Home | History | Annotate | Download | only in arm
      1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
      2 // All Rights Reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions
      6 // are met:
      7 //
      8 // - Redistributions of source code must retain the above copyright notice,
      9 // this list of conditions and the following disclaimer.
     10 //
     11 // - Redistribution in binary form must reproduce the above copyright
     12 // notice, this list of conditions and the following disclaimer in the
     13 // documentation and/or other materials provided with the
     14 // distribution.
     15 //
     16 // - Neither the name of Sun Microsystems or the names of contributors may
     17 // be used to endorse or promote products derived from this software without
     18 // specific prior written permission.
     19 //
     20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
     24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     31 // OF THE POSSIBILITY OF SUCH DAMAGE.
     32 
     33 // The original source code covered by the above license above has been
     34 // modified significantly by Google Inc.
     35 // Copyright 2011 the V8 project authors. All rights reserved.
     36 
     37 #include "v8.h"
     38 
     39 #if defined(V8_TARGET_ARCH_ARM)
     40 
     41 #include "arm/assembler-arm-inl.h"
     42 #include "serialize.h"
     43 
     44 namespace v8 {
     45 namespace internal {
     46 
     47 #ifdef DEBUG
     48 bool CpuFeatures::initialized_ = false;
     49 #endif
     50 unsigned CpuFeatures::supported_ = 0;
     51 unsigned CpuFeatures::found_by_runtime_probing_ = 0;
     52 
     53 
     54 // Get the CPU features enabled by the build. For cross compilation the
     55 // preprocessor symbols CAN_USE_ARMV7_INSTRUCTIONS and CAN_USE_VFP_INSTRUCTIONS
     56 // can be defined to enable ARMv7 and VFPv3 instructions when building the
     57 // snapshot.
     58 static uint64_t CpuFeaturesImpliedByCompiler() {
     59   uint64_t answer = 0;
     60 #ifdef CAN_USE_ARMV7_INSTRUCTIONS
     61   answer |= 1u << ARMv7;
     62 #endif  // def CAN_USE_ARMV7_INSTRUCTIONS
     63 #ifdef CAN_USE_VFP_INSTRUCTIONS
     64   answer |= 1u << VFP3 | 1u << ARMv7;
     65 #endif  // def CAN_USE_VFP_INSTRUCTIONS
     66 
     67 #ifdef __arm__
     68   // If the compiler is allowed to use VFP then we can use VFP too in our code
     69   // generation even when generating snapshots. ARMv7 and hardware floating
     70   // point support implies VFPv3, see ARM DDI 0406B, page A1-6.
     71 #if defined(CAN_USE_ARMV7_INSTRUCTIONS) && defined(__VFP_FP__) \
     72     && !defined(__SOFTFP__)
     73   answer |= 1u << VFP3 | 1u << ARMv7;
     74 #endif  // defined(CAN_USE_ARMV7_INSTRUCTIONS) && defined(__VFP_FP__)
     75         // && !defined(__SOFTFP__)
     76 #endif  // def __arm__
     77 
     78   return answer;
     79 }
     80 
     81 
     82 void CpuFeatures::Probe() {
     83   unsigned standard_features = (OS::CpuFeaturesImpliedByPlatform() |
     84                                 CpuFeaturesImpliedByCompiler());
     85   ASSERT(supported_ == 0 || supported_ == standard_features);
     86 #ifdef DEBUG
     87   initialized_ = true;
     88 #endif
     89 
     90   // Get the features implied by the OS and the compiler settings. This is the
     91   // minimal set of features which is also alowed for generated code in the
     92   // snapshot.
     93   supported_ |= standard_features;
     94 
     95   if (Serializer::enabled()) {
     96     // No probing for features if we might serialize (generate snapshot).
     97     return;
     98   }
     99 
    100 #ifndef __arm__
    101   // For the simulator=arm build, use VFP when FLAG_enable_vfp3 is
    102   // enabled. VFPv3 implies ARMv7, see ARM DDI 0406B, page A1-6.
    103   if (FLAG_enable_vfp3) {
    104     supported_ |= 1u << VFP3 | 1u << ARMv7;
    105   }
    106   // For the simulator=arm build, use ARMv7 when FLAG_enable_armv7 is enabled
    107   if (FLAG_enable_armv7) {
    108     supported_ |= 1u << ARMv7;
    109   }
    110 #else  // def __arm__
    111   // Probe for additional features not already known to be available.
    112   if (!IsSupported(VFP3) && OS::ArmCpuHasFeature(VFP3)) {
    113     // This implementation also sets the VFP flags if runtime
    114     // detection of VFP returns true. VFPv3 implies ARMv7, see ARM DDI
    115     // 0406B, page A1-6.
    116     supported_ |= 1u << VFP3 | 1u << ARMv7;
    117     found_by_runtime_probing_ |= 1u << VFP3 | 1u << ARMv7;
    118   }
    119 
    120   if (!IsSupported(ARMv7) && OS::ArmCpuHasFeature(ARMv7)) {
    121     supported_ |= 1u << ARMv7;
    122     found_by_runtime_probing_ |= 1u << ARMv7;
    123   }
    124 #endif
    125 }
    126 
    127 
    128 // -----------------------------------------------------------------------------
    129 // Implementation of RelocInfo
    130 
    131 const int RelocInfo::kApplyMask = 0;
    132 
    133 
    134 bool RelocInfo::IsCodedSpecially() {
    135   // The deserializer needs to know whether a pointer is specially coded.  Being
    136   // specially coded on ARM means that it is a movw/movt instruction.  We don't
    137   // generate those yet.
    138   return false;
    139 }
    140 
    141 
    142 void RelocInfo::PatchCode(byte* instructions, int instruction_count) {
    143   // Patch the code at the current address with the supplied instructions.
    144   Instr* pc = reinterpret_cast<Instr*>(pc_);
    145   Instr* instr = reinterpret_cast<Instr*>(instructions);
    146   for (int i = 0; i < instruction_count; i++) {
    147     *(pc + i) = *(instr + i);
    148   }
    149 
    150   // Indicate that code has changed.
    151   CPU::FlushICache(pc_, instruction_count * Assembler::kInstrSize);
    152 }
    153 
    154 
    155 // Patch the code at the current PC with a call to the target address.
    156 // Additional guard instructions can be added if required.
    157 void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) {
    158   // Patch the code at the current address with a call to the target.
    159   UNIMPLEMENTED();
    160 }
    161 
    162 
    163 // -----------------------------------------------------------------------------
    164 // Implementation of Operand and MemOperand
    165 // See assembler-arm-inl.h for inlined constructors
    166 
    167 Operand::Operand(Handle<Object> handle) {
    168   rm_ = no_reg;
    169   // Verify all Objects referred by code are NOT in new space.
    170   Object* obj = *handle;
    171   ASSERT(!HEAP->InNewSpace(obj));
    172   if (obj->IsHeapObject()) {
    173     imm32_ = reinterpret_cast<intptr_t>(handle.location());
    174     rmode_ = RelocInfo::EMBEDDED_OBJECT;
    175   } else {
    176     // no relocation needed
    177     imm32_ =  reinterpret_cast<intptr_t>(obj);
    178     rmode_ = RelocInfo::NONE;
    179   }
    180 }
    181 
    182 
    183 Operand::Operand(Register rm, ShiftOp shift_op, int shift_imm) {
    184   ASSERT(is_uint5(shift_imm));
    185   ASSERT(shift_op != ROR || shift_imm != 0);  // use RRX if you mean it
    186   rm_ = rm;
    187   rs_ = no_reg;
    188   shift_op_ = shift_op;
    189   shift_imm_ = shift_imm & 31;
    190   if (shift_op == RRX) {
    191     // encoded as ROR with shift_imm == 0
    192     ASSERT(shift_imm == 0);
    193     shift_op_ = ROR;
    194     shift_imm_ = 0;
    195   }
    196 }
    197 
    198 
    199 Operand::Operand(Register rm, ShiftOp shift_op, Register rs) {
    200   ASSERT(shift_op != RRX);
    201   rm_ = rm;
    202   rs_ = no_reg;
    203   shift_op_ = shift_op;
    204   rs_ = rs;
    205 }
    206 
    207 
    208 MemOperand::MemOperand(Register rn, int32_t offset, AddrMode am) {
    209   rn_ = rn;
    210   rm_ = no_reg;
    211   offset_ = offset;
    212   am_ = am;
    213 }
    214 
    215 MemOperand::MemOperand(Register rn, Register rm, AddrMode am) {
    216   rn_ = rn;
    217   rm_ = rm;
    218   shift_op_ = LSL;
    219   shift_imm_ = 0;
    220   am_ = am;
    221 }
    222 
    223 
    224 MemOperand::MemOperand(Register rn, Register rm,
    225                        ShiftOp shift_op, int shift_imm, AddrMode am) {
    226   ASSERT(is_uint5(shift_imm));
    227   rn_ = rn;
    228   rm_ = rm;
    229   shift_op_ = shift_op;
    230   shift_imm_ = shift_imm & 31;
    231   am_ = am;
    232 }
    233 
    234 
    235 // -----------------------------------------------------------------------------
    236 // Specific instructions, constants, and masks.
