bit vector to MMX 2495 } else { 2496 return false; 2497 } 2498 } else { // Casting to something else 2499 return false; 2500 } 2501 } 2502 2503 // Provide a way to get a "cast" where the cast opcode is inferred from the 2504 // types and size of the operand. This, basically, is a parallel of the 2505 // logic in the castIsValid function below. This axiom should hold: 2506 // castIsValid( getCastOpcode(Val, Ty), Val, Ty) 2507 // should not assert in castIsValid. In other words, this produces a "correct" 2508 // casting opcode for the arguments passed to it. 2509 // This routine must be kept in sync with isCastable. 2510 Instruction::CastOps 2511 CastInst::getCastOpcode( 2512 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) { 2513 Type *SrcTy = Src->getType(); 2514 2515 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() && 2516 "Only first class types are castable!"); 2517 2518 if (SrcTy == DestTy) 2519 return BitCast; 2520 2521 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) 2522 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) 2523 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { 2524 // An element by element cast. Find the appropriate opcode based on the 2525 // element types. 2526 SrcTy = SrcVecTy->getElementType(); 2527 DestTy = DestVecTy->getElementType(); 2528 } 2529 2530 // Get the bit sizes, we'll need these 2531 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 2532 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 2533 2534 // Run through the possibilities ... 2535 if (DestTy->isIntegerTy()) { // Casting to integral 2536 if (SrcTy->isIntegerTy()) { // Casting from integral 2537 if (DestBits < SrcBits) 2538 return Trunc; // int -> smaller int 2539 else if (DestBits > SrcBits) { // its an extension 2540 if (SrcIsSigned) 2541 return SExt; // signed -> SEXT 2542 else 2543 return ZExt; // unsigned -> ZEXT 2544 } else { 2545 return BitCast; // Same size, No-op cast 2546 } 2547 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 2548 if (DestIsSigned) 2549 return FPToSI; // FP -> sint 2550 else 2551 return FPToUI; // FP -> uint 2552 } else if (SrcTy->isVectorTy()) { 2553 assert(DestBits == SrcBits && 2554 "Casting vector to integer of different width"); 2555 return BitCast; // Same size, no-op cast 2556 } else { 2557 assert(SrcTy->isPointerTy() && 2558 "Casting from a value that is not first-class type"); 2559 return PtrToInt; // ptr -> int 2560 } 2561 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt 2562 if (SrcTy->isIntegerTy()) { // Casting from integral 2563 if (SrcIsSigned) 2564 return SIToFP; // sint -> FP 2565 else 2566 return UIToFP; // uint -> FP 2567 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 2568 if (DestBits < SrcBits) { 2569 return FPTrunc; // FP -> smaller FP 2570 } else if (DestBits > SrcBits) { 2571 return FPExt; // FP -> larger FP 2572 } else { 2573 return BitCast; // same size, no-op cast 2574 } 2575 } else if (SrcTy->isVectorTy()) { 2576 assert(DestBits == SrcBits && 2577 "Casting vector to floating point of different width"); 2578 return BitCast; // same size, no-op cast 2579 } 2580 llvm_unreachable("Casting pointer or non-first class to float"); 2581 } else if (DestTy->isVectorTy()) { 2582 assert(DestBits == SrcBits && 2583 "Illegal cast to vector (wrong type or size)"); 2584 return BitCast; 2585 } else if (DestTy->isPointerTy()) { 2586 if (SrcTy->isPointerTy()) { 2587 return BitCast; // ptr -> ptr 2588 } else if (SrcTy->isIntegerTy()) { 2589 return IntToPtr; // int -> ptr 2590 } 2591 llvm_unreachable("Casting pointer to other than pointer or int"); 2592 } else if (DestTy->isX86_MMXTy()) { 2593 if (SrcTy->isVectorTy()) { 2594 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX"); 2595 return BitCast; // 64-bit vector to MMX 2596 } 2597 llvm_unreachable("Illegal cast to X86_MMX"); 2598 } 2599 llvm_unreachable("Casting to type that is not first-class"); 2600 } 2601 2602 //===----------------------------------------------------------------------===// 2603 // CastInst SubClass Constructors 2604 //===----------------------------------------------------------------------===// 2605 2606 /// Check that the construction parameters for a CastInst are correct. This 2607 /// could be broken out into the separate constructors but it is useful to have 2608 /// it in one place and to eliminate the redundant code for getting the sizes 2609 /// of the types involved. 