Home | History | Annotate | Download | only in TableGen
      1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file is part of the X86 Disassembler Emitter.
     11 // It contains the implementation of a single recognizable instruction.
     12 // Documentation for the disassembler emitter in general can be found in
     13 //  X86DisasemblerEmitter.h.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "X86DisassemblerShared.h"
     18 #include "X86RecognizableInstr.h"
     19 #include "X86ModRMFilters.h"
     20 
     21 #include "llvm/Support/ErrorHandling.h"
     22 
     23 #include <string>
     24 
     25 using namespace llvm;
     26 
     27 #define MRM_MAPPING     \
     28   MAP(C1, 33)           \
     29   MAP(C2, 34)           \
     30   MAP(C3, 35)           \
     31   MAP(C4, 36)           \
     32   MAP(C8, 37)           \
     33   MAP(C9, 38)           \
     34   MAP(E8, 39)           \
     35   MAP(F0, 40)           \
     36   MAP(F8, 41)           \
     37   MAP(F9, 42)           \
     38   MAP(D0, 45)           \
     39   MAP(D1, 46)           \
     40   MAP(D4, 47)           \
     41   MAP(D8, 48)           \
     42   MAP(D9, 49)           \
     43   MAP(DA, 50)           \
     44   MAP(DB, 51)           \
     45   MAP(DC, 52)           \
     46   MAP(DD, 53)           \
     47   MAP(DE, 54)           \
     48   MAP(DF, 55)
     49 
     50 // A clone of X86 since we can't depend on something that is generated.
     51 namespace X86Local {
     52   enum {
     53     Pseudo      = 0,
     54     RawFrm      = 1,
     55     AddRegFrm   = 2,
     56     MRMDestReg  = 3,
     57     MRMDestMem  = 4,
     58     MRMSrcReg   = 5,
     59     MRMSrcMem   = 6,
     60     MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19,
     61     MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23,
     62     MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27,
     63     MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31,
     64     MRMInitReg  = 32,
     65 #define MAP(from, to) MRM_##from = to,
     66     MRM_MAPPING
     67 #undef MAP
     68     RawFrmImm8  = 43,
     69     RawFrmImm16 = 44,
     70     lastMRM
     71   };
     72 
     73   enum {
     74     TB  = 1,
     75     REP = 2,
     76     D8 = 3, D9 = 4, DA = 5, DB = 6,
     77     DC = 7, DD = 8, DE = 9, DF = 10,
     78     XD = 11,  XS = 12,
     79     T8 = 13,  P_TA = 14,
     80     A6 = 15,  A7 = 16, T8XD = 17, T8XS = 18, TAXD = 19
     81   };
     82 }
     83 
     84 // If rows are added to the opcode extension tables, then corresponding entries
     85 // must be added here.
     86 //
     87 // If the row corresponds to a single byte (i.e., 8f), then add an entry for
     88 // that byte to ONE_BYTE_EXTENSION_TABLES.
     89 //
     90 // If the row corresponds to two bytes where the first is 0f, add an entry for
     91 // the second byte to TWO_BYTE_EXTENSION_TABLES.
     92 //
     93 // If the row corresponds to some other set of bytes, you will need to modify
     94 // the code in RecognizableInstr::emitDecodePath() as well, and add new prefixes
     95 // to the X86 TD files, except in two cases: if the first two bytes of such a
     96 // new combination are 0f 38 or 0f 3a, you just have to add maps called
     97 // THREE_BYTE_38_EXTENSION_TABLES and THREE_BYTE_3A_EXTENSION_TABLES and add a
     98 // switch(Opcode) just below the case X86Local::T8: or case X86Local::TA: line
     99 // in RecognizableInstr::emitDecodePath().
    100 
    101 #define ONE_BYTE_EXTENSION_TABLES \
    102   EXTENSION_TABLE(80)             \
    103   EXTENSION_TABLE(81)             \
    104   EXTENSION_TABLE(82)             \
    105   EXTENSION_TABLE(83)             \
    106   EXTENSION_TABLE(8f)             \
    107   EXTENSION_TABLE(c0)             \
    108   EXTENSION_TABLE(c1)             \
    109   EXTENSION_TABLE(c6)             \
    110   EXTENSION_TABLE(c7)             \
    111   EXTENSION_TABLE(d0)             \
    112   EXTENSION_TABLE(d1)             \
    113   EXTENSION_TABLE(d2)             \
    114   EXTENSION_TABLE(d3)             \
    115   EXTENSION_TABLE(f6)             \
    116   EXTENSION_TABLE(f7)             \
    117   EXTENSION_TABLE(fe)             \
    118   EXTENSION_TABLE(ff)
    119 
    120 #define TWO_BYTE_EXTENSION_TABLES \
    121   EXTENSION_TABLE(00)             \
    122   EXTENSION_TABLE(01)             \
    123   EXTENSION_TABLE(18)             \
    124   EXTENSION_TABLE(71)             \
    125   EXTENSION_TABLE(72)             \
    126   EXTENSION_TABLE(73)             \
    127   EXTENSION_TABLE(ae)             \
    128   EXTENSION_TABLE(ba)             \
    129   EXTENSION_TABLE(c7)
    130 
    131 #define THREE_BYTE_38_EXTENSION_TABLES \
    132   EXTENSION_TABLE(F3)
    133 
    134 using namespace X86Disassembler;
    135 
    136 /// needsModRMForDecode - Indicates whether a particular instruction requires a
    137 ///   ModR/M byte for the instruction to be properly decoded.  For example, a
    138 ///   MRMDestReg instruction needs the Mod field in the ModR/M byte to be set to
    139 ///   0b11.
    140 ///
    141 /// @param form - The form of the instruction.
    142 /// @return     - true if the form implies that a ModR/M byte is required, false
    143 ///               otherwise.
    144 static bool needsModRMForDecode(uint8_t form) {
    145   if (form == X86Local::MRMDestReg    ||
    146      form == X86Local::MRMDestMem    ||
    147      form == X86Local::MRMSrcReg     ||
    148      form == X86Local::MRMSrcMem     ||
    149      (form >= X86Local::MRM0r && form <= X86Local::MRM7r) ||
    150      (form >= X86Local::MRM0m && form <= X86Local::MRM7m))
    151     return true;
    152   else
    153     return false;
    154 }
    155 
    156 /// isRegFormat - Indicates whether a particular form requires the Mod field of
    157 ///   the ModR/M byte to be 0b11.
    158 ///
    159 /// @param form - The form of the instruction.
    160 /// @return     - true if the form implies that Mod must be 0b11, false
    161 ///               otherwise.
    162 static bool isRegFormat(uint8_t form) {
    163   if (form == X86Local::MRMDestReg ||
    164      form == X86Local::MRMSrcReg  ||
    165      (form >= X86Local::MRM0r && form <= X86Local::MRM7r))
    166     return true;
    167   else
    168     return false;
    169 }
    170 
    171 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit.
    172 ///   Useful for switch statements and the like.
    173 ///
    174 /// @param init - A reference to the BitsInit to be decoded.
    175 /// @return     - The field, with the first bit in the BitsInit as the lowest
    176 ///               order bit.