    237 
    238 // add(sp, sp, 4) instruction (aka Pop())
    239 const Instr kPopInstruction =
    240     al | PostIndex | 4 | LeaveCC | I | kRegister_sp_Code * B16 |
    241         kRegister_sp_Code * B12;
    242 // str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r))
    243 // register r is not encoded.
    244 const Instr kPushRegPattern =
    245     al | B26 | 4 | NegPreIndex | kRegister_sp_Code * B16;
    246 // ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r))
    247 // register r is not encoded.
    248 const Instr kPopRegPattern =
    249     al | B26 | L | 4 | PostIndex | kRegister_sp_Code * B16;
    250 // mov lr, pc
    251 const Instr kMovLrPc = al | MOV | kRegister_pc_Code | kRegister_lr_Code * B12;
    252 // ldr rd, [pc, #offset]
    253 const Instr kLdrPCMask = kCondMask | 15 * B24 | 7 * B20 | 15 * B16;
    254 const Instr kLdrPCPattern = al | 5 * B24 | L | kRegister_pc_Code * B16;
    255 // blxcc rm
    256 const Instr kBlxRegMask =
    257     15 * B24 | 15 * B20 | 15 * B16 | 15 * B12 | 15 * B8 | 15 * B4;
    258 const Instr kBlxRegPattern =
    259     B24 | B21 | 15 * B16 | 15 * B12 | 15 * B8 | BLX;
    260 const Instr kBlxIp = al | kBlxRegPattern | ip.code();
    261 const Instr kMovMvnMask = 0x6d * B21 | 0xf * B16;
    262 const Instr kMovMvnPattern = 0xd * B21;
    263 const Instr kMovMvnFlip = B22;
    264 const Instr kMovLeaveCCMask = 0xdff * B16;
    265 const Instr kMovLeaveCCPattern = 0x1a0 * B16;
    266 const Instr kMovwMask = 0xff * B20;
    267 const Instr kMovwPattern = 0x30 * B20;
    268 const Instr kMovwLeaveCCFlip = 0x5 * B21;
    269 const Instr kCmpCmnMask = 0xdd * B20 | 0xf * B12;
    270 const Instr kCmpCmnPattern = 0x15 * B20;
    271 const Instr kCmpCmnFlip = B21;
    272 const Instr kAddSubFlip = 0x6 * B21;
    273 const Instr kAndBicFlip = 0xe * B21;
    274 
    275 // A mask for the Rd register for push, pop, ldr, str instructions.
    276 const Instr kLdrRegFpOffsetPattern =
    277     al | B26 | L | Offset | kRegister_fp_Code * B16;
    278 const Instr kStrRegFpOffsetPattern =
    279     al | B26 | Offset | kRegister_fp_Code * B16;
    280 const Instr kLdrRegFpNegOffsetPattern =
    281     al | B26 | L | NegOffset | kRegister_fp_Code * B16;
    282 const Instr kStrRegFpNegOffsetPattern =
    283     al | B26 | NegOffset | kRegister_fp_Code * B16;
    284 const Instr kLdrStrInstrTypeMask = 0xffff0000;
    285 const Instr kLdrStrInstrArgumentMask = 0x0000ffff;
    286 const Instr kLdrStrOffsetMask = 0x00000fff;
    287 
    288 
    289 // Spare buffer.
    290 static const int kMinimalBufferSize = 4*KB;
    291 
    292 
    293 Assembler::Assembler(Isolate* arg_isolate, void* buffer, int buffer_size)
    294     : AssemblerBase(arg_isolate),
    295       positions_recorder_(this),
    296       emit_debug_code_(FLAG_debug_code) {
    297   if (buffer == NULL) {
    298     // Do our own buffer management.
    299     if (buffer_size <= kMinimalBufferSize) {
    300       buffer_size = kMinimalBufferSize;
    301 
    302       if (isolate()->assembler_spare_buffer() != NULL) {
    303         buffer = isolate()->assembler_spare_buffer();
    304         isolate()->set_assembler_spare_buffer(NULL);
    305       }
    306     }
    307     if (buffer == NULL) {
    308       buffer_ = NewArray<byte>(buffer_size);
    309     } else {
    310       buffer_ = static_cast<byte*>(buffer);
    311     }
    312     buffer_size_ = buffer_size;
    313     own_buffer_ = true;
    314 
    315   } else {
    316     // Use externally provided buffer instead.
    317     ASSERT(buffer_size > 0);
    318     buffer_ = static_cast<byte*>(buffer);
    319     buffer_size_ = buffer_size;
    320     own_buffer_ = false;
    321   }
    322 
    323   // Set up buffer pointers.
    324   ASSERT(buffer_ != NULL);
    325   pc_ = buffer_;
    326   reloc_info_writer.Reposition(buffer_ + buffer_size, pc_);
    327   num_pending_reloc_info_ = 0;
    328   next_buffer_check_ = 0;
    329   const_pool_blocked_nesting_ = 0;
    330   no_const_pool_before_ = 0;
    331   first_const_pool_use_ = -1;
    332   last_bound_pos_ = 0;
    333   ClearRecordedAstId();
    334 }
    335 
    336 
    337 Assembler::~Assembler() {
    338   ASSERT(const_pool_blocked_nesting_ == 0);
    339   if (own_buffer_) {
    340     if (isolate()->assembler_spare_buffer() == NULL &&
    341         buffer_size_ == kMinimalBufferSize) {
    342       isolate()->set_assembler_spare_buffer(buffer_);
    343     } else {
    344       DeleteArray(buffer_);
    345     }
    346   }
    347 }
    348 
    349 
    350 void Assembler::GetCode(CodeDesc* desc) {
    351   // Emit constant pool if necessary.
    352   CheckConstPool(true, false);
    353   ASSERT(num_pending_reloc_info_ == 0);
    354 
    355   // Set up code descriptor.
    356   desc->buffer = buffer_;
    357   desc->buffer_size = buffer_size_;
    358   desc->instr_size = pc_offset();
    359   desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
    360 }
    361 
    362 
    363 void Assembler::Align(int m) {
    364   ASSERT(m >= 4 && IsPowerOf2(m));
    365   while ((pc_offset() & (m - 1)) != 0) {
    366     nop();
    367   }
    368 }
    369 
    370 
    371 void Assembler::CodeTargetAlign() {
    372   // Preferred alignment of jump targets on some ARM chips.
    373   Align(8);
    374 }
    375 
    376 
    377 Condition Assembler::GetCondition(Instr instr) {
    378   return Instruction::ConditionField(instr);
    379 }
    380 
    381 
    382 bool Assembler::IsBranch(Instr instr) {
    383   return (instr & (B27 | B25)) == (B27 | B25);
    384 }
    385 
    386 
    387 int Assembler::GetBranchOffset(Instr instr) {
    388   ASSERT(IsBranch(instr));
    389   // Take the jump offset in the lower 24 bits, sign extend it and multiply it
    390   // with 4 to get the offset in bytes.
    391   return ((instr & kImm24Mask) << 8) >> 6;
    392 }
    393 
    394 
    395 bool Assembler::IsLdrRegisterImmediate(Instr instr) {
    396   return (instr & (B27 | B26 | B25 | B22 | B20)) == (B26 | B20);
    397 }
    398 
    399 
    400 int Assembler::GetLdrRegisterImmediateOffset(Instr instr) {
    401   ASSERT(IsLdrRegisterImmediate(instr));
    402   bool positive = (instr & B23) == B23;
    403   int offset = instr & kOff12Mask;  // Zero extended offset.
    404   return positive ? offset : -offset;
    405 }
    406 
    407 
    408 Instr Assembler::SetLdrRegisterImmediateOffset(Instr instr, int offset) {
    409   ASSERT(IsLdrRegisterImmediate(instr));
    410   bool positive = offset >= 0;
    411   if (!positive) offset = -offset;
    412   ASSERT(is_uint12(offset));
    413   // Set bit indicating whether the offset should be added.
    414   instr = (instr & ~B23) | (positive ? B23 : 0);
    415   // Set the actual offset.
    416   return (instr & ~kOff12Mask) | offset;
    417 }
    418 
    419 
    420 bool Assembler::IsStrRegisterImmediate(Instr instr) {
    421   return (instr & (B27 | B26 | B25 | B22 | B20)) == B26;
    422 }
    423 
    424 
    425 Instr Assembler::SetStrRegisterImmediateOffset(Instr instr, int offset) {
    426   ASSERT(IsStrRegisterImmediate(instr));
    427   bool positive = offset >= 0;
    428   if (!positive) offset = -offset;
    429   ASSERT(is_uint12(offset));
    430   // Set bit indicating whether the offset should be added.