2610 bool 2611 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) { 2612 2613 // Check for type sanity on the arguments 2614 Type *SrcTy = S->getType(); 2615 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() || 2616 SrcTy->isAggregateType() || DstTy->isAggregateType()) 2617 return false; 2618 2619 // Get the size of the types in bits, we'll need this later 2620 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2621 unsigned DstBitSize = DstTy->getScalarSizeInBits(); 2622 2623 // If these are vector types, get the lengths of the vectors (using zero for 2624 // scalar types means that checking that vector lengths match also checks that 2625 // scalars are not being converted to vectors or vectors to scalars). 2626 unsigned SrcLength = SrcTy->isVectorTy() ? 2627 cast<VectorType>(SrcTy)->getNumElements() : 0; 2628 unsigned DstLength = DstTy->isVectorTy() ? 2629 cast<VectorType>(DstTy)->getNumElements() : 0; 2630 2631 // Switch on the opcode provided 2632 switch (op) { 2633 default: return false; // This is an input error 2634 case Instruction::Trunc: 2635 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 2636 SrcLength == DstLength && SrcBitSize > DstBitSize; 2637 case Instruction::ZExt: 2638 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 2639 SrcLength == DstLength && SrcBitSize < DstBitSize; 2640 case Instruction::SExt: 2641 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 2642 SrcLength == DstLength && SrcBitSize < DstBitSize; 2643 case Instruction::FPTrunc: 2644 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && 2645 SrcLength == DstLength && SrcBitSize > DstBitSize; 2646 case Instruction::FPExt: 2647 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && 2648 SrcLength == DstLength && SrcBitSize < DstBitSize; 2649 case Instruction::UIToFP: 2650 case Instruction::SIToFP: 2651 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() && 2652 SrcLength == DstLength; 2653 case Instruction::FPToUI: 2654 case Instruction::FPToSI: 2655 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() && 2656 SrcLength == DstLength; 2657 case Instruction::PtrToInt: 2658 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy)) 2659 return false; 2660 if (VectorType *VT = dyn_cast<VectorType>(SrcTy)) 2661 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements()) 2662 return false; 2663 return SrcTy->getScalarType()->isPointerTy() && 2664 DstTy->getScalarType()->isIntegerTy(); 2665 case Instruction::IntToPtr: 2666 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy)) 2667 return false; 2668 if (VectorType *VT = dyn_cast<VectorType>(SrcTy)) 2669 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements()) 2670 return false; 2671 return SrcTy->getScalarType()->isIntegerTy() && 2672 DstTy->getScalarType()->isPointerTy(); 2673 case Instruction::BitCast: 2674 // BitCast implies a no-op cast of type only. No bits change. 2675 // However, you can't cast pointers to anything but pointers. 2676 if (SrcTy->isPointerTy() != DstTy->isPointerTy()) 2677 return false; 2678 2679 // Now we know we're not dealing with a pointer/non-pointer mismatch. In all 2680 // these cases, the cast is okay if the source and destination bit widths 2681 // are identical. 2682 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits(); 2683 } 2684 } 2685 2686 TruncInst::TruncInst( 2687 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2688 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) { 2689 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); 2690 } 2691 2692 TruncInst::TruncInst( 2693 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2694 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) { 2695 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); 2696 } 2697 2698 ZExtInst::ZExtInst( 2699 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2700 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) { 2701 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); 2702 } 2703 2704 ZExtInst::ZExtInst( 2705 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2706 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) { 2707 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); 2708 } 2709 SExtInst::SExtInst( 2710 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2711 ) : CastInst(Ty, SExt, S, Name, InsertBefore) { 2712 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); 2713 } 2714 