    177 static uint8_t byteFromBitsInit(BitsInit &init) {
    178   int width = init.getNumBits();
    179 
    180   assert(width <= 8 && "Field is too large for uint8_t!");
    181 
    182   int     index;
    183   uint8_t mask = 0x01;
    184 
    185   uint8_t ret = 0;
    186 
    187   for (index = 0; index < width; index++) {
    188     if (static_cast<BitInit*>(init.getBit(index))->getValue())
    189       ret |= mask;
    190 
    191     mask <<= 1;
    192   }
    193 
    194   return ret;
    195 }
    196 
    197 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the
    198 ///   name of the field.
    199 ///
    200 /// @param rec  - The record from which to extract the value.
    201 /// @param name - The name of the field in the record.
    202 /// @return     - The field, as translated by byteFromBitsInit().
    203 static uint8_t byteFromRec(const Record* rec, const std::string &name) {
    204   BitsInit* bits = rec->getValueAsBitsInit(name);
    205   return byteFromBitsInit(*bits);
    206 }
    207 
    208 RecognizableInstr::RecognizableInstr(DisassemblerTables &tables,
    209                                      const CodeGenInstruction &insn,
    210                                      InstrUID uid) {
    211   UID = uid;
    212 
    213   Rec = insn.TheDef;
    214   Name = Rec->getName();
    215   Spec = &tables.specForUID(UID);
    216 
    217   if (!Rec->isSubClassOf("X86Inst")) {
    218     ShouldBeEmitted = false;
    219     return;
    220   }
    221 
    222   Prefix   = byteFromRec(Rec, "Prefix");
    223   Opcode   = byteFromRec(Rec, "Opcode");
    224   Form     = byteFromRec(Rec, "FormBits");
    225   SegOvr   = byteFromRec(Rec, "SegOvrBits");
    226 
    227   HasOpSizePrefix  = Rec->getValueAsBit("hasOpSizePrefix");
    228   HasAdSizePrefix  = Rec->getValueAsBit("hasAdSizePrefix");
    229   HasREX_WPrefix   = Rec->getValueAsBit("hasREX_WPrefix");
    230   HasVEXPrefix     = Rec->getValueAsBit("hasVEXPrefix");
    231   HasVEX_4VPrefix  = Rec->getValueAsBit("hasVEX_4VPrefix");
    232   HasVEX_4VOp3Prefix = Rec->getValueAsBit("hasVEX_4VOp3Prefix");
    233   HasVEX_WPrefix   = Rec->getValueAsBit("hasVEX_WPrefix");
    234   HasMemOp4Prefix  = Rec->getValueAsBit("hasMemOp4Prefix");
    235   IgnoresVEX_L     = Rec->getValueAsBit("ignoresVEX_L");
    236   HasLockPrefix    = Rec->getValueAsBit("hasLockPrefix");
    237   IsCodeGenOnly    = Rec->getValueAsBit("isCodeGenOnly");
    238 
    239   Name      = Rec->getName();
    240   AsmString = Rec->getValueAsString("AsmString");
    241 
    242   Operands = &insn.Operands.OperandList;
    243 
    244   IsSSE            = (HasOpSizePrefix && (Name.find("16") == Name.npos)) ||
    245                      (Name.find("CRC32") != Name.npos);
    246   HasFROperands    = hasFROperands();
    247   HasVEX_LPrefix   = has256BitOperands() || Rec->getValueAsBit("hasVEX_L");
    248 
    249   // Check for 64-bit inst which does not require REX
    250   Is32Bit = false;
    251   Is64Bit = false;
    252   // FIXME: Is there some better way to check for In64BitMode?
    253   std::vector<Record*> Predicates = Rec->getValueAsListOfDefs("Predicates");
    254   for (unsigned i = 0, e = Predicates.size(); i != e; ++i) {
    255     if (Predicates[i]->getName().find("32Bit") != Name.npos) {
    256       Is32Bit = true;
    257       break;
    258     }
    259     if (Predicates[i]->getName().find("64Bit") != Name.npos) {
    260       Is64Bit = true;
    261       break;
    262     }
    263   }
    264   // FIXME: These instructions aren't marked as 64-bit in any way
    265   Is64Bit |= Rec->getName() == "JMP64pcrel32" ||
    266              Rec->getName() == "MASKMOVDQU64" ||
    267              Rec->getName() == "POPFS64" ||
    268              Rec->getName() == "POPGS64" ||
    269              Rec->getName() == "PUSHFS64" ||
    270              Rec->getName() == "PUSHGS64" ||
    271              Rec->getName() == "REX64_PREFIX" ||
    272              Rec->getName().find("MOV64") != Name.npos ||
    273              Rec->getName().find("PUSH64") != Name.npos ||
    274              Rec->getName().find("POP64") != Name.npos;
    275 
    276   ShouldBeEmitted  = true;
    277 }
    278 
    279 void RecognizableInstr::processInstr(DisassemblerTables &tables,
    280 	const CodeGenInstruction &insn,
    281                                    InstrUID uid)
    282 {
    283   // Ignore "asm parser only" instructions.
    284   if (insn.TheDef->getValueAsBit("isAsmParserOnly"))
    285     return;
    286 
    287   RecognizableInstr recogInstr(tables, insn, uid);
    288 
    289   recogInstr.emitInstructionSpecifier(tables);
    290 
    291   if (recogInstr.shouldBeEmitted())
    292     recogInstr.emitDecodePath(tables);
    293 }
    294 
    295 InstructionContext RecognizableInstr::insnContext() const {
    296   InstructionContext insnContext;
    297 
    298   if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix|| HasVEXPrefix) {
    299     if (HasVEX_LPrefix && HasVEX_WPrefix) {
    300       if (HasOpSizePrefix)
    301         insnContext = IC_VEX_L_W_OPSIZE;
    302       else
    303         llvm_unreachable("Don't support VEX.L and VEX.W together");
    304     } else if (HasOpSizePrefix && HasVEX_LPrefix)
    305       insnContext = IC_VEX_L_OPSIZE;
    306     else if (HasOpSizePrefix && HasVEX_WPrefix)
    307       insnContext = IC_VEX_W_OPSIZE;
    308     else if (HasOpSizePrefix)
    309       insnContext = IC_VEX_OPSIZE;
    310     else if (HasVEX_LPrefix &&
    311              (Prefix == X86Local::XS || Prefix == X86Local::T8XS))
    312       insnContext = IC_VEX_L_XS;
    313     else if (HasVEX_LPrefix && (Prefix == X86Local::XD ||