    431   instr = (instr & ~B23) | (positive ? B23 : 0);
    432   // Set the actual offset.
    433   return (instr & ~kOff12Mask) | offset;
    434 }
    435 
    436 
    437 bool Assembler::IsAddRegisterImmediate(Instr instr) {
    438   return (instr & (B27 | B26 | B25 | B24 | B23 | B22 | B21)) == (B25 | B23);
    439 }
    440 
    441 
    442 Instr Assembler::SetAddRegisterImmediateOffset(Instr instr, int offset) {
    443   ASSERT(IsAddRegisterImmediate(instr));
    444   ASSERT(offset >= 0);
    445   ASSERT(is_uint12(offset));
    446   // Set the offset.
    447   return (instr & ~kOff12Mask) | offset;
    448 }
    449 
    450 
    451 Register Assembler::GetRd(Instr instr) {
    452   Register reg;
    453   reg.code_ = Instruction::RdValue(instr);
    454   return reg;
    455 }
    456 
    457 
    458 Register Assembler::GetRn(Instr instr) {
    459   Register reg;
    460   reg.code_ = Instruction::RnValue(instr);
    461   return reg;
    462 }
    463 
    464 
    465 Register Assembler::GetRm(Instr instr) {
    466   Register reg;
    467   reg.code_ = Instruction::RmValue(instr);
    468   return reg;
    469 }
    470 
    471 
    472 bool Assembler::IsPush(Instr instr) {
    473   return ((instr & ~kRdMask) == kPushRegPattern);
    474 }
    475 
    476 
    477 bool Assembler::IsPop(Instr instr) {
    478   return ((instr & ~kRdMask) == kPopRegPattern);
    479 }
    480 
    481 
    482 bool Assembler::IsStrRegFpOffset(Instr instr) {
    483   return ((instr & kLdrStrInstrTypeMask) == kStrRegFpOffsetPattern);
    484 }
    485 
    486 
    487 bool Assembler::IsLdrRegFpOffset(Instr instr) {
    488   return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpOffsetPattern);
    489 }
    490 
    491 
    492 bool Assembler::IsStrRegFpNegOffset(Instr instr) {
    493   return ((instr & kLdrStrInstrTypeMask) == kStrRegFpNegOffsetPattern);
    494 }
    495 
    496 
    497 bool Assembler::IsLdrRegFpNegOffset(Instr instr) {
    498   return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpNegOffsetPattern);
    499 }
    500 
    501 
    502 bool Assembler::IsLdrPcImmediateOffset(Instr instr) {
    503   // Check the instruction is indeed a
    504   // ldr<cond> <Rd>, [pc +/- offset_12].
    505   return (instr & (kLdrPCMask & ~kCondMask)) == 0x051f0000;
    506 }
    507 
    508 
    509 bool Assembler::IsTstImmediate(Instr instr) {
    510   return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) ==
    511       (I | TST | S);
    512 }
    513 
    514 
    515 bool Assembler::IsCmpRegister(Instr instr) {
    516   return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask | B4)) ==
    517       (CMP | S);
    518 }
    519 
    520 
    521 bool Assembler::IsCmpImmediate(Instr instr) {
    522   return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) ==
    523       (I | CMP | S);
    524 }
    525 
    526 
    527 Register Assembler::GetCmpImmediateRegister(Instr instr) {
    528   ASSERT(IsCmpImmediate(instr));
    529   return GetRn(instr);
    530 }
    531 
    532 
    533 int Assembler::GetCmpImmediateRawImmediate(Instr instr) {
    534   ASSERT(IsCmpImmediate(instr));
    535   return instr & kOff12Mask;
    536 }
    537 
    538 // Labels refer to positions in the (to be) generated code.
    539 // There are bound, linked, and unused labels.
    540 //
    541 // Bound labels refer to known positions in the already
    542 // generated code. pos() is the position the label refers to.
    543 //
    544 // Linked labels refer to unknown positions in the code
    545 // to be generated; pos() is the position of the last
    546 // instruction using the label.
    547 
    548 
    549 // The link chain is terminated by a negative code position (must be aligned)
    550 const int kEndOfChain = -4;
    551 
    552 
    553 int Assembler::target_at(int pos)  {
    554   Instr instr = instr_at(pos);
    555   if ((instr & ~kImm24Mask) == 0) {
    556     // Emitted label constant, not part of a branch.
    557     return instr - (Code::kHeaderSize - kHeapObjectTag);
    558   }
    559   ASSERT((instr & 7*B25) == 5*B25);  // b, bl, or blx imm24
    560   int imm26 = ((instr & kImm24Mask) << 8) >> 6;
    561   if ((Instruction::ConditionField(instr) == kSpecialCondition) &&
    562       ((instr & B24) != 0)) {
    563     // blx uses bit 24 to encode bit 2 of imm26
    564     imm26 += 2;
    565   }
    566   return pos + kPcLoadDelta + imm26;
    567 }
    568 
    569 
    570 void Assembler::target_at_put(int pos, int target_pos) {
    571   Instr instr = instr_at(pos);
    572   if ((instr & ~kImm24Mask) == 0) {
    573     ASSERT(target_pos == kEndOfChain || target_pos >= 0);
    574     // Emitted label constant, not part of a branch.
    575     // Make label relative to Code* of generated Code object.
    576     instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag));
    577     return;
    578   }
    579   int imm26 = target_pos - (pos + kPcLoadDelta);
    580   ASSERT((instr & 7*B25) == 5*B25);  // b, bl, or blx imm24
    581   if (Instruction::ConditionField(instr) == kSpecialCondition) {
    582     // blx uses bit 24 to encode bit 2 of imm26
    583     ASSERT((imm26 & 1) == 0);
    584     instr = (instr & ~(B24 | kImm24Mask)) | ((imm26 & 2) >> 1)*B24;
    585   } else {
    586     ASSERT((imm26 & 3) == 0);
    587     instr &= ~kImm24Mask;
    588   }
    589   int imm24 = imm26 >> 2;
    590   ASSERT(is_int24(imm24));
    591   instr_at_put(pos, instr | (imm24 & kImm24Mask));
    592 }
    593 
    594 
    595 void Assembler::print(Label* L) {
    596   if (L->is_unused()) {
    597     PrintF("unused label\n");
    598   } else if (L->is_bound()) {
    599     PrintF("bound label to %d\n", L->pos());
    600   } else if (L->is_linked()) {
    601     Label l = *L;
    602     PrintF("unbound label");
    603     while (l.is_linked()) {
    604       PrintF("@ %d ", l.pos());
    605       Instr instr = instr_at(l.pos());
    606       if ((instr & ~kImm24Mask) == 0) {
    607         PrintF("value\n");
    608       } else {
    609         ASSERT((instr & 7*B25) == 5*B25);  // b, bl, or blx
    610         Condition cond = Instruction::ConditionField(instr);
    611         const char* b;
    612         const char* c;
    613         if (cond == kSpecialCondition) {
    614           b = "blx";
    615           c = "";
    616         } else {
    617           if ((instr & B24) != 0)
    618             b = "bl";
    619           else
    620             b = "b";
    621 
    622           switch (cond) {
    623             case eq: c = "eq"; break;
    624             case ne: c = "ne"; break;
    625             case hs: c = "hs"; break;
    626             case lo: c = "lo"; break;
    627             case mi: c = "mi"; break;
    628             case pl: c = "pl"; break;
    629             case vs: c = "vs"; break;
    630             case vc: c = "vc"; break;
    631             case hi: c = "hi"; break;
    632             case ls: c = "ls"; break;
    633             case ge: c = "ge"; break;
    634             case lt: c = "lt"; break;
    635             case gt: c = "gt"; break;
    636             case le: c = "le"; break;
    637             case al: c = ""; break;
    638             default:
    639               c = "";
    640               UNREACHABLE();
    641           }
    642         }
    643         PrintF("%s%s\n", b, c);
    644       }
    645       next(&l);
    646     }
    647   } else {
    648     PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
    649   }
    650 }
    651 
    652 
    653 void Assembler::bind_to(Label* L, int pos) {
    654   ASSERT(0 <= pos && pos <= pc_offset());  // must have a valid binding position
    655   while (L->is_linked()) {
    656     int fixup_pos = L->pos();
    657     next(L);  // call next before overwriting link with target at fixup_pos
    658     target_at_put(fixup_pos, pos);
    659   }
    660   L->bind_to(pos);
    661 
    662   // Keep track of the last bound label so we don't eliminate any instructions
    663   // before a bound label.