2715 SExtInst::SExtInst( 2716 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2717 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) { 2718 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); 2719 } 2720 2721 FPTruncInst::FPTruncInst( 2722 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2723 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) { 2724 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); 2725 } 2726 2727 FPTruncInst::FPTruncInst( 2728 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2729 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) { 2730 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); 2731 } 2732 2733 FPExtInst::FPExtInst( 2734 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2735 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) { 2736 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); 2737 } 2738 2739 FPExtInst::FPExtInst( 2740 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2741 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) { 2742 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); 2743 } 2744 2745 UIToFPInst::UIToFPInst( 2746 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2747 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) { 2748 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); 2749 } 2750 2751 UIToFPInst::UIToFPInst( 2752 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2753 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) { 2754 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); 2755 } 2756 2757 SIToFPInst::SIToFPInst( 2758 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2759 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) { 2760 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); 2761 } 2762 2763 SIToFPInst::SIToFPInst( 2764 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2765 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) { 2766 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); 2767 } 2768 2769 FPToUIInst::FPToUIInst( 2770 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2771 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) { 2772 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); 2773 } 2774 2775 FPToUIInst::FPToUIInst( 2776 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2777 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) { 2778 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); 2779 } 2780 2781 FPToSIInst::FPToSIInst( 2782 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2783 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) { 2784 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); 2785 } 2786 2787 FPToSIInst::FPToSIInst( 2788 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2789 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) { 2790 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); 2791 } 2792 2793 PtrToIntInst::PtrToIntInst( 2794 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2795 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) { 2796 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); 2797 } 2798 2799 PtrToIntInst::PtrToIntInst( 2800 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2801 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) { 2802 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); 2803 } 2804 2805 IntToPtrInst::IntToPtrInst( 2806 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2807 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) { 2808 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); 2809 } 2810 2811 IntToPtrInst::IntToPtrInst( 2812 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2813 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) { 2814 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); 2815 } 2816 2817 BitCastInst::BitCastInst( 2818 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2819 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) { 2820 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); 2821 } 2822 2823 BitCastInst::BitCastInst( 2824 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2825 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) { 2826 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); 2827 } 2828 2829 //===----------------------------------------------------------------------===// 2830 // CmpInst Classes 2831 //===----------------------------------------------------------------------===// 