    314                                 Prefix == X86Local::T8XD ||
    315                                 Prefix == X86Local::TAXD))
    316       insnContext = IC_VEX_L_XD;
    317     else if (HasVEX_WPrefix &&
    318              (Prefix == X86Local::XS || Prefix == X86Local::T8XS))
    319       insnContext = IC_VEX_W_XS;
    320     else if (HasVEX_WPrefix && (Prefix == X86Local::XD ||
    321                                 Prefix == X86Local::T8XD ||
    322                                 Prefix == X86Local::TAXD))
    323       insnContext = IC_VEX_W_XD;
    324     else if (HasVEX_WPrefix)
    325       insnContext = IC_VEX_W;
    326     else if (HasVEX_LPrefix)
    327       insnContext = IC_VEX_L;
    328     else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD ||
    329              Prefix == X86Local::TAXD)
    330       insnContext = IC_VEX_XD;
    331     else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS)
    332       insnContext = IC_VEX_XS;
    333     else
    334       insnContext = IC_VEX;
    335   } else if (Is64Bit || HasREX_WPrefix) {
    336     if (HasREX_WPrefix && HasOpSizePrefix)
    337       insnContext = IC_64BIT_REXW_OPSIZE;
    338     else if (HasOpSizePrefix && (Prefix == X86Local::XD ||
    339                                  Prefix == X86Local::T8XD ||
    340                                  Prefix == X86Local::TAXD))
    341       insnContext = IC_64BIT_XD_OPSIZE;
    342     else if (HasOpSizePrefix &&
    343              (Prefix == X86Local::XS || Prefix == X86Local::T8XS))
    344       insnContext = IC_64BIT_XS_OPSIZE;
    345     else if (HasOpSizePrefix)
    346       insnContext = IC_64BIT_OPSIZE;
    347     else if (HasAdSizePrefix)
    348       insnContext = IC_64BIT_ADSIZE;
    349     else if (HasREX_WPrefix &&
    350              (Prefix == X86Local::XS || Prefix == X86Local::T8XS))
    351       insnContext = IC_64BIT_REXW_XS;
    352     else if (HasREX_WPrefix && (Prefix == X86Local::XD ||
    353                                 Prefix == X86Local::T8XD ||
    354                                 Prefix == X86Local::TAXD))
    355       insnContext = IC_64BIT_REXW_XD;
    356     else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD ||
    357              Prefix == X86Local::TAXD)
    358       insnContext = IC_64BIT_XD;
    359     else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS)
    360       insnContext = IC_64BIT_XS;
    361     else if (HasREX_WPrefix)
    362       insnContext = IC_64BIT_REXW;
    363     else
    364       insnContext = IC_64BIT;
    365   } else {
    366     if (HasOpSizePrefix && (Prefix == X86Local::XD ||
    367                             Prefix == X86Local::T8XD ||
    368                             Prefix == X86Local::TAXD))
    369       insnContext = IC_XD_OPSIZE;
    370     else if (HasOpSizePrefix &&
    371              (Prefix == X86Local::XS || Prefix == X86Local::T8XS))
    372       insnContext = IC_XS_OPSIZE;
    373     else if (HasOpSizePrefix)
    374       insnContext = IC_OPSIZE;
    375     else if (HasAdSizePrefix)
    376       insnContext = IC_ADSIZE;
    377     else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD ||
    378              Prefix == X86Local::TAXD)
    379       insnContext = IC_XD;
    380     else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS ||
    381              Prefix == X86Local::REP)
    382       insnContext = IC_XS;
    383     else
    384       insnContext = IC;
    385   }
    386 
    387   return insnContext;
    388 }
    389 
    390 RecognizableInstr::filter_ret RecognizableInstr::filter() const {
    391   ///////////////////
    392   // FILTER_STRONG
    393   //
    394 
    395   // Filter out intrinsics
    396 
    397   if (!Rec->isSubClassOf("X86Inst"))
    398     return FILTER_STRONG;
    399 
    400   if (Form == X86Local::Pseudo ||
    401       (IsCodeGenOnly && Name.find("_REV") == Name.npos))
    402     return FILTER_STRONG;
    403 
    404   if (Form == X86Local::MRMInitReg)
    405     return FILTER_STRONG;
    406 
    407 
    408   // Filter out artificial instructions but leave in the LOCK_PREFIX so it is
    409   // printed as a separate "instruction".
    410 
    411   if (Name.find("_Int") != Name.npos       ||
    412       Name.find("Int_") != Name.npos       ||
    413       Name.find("_NOREX") != Name.npos     ||
    414       Name.find("2SDL") != Name.npos)
    415     return FILTER_STRONG;
    416 
    417   // Filter out instructions with segment override prefixes.
    418   // They're too messy to handle now and we'll special case them if needed.
    419 
    420   if (SegOvr)
    421     return FILTER_STRONG;
    422 
    423   // Filter out instructions that can't be printed.
    424 
    425   if (AsmString.size() == 0)
    426     return FILTER_STRONG;
    427 
    428   // Filter out instructions with subreg operands.
    429 
    430   if (AsmString.find("subreg") != AsmString.npos)
    431     return FILTER_STRONG;
    432 
    433   /////////////////
    434   // FILTER_WEAK
    435   //
    436 
    437 
    438   // Filter out instructions with a LOCK prefix;
    439   //   prefer forms that do not have the prefix
    440   if (HasLockPrefix)
    441     return FILTER_WEAK;
    442 
    443   // Filter out alternate forms of AVX instructions
    444   if (Name.find("_alt") != Name.npos ||
    445       Name.find("XrYr") != Name.npos ||
    446       (Name.find("r64r") != Name.npos && Name.find("r64r64") == Name.npos) ||
    447       Name.find("_64mr") != Name.npos ||
    448       Name.find("Xrr") != Name.npos ||
    449       Name.find("rr64") != Name.npos)
    450     return FILTER_WEAK;
    451 
    452   // Special cases.