    664   if (pos > last_bound_pos_)
    665     last_bound_pos_ = pos;
    666 }
    667 
    668 
    669 void Assembler::link_to(Label* L, Label* appendix) {
    670   if (appendix->is_linked()) {
    671     if (L->is_linked()) {
    672       // Append appendix to L's list.
    673       int fixup_pos;
    674       int link = L->pos();
    675       do {
    676         fixup_pos = link;
    677         link = target_at(fixup_pos);
    678       } while (link > 0);
    679       ASSERT(link == kEndOfChain);
    680       target_at_put(fixup_pos, appendix->pos());
    681     } else {
    682       // L is empty, simply use appendix.
    683       *L = *appendix;
    684     }
    685   }
    686   appendix->Unuse();  // appendix should not be used anymore
    687 }
    688 
    689 
    690 void Assembler::bind(Label* L) {
    691   ASSERT(!L->is_bound());  // label can only be bound once
    692   bind_to(L, pc_offset());
    693 }
    694 
    695 
    696 void Assembler::next(Label* L) {
    697   ASSERT(L->is_linked());
    698   int link = target_at(L->pos());
    699   if (link == kEndOfChain) {
    700     L->Unuse();
    701   } else {
    702     ASSERT(link >= 0);
    703     L->link_to(link);
    704   }
    705 }
    706 
    707 
    708 static Instr EncodeMovwImmediate(uint32_t immediate) {
    709   ASSERT(immediate < 0x10000);
    710   return ((immediate & 0xf000) << 4) | (immediate & 0xfff);
    711 }
    712 
    713 
    714 // Low-level code emission routines depending on the addressing mode.
    715 // If this returns true then you have to use the rotate_imm and immed_8
    716 // that it returns, because it may have already changed the instruction
    717 // to match them!
    718 static bool fits_shifter(uint32_t imm32,
    719                          uint32_t* rotate_imm,
    720                          uint32_t* immed_8,
    721                          Instr* instr) {
    722   // imm32 must be unsigned.
    723   for (int rot = 0; rot < 16; rot++) {
    724     uint32_t imm8 = (imm32 << 2*rot) | (imm32 >> (32 - 2*rot));
    725     if ((imm8 <= 0xff)) {
    726       *rotate_imm = rot;
    727       *immed_8 = imm8;
    728       return true;
    729     }
    730   }
    731   // If the opcode is one with a complementary version and the complementary
    732   // immediate fits, change the opcode.
    733   if (instr != NULL) {
    734     if ((*instr & kMovMvnMask) == kMovMvnPattern) {
    735       if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) {
    736         *instr ^= kMovMvnFlip;
    737         return true;
    738       } else if ((*instr & kMovLeaveCCMask) == kMovLeaveCCPattern) {
    739         if (CpuFeatures::IsSupported(ARMv7)) {
    740           if (imm32 < 0x10000) {
    741             *instr ^= kMovwLeaveCCFlip;
    742             *instr |= EncodeMovwImmediate(imm32);
    743             *rotate_imm = *immed_8 = 0;  // Not used for movw.
    744             return true;
    745           }
    746         }
    747       }
    748     } else if ((*instr & kCmpCmnMask) == kCmpCmnPattern) {
    749       if (fits_shifter(-imm32, rotate_imm, immed_8, NULL)) {
    750         *instr ^= kCmpCmnFlip;
    751         return true;
    752       }
    753     } else {
    754       Instr alu_insn = (*instr & kALUMask);
    755       if (alu_insn == ADD ||
    756           alu_insn == SUB) {
    757         if (fits_shifter(-imm32, rotate_imm, immed_8, NULL)) {
    758           *instr ^= kAddSubFlip;
    759           return true;
    760         }
    761       } else if (alu_insn == AND ||
    762                  alu_insn == BIC) {
    763         if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) {
    764           *instr ^= kAndBicFlip;
    765           return true;
    766         }
    767       }
    768     }
    769   }
    770   return false;
    771 }
    772 
    773 
    774 // We have to use the temporary register for things that can be relocated even
    775 // if they can be encoded in the ARM's 12 bits of immediate-offset instruction
    776 // space.  There is no guarantee that the relocated location can be similarly
    777 // encoded.
    778 bool Operand::must_use_constant_pool() const {
    779   if (rmode_ == RelocInfo::EXTERNAL_REFERENCE) {
    780 #ifdef DEBUG
    781     if (!Serializer::enabled()) {
    782       Serializer::TooLateToEnableNow();
    783     }
    784 #endif  // def DEBUG
    785     return Serializer::enabled();
    786   } else if (rmode_ == RelocInfo::NONE) {
    787     return false;
    788   }
    789   return true;
    790 }
    791 
    792 
    793 bool Operand::is_single_instruction(Instr instr) const {
    794   if (rm_.is_valid()) return true;
    795   uint32_t dummy1, dummy2;
    796   if (must_use_constant_pool() ||
    797       !fits_shifter(imm32_, &dummy1, &dummy2, &instr)) {
    798     // The immediate operand cannot be encoded as a shifter operand, or use of
    799     // constant pool is required. For a mov instruction not setting the
    800     // condition code additional instruction conventions can be used.
    801     if ((instr & ~kCondMask) == 13*B21) {  // mov, S not set
    802       if (must_use_constant_pool() ||
    803           !CpuFeatures::IsSupported(ARMv7)) {
    804         // mov instruction will be an ldr from constant pool (one instruction).
    805         return true;
    806       } else {
    807         // mov instruction will be a mov or movw followed by movt (two
    808         // instructions).
    809         return false;
    810       }
    811     } else {
    812       // If this is not a mov or mvn instruction there will always an additional
    813       // instructions - either mov or ldr. The mov might actually be two
    814       // instructions mov or movw followed by movt so including the actual
    815       // instruction two or three instructions will be generated.
    816       return false;
    817     }
    818   } else {
    819     // No use of constant pool and the immediate operand can be encoded as a
    820     // shifter operand.
    821     return true;
    822   }
    823 }
    824 
    825 
    826 void Assembler::addrmod1(Instr instr,
    827                          Register rn,
    828                          Register rd,
    829                          const Operand& x) {
    830   CheckBuffer();
    831   ASSERT((instr & ~(kCondMask | kOpCodeMask | S)) == 0);
    832   if (!x.rm_.is_valid()) {
    833     // Immediate.
    834     uint32_t rotate_imm;
    835     uint32_t immed_8;
    836     if (x.must_use_constant_pool() ||
    837         !fits_shifter(x.imm32_, &rotate_imm, &immed_8, &instr)) {
    838       // The immediate operand cannot be encoded as a shifter operand, so load
    839       // it first to register ip and change the original instruction to use ip.
    840       // However, if the original instruction is a 'mov rd, x' (not setting the
    841       // condition code), then replace it with a 'ldr rd, [pc]'.
    842       CHECK(!rn.is(ip));  // rn should never be ip, or will be trashed
    843       Condition cond = Instruction::ConditionField(instr);
    844       if ((instr & ~kCondMask) == 13*B21) {  // mov, S not set
    845         if (x.must_use_constant_pool() ||
    846             !CpuFeatures::IsSupported(ARMv7)) {
    847           RecordRelocInfo(x.rmode_, x.imm32_);
    848           ldr(rd, MemOperand(pc, 0), cond);
    849         } else {
    850           // Will probably use movw, will certainly not use constant pool.
    851           mov(rd, Operand(x.imm32_ & 0xffff), LeaveCC, cond);
    852           movt(rd, static_cast<uint32_t>(x.imm32_) >> 16, cond);
    853         }
    854       } else {
    855         // If this is not a mov or mvn instruction we may still be able to avoid
    856         // a constant pool entry by using mvn or movw.
    857         if (!x.must_use_constant_pool() &&
    858             (instr & kMovMvnMask) != kMovMvnPattern) {
    859           mov(ip, x, LeaveCC, cond);
    860         } else {
    861           RecordRelocInfo(x.rmode_, x.imm32_);
    862           ldr(ip, MemOperand(pc, 0), cond);
    863         }
    864         addrmod1(instr, rn, rd, Operand(ip));
    865       }
    866       return;
    867     }
    868     instr |= I | rotate_imm*B8 | immed_8;
    869   } else if (!x.rs_.is_valid()) {
    870     // Immediate shift.
    871     instr |= x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
    872   } else {
    873     // Register shift.
    874     ASSERT(!rn.is(pc) && !rd.is(pc) && !x.rm_.is(pc) && !x.rs_.is(pc));
    875     instr |= x.rs_.code()*B8 | x.shift_op_ | B4 | x.rm_.code();
    876   }
    877   emit(instr | rn.code()*B16 | rd.code()*B12);
    878   if (rn.is(pc) || x.rm_.is(pc)) {
    879     // Block constant pool emission for one instruction after reading pc.