2832 2833 void CmpInst::Anchor() const {} 2834 2835 CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate, 2836 Value *LHS, Value *RHS, const Twine &Name, 2837 Instruction *InsertBefore) 2838 : Instruction(ty, op, 2839 OperandTraits<CmpInst>::op_begin(this), 2840 OperandTraits<CmpInst>::operands(this), 2841 InsertBefore) { 2842 Op<0>() = LHS; 2843 Op<1>() = RHS; 2844 setPredicate((Predicate)predicate); 2845 setName(Name); 2846 } 2847 2848 CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate, 2849 Value *LHS, Value *RHS, const Twine &Name, 2850 BasicBlock *InsertAtEnd) 2851 : Instruction(ty, op, 2852 OperandTraits<CmpInst>::op_begin(this), 2853 OperandTraits<CmpInst>::operands(this), 2854 InsertAtEnd) { 2855 Op<0>() = LHS; 2856 Op<1>() = RHS; 2857 setPredicate((Predicate)predicate); 2858 setName(Name); 2859 } 2860 2861 CmpInst * 2862 CmpInst::Create(OtherOps Op, unsigned short predicate, 2863 Value *S1, Value *S2, 2864 const Twine &Name, Instruction *InsertBefore) { 2865 if (Op == Instruction::ICmp) { 2866 if (InsertBefore) 2867 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate), 2868 S1, S2, Name); 2869 else 2870 return new ICmpInst(CmpInst::Predicate(predicate), 2871 S1, S2, Name); 2872 } 2873 2874 if (InsertBefore) 2875 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate), 2876 S1, S2, Name); 2877 else 2878 return new FCmpInst(CmpInst::Predicate(predicate), 2879 S1, S2, Name); 2880 } 2881 2882 CmpInst * 2883 CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2, 2884 const Twine &Name, BasicBlock *InsertAtEnd) { 2885 if (Op == Instruction::ICmp) { 2886 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), 2887 S1, S2, Name); 2888 } 2889 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), 2890 S1, S2, Name); 2891 } 2892 2893 void CmpInst::swapOperands() { 2894 if (ICmpInst *IC = dyn_cast<ICmpInst>(this)) 2895 IC->swapOperands(); 2896 else 2897 cast<FCmpInst>(this)->swapOperands(); 2898 } 2899 2900 bool CmpInst::isCommutative() const { 2901 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) 2902 return IC->isCommutative(); 2903 return cast<FCmpInst>(this)->isCommutative(); 2904 } 2905 2906 bool CmpInst::isEquality() const { 2907 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) 2908 return IC->isEquality(); 2909 return cast<FCmpInst>(this)->isEquality(); 2910 } 2911 2912 2913 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) { 2914 switch (pred) { 2915 default: llvm_unreachable("Unknown cmp predicate!"); 2916 case ICMP_EQ: return ICMP_NE; 2917 case ICMP_NE: return ICMP_EQ; 2918 case ICMP_UGT: return ICMP_ULE; 2919 case ICMP_ULT: return ICMP_UGE; 2920 case ICMP_UGE: return ICMP_ULT; 2921 case ICMP_ULE: return ICMP_UGT; 2922 case ICMP_SGT: return ICMP_SLE; 2923 case ICMP_SLT: return ICMP_SGE; 2924 case ICMP_SGE: return ICMP_SLT; 2925 case ICMP_SLE: return ICMP_SGT; 2926 2927 case FCMP_OEQ: return FCMP_UNE; 2928 case FCMP_ONE: return FCMP_UEQ; 2929 case FCMP_OGT: return FCMP_ULE; 2930 case FCMP_OLT: return FCMP_UGE; 2931 case FCMP_OGE: return FCMP_ULT; 2932 case FCMP_OLE: return FCMP_UGT; 2933 case FCMP_UEQ: return FCMP_ONE; 2934 case FCMP_UNE: return FCMP_OEQ; 2935 case FCMP_UGT: return FCMP_OLE; 2936 case FCMP_ULT: return FCMP_OGE; 2937 case FCMP_UGE: return FCMP_OLT; 2938 case FCMP_ULE: return FCMP_OGT; 2939 case FCMP_ORD: return FCMP_UNO; 2940 case FCMP_UNO: return FCMP_ORD; 2941 case FCMP_TRUE: return FCMP_FALSE; 2942 case FCMP_FALSE: return FCMP_TRUE; 2943 } 2944 } 2945 2946 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) { 2947 switch (pred) { 2948 default: llvm_unreachable("Unknown icmp predicate!"); 2949 case ICMP_EQ: case ICMP_NE: 2950 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE: 2951 return pred; 2952 case ICMP_UGT: return ICMP_SGT; 2953 case ICMP_ULT: return ICMP_SLT; 2954 case ICMP_UGE: return ICMP_SGE; 2955 case ICMP_ULE: return ICMP_SLE; 2956 } 2957 } 2958 2959 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) { 2960 switch (pred) { 2961 default: llvm_unreachable("Unknown icmp predicate!"); 2962 case ICMP_EQ: case ICMP_NE: 2963 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE: 2964 return pred; 2965 case ICMP_SGT: return ICMP_UGT; 2966 case ICMP_SLT: return ICMP_ULT; 2967 case ICMP_SGE: return ICMP_UGE; 2968 case ICMP_SLE: return ICMP_ULE; 2969 } 2970 } 2971 2972 /// Initialize a set of values that all satisfy the condition with C. 2973 /// 2974 ConstantRange 2975 ICmpInst::makeConstantRange(Predicate pred, const APInt &C) { 2976 APInt Lower(C); 2977 APInt Upper(C); 2978 uint32_t BitWidth = C.getBitWidth(); 2979 switch (pred) { 2980 default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!"); 2981 case ICmpInst::ICMP_EQ: Upper++; break; 2982 case ICmpInst::ICMP_NE: Lower++; break; 2983 case ICmpInst::ICMP_ULT: 2984 Lower = APInt::getMinValue(BitWidth); 2985 // Check for an empty-set condition. 