    453 
    454   if (Name.find("PCMPISTRI") != Name.npos && Name != "PCMPISTRI")
    455     return FILTER_WEAK;
    456   if (Name.find("PCMPESTRI") != Name.npos && Name != "PCMPESTRI")
    457     return FILTER_WEAK;
    458 
    459   if (Name.find("MOV") != Name.npos && Name.find("r0") != Name.npos)
    460     return FILTER_WEAK;
    461   if (Name.find("MOVZ") != Name.npos && Name.find("MOVZX") == Name.npos)
    462     return FILTER_WEAK;
    463   if (Name.find("Fs") != Name.npos)
    464     return FILTER_WEAK;
    465   if (Name == "PUSH64i16"         ||
    466       Name == "MOVPQI2QImr"       ||
    467       Name == "VMOVPQI2QImr"      ||
    468       Name == "MMX_MOVD64rrv164"  ||
    469       Name == "MOV64ri64i32"      ||
    470       Name == "VMASKMOVDQU64"     ||
    471       Name == "VEXTRACTPSrr64"    ||
    472       Name == "VMOVQd64rr"        ||
    473       Name == "VMOVQs64rr")
    474     return FILTER_WEAK;
    475 
    476   if (HasFROperands && Name.find("MOV") != Name.npos &&
    477      ((Name.find("2") != Name.npos && Name.find("32") == Name.npos) ||
    478       (Name.find("to") != Name.npos)))
    479     return FILTER_WEAK;
    480 
    481   return FILTER_NORMAL;
    482 }
    483 
    484 bool RecognizableInstr::hasFROperands() const {
    485   const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
    486   unsigned numOperands = OperandList.size();
    487 
    488   for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
    489     const std::string &recName = OperandList[operandIndex].Rec->getName();
    490 
    491     if (recName.find("FR") != recName.npos)
    492       return true;
    493   }
    494   return false;
    495 }
    496 
    497 bool RecognizableInstr::has256BitOperands() const {
    498   const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
    499   unsigned numOperands = OperandList.size();
    500 
    501   for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
    502     const std::string &recName = OperandList[operandIndex].Rec->getName();
    503 
    504     if (!recName.compare("VR256") || !recName.compare("f256mem")) {
    505       return true;
    506     }
    507   }
    508   return false;
    509 }
    510 
    511 void RecognizableInstr::handleOperand(
    512   bool optional,
    513   unsigned &operandIndex,
    514   unsigned &physicalOperandIndex,
    515   unsigned &numPhysicalOperands,
    516   unsigned *operandMapping,
    517   OperandEncoding (*encodingFromString)(const std::string&, bool hasOpSizePrefix)) {
    518   if (optional) {
    519     if (physicalOperandIndex >= numPhysicalOperands)
    520       return;
    521   } else {
    522     assert(physicalOperandIndex < numPhysicalOperands);
    523   }
    524 
    525   while (operandMapping[operandIndex] != operandIndex) {
    526     Spec->operands[operandIndex].encoding = ENCODING_DUP;
    527     Spec->operands[operandIndex].type =
    528       (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]);
    529     ++operandIndex;
    530   }
    531 
    532   const std::string &typeName = (*Operands)[operandIndex].Rec->getName();
    533 
    534   Spec->operands[operandIndex].encoding = encodingFromString(typeName,
    535                                                               HasOpSizePrefix);
    536   Spec->operands[operandIndex].type = typeFromString(typeName,
    537                                                      IsSSE,
    538                                                      HasREX_WPrefix,
    539                                                      HasOpSizePrefix);
    540 
    541   ++operandIndex;
    542   ++physicalOperandIndex;
    543 }
    544 
    545 void RecognizableInstr::emitInstructionSpecifier(DisassemblerTables &tables) {
    546   Spec->name       = Name;
    547 
    548   if (!Rec->isSubClassOf("X86Inst"))
    549     return;
    550 
    551   switch (filter()) {
    552   case FILTER_WEAK:
    553     Spec->filtered = true;
    554     break;
    555   case FILTER_STRONG:
    556     ShouldBeEmitted = false;
    557     return;
    558   case FILTER_NORMAL:
    559     break;
    560   }
    561 
    562   Spec->insnContext = insnContext();
    563 
    564   const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
    565 
    566   unsigned operandIndex;
    567   unsigned numOperands = OperandList.size();
    568   unsigned numPhysicalOperands = 0;
    569 
    570   // operandMapping maps from operands in OperandList to their originals.
    571   // If operandMapping[i] != i, then the entry is a duplicate.
    572   unsigned operandMapping[X86_MAX_OPERANDS];
    573 
    574   bool hasFROperands = false;
    575 
    576   assert(numOperands <= X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough");
    577 
    578   for (operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
    579     if (OperandList[operandIndex].Constraints.size()) {
    580       const CGIOperandList::ConstraintInfo &Constraint =
    581         OperandList[operandIndex].Constraints[0];
    582       if (Constraint.isTied()) {
    583         operandMapping[operandIndex] = Constraint.getTiedOperand();
    584       } else {
    585         ++numPhysicalOperands;
    586         operandMapping[operandIndex] = operandIndex;
    587       }
    588     } else {
    589       ++numPhysicalOperands;
    590       operandMapping[operandIndex] = operandIndex;
    591     }
    592 
    593     const std::string &recName = OperandList[operandIndex].Rec->getName();
    594 
    595     if (recName.find("FR") != recName.npos)
    596       hasFROperands = true;
    597   }
    598 
    599   if (hasFROperands && Name.find("MOV") != Name.npos &&
    600      ((Name.find("2") != Name.npos && Name.find("32") == Name.npos) ||
    601       (Name.find("to") != Name.npos)))
    602     ShouldBeEmitted = false;
    603 
    604   if (!ShouldBeEmitted)
    605     return;
    606 
    607 #define HANDLE_OPERAND(class)               \
    608   handleOperand(false,                      \
    609                 operandIndex,               \
    610                 physicalOperandIndex,       \
    611                 numPhysicalOperands,        \
    612                 operandMapping,             \
    613                 class##EncodingFromString);
    614 
    615 #define HANDLE_OPTIONAL(class)              \
    616   handleOperand(true,                       \
    617                 operandIndex,               \
    618                 physicalOperandIndex,       \
    619                 numPhysicalOperands,        \
    620                 operandMapping,             \
    621                 class##EncodingFromString);
    622 
    623   // operandIndex should always be < numOperands
    624   operandIndex = 0;
    625   // physicalOperandIndex should always be < numPhysicalOperands
    626   unsigned physicalOperandIndex = 0;
    627 
    628   switch (Form) {
    629   case X86Local::RawFrm:
    630     // Operand 1 (optional) is an address or immediate.
    631     // Operand 2 (optional) is an immediate.
    632     assert(numPhysicalOperands <= 2 &&
    633            "Unexpected number of operands for RawFrm");
    634     HANDLE_OPTIONAL(relocation)
    635     HANDLE_OPTIONAL(immediate)
    636     break;
    637   case X86Local::AddRegFrm:
    638     // Operand 1 is added to the opcode.
    639     // Operand 2 (optional) is an address.
    640     assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 &&
    641            "Unexpected number of operands for AddRegFrm");
    642     HANDLE_OPERAND(opcodeModifier)
    643     HANDLE_OPTIONAL(relocation)
    644     break;
    645   case X86Local::MRMDestReg:
    646     // Operand 1 is a register operand in the R/M field.
    647     // Operand 2 is a register operand in the Reg/Opcode field.
    648     // - In AVX, there is a register operand in the VEX.vvvv field here -
    649     // Operand 3 (optional) is an immediate.
    650     if (HasVEX_4VPrefix)
    651       assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 &&
    652              "Unexpected number of operands for MRMDestRegFrm with VEX_4V");
    653     else
    654       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
    655              "Unexpected number of operands for MRMDestRegFrm");
    656 
    657     HANDLE_OPERAND(rmRegister)
    658 
    659     if (HasVEX_4VPrefix)
    660       // FIXME: In AVX, the register below becomes the one encoded
    661       // in ModRMVEX and the one above the one in the VEX.VVVV field
    662       HANDLE_OPERAND(vvvvRegister)
    663 
    664     HANDLE_OPERAND(roRegister)
    665     HANDLE_OPTIONAL(immediate)
    666     break;
    667   case X86Local::MRMDestMem:
    668     // Operand 1 is a memory operand (possibly SIB-extended)
    669     // Operand 2 is a register operand in the Reg/Opcode field.
    670     // - In AVX, there is a register operand in the VEX.vvvv field here -
    671     // Operand 3 (optional) is an immediate.
    672     if (HasVEX_4VPrefix)
    673       assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 &&
    674              "Unexpected number of operands for MRMDestMemFrm with VEX_4V");
    675     else
    676       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
    677              "Unexpected number of operands for MRMDestMemFrm");
    678     HANDLE_OPERAND(memory)
    679 
    680     if (HasVEX_4VPrefix)
    681       // FIXME: In AVX, the register below becomes the one encoded
    682       // in ModRMVEX and the one above the one in the VEX.VVVV field
    683       HANDLE_OPERAND(vvvvRegister)
    684 
    685     HANDLE_OPERAND(roRegister)
    686     HANDLE_OPTIONAL(immediate)
    687     break;
    688   case X86Local::MRMSrcReg:
    689     // Operand 1 is a register operand in the Reg/Opcode field.