    880     BlockConstPoolFor(1);
    881   }
    882 }
    883 
    884 
    885 void Assembler::addrmod2(Instr instr, Register rd, const MemOperand& x) {
    886   ASSERT((instr & ~(kCondMask | B | L)) == B26);
    887   int am = x.am_;
    888   if (!x.rm_.is_valid()) {
    889     // Immediate offset.
    890     int offset_12 = x.offset_;
    891     if (offset_12 < 0) {
    892       offset_12 = -offset_12;
    893       am ^= U;
    894     }
    895     if (!is_uint12(offset_12)) {
    896       // Immediate offset cannot be encoded, load it first to register ip
    897       // rn (and rd in a load) should never be ip, or will be trashed.
    898       ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
    899       mov(ip, Operand(x.offset_), LeaveCC, Instruction::ConditionField(instr));
    900       addrmod2(instr, rd, MemOperand(x.rn_, ip, x.am_));
    901       return;
    902     }
    903     ASSERT(offset_12 >= 0);  // no masking needed
    904     instr |= offset_12;
    905   } else {
    906     // Register offset (shift_imm_ and shift_op_ are 0) or scaled
    907     // register offset the constructors make sure than both shift_imm_
    908     // and shift_op_ are initialized.
    909     ASSERT(!x.rm_.is(pc));
    910     instr |= B25 | x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
    911   }
    912   ASSERT((am & (P|W)) == P || !x.rn_.is(pc));  // no pc base with writeback
    913   emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
    914 }
    915 
    916 
    917 void Assembler::addrmod3(Instr instr, Register rd, const MemOperand& x) {
    918   ASSERT((instr & ~(kCondMask | L | S6 | H)) == (B4 | B7));
    919   ASSERT(x.rn_.is_valid());
    920   int am = x.am_;
    921   if (!x.rm_.is_valid()) {
    922     // Immediate offset.
    923     int offset_8 = x.offset_;
    924     if (offset_8 < 0) {
    925       offset_8 = -offset_8;
    926       am ^= U;
    927     }
    928     if (!is_uint8(offset_8)) {
    929       // Immediate offset cannot be encoded, load it first to register ip
    930       // rn (and rd in a load) should never be ip, or will be trashed.
    931       ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
    932       mov(ip, Operand(x.offset_), LeaveCC, Instruction::ConditionField(instr));
    933       addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
    934       return;
    935     }
    936     ASSERT(offset_8 >= 0);  // no masking needed
    937     instr |= B | (offset_8 >> 4)*B8 | (offset_8 & 0xf);
    938   } else if (x.shift_imm_ != 0) {
    939     // Scaled register offset not supported, load index first
    940     // rn (and rd in a load) should never be ip, or will be trashed.
    941     ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
    942     mov(ip, Operand(x.rm_, x.shift_op_, x.shift_imm_), LeaveCC,
    943         Instruction::ConditionField(instr));
    944     addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
    945     return;
    946   } else {
    947     // Register offset.
    948     ASSERT((am & (P|W)) == P || !x.rm_.is(pc));  // no pc index with writeback
    949     instr |= x.rm_.code();
    950   }
    951   ASSERT((am & (P|W)) == P || !x.rn_.is(pc));  // no pc base with writeback
    952   emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
    953 }
    954 
    955 
    956 void Assembler::addrmod4(Instr instr, Register rn, RegList rl) {
    957   ASSERT((instr & ~(kCondMask | P | U | W | L)) == B27);
    958   ASSERT(rl != 0);
    959   ASSERT(!rn.is(pc));
    960   emit(instr | rn.code()*B16 | rl);
    961 }
    962 
    963 
    964 void Assembler::addrmod5(Instr instr, CRegister crd, const MemOperand& x) {
    965   // Unindexed addressing is not encoded by this function.
    966   ASSERT_EQ((B27 | B26),
    967             (instr & ~(kCondMask | kCoprocessorMask | P | U | N | W | L)));
    968   ASSERT(x.rn_.is_valid() && !x.rm_.is_valid());
    969   int am = x.am_;
    970   int offset_8 = x.offset_;
    971   ASSERT((offset_8 & 3) == 0);  // offset must be an aligned word offset
    972   offset_8 >>= 2;
    973   if (offset_8 < 0) {
    974     offset_8 = -offset_8;
    975     am ^= U;
    976   }
    977   ASSERT(is_uint8(offset_8));  // unsigned word offset must fit in a byte
    978   ASSERT((am & (P|W)) == P || !x.rn_.is(pc));  // no pc base with writeback
    979 
    980   // Post-indexed addressing requires W == 1; different than in addrmod2/3.
    981   if ((am & P) == 0)
    982     am |= W;
    983 
    984   ASSERT(offset_8 >= 0);  // no masking needed
    985   emit(instr | am | x.rn_.code()*B16 | crd.code()*B12 | offset_8);
    986 }
    987 
    988 
    989 int Assembler::branch_offset(Label* L, bool jump_elimination_allowed) {
    990   int target_pos;
    991   if (L->is_bound()) {
    992     target_pos = L->pos();
    993   } else {
    994     if (L->is_linked()) {
    995       target_pos = L->pos();  // L's link
    996     } else {
    997       target_pos = kEndOfChain;
    998     }
    999     L->link_to(pc_offset());
   1000   }
   1001 
   1002   // Block the emission of the constant pool, since the branch instruction must
   1003   // be emitted at the pc offset recorded by the label.
   1004   BlockConstPoolFor(1);
   1005   return target_pos - (pc_offset() + kPcLoadDelta);
   1006 }
   1007 
   1008 
   1009 void Assembler::label_at_put(Label* L, int at_offset) {
   1010   int target_pos;
   1011   if (L->is_bound()) {
   1012     target_pos = L->pos();
   1013   } else {
   1014     if (L->is_linked()) {
   1015       target_pos = L->pos();  // L's link
   1016     } else {
   1017       target_pos = kEndOfChain;
   1018     }
   1019     L->link_to(at_offset);
   1020     instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag));
   1021   }
   1022 }
   1023 
   1024 
   1025 // Branch instructions.
   1026 void Assembler::b(int branch_offset, Condition cond) {
   1027   ASSERT((branch_offset & 3) == 0);
   1028   int imm24 = branch_offset >> 2;
   1029   ASSERT(is_int24(imm24));
   1030   emit(cond | B27 | B25 | (imm24 & kImm24Mask));
   1031 
   1032   if (cond == al) {
   1033     // Dead code is a good location to emit the constant pool.
   1034     CheckConstPool(false, false);
   1035   }
   1036 }
   1037 
   1038 
   1039 void Assembler::bl(int branch_offset, Condition cond) {
   1040   positions_recorder()->WriteRecordedPositions();
   1041   ASSERT((branch_offset & 3) == 0);
   1042   int imm24 = branch_offset >> 2;
   1043   ASSERT(is_int24(imm24));
   1044   emit(cond | B27 | B25 | B24 | (imm24 & kImm24Mask));
   1045 }
   1046 
   1047 
   1048 void Assembler::blx(int branch_offset) {  // v5 and above
   1049   positions_recorder()->WriteRecordedPositions();
   1050   ASSERT((branch_offset & 1) == 0);
   1051   int h = ((branch_offset & 2) >> 1)*B24;
   1052   int imm24 = branch_offset >> 2;
   1053   ASSERT(is_int24(imm24));
   1054   emit(kSpecialCondition | B27 | B25 | h | (imm24 & kImm24Mask));
   1055 }
   1056 
   1057 
   1058 void Assembler::blx(Register target, Condition cond) {  // v5 and above
   1059   positions_recorder()->WriteRecordedPositions();
   1060   ASSERT(!target.is(pc));
   1061   emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | BLX | target.code());
   1062 }
   1063 
   1064 
   1065 void Assembler::bx(Register target, Condition cond) {  // v5 and above, plus v4t
   1066   positions_recorder()->WriteRecordedPositions();
   1067   ASSERT(!target.is(pc));  // use of pc is actually allowed, but discouraged
   1068   emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | BX | target.code());
   1069 }
   1070 
   1071 
   1072 // Data-processing instructions.