2986 if (Lower == Upper) 2987 return ConstantRange(BitWidth, /*isFullSet=*/false); 2988 break; 2989 case ICmpInst::ICMP_SLT: 2990 Lower = APInt::getSignedMinValue(BitWidth); 2991 // Check for an empty-set condition. 2992 if (Lower == Upper) 2993 return ConstantRange(BitWidth, /*isFullSet=*/false); 2994 break; 2995 case ICmpInst::ICMP_UGT: 2996 Lower++; Upper = APInt::getMinValue(BitWidth); // Min = Next(Max) 2997 // Check for an empty-set condition. 2998 if (Lower == Upper) 2999 return ConstantRange(BitWidth, /*isFullSet=*/false); 3000 break; 3001 case ICmpInst::ICMP_SGT: 3002 Lower++; Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max) 3003 // Check for an empty-set condition. 3004 if (Lower == Upper) 3005 return ConstantRange(BitWidth, /*isFullSet=*/false); 3006 break; 3007 case ICmpInst::ICMP_ULE: 3008 Lower = APInt::getMinValue(BitWidth); Upper++; 3009 // Check for a full-set condition. 3010 if (Lower == Upper) 3011 return ConstantRange(BitWidth, /*isFullSet=*/true); 3012 break; 3013 case ICmpInst::ICMP_SLE: 3014 Lower = APInt::getSignedMinValue(BitWidth); Upper++; 3015 // Check for a full-set condition. 3016 if (Lower == Upper) 3017 return ConstantRange(BitWidth, /*isFullSet=*/true); 3018 break; 3019 case ICmpInst::ICMP_UGE: 3020 Upper = APInt::getMinValue(BitWidth); // Min = Next(Max) 3021 // Check for a full-set condition. 3022 if (Lower == Upper) 3023 return ConstantRange(BitWidth, /*isFullSet=*/true); 3024 break; 3025 case ICmpInst::ICMP_SGE: 3026 Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max) 3027 // Check for a full-set condition. 3028 if (Lower == Upper) 3029 return ConstantRange(BitWidth, /*isFullSet=*/true); 3030 break; 3031 } 3032 return ConstantRange(Lower, Upper); 3033 } 3034 3035 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) { 3036 switch (pred) { 3037 default: llvm_unreachable("Unknown cmp predicate!"); 3038 case ICMP_EQ: case ICMP_NE: 3039 return pred; 3040 case ICMP_SGT: return ICMP_SLT; 3041 case ICMP_SLT: return ICMP_SGT; 3042 case ICMP_SGE: return ICMP_SLE; 3043 case ICMP_SLE: return ICMP_SGE; 3044 case ICMP_UGT: return ICMP_ULT; 3045 case ICMP_ULT: return ICMP_UGT; 3046 case ICMP_UGE: return ICMP_ULE; 3047 case ICMP_ULE: return ICMP_UGE; 3048 3049 case FCMP_FALSE: case FCMP_TRUE: 3050 case FCMP_OEQ: case FCMP_ONE: 3051 case FCMP_UEQ: case FCMP_UNE: 3052 case FCMP_ORD: case FCMP_UNO: 3053 return pred; 3054 case FCMP_OGT: return FCMP_OLT; 3055 case FCMP_OLT: return FCMP_OGT; 3056 case FCMP_OGE: return FCMP_OLE; 3057 case FCMP_OLE: return FCMP_OGE; 3058 case FCMP_UGT: return FCMP_ULT; 3059 case FCMP_ULT: return FCMP_UGT; 3060 case FCMP_UGE: return FCMP_ULE; 3061 case FCMP_ULE: return FCMP_UGE; 3062 } 3063 } 3064 3065 bool CmpInst::isUnsigned(unsigned short predicate) { 3066 switch (predicate) { 3067 default: return false; 3068 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT: 3069 case ICmpInst::ICMP_UGE: return true; 3070 } 3071 } 3072 3073 bool CmpInst::isSigned(unsigned short predicate) { 3074 switch (predicate) { 3075 default: return false; 3076 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT: 3077 case ICmpInst::ICMP_SGE: return true; 3078 } 3079 } 3080 3081 bool CmpInst::isOrdered(unsigned short predicate) { 3082 switch (predicate) { 3083 default: return false; 3084 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT: 3085 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE: 3086 case FCmpInst::FCMP_ORD: return true; 3087 } 3088 } 3089 3090 bool CmpInst::isUnordered(unsigned short predicate) { 3091 switch (predicate) { 3092 default: return false; 3093 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT: 3094 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE: 3095 case FCmpInst::FCMP_UNO: return true; 3096 } 3097 } 3098 3099 bool CmpInst::isTrueWhenEqual(unsigned short predicate) { 3100 switch(predicate) { 3101 default: return false; 3102 