    690     // Operand 2 is a register operand in the R/M field.
    691     // - In AVX, there is a register operand in the VEX.vvvv field here -
    692     // Operand 3 (optional) is an immediate.
    693 
    694     if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix)
    695       assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 5 &&
    696              "Unexpected number of operands for MRMSrcRegFrm with VEX_4V");
    697     else
    698       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
    699              "Unexpected number of operands for MRMSrcRegFrm");
    700 
    701     HANDLE_OPERAND(roRegister)
    702 
    703     if (HasVEX_4VPrefix)
    704       // FIXME: In AVX, the register below becomes the one encoded
    705       // in ModRMVEX and the one above the one in the VEX.VVVV field
    706       HANDLE_OPERAND(vvvvRegister)
    707 
    708     if (HasMemOp4Prefix)
    709       HANDLE_OPERAND(immediate)
    710 
    711     HANDLE_OPERAND(rmRegister)
    712 
    713     if (HasVEX_4VOp3Prefix)
    714       HANDLE_OPERAND(vvvvRegister)
    715 
    716     if (!HasMemOp4Prefix)
    717       HANDLE_OPTIONAL(immediate)
    718     HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
    719     break;
    720   case X86Local::MRMSrcMem:
    721     // Operand 1 is a register operand in the Reg/Opcode field.
    722     // Operand 2 is a memory operand (possibly SIB-extended)
    723     // - In AVX, there is a register operand in the VEX.vvvv field here -
    724     // Operand 3 (optional) is an immediate.
    725 
    726     if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix)
    727       assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 5 &&
    728              "Unexpected number of operands for MRMSrcMemFrm with VEX_4V");
    729     else
    730       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
    731              "Unexpected number of operands for MRMSrcMemFrm");
    732 
    733     HANDLE_OPERAND(roRegister)
    734 
    735     if (HasVEX_4VPrefix)
    736       // FIXME: In AVX, the register below becomes the one encoded
    737       // in ModRMVEX and the one above the one in the VEX.VVVV field
    738       HANDLE_OPERAND(vvvvRegister)
    739 
    740     if (HasMemOp4Prefix)
    741       HANDLE_OPERAND(immediate)
    742 
    743     HANDLE_OPERAND(memory)
    744 
    745     if (HasVEX_4VOp3Prefix)
    746       HANDLE_OPERAND(vvvvRegister)
    747 
    748     if (!HasMemOp4Prefix)
    749       HANDLE_OPTIONAL(immediate)
    750     HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
    751     break;
    752   case X86Local::MRM0r:
    753   case X86Local::MRM1r:
    754   case X86Local::MRM2r:
    755   case X86Local::MRM3r:
    756   case X86Local::MRM4r:
    757   case X86Local::MRM5r:
    758   case X86Local::MRM6r:
    759   case X86Local::MRM7r:
    760     // Operand 1 is a register operand in the R/M field.
    761     // Operand 2 (optional) is an immediate or relocation.
    762     if (HasVEX_4VPrefix)
    763       assert(numPhysicalOperands <= 3 &&
    764              "Unexpected number of operands for MRMnRFrm with VEX_4V");
    765     else
    766       assert(numPhysicalOperands <= 2 &&
    767              "Unexpected number of operands for MRMnRFrm");
    768     if (HasVEX_4VPrefix)
    769       HANDLE_OPERAND(vvvvRegister)
    770     HANDLE_OPTIONAL(rmRegister)
    771     HANDLE_OPTIONAL(relocation)
    772     break;
    773   case X86Local::MRM0m:
    774   case X86Local::MRM1m:
    775   case X86Local::MRM2m:
    776   case X86Local::MRM3m:
    777   case X86Local::MRM4m:
    778   case X86Local::MRM5m:
    779   case X86Local::MRM6m:
    780   case X86Local::MRM7m:
    781     // Operand 1 is a memory operand (possibly SIB-extended)
    782     // Operand 2 (optional) is an immediate or relocation.
    783     if (HasVEX_4VPrefix)
    784       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
    785              "Unexpected number of operands for MRMnMFrm");
    786     else
    787       assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 &&
    788              "Unexpected number of operands for MRMnMFrm");
    789     if (HasVEX_4VPrefix)
    790       HANDLE_OPERAND(vvvvRegister)
    791     HANDLE_OPERAND(memory)
    792     HANDLE_OPTIONAL(relocation)
    793     break;
    794   case X86Local::RawFrmImm8:
    795     // operand 1 is a 16-bit immediate
    796     // operand 2 is an 8-bit immediate
    797     assert(numPhysicalOperands == 2 &&
    798            "Unexpected number of operands for X86Local::RawFrmImm8");
    799     HANDLE_OPERAND(immediate)
    800     HANDLE_OPERAND(immediate)
    801     break;
    802   case X86Local::RawFrmImm16:
    803     // operand 1 is a 16-bit immediate
    804     // operand 2 is a 16-bit immediate
    805     HANDLE_OPERAND(immediate)
    806     HANDLE_OPERAND(immediate)
    807     break;
    808   case X86Local::MRMInitReg:
    809     // Ignored.