   1073 
   1074 void Assembler::and_(Register dst, Register src1, const Operand& src2,
   1075                      SBit s, Condition cond) {
   1076   addrmod1(cond | AND | s, src1, dst, src2);
   1077 }
   1078 
   1079 
   1080 void Assembler::eor(Register dst, Register src1, const Operand& src2,
   1081                     SBit s, Condition cond) {
   1082   addrmod1(cond | EOR | s, src1, dst, src2);
   1083 }
   1084 
   1085 
   1086 void Assembler::sub(Register dst, Register src1, const Operand& src2,
   1087                     SBit s, Condition cond) {
   1088   addrmod1(cond | SUB | s, src1, dst, src2);
   1089 }
   1090 
   1091 
   1092 void Assembler::rsb(Register dst, Register src1, const Operand& src2,
   1093                     SBit s, Condition cond) {
   1094   addrmod1(cond | RSB | s, src1, dst, src2);
   1095 }
   1096 
   1097 
   1098 void Assembler::add(Register dst, Register src1, const Operand& src2,
   1099                     SBit s, Condition cond) {
   1100   addrmod1(cond | ADD | s, src1, dst, src2);
   1101 }
   1102 
   1103 
   1104 void Assembler::adc(Register dst, Register src1, const Operand& src2,
   1105                     SBit s, Condition cond) {
   1106   addrmod1(cond | ADC | s, src1, dst, src2);
   1107 }
   1108 
   1109 
   1110 void Assembler::sbc(Register dst, Register src1, const Operand& src2,
   1111                     SBit s, Condition cond) {
   1112   addrmod1(cond | SBC | s, src1, dst, src2);
   1113 }
   1114 
   1115 
   1116 void Assembler::rsc(Register dst, Register src1, const Operand& src2,
   1117                     SBit s, Condition cond) {
   1118   addrmod1(cond | RSC | s, src1, dst, src2);
   1119 }
   1120 
   1121 
   1122 void Assembler::tst(Register src1, const Operand& src2, Condition cond) {
   1123   addrmod1(cond | TST | S, src1, r0, src2);
   1124 }
   1125 
   1126 
   1127 void Assembler::teq(Register src1, const Operand& src2, Condition cond) {
   1128   addrmod1(cond | TEQ | S, src1, r0, src2);
   1129 }
   1130 
   1131 
   1132 void Assembler::cmp(Register src1, const Operand& src2, Condition cond) {
   1133   addrmod1(cond | CMP | S, src1, r0, src2);
   1134 }
   1135 
   1136 
   1137 void Assembler::cmp_raw_immediate(
   1138     Register src, int raw_immediate, Condition cond) {
   1139   ASSERT(is_uint12(raw_immediate));
   1140   emit(cond | I | CMP | S | src.code() << 16 | raw_immediate);
   1141 }
   1142 
   1143 
   1144 void Assembler::cmn(Register src1, const Operand& src2, Condition cond) {
   1145   addrmod1(cond | CMN | S, src1, r0, src2);
   1146 }
   1147 
   1148 
   1149 void Assembler::orr(Register dst, Register src1, const Operand& src2,
   1150                     SBit s, Condition cond) {
   1151   addrmod1(cond | ORR | s, src1, dst, src2);
   1152 }
   1153 
   1154 
   1155 void Assembler::mov(Register dst, const Operand& src, SBit s, Condition cond) {
   1156   if (dst.is(pc)) {
   1157     positions_recorder()->WriteRecordedPositions();
   1158   }
   1159   // Don't allow nop instructions in the form mov rn, rn to be generated using
   1160   // the mov instruction. They must be generated using nop(int/NopMarkerTypes)
   1161   // or MarkCode(int/NopMarkerTypes) pseudo instructions.
   1162   ASSERT(!(src.is_reg() && src.rm().is(dst) && s == LeaveCC && cond == al));
   1163   addrmod1(cond | MOV | s, r0, dst, src);
   1164 }
   1165 
   1166 
   1167 void Assembler::movw(Register reg, uint32_t immediate, Condition cond) {
   1168   ASSERT(immediate < 0x10000);
   1169   mov(reg, Operand(immediate), LeaveCC, cond);
   1170 }
   1171 
   1172 
   1173 void Assembler::movt(Register reg, uint32_t immediate, Condition cond) {
   1174   emit(cond | 0x34*B20 | reg.code()*B12 | EncodeMovwImmediate(immediate));
   1175 }
   1176 
   1177 
   1178 void Assembler::bic(Register dst, Register src1, const Operand& src2,
   1179                     SBit s, Condition cond) {
   1180   addrmod1(cond | BIC | s, src1, dst, src2);
   1181 }
   1182 
   1183 
   1184 void Assembler::mvn(Register dst, const Operand& src, SBit s, Condition cond) {
   1185   addrmod1(cond | MVN | s, r0, dst, src);
   1186 }
   1187 
   1188 
   1189 // Multiply instructions.
   1190 void Assembler::mla(Register dst, Register src1, Register src2, Register srcA,
   1191                     SBit s, Condition cond) {
   1192   ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc));
   1193   emit(cond | A | s | dst.code()*B16 | srcA.code()*B12 |
   1194        src2.code()*B8 | B7 | B4 | src1.code());
   1195 }
   1196 
   1197 
   1198 void Assembler::mul(Register dst, Register src1, Register src2,
   1199                     SBit s, Condition cond) {
   1200   ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
   1201   // dst goes in bits 16-19 for this instruction!
   1202   emit(cond | s | dst.code()*B16 | src2.code()*B8 | B7 | B4 | src1.code());
   1203 }
   1204 
   1205 
   1206 void Assembler::smlal(Register dstL,
   1207                       Register dstH,
   1208                       Register src1,
   1209                       Register src2,
   1210                       SBit s,
   1211                       Condition cond) {
   1212   ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
   1213   ASSERT(!dstL.is(dstH));
   1214   emit(cond | B23 | B22 | A | s | dstH.code()*B16 | dstL.code()*B12 |
   1215        src2.code()*B8 | B7 | B4 | src1.code());
   1216 }
   1217 
   1218 
   1219 void Assembler::smull(Register dstL,
   1220                       Register dstH,
   1221                       Register src1,
   1222                       Register src2,
   1223                       SBit s,
   1224                       Condition cond) {
   1225   ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
   1226   ASSERT(!dstL.is(dstH));
   1227   emit(cond | B23 | B22 | s | dstH.code()*B16 | dstL.code()*B12 |
   1228        src2.code()*B8 | B7 | B4 | src1.code());
   1229 }
   1230 
   1231 
   1232 void Assembler::umlal(Register dstL,
   1233                       Register dstH,
   1234                       Register src1,
   1235                       Register src2,
   1236                       SBit s,
   1237                       Condition cond) {
   1238   ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
   1239   ASSERT(!dstL.is(dstH));
   1240   emit(cond | B23 | A | s | dstH.code()*B16 | dstL.code()*B12 |
   1241        src2.code()*B8 | B7 | B4 | src1.code());
   1242 }
   1243 
   1244 
   1245 void Assembler::umull(Register dstL,
   1246                       Register dstH,
   1247                       Register src1,
   1248                       Register src2,
   1249                       SBit s,
   1250                       Condition cond) {
   1251   ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
   1252   ASSERT(!dstL.is(dstH));
   1253   emit(cond | B23 | s | dstH.code()*B16 | dstL.code()*B12 |
   1254        src2.code()*B8 | B7 | B4 | src1.code());
   1255 }
   1256 
   1257 
   1258 // Miscellaneous arithmetic instructions.
   1259 void Assembler::clz(Register dst, Register src, Condition cond) {
   1260   // v5 and above.
   1261   ASSERT(!dst.is(pc) && !src.is(pc));
   1262   emit(cond | B24 | B22 | B21 | 15*B16 | dst.code()*B12 |
   1263        15*B8 | CLZ | src.code());
   1264 }
   1265 
   1266 
   1267 // Saturating instructions.
   1268 
   1269 // Unsigned saturate.
   1270 void Assembler::usat(Register dst,
   1271                      int satpos,
   1272                      const Operand& src,
   1273                      Condition cond) {
   1274   // v6 and above.
   1275   ASSERT(CpuFeatures::IsSupported(ARMv7));
   1276   ASSERT(!dst.is(pc) && !src.rm_.is(pc));
   1277   ASSERT((satpos >= 0) && (satpos <= 31));
   1278   ASSERT((src.shift_op_ == ASR) || (src.shift_op_ == LSL));
   1279   ASSERT(src.rs_.is(no_reg));
   1280 
   1281   int sh = 0;
   1282   if (src.shift_op_ == ASR) {
   1283       sh = 1;
   1284   }
   1285 
   1286   emit(cond | 0x6*B24 | 0xe*B20 | satpos*B16 | dst.code()*B12 |
   1287        src.shift_imm_*B7 | sh*B6 | 0x1*B4 | src.rm_.code());
   1288 }
   1289 
   1290 
   1291 // Bitfield manipulation instructions.
   1292 
   1293 // Unsigned bit field extract.
   1294 // Extracts #width adjacent bits from position #lsb in a register, and
   1295 // writes them to the low bits of a destination register.
   1296 //   ubfx dst, src, #lsb, #width
   1297 void Assembler::ubfx(Register dst,
   1298                      Register src,
   1299                      int lsb,
   1300                      int width,
   1301                      Condition cond) {
   1302   // v7 and above.