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE: 3103 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true; 3104 } 3105 } 3106 3107 bool CmpInst::isFalseWhenEqual(unsigned short predicate) { 3108 switch(predicate) { 3109 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT: 3110 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true; 3111 default: return false; 3112 } 3113 } 3114 3115 3116 //===----------------------------------------------------------------------===// 3117 // SwitchInst Implementation 3118 //===----------------------------------------------------------------------===// 3119 3120 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) { 3121 assert(Value && Default && NumReserved); 3122 ReservedSpace = NumReserved; 3123 NumOperands = 2; 3124 OperandList = allocHungoffUses(ReservedSpace); 3125 3126 OperandList[0] = Value; 3127 OperandList[1] = Default; 3128 } 3129 3130 /// SwitchInst ctor - Create a new switch instruction, specifying a value to 3131 /// switch on and a default destination. The number of additional cases can 3132 /// be specified here to make memory allocation more efficient. This 3133 /// constructor can also autoinsert before another instruction. 3134 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, 3135 Instruction *InsertBefore) 3136 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch, 3137 0, 0, InsertBefore) { 3138 init(Value, Default, 2+NumCases*2); 3139 } 3140 3141 /// SwitchInst ctor - Create a new switch instruction, specifying a value to 3142 /// switch on and a default destination. The number of additional cases can 3143 /// be specified here to make memory allocation more efficient. This 3144 /// constructor also autoinserts at the end of the specified BasicBlock. 3145 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, 3146 BasicBlock *InsertAtEnd) 3147 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch, 3148 0, 0, InsertAtEnd) { 3149 init(Value, Default, 2+NumCases*2); 3150 } 3151 3152 SwitchInst::SwitchInst(const SwitchInst &SI) 3153 : TerminatorInst(SI.getType(), Instruction::Switch, 0, 0) { 3154 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands()); 3155 NumOperands = SI.getNumOperands(); 3156 Use *OL = OperandList, *InOL = SI.OperandList; 3157 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) { 3158 OL[i] = InOL[i]; 3159 OL[i+1] = InOL[i+1]; 3160 } 3161 SubclassOptionalData = SI.SubclassOptionalData; 3162 } 3163 3164 SwitchInst::~SwitchInst() { 3165 dropHungoffUses(); 3166 } 3167 3168 3169 /// addCase - Add an entry to the switch instruction... 3170 /// 3171 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) { 3172 unsigned NewCaseIdx = getNumCases(); 3173 unsigned OpNo = NumOperands; 3174 if (OpNo+2 > ReservedSpace) 3175 growOperands(); // Get more space! 3176 // Initialize some new operands. 3177 assert(OpNo+1 < ReservedSpace && "Growing didn't work!"); 3178 NumOperands = OpNo+2; 3179 CaseIt Case(this, NewCaseIdx); 3180 Case.setValue(OnVal); 3181 Case.setSuccessor(Dest); 3182 } 3183 3184 /// removeCase - This method removes the specified case and its successor 3185 /// from the switch instruction. 3186 void SwitchInst::removeCase(CaseIt i) { 3187 unsigned idx = i.getCaseIndex(); 3188 3189 assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!"); 3190 3191 unsigned NumOps = getNumOperands(); 3192 Use *OL = OperandList; 3193 3194 // Overwrite this case with the end of the list. 3195 if (2 + (idx + 1) * 2 != NumOps) { 3196 OL[2 + idx * 2] = OL[NumOps - 2]; 3197 OL[2 + idx * 2 + 1] = OL[NumOps - 1]; 3198 } 3199 3200 // Nuke the last value. 3201 OL[NumOps-2].set(0); 3202 OL[NumOps-2+1].set(0); 3203 NumOperands = NumOps-2; 3204 } 3205 3206 /// growOperands - grow operands - This grows the operand list in response 3207 /// to a push_back style of operation. This grows the number of ops by 3 times. 