    810     break;
    811   }
    812 
    813   #undef HANDLE_OPERAND
    814   #undef HANDLE_OPTIONAL
    815 }
    816 
    817 void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const {
    818   // Special cases where the LLVM tables are not complete
    819 
    820 #define MAP(from, to)                     \
    821   case X86Local::MRM_##from:              \
    822     filter = new ExactFilter(0x##from);   \
    823     break;
    824 
    825   OpcodeType    opcodeType  = (OpcodeType)-1;
    826 
    827   ModRMFilter*  filter      = NULL;
    828   uint8_t       opcodeToSet = 0;
    829 
    830   switch (Prefix) {
    831   // Extended two-byte opcodes can start with f2 0f, f3 0f, or 0f
    832   case X86Local::XD:
    833   case X86Local::XS:
    834   case X86Local::TB:
    835     opcodeType = TWOBYTE;
    836 
    837     switch (Opcode) {
    838     default:
    839       if (needsModRMForDecode(Form))
    840         filter = new ModFilter(isRegFormat(Form));
    841       else
    842         filter = new DumbFilter();
    843       break;
    844 #define EXTENSION_TABLE(n) case 0x##n:
    845     TWO_BYTE_EXTENSION_TABLES
    846 #undef EXTENSION_TABLE
    847       switch (Form) {
    848       default:
    849         llvm_unreachable("Unhandled two-byte extended opcode");
    850       case X86Local::MRM0r:
    851       case X86Local::MRM1r:
    852       case X86Local::MRM2r:
    853       case X86Local::MRM3r:
    854       case X86Local::MRM4r:
    855       case X86Local::MRM5r:
    856       case X86Local::MRM6r:
    857       case X86Local::MRM7r:
    858         filter = new ExtendedFilter(true, Form - X86Local::MRM0r);
    859         break;
    860       case X86Local::MRM0m:
    861       case X86Local::MRM1m:
    862       case X86Local::MRM2m:
    863       case X86Local::MRM3m:
    864       case X86Local::MRM4m:
    865       case X86Local::MRM5m:
    866       case X86Local::MRM6m:
    867       case X86Local::MRM7m:
    868         filter = new ExtendedFilter(false, Form - X86Local::MRM0m);
    869         break;
    870       MRM_MAPPING
    871       } // switch (Form)
    872       break;
    873     } // switch (Opcode)
    874     opcodeToSet = Opcode;
    875     break;
    876   case X86Local::T8:
    877   case X86Local::T8XD:
    878   case X86Local::T8XS:
    879     opcodeType = THREEBYTE_38;
    880     switch (Opcode) {
    881     default:
    882       if (needsModRMForDecode(Form))
    883         filter = new ModFilter(isRegFormat(Form));
    884       else
    885         filter = new DumbFilter();
    886       break;
    887 #define EXTENSION_TABLE(n) case 0x##n:
    888     THREE_BYTE_38_EXTENSION_TABLES
    889 #undef EXTENSION_TABLE
    890       switch (Form) {
    891       default:
    892         llvm_unreachable("Unhandled two-byte extended opcode");
    893       case X86Local::MRM0r:
    894       case X86Local::MRM1r:
    895       case X86Local::MRM2r:
    896       case X86Local::MRM3r:
    897       case X86Local::MRM4r:
    898       case X86Local::MRM5r:
    899       case X86Local::MRM6r:
    900       case X86Local::MRM7r:
    901         filter = new ExtendedFilter(true, Form - X86Local::MRM0r);
    902         break;
    903       case X86Local::MRM0m:
    904       case X86Local::MRM1m:
    905       case X86Local::MRM2m:
    906       case X86Local::MRM3m:
    907       case X86Local::MRM4m:
    908       case X86Local::MRM5m:
    909       case X86Local::MRM6m:
    910       case X86Local::MRM7m:
    911         filter = new ExtendedFilter(false, Form - X86Local::MRM0m);
    912         break;
    913       MRM_MAPPING
    914       } // switch (Form)
    915       break;
    916     } // switch (Opcode)
    917     opcodeToSet = Opcode;
    918     break;
    919   case X86Local::P_TA:
    920   case X86Local::TAXD:
    921     opcodeType = THREEBYTE_3A;
    922     if (needsModRMForDecode(Form))
    923       filter = new ModFilter(isRegFormat(Form));
    924     else
    925       filter = new DumbFilter();
    926     opcodeToSet = Opcode;
    927     break;
    928   case X86Local::A6:
    929     opcodeType = THREEBYTE_A6;
    930     if (needsModRMForDecode(Form))
    931       filter = new ModFilter(isRegFormat(Form));
    932     else
    933       filter = new DumbFilter();
    934     opcodeToSet = Opcode;
    935     break;
    936   case X86Local::A7:
    937     opcodeType = THREEBYTE_A7;
    938     if (needsModRMForDecode(Form))
    939       filter = new ModFilter(isRegFormat(Form));
    940     else
    941       filter = new DumbFilter();
    942     opcodeToSet = Opcode;
    943     break;
    944   case X86Local::D8:
    945   case X86Local::D9:
    946   case X86Local::DA:
    947   case X86Local::DB:
    948   case X86Local::DC:
    949   case X86Local::DD:
    950   case X86Local::DE:
    951   case X86Local::DF:
    952     assert(Opcode >= 0xc0 && "Unexpected opcode for an escape opcode");
    953     opcodeType = ONEBYTE;
    954     if (Form == X86Local::AddRegFrm) {
    955       Spec->modifierType = MODIFIER_MODRM;
    956       Spec->modifierBase = Opcode;
    957       filter = new AddRegEscapeFilter(Opcode);
    958     } else {
    959       filter = new EscapeFilter(true, Opcode);
    960     }
    961     opcodeToSet = 0xd8 + (Prefix - X86Local::D8);
    962     break;
    963   case X86Local::REP:
    964   default:
    965     opcodeType = ONEBYTE;
    966     switch (Opcode) {
    967 #define EXTENSION_TABLE(n) case 0x##n:
    968     ONE_BYTE_EXTENSION_TABLES
    969 #undef EXTENSION_TABLE
    970       switch (Form) {
    971       default:
    972         llvm_unreachable("Fell through the cracks of a single-byte "
    973                          "extended opcode");
    974       case X86Local::MRM0r:
    975       case X86Local::MRM1r:
    976       case X86Local::MRM2r:
    977       case X86Local::MRM3r:
    978       case X86Local::MRM4r:
    979       case X86Local::MRM5r:
    980       case X86Local::MRM6r:
    981       case X86Local::MRM7r:
    982         filter = new ExtendedFilter(true, Form - X86Local::MRM0r);
    983         break;
    984       case X86Local::MRM0m:
    985       case X86Local::MRM1m:
    986       case X86Local::MRM2m:
    987       case X86Local::MRM3m:
    988       case X86Local::MRM4m:
    989       case X86Local::MRM5m:
    990       case X86Local::MRM6m:
    991       case X86Local::MRM7m:
    992         filter = new ExtendedFilter(false, Form - X86Local::MRM0m);
    993         break;
    994       MRM_MAPPING
    995       } // switch (Form)
    996       break;
    997     case 0xd8:
    998     case 0xd9:
    999     case 0xda:
   1000     case 0xdb:
   1001     case 0xdc:
   1002     case 0xdd:
   1003     case 0xde:
   1004     case 0xdf:
   1005       filter = new EscapeFilter(false, Form - X86Local::MRM0m);
   1006       break;
   1007     default:
   1008       if (needsModRMForDecode(Form))
   1009         filter = new ModFilter(isRegFormat(Form));
   1010       else
   1011         filter = new DumbFilter();
   1012       break;
   1013     } // switch (Opcode)
   1014     opcodeToSet = Opcode;
   1015   } // switch (Prefix)
   1016 
   1017   assert(opcodeType != (OpcodeType)-1 &&
   1018          "Opcode type not set");
   1019   assert(filter && "Filter not set");
   1020 
   1021   if (Form == X86Local::AddRegFrm) {
   1022     if(Spec->modifierType != MODIFIER_MODRM) {
   1023       assert(opcodeToSet < 0xf9 &&
   1024              "Not enough room for all ADDREG_FRM operands");
   1025 
   1026       uint8_t currentOpcode;
   1027 
   1028       for (currentOpcode = opcodeToSet;
   1029            currentOpcode < opcodeToSet + 8;
   1030            ++currentOpcode)
   1031         tables.setTableFields(opcodeType,
   1032                               insnContext(),
   1033                               currentOpcode,
   1034                               *filter,
   1035                               UID, Is32Bit, IgnoresVEX_L);
   1036 
   1037       Spec->modifierType = MODIFIER_OPCODE;
   1038       Spec->modifierBase = opcodeToSet;
   1039     } else {
   1040       // modifierBase was set where MODIFIER_MODRM was set
   1041       tables.setTableFields(opcodeType,
   1042                             insnContext(),
   1043                             opcodeToSet,
   1044                             *filter,
   1045                             UID, Is32Bit, IgnoresVEX_L);
   1046     }
   1047   } else {
   1048     tables.setTableFields(opcodeType,
   1049                           insnContext(),
   1050                           opcodeToSet,
   1051                           *filter,
   1052                           UID, Is32Bit, IgnoresVEX_L);
   1053 
   1054     Spec->modifierType = MODIFIER_NONE;
   1055     Spec->modifierBase = opcodeToSet;
   1056   }
   1057 
   1058   delete filter;
   1059 
   1060 #undef MAP
   1061 }
   1062 
   1063 #define TYPE(str, type) if (s == str) return type;
   1064 OperandType RecognizableInstr::typeFromString(const std::string &s,
   1065                                               bool isSSE,
   1066                                               bool hasREX_WPrefix,
   1067                                               bool hasOpSizePrefix) {
   1068   if (isSSE) {
   1069     // For SSE instructions, we ignore the OpSize prefix and force operand
   1070     // sizes.