   1303   ASSERT(CpuFeatures::IsSupported(ARMv7));
   1304   ASSERT(!dst.is(pc) && !src.is(pc));
   1305   ASSERT((lsb >= 0) && (lsb <= 31));
   1306   ASSERT((width >= 1) && (width <= (32 - lsb)));
   1307   emit(cond | 0xf*B23 | B22 | B21 | (width - 1)*B16 | dst.code()*B12 |
   1308        lsb*B7 | B6 | B4 | src.code());
   1309 }
   1310 
   1311 
   1312 // Signed bit field extract.
   1313 // Extracts #width adjacent bits from position #lsb in a register, and
   1314 // writes them to the low bits of a destination register. The extracted
   1315 // value is sign extended to fill the destination register.
   1316 //   sbfx dst, src, #lsb, #width
   1317 void Assembler::sbfx(Register dst,
   1318                      Register src,
   1319                      int lsb,
   1320                      int width,
   1321                      Condition cond) {
   1322   // v7 and above.
   1323   ASSERT(CpuFeatures::IsSupported(ARMv7));
   1324   ASSERT(!dst.is(pc) && !src.is(pc));
   1325   ASSERT((lsb >= 0) && (lsb <= 31));
   1326   ASSERT((width >= 1) && (width <= (32 - lsb)));
   1327   emit(cond | 0xf*B23 | B21 | (width - 1)*B16 | dst.code()*B12 |
   1328        lsb*B7 | B6 | B4 | src.code());
   1329 }
   1330 
   1331 
   1332 // Bit field clear.
   1333 // Sets #width adjacent bits at position #lsb in the destination register
   1334 // to zero, preserving the value of the other bits.
   1335 //   bfc dst, #lsb, #width
   1336 void Assembler::bfc(Register dst, int lsb, int width, Condition cond) {
   1337   // v7 and above.
   1338   ASSERT(CpuFeatures::IsSupported(ARMv7));
   1339   ASSERT(!dst.is(pc));
   1340   ASSERT((lsb >= 0) && (lsb <= 31));
   1341   ASSERT((width >= 1) && (width <= (32 - lsb)));
   1342   int msb = lsb + width - 1;
   1343   emit(cond | 0x1f*B22 | msb*B16 | dst.code()*B12 | lsb*B7 | B4 | 0xf);
   1344 }
   1345 
   1346 
   1347 // Bit field insert.
   1348 // Inserts #width adjacent bits from the low bits of the source register
   1349 // into position #lsb of the destination register.
   1350 //   bfi dst, src, #lsb, #width
   1351 void Assembler::bfi(Register dst,
   1352                     Register src,
   1353                     int lsb,
   1354                     int width,
   1355                     Condition cond) {
   1356   // v7 and above.
   1357   ASSERT(CpuFeatures::IsSupported(ARMv7));
   1358   ASSERT(!dst.is(pc) && !src.is(pc));
   1359   ASSERT((lsb >= 0) && (lsb <= 31));
   1360   ASSERT((width >= 1) && (width <= (32 - lsb)));
   1361   int msb = lsb + width - 1;
   1362   emit(cond | 0x1f*B22 | msb*B16 | dst.code()*B12 | lsb*B7 | B4 |
   1363        src.code());
   1364 }
   1365 
   1366 
   1367 // Status register access instructions.
   1368 void Assembler::mrs(Register dst, SRegister s, Condition cond) {
   1369   ASSERT(!dst.is(pc));
   1370   emit(cond | B24 | s | 15*B16 | dst.code()*B12);
   1371 }
   1372 
   1373 
   1374 void Assembler::msr(SRegisterFieldMask fields, const Operand& src,
   1375                     Condition cond) {
   1376   ASSERT(fields >= B16 && fields < B20);  // at least one field set
   1377   Instr instr;
   1378   if (!src.rm_.is_valid()) {
   1379     // Immediate.
   1380     uint32_t rotate_imm;
   1381     uint32_t immed_8;
   1382     if (src.must_use_constant_pool() ||
   1383         !fits_shifter(src.imm32_, &rotate_imm, &immed_8, NULL)) {
   1384       // Immediate operand cannot be encoded, load it first to register ip.
   1385       RecordRelocInfo(src.rmode_, src.imm32_);
   1386       ldr(ip, MemOperand(pc, 0), cond);
   1387       msr(fields, Operand(ip), cond);
   1388       return;
   1389     }
   1390     instr = I | rotate_imm*B8 | immed_8;
   1391   } else {
   1392     ASSERT(!src.rs_.is_valid() && src.shift_imm_ == 0);  // only rm allowed
   1393     instr = src.rm_.code();
   1394   }
   1395   emit(cond | instr | B24 | B21 | fields | 15*B12);
   1396 }
   1397 
   1398 
   1399 // Load/Store instructions.
   1400 void Assembler::ldr(Register dst, const MemOperand& src, Condition cond) {
   1401   if (dst.is(pc)) {
   1402     positions_recorder()->WriteRecordedPositions();
   1403   }
   1404   addrmod2(cond | B26 | L, dst, src);
   1405 }
   1406 
   1407 
   1408 void Assembler::str(Register src, const MemOperand& dst, Condition cond) {
   1409   addrmod2(cond | B26, src, dst);
   1410 }
   1411 
   1412 
   1413 void Assembler::ldrb(Register dst, const MemOperand& src, Condition cond) {
   1414   addrmod2(cond | B26 | B | L, dst, src);
   1415 }
   1416 
   1417 
   1418 void Assembler::strb(Register src, const MemOperand& dst, Condition cond) {
   1419   addrmod2(cond | B26 | B, src, dst);
   1420 }
   1421 
   1422 
   1423 void Assembler::ldrh(Register dst, const MemOperand& src, Condition cond) {
   1424   addrmod3(cond | L | B7 | H | B4, dst, src);
   1425 }
   1426 
   1427 
   1428 void Assembler::strh(Register src, const MemOperand& dst, Condition cond) {
   1429   addrmod3(cond | B7 | H | B4, src, dst);
   1430 }
   1431 
   1432 
   1433 void Assembler::ldrsb(Register dst, const MemOperand& src, Condition cond) {
   1434   addrmod3(cond | L | B7 | S6 | B4, dst, src);
   1435 }
   1436 
   1437 
   1438 void Assembler::ldrsh(Register dst, const MemOperand& src, Condition cond) {
   1439   addrmod3(cond | L | B7 | S6 | H | B4, dst, src);
   1440 }
   1441 
   1442 
   1443 void Assembler::ldrd(Register dst1, Register dst2,
   1444                      const MemOperand& src, Condition cond) {
   1445   ASSERT(CpuFeatures::IsEnabled(ARMv7));
   1446   ASSERT(src.rm().is(no_reg));
   1447   ASSERT(!dst1.is(lr));  // r14.
   1448   ASSERT_EQ(0, dst1.code() % 2);
   1449   ASSERT_EQ(dst1.code() + 1, dst2.code());
   1450   addrmod3(cond | B7 | B6 | B4, dst1, src);
   1451 }
   1452 
   1453 
   1454 void Assembler::strd(Register src1, Register src2,
   1455                      const MemOperand& dst, Condition cond) {
   1456   ASSERT(dst.rm().is(no_reg));
   1457   ASSERT(!src1.is(lr));  // r14.
   1458   ASSERT_EQ(0, src1.code() % 2);
   1459   ASSERT_EQ(src1.code() + 1, src2.code());
   1460   ASSERT(CpuFeatures::IsEnabled(ARMv7));
   1461   addrmod3(cond | B7 | B6 | B5 | B4, src1, dst);
   1462 }
   1463 
   1464 // Load/Store multiple instructions.
   1465 void Assembler::ldm(BlockAddrMode am,
   1466                     Register base,
   1467                     RegList dst,
   1468                     Condition cond) {
   1469   // ABI stack constraint: ldmxx base, {..sp..}  base != sp  is not restartable.
   1470   ASSERT(base.is(sp) || (dst & sp.bit()) == 0);
   1471 
   1472   addrmod4(cond | B27 | am | L, base, dst);
   1473 
   1474   // Emit the constant pool after a function return implemented by ldm ..{..pc}.
   1475   if (cond == al && (dst & pc.bit()) != 0) {
   1476     // There is a slight chance that the ldm instruction was actually a call,
   1477     // in which case it would be wrong to return into the constant pool; we
   1478     // recognize this case by checking if the emission of the pool was blocked
   1479     // at the pc of the ldm instruction by a mov lr, pc instruction; if this is
   1480     // the case, we emit a jump over the pool.
   1481     CheckConstPool(true, no_const_pool_before_ == pc_offset() - kInstrSize);
   1482   }
   1483 }
   1484 
   1485 
   1486 void Assembler::stm(BlockAddrMode am,
   1487                     Register base,
   1488                     RegList src,
   1489                     Condition cond) {
   1490   addrmod4(cond | B27 | am, base, src);
   1491 }
   1492 
   1493 
   1494 // Exception-generating instructions and debugging support.