3208 /// 3209 void SwitchInst::growOperands() { 3210 unsigned e = getNumOperands(); 3211 unsigned NumOps = e*3; 3212 3213 ReservedSpace = NumOps; 3214 Use *NewOps = allocHungoffUses(NumOps); 3215 Use *OldOps = OperandList; 3216 for (unsigned i = 0; i != e; ++i) { 3217 NewOps[i] = OldOps[i]; 3218 } 3219 OperandList = NewOps; 3220 Use::zap(OldOps, OldOps + e, true); 3221 } 3222 3223 3224 BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const { 3225 return getSuccessor(idx); 3226 } 3227 unsigned SwitchInst::getNumSuccessorsV() const { 3228 return getNumSuccessors(); 3229 } 3230 void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) { 3231 setSuccessor(idx, B); 3232 } 3233 3234 //===----------------------------------------------------------------------===// 3235 // IndirectBrInst Implementation 3236 //===----------------------------------------------------------------------===// 3237 3238 void IndirectBrInst::init(Value *Address, unsigned NumDests) { 3239 assert(Address && Address->getType()->isPointerTy() && 3240 "Address of indirectbr must be a pointer"); 3241 ReservedSpace = 1+NumDests; 3242 NumOperands = 1; 3243 OperandList = allocHungoffUses(ReservedSpace); 3244 3245 OperandList[0] = Address; 3246 } 3247 3248 3249 /// growOperands - grow operands - This grows the operand list in response 3250 /// to a push_back style of operation. This grows the number of ops by 2 times. 3251 /// 3252 void IndirectBrInst::growOperands() { 3253 unsigned e = getNumOperands(); 3254 unsigned NumOps = e*2; 3255 3256 ReservedSpace = NumOps; 3257 Use *NewOps = allocHungoffUses(NumOps); 3258 Use *OldOps = OperandList; 3259 for (unsigned i = 0; i != e; ++i) 3260 NewOps[i] = OldOps[i]; 3261 OperandList = NewOps; 3262 Use::zap(OldOps, OldOps + e, true); 3263 } 3264 3265 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, 3266 Instruction *InsertBefore) 3267 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr, 3268 0, 0, InsertBefore) { 3269 init(Address, NumCases); 3270 } 3271 3272 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, 3273 BasicBlock *InsertAtEnd) 3274 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr, 3275 0, 0, InsertAtEnd) { 3276 init(Address, NumCases); 3277 } 3278 3279 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI) 3280 : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr, 3281 allocHungoffUses(IBI.getNumOperands()), 3282 IBI.getNumOperands()) { 3283 Use *OL = OperandList, *InOL = IBI.OperandList; 3284 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i) 3285 OL[i] = InOL[i]; 3286 SubclassOptionalData = IBI.SubclassOptionalData; 3287 } 3288 3289 IndirectBrInst::~IndirectBrInst() { 3290 dropHungoffUses(); 3291 } 3292 3293 /// addDestination - Add a destination. 3294 /// 3295 void IndirectBrInst::addDestination(BasicBlock *DestBB) { 3296 unsigned OpNo = NumOperands; 3297 if (OpNo+1 > ReservedSpace) 3298 growOperands(); // Get more space! 3299 // Initialize some new operands. 3300 assert(OpNo < ReservedSpace && "Growing didn't work!"); 3301 NumOperands = OpNo+1; 3302 OperandList[OpNo] = DestBB; 3303 } 3304 3305 /// removeDestination - This method removes the specified successor from the 3306 /// indirectbr instruction. 3307 void IndirectBrInst::removeDestination(unsigned idx) { 3308 assert(idx < getNumOperands()-1 && "Successor index out of range!"); 3309 3310 unsigned NumOps = getNumOperands(); 3311 Use *OL = OperandList; 3312 3313 // Replace this value with the last one. 3314 OL[idx+1] = OL[NumOps-1]; 3315 3316 // Nuke the last value. 3317 OL[NumOps-1].set(0); 3318 NumOperands = NumOps-1; 3319 } 3320 3321 BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const { 3322 return getSuccessor(idx); 3323 } 3324 unsigned IndirectBrInst::getNumSuccessorsV() const { 3325 return getNumSuccessors(); 3326 } 3327 void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) { 3328 setSuccessor(idx, B); 3329 } 3330 3331 //===----------------------------------------------------------------------===// 3332 // clone_impl() implementations 3333 //===----------------------------------------------------------------------===// 3334 3335 // Define these methods here so vtables don't get emitted into every translation 3336 // unit that uses these classes. 3337 3338 GetElementPtrInst *GetElementPtrInst::clone_impl() const { 3339 return new (getNumOperands()) GetElementPtrInst(*this); 3340 } 3341 3342 BinaryOperator *BinaryOperator::clone_impl() const { 3343 return Create(getOpcode(), Op<0>(), Op<1>()); 3344 } 3345 3346 FCmpInst* FCmpInst::clone_impl() const { 3347 return new FCmpInst(getPredicate(), Op<0>(), Op<1>()); 3348 } 3349 3350 ICmpInst* ICmpInst::clone_impl() const { 3351 return new ICmpInst(getPredicate(), Op<0>(), Op<1>()); 3352 } 3353 3354 ExtractValueInst *ExtractValueInst::clone_impl() const { 3355 return new ExtractValueInst(*this); 3356 } 3357 3358 InsertValueInst *InsertValueInst::clone_impl() const { 3359 return new