   1071     TYPE("GR16",              TYPE_R16)
   1072     TYPE("GR32",              TYPE_R32)
   1073     TYPE("GR64",              TYPE_R64)
   1074   }
   1075   if(hasREX_WPrefix) {
   1076     // For instructions with a REX_W prefix, a declared 32-bit register encoding
   1077     // is special.
   1078     TYPE("GR32",              TYPE_R32)
   1079   }
   1080   if(!hasOpSizePrefix) {
   1081     // For instructions without an OpSize prefix, a declared 16-bit register or
   1082     // immediate encoding is special.
   1083     TYPE("GR16",              TYPE_R16)
   1084     TYPE("i16imm",            TYPE_IMM16)
   1085   }
   1086   TYPE("i16mem",              TYPE_Mv)
   1087   TYPE("i16imm",              TYPE_IMMv)
   1088   TYPE("i16i8imm",            TYPE_IMMv)
   1089   TYPE("GR16",                TYPE_Rv)
   1090   TYPE("i32mem",              TYPE_Mv)
   1091   TYPE("i32imm",              TYPE_IMMv)
   1092   TYPE("i32i8imm",            TYPE_IMM32)
   1093   TYPE("u32u8imm",            TYPE_IMM32)
   1094   TYPE("GR32",                TYPE_Rv)
   1095   TYPE("i64mem",              TYPE_Mv)
   1096   TYPE("i64i32imm",           TYPE_IMM64)
   1097   TYPE("i64i8imm",            TYPE_IMM64)
   1098   TYPE("GR64",                TYPE_R64)
   1099   TYPE("i8mem",               TYPE_M8)
   1100   TYPE("i8imm",               TYPE_IMM8)
   1101   TYPE("GR8",                 TYPE_R8)
   1102   TYPE("VR128",               TYPE_XMM128)
   1103   TYPE("f128mem",             TYPE_M128)
   1104   TYPE("f256mem",             TYPE_M256)
   1105   TYPE("FR64",                TYPE_XMM64)
   1106   TYPE("f64mem",              TYPE_M64FP)
   1107   TYPE("sdmem",               TYPE_M64FP)
   1108   TYPE("FR32",                TYPE_XMM32)
   1109   TYPE("f32mem",              TYPE_M32FP)
   1110   TYPE("ssmem",               TYPE_M32FP)
   1111   TYPE("RST",                 TYPE_ST)
   1112   TYPE("i128mem",             TYPE_M128)
   1113   TYPE("i256mem",             TYPE_M256)
   1114   TYPE("i64i32imm_pcrel",     TYPE_REL64)
   1115   TYPE("i16imm_pcrel",        TYPE_REL16)
   1116   TYPE("i32imm_pcrel",        TYPE_REL32)
   1117   TYPE("SSECC",               TYPE_IMM3)
   1118   TYPE("AVXCC",               TYPE_IMM5)
   1119   TYPE("brtarget",            TYPE_RELv)
   1120   TYPE("uncondbrtarget",      TYPE_RELv)
   1121   TYPE("brtarget8",           TYPE_REL8)
   1122   TYPE("f80mem",              TYPE_M80FP)
   1123   TYPE("lea32mem",            TYPE_LEA)
   1124   TYPE("lea64_32mem",         TYPE_LEA)
   1125   TYPE("lea64mem",            TYPE_LEA)
   1126   TYPE("VR64",                TYPE_MM64)
   1127   TYPE("i64imm",              TYPE_IMMv)
   1128   TYPE("opaque32mem",         TYPE_M1616)
   1129   TYPE("opaque48mem",         TYPE_M1632)
   1130   TYPE("opaque80mem",         TYPE_M1664)
   1131   TYPE("opaque512mem",        TYPE_M512)
   1132   TYPE("SEGMENT_REG",         TYPE_SEGMENTREG)
   1133   TYPE("DEBUG_REG",           TYPE_DEBUGREG)
   1134   TYPE("CONTROL_REG",         TYPE_CONTROLREG)
   1135   TYPE("offset8",             TYPE_MOFFS8)
   1136   TYPE("offset16",            TYPE_MOFFS16)
   1137   TYPE("offset32",            TYPE_MOFFS32)
   1138   TYPE("offset64",            TYPE_MOFFS64)
   1139   TYPE("VR256",               TYPE_XMM256)
   1140   TYPE("GR16_NOAX",           TYPE_Rv)
   1141   TYPE("GR32_NOAX",           TYPE_Rv)
   1142   TYPE("GR64_NOAX",           TYPE_R64)
   1143   errs() << "Unhandled type string " << s << "\n";
   1144   llvm_unreachable("Unhandled type string");
   1145 }
   1146 #undef TYPE
   1147 
   1148 #define ENCODING(str, encoding) if (s == str) return encoding;
   1149 OperandEncoding RecognizableInstr::immediateEncodingFromString
   1150   (const std::string &s,
   1151    bool hasOpSizePrefix) {
   1152   if(!hasOpSizePrefix) {
   1153     // For instructions without an OpSize prefix, a declared 16-bit register or
   1154     // immediate encoding is special.
   1155     ENCODING("i16imm",        ENCODING_IW)
   1156   }
   1157   ENCODING("i32i8imm",        ENCODING_IB)
   1158   ENCODING("u32u8imm",        ENCODING_IB)
   1159   ENCODING("SSECC",           ENCODING_IB)
   1160   ENCODING("AVXCC",           ENCODING_IB)
   1161   ENCODING("i16imm",          ENCODING_Iv)
   1162   ENCODING("i16i8imm",        ENCODING_IB)
   1163   ENCODING("i32imm",          ENCODING_Iv)
   1164   ENCODING("i64i32imm",       ENCODING_ID)
   1165   ENCODING("i64i8imm",        ENCODING_IB)
   1166   ENCODING("i8imm",           ENCODING_IB)
   1167   // This is not a typo.  Instructions like BLENDVPD put
   1168   // register IDs in 8-bit immediates nowadays.
   1169   ENCODING("VR256",           ENCODING_IB)
   1170   ENCODING("VR128",           ENCODING_IB)
   1171   errs() << "Unhandled immediate encoding " << s << "\n";
   1172   llvm_unreachable("Unhandled immediate encoding");
   1173 }
   1174 
   1175 OperandEncoding RecognizableInstr::rmRegisterEncodingFromString
   1176   (const std::string &s,
   1177    bool hasOpSizePrefix) {
   1178   ENCODING("GR16",            ENCODING_RM)
   1179   ENCODING("GR32",            ENCODING_RM)
   1180   ENCODING("GR64",            ENCODING_RM)
   1181   ENCODING("GR8",             ENCODING_RM)
   1182   ENCODING("VR128",           ENCODING_RM)
   1183   ENCODING("FR64",            ENCODING_RM)
   1184   ENCODING("FR32",            ENCODING_RM)
   1185   ENCODING("VR64",            ENCODING_RM)
   1186   ENCODING("VR256",           ENCODING_RM)
   1187   errs() << "Unhandled R/M register encoding " << s << "\n";
   1188   llvm_unreachable("Unhandled R/M register encoding");
   1189 }
   1190 
   1191 OperandEncoding RecognizableInstr::roRegisterEncodingFromString
   1192   (const std::string &s,
   1193    bool hasOpSizePrefix) {
   1194   ENCODING("GR16",            ENCODING_REG)
   1195   ENCODING("GR32",            ENCODING_REG)
   1196   ENCODING("GR64",            ENCODING_REG)
   1197   ENCODING("GR8",             ENCODING_REG)
   1198   ENCODING("VR128",           ENCODING_REG)
   1199   ENCODING("FR64",            ENCODING_REG)
   1200   ENCODING("FR32",            ENCODING_REG)
   1201   ENCODING("VR64",            ENCODING_REG)
   1202   ENCODING("SEGMENT_REG",     ENCODING_REG)
   1203   ENCODING("DEBUG_REG",       ENCODING_REG)
   1204   ENCODING("CONTROL_REG",     ENCODING_REG)
   1205   ENCODING("VR256",           ENCODING_REG)
   1206   errs() << "Unhandled reg/opcode register encoding " << s << "\n";
   1207   llvm_unreachable("Unhandled reg/opcode register encoding");
   1208 }
   1209 
   1210 OperandEncoding RecognizableInstr::vvvvRegisterEncodingFromString
   1211   (const std::string &s,
   1212    bool hasOpSizePrefix) {
   1213   ENCODING("GR32",            ENCODING_VVVV)
   1214   ENCODING("GR64",            ENCODING_VVVV)
   1215   ENCODING("FR32",            ENCODING_VVVV)
   1216   ENCODING("FR64",            ENCODING_VVVV)
   1217   ENCODING("VR128",           ENCODING_VVVV)
   1218   ENCODING("VR256",           ENCODING_VVVV)
   1219   errs() << "Unhandled VEX.vvvv register encoding " << s << "\n";
   1220   llvm_unreachable("Unhandled VEX.vvvv register encoding");
   1221 }
   1222 
   1223 OperandEncoding RecognizableInstr::memoryEncodingFromString
   1224   (const std::string &s,
   1225    bool hasOpSizePrefix) {
   1226   ENCODING("i16mem",          ENCODING_RM)
   1227   ENCODING("i32mem",          ENCODING_RM)
   1228   ENCODING("i64mem",          ENCODING_RM)
   1229   ENCODING("i8mem",           ENCODING_RM)
   1230   ENCODING("ssmem",           ENCODING_RM)
   1231   ENCODING("sdmem",           ENCODING_RM)
   1232   ENCODING("f128mem",         ENCODING_RM)
   1233   ENCODING("f256mem",         ENCODING_RM)
   1234   ENCODING("f64mem",          ENCODING_RM)
   1235   ENCODING("f32mem",          ENCODING_RM)
   1236   ENCODING("i128mem",         ENCODING_RM)
   1237   ENCODING("i256mem",         ENCODING_RM)
   1238   ENCODING("f80mem",          ENCODING_RM)
   1239   ENCODING("lea32mem",        ENCODING_RM)
   1240   ENCODING("lea64_32mem",     ENCODING_RM)
   1241   ENCODING("lea64mem",        ENCODING_RM)
   1242   ENCODING("opaque32mem",     ENCODING_RM)
   1243   ENCODING("opaque48mem",     ENCODING_RM)
   1244   ENCODING("opaque80mem",     ENCODING_RM)
   1245   ENCODING("opaque512mem",    ENCODING_RM)
   1246   errs() << "Unhandled memory encoding " << s << "\n";
   1247   llvm_unreachable("Unhandled memory encoding");
   1248 }
   1249 
   1250 OperandEncoding RecognizableInstr::relocationEncodingFromString
   1251   (const std::string &s,
   1252    bool hasOpSizePrefix) {
   1253   if(!hasOpSizePrefix) {
   1254     // For instructions without an OpSize prefix, a declared 16-bit register or
   1255     // immediate encoding is special.
   1256     ENCODING("i16imm",        ENCODING_IW)
   1257   }
   1258   ENCODING("i16imm",          ENCODING_Iv)
   1259   ENCODING("i16i8imm",        ENCODING_IB)
   1260   ENCODING("i32imm",          ENCODING_Iv)
   1261   ENCODING("i32i8imm",        ENCODING_IB)
   1262   ENCODING("i64i32imm",       ENCODING_ID)
   1263   ENCODING("i64i8imm",        ENCODING_IB)
   1264   ENCODING("i8imm",           ENCODING_IB)
   1265   ENCODING("i64i32imm_pcrel", ENCODING_ID)
   1266   ENCODING("i16imm_pcrel",    ENCODING_IW)
   1267   ENCODING("i32imm_pcrel",    ENCODING_ID)
   1268   ENCODING("brtarget",        ENCODING_Iv)
   1269   ENCODING("brtarget8",       ENCODING_IB)
   1270   ENCODING("i64imm",          ENCODING_IO)
   1271   ENCODING("offset8",         ENCODING_Ia)
   1272   ENCODING("offset16",        ENCODING_Ia)
   1273   ENCODING("offset32",        ENCODING_Ia)
   1274   ENCODING("offset64",        ENCODING_Ia)
   1275   errs() << "Unhandled relocation encoding " << s << "\n";
   1276   llvm_unreachable("Unhandled relocation encoding");
   1277 }
   1278 
   1279 OperandEncoding RecognizableInstr::opcodeModifierEncodingFromString
   1280   (const std::string &s,
   1281    bool hasOpSizePrefix) {
   1282   ENCODING("RST",             ENCODING_I)
   1283   ENCODING("GR32",            ENCODING_Rv)
   1284   ENCODING("GR64",            ENCODING_RO)
   1285   ENCODING("GR16",            ENCODING_Rv)
   1286   ENCODING("GR8",             ENCODING_RB)
   1287   ENCODING("GR16_NOAX",       ENCODING_Rv)
   1288   ENCODING("GR32_NOAX",       ENCODING_Rv)
   1289   ENCODING("GR64_NOAX",       ENCODING_RO)
   1290   errs() << "Unhandled opcode modifier encoding " << s << "\n";
   1291   llvm_unreachable("Unhandled opcode modifier encoding");
   1292 }
   1293 #undef ENCODING
   1294