InsertValueInst(*this); 3360 } 3361 3362 AllocaInst *AllocaInst::clone_impl() const { 3363 return new AllocaInst(getAllocatedType(), 3364 (Value*)getOperand(0), 3365 getAlignment()); 3366 } 3367 3368 LoadInst *LoadInst::clone_impl() const { 3369 return new LoadInst(getOperand(0), Twine(), isVolatile(), 3370 getAlignment(), getOrdering(), getSynchScope()); 3371 } 3372 3373 StoreInst *StoreInst::clone_impl() const { 3374 return new StoreInst(getOperand(0), getOperand(1), isVolatile(), 3375 getAlignment(), getOrdering(), getSynchScope()); 3376 3377 } 3378 3379 AtomicCmpXchgInst *AtomicCmpXchgInst::clone_impl() const { 3380 AtomicCmpXchgInst *Result = 3381 new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2), 3382 getOrdering(), getSynchScope()); 3383 Result->setVolatile(isVolatile()); 3384 return Result; 3385 } 3386 3387 AtomicRMWInst *AtomicRMWInst::clone_impl() const { 3388 AtomicRMWInst *Result = 3389 new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1), 3390 getOrdering(), getSynchScope()); 3391 Result->setVolatile(isVolatile()); 3392 return Result; 3393 } 3394 3395 FenceInst *FenceInst::clone_impl() const { 3396 return new FenceInst(getContext(), getOrdering(), getSynchScope()); 3397 } 3398 3399 TruncInst *TruncInst::clone_impl() const { 3400 return new TruncInst(getOperand(0), getType()); 3401 } 3402 3403 ZExtInst *ZExtInst::clone_impl() const { 3404 return new ZExtInst(getOperand(0), getType()); 3405 } 3406 3407 SExtInst *SExtInst::clone_impl() const { 3408 return new SExtInst(getOperand(0), getType()); 3409 } 3410 3411 FPTruncInst *FPTruncInst::clone_impl() const { 3412 return new FPTruncInst(getOperand(0), getType()); 3413 } 3414 3415 FPExtInst *FPExtInst::clone_impl() const { 3416 return new FPExtInst(getOperand(0), getType()); 3417 } 3418 3419 UIToFPInst *UIToFPInst::clone_impl() const { 3420 return new UIToFPInst(getOperand(0), getType()); 3421 } 3422 3423 SIToFPInst *SIToFPInst::clone_impl() const { 3424 return new SIToFPInst(getOperand(0), getType()); 3425 } 3426 3427 FPToUIInst *FPToUIInst::clone_impl() const { 3428 return new FPToUIInst(getOperand(0), getType()); 3429 } 3430 3431 FPToSIInst *FPToSIInst::clone_impl() const { 3432 return new FPToSIInst(getOperand(0), getType()); 3433 } 3434 3435 PtrToIntInst *PtrToIntInst::clone_impl() const { 3436 return new PtrToIntInst(getOperand(0), getType()); 3437 } 3438 3439 IntToPtrInst *IntToPtrInst::clone_impl() const { 3440 return new IntToPtrInst(getOperand(0), getType()); 3441 } 3442 3443 BitCastInst *BitCastInst::clone_impl() const { 3444 return new BitCastInst(getOperand(0), getType()); 3445 } 3446 3447 CallInst *CallInst::clone_impl() const { 3448 return new(getNumOperands()) CallInst(*this); 3449 } 3450 3451 SelectInst *SelectInst::clone_impl() const { 3452 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2)); 3453 } 3454 3455 VAArgInst *VAArgInst::clone_impl() const { 3456 return new VAArgInst(getOperand(0), getType()); 3457 } 3458 3459 ExtractElementInst *ExtractElementInst::clone_impl() const { 3460 return ExtractElementInst::Create(getOperand(0), getOperand(1)); 3461 } 3462 3463 InsertElementInst *InsertElementInst::clone_impl() const { 3464 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2)); 3465 } 3466 3467 ShuffleVectorInst *ShuffleVectorInst::clone_impl() const { 3468 return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2)); 3469 } 3470 3471 PHINode *PHINode::clone_impl() const { 3472 return new PHINode(*this); 3473 } 3474 3475 LandingPadInst *LandingPadInst::clone_impl() const { 3476 return new LandingPadInst(*this); 3477 } 3478 3479 ReturnInst *ReturnInst::clone_impl() const { 3480 return new(getNumOperands()) ReturnInst(*this); 3481 } 3482 3483 BranchInst *BranchInst::clone_impl() const { 3484 return new(getNumOperands()) BranchInst(*this); 3485 } 3486 3487 SwitchInst *SwitchInst::clone_impl() const { 3488 return new SwitchInst(*this); 3489 } 3490 3491 IndirectBrInst *IndirectBrInst::clone_impl() const { 3492 return new IndirectBrInst(*this); 3493 } 3494 3495 3496 InvokeInst *InvokeInst::clone_impl() const { 3497 return new(getNumOperands()) InvokeInst(*this); 3498 } 3499 3500 ResumeInst *ResumeInst::clone_impl() const { 3501 return new(1) ResumeInst(*this); 3502 } 3503 3504 UnreachableInst *UnreachableInst::clone_impl() const { 3505 LLVMContext &Context = getContext(); 3506 return new UnreachableInst(Context); 3507 } 3508