   1495 // Stops with a non-negative code less than kNumOfWatchedStops support
   1496 // enabling/disabling and a counter feature. See simulator-arm.h .
   1497 void Assembler::stop(const char* msg, Condition cond, int32_t code) {
   1498 #ifndef __arm__
   1499   ASSERT(code >= kDefaultStopCode);
   1500   {
   1501     // The Simulator will handle the stop instruction and get the message
   1502     // address. It expects to find the address just after the svc instruction.
   1503     BlockConstPoolScope block_const_pool(this);
   1504     if (code >= 0) {
   1505       svc(kStopCode + code, cond);
   1506     } else {
   1507       svc(kStopCode + kMaxStopCode, cond);
   1508     }
   1509     emit(reinterpret_cast<Instr>(msg));
   1510   }
   1511 #else  // def __arm__
   1512 #ifdef CAN_USE_ARMV5_INSTRUCTIONS
   1513   if (cond != al) {
   1514     Label skip;
   1515     b(&skip, NegateCondition(cond));
   1516     bkpt(0);
   1517     bind(&skip);
   1518   } else {
   1519     bkpt(0);
   1520   }
   1521 #else  // ndef CAN_USE_ARMV5_INSTRUCTIONS
   1522   svc(0x9f0001, cond);
   1523 #endif  // ndef CAN_USE_ARMV5_INSTRUCTIONS
   1524 #endif  // def __arm__
   1525 }
   1526 
   1527 
   1528 void Assembler::bkpt(uint32_t imm16) {  // v5 and above
   1529   ASSERT(is_uint16(imm16));
   1530   emit(al | B24 | B21 | (imm16 >> 4)*B8 | BKPT | (imm16 & 0xf));
   1531 }
   1532 
   1533 
   1534 void Assembler::svc(uint32_t imm24, Condition cond) {
   1535   ASSERT(is_uint24(imm24));
   1536   emit(cond | 15*B24 | imm24);
   1537 }
   1538 
   1539 
   1540 // Coprocessor instructions.
   1541 void Assembler::cdp(Coprocessor coproc,
   1542                     int opcode_1,
   1543                     CRegister crd,
   1544                     CRegister crn,
   1545                     CRegister crm,
   1546                     int opcode_2,
   1547                     Condition cond) {
   1548   ASSERT(is_uint4(opcode_1) && is_uint3(opcode_2));
   1549   emit(cond | B27 | B26 | B25 | (opcode_1 & 15)*B20 | crn.code()*B16 |
   1550        crd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | crm.code());
   1551 }
   1552 
   1553 
   1554 void Assembler::cdp2(Coprocessor coproc,
   1555                      int opcode_1,
   1556                      CRegister crd,
   1557                      CRegister crn,
   1558                      CRegister crm,
   1559                      int opcode_2) {  // v5 and above
   1560   cdp(coproc, opcode_1, crd, crn, crm, opcode_2, kSpecialCondition);
   1561 }
   1562 
   1563 
   1564 void Assembler::mcr(Coprocessor coproc,
   1565                     int opcode_1,
   1566                     Register rd,
   1567                     CRegister crn,
   1568                     CRegister crm,
   1569                     int opcode_2,
   1570                     Condition cond) {
   1571   ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2));
   1572   emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | crn.code()*B16 |
   1573        rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
   1574 }
   1575 
   1576 
   1577 void Assembler::mcr2(Coprocessor coproc,
   1578                      int opcode_1,
   1579                      Register rd,
   1580                      CRegister crn,
   1581                      CRegister crm,
   1582                      int opcode_2) {  // v5 and above
   1583   mcr(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition);
   1584 }
   1585 
   1586 
   1587 void Assembler::mrc(Coprocessor coproc,
   1588                     int opcode_1,
   1589                     Register rd,
   1590                     CRegister crn,
   1591                     CRegister crm,
   1592                     int opcode_2,
   1593                     Condition cond) {
   1594   ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2));
   1595   emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | L | crn.code()*B16 |
   1596        rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
   1597 }
   1598 
   1599 
   1600 void Assembler::mrc2(Coprocessor coproc,
   1601                      int opcode_1,
   1602                      Register rd,
   1603                      CRegister crn,
   1604                      CRegister crm,
   1605                      int opcode_2) {  // v5 and above
   1606   mrc(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition);
   1607 }
   1608 
   1609 
   1610 void Assembler::ldc(Coprocessor coproc,
   1611                     CRegister crd,
   1612                     const MemOperand& src,
   1613                     LFlag l,
   1614                     Condition cond) {
   1615   addrmod5(cond | B27 | B26 | l | L | coproc*B8, crd, src);
   1616 }
   1617 
   1618 
   1619 void Assembler::ldc(Coprocessor coproc,
   1620                     CRegister crd,
   1621                     Register rn,
   1622                     int option,
   1623                     LFlag l,
   1624                     Condition cond) {
   1625   // Unindexed addressing.
   1626   ASSERT(is_uint8(option));
   1627   emit(cond | B27 | B26 | U | l | L | rn.code()*B16 | crd.code()*B12 |
   1628        coproc*B8 | (option & 255));
   1629 }
   1630 
   1631 
   1632 void Assembler::ldc2(Coprocessor coproc,
   1633                      CRegister crd,
   1634                      const MemOperand& src,
   1635                      LFlag l) {  // v5 and above
   1636   ldc(coproc, crd, src, l, kSpecialCondition);
   1637 }
   1638 
   1639 
   1640 void Assembler::ldc2(Coprocessor coproc,
   1641                      CRegister crd,
   1642                      Register rn,
   1643                      int option,
   1644                      LFlag l) {  // v5 and above
   1645   ldc(coproc, crd, rn, option, l, kSpecialCondition);
   1646 }
   1647 
   1648 
   1649 // Support for VFP.
   1650 
   1651 void Assembler::vldr(const DwVfpRegister dst,
   1652                      const Register base,
   1653                      int offset,
   1654                      const Condition cond) {
   1655   // Ddst = MEM(Rbase + offset).
   1656   // Instruction details available in ARM DDI 0406A, A8-628.
   1657   // cond(31-28) | 1101(27-24)| U001(23-20) | Rbase(19-16) |
   1658   // Vdst(15-12) | 1011(11-8) | offset
   1659   ASSERT(CpuFeatures::IsEnabled(VFP3));
   1660   int u = 1;
   1661   if (offset < 0) {
   1662     offset = -offset;
   1663     u = 0;
   1664   }
   1665 
   1666   ASSERT(offset >= 0);
   1667   if ((offset % 4) == 0 && (offset / 4) < 256) {
   1668     emit(cond | u*B23 | 0xD1*B20 | base.code()*B16 | dst.code()*B12 |
   1669          0xB*B8 | ((offset / 4) & 255));
   1670   } else {
   1671     // Larger offsets must be handled by computing the correct address
   1672     // in the ip register.
   1673     ASSERT(!base.is(ip));
   1674     if (u == 1) {
   1675       add(ip, base, Operand(offset));
   1676     } else {
   1677       sub(ip, base, Operand(offset));
   1678     }
   1679     emit(cond | 0xD1*B20 | ip.code()*B16 | dst.code()*B12 | 0xB*B8);
   1680   }
   1681 }
   1682 
   1683 
   1684 void Assembler::vldr(const DwVfpRegister dst,
   1685                      const MemOperand& operand,
   1686                      const Condition cond) {
   1687   ASSERT(!operand.rm().is_valid());
   1688   ASSERT(operand.am_ == Offset);
   1689   vldr(dst, operand.rn(), operand.offset(), cond);
   1690 }
   1691 
   1692 
   1693 void Assembler::vldr(const SwVfpRegister dst,
   1694                      const Register base,
   1695                      int offset,
   1696                      const Condition cond) {
   1697   // Sdst = MEM(Rbase + offset).
   1698   // Instruction details available in ARM DDI 0406A, A8-628.
   1699   // cond(31-28) | 1101(27-24)| U001(23-20) | Rbase(19-16) |
   1700   // Vdst(15-12) | 1010(11-8) | offset
   1701   ASSERT(CpuFeatures::IsEnabled(VFP3));
   1702   int u = 1;
   1703   if (offset < 0) {
   1704     offset = -offset;
   1705     u = 0;
   1706   }
   1707   int sd, d;
   1708   dst.split_code(&sd, &d);
   1709   ASSERT(offset >= 0);
   1710 
   1711   if ((offset % 4) == 0 && (offset / 4) < 256) {
   1712   emit(cond | u*B23 | d*B22 | 0xD1*B20 | base.code()*B16 | sd*B12 |
   1713        0xA*B8 | ((offset / 4) & 255));
   1714   } else {
   1715     // Larger offsets must be handled by computing the correct address
   1716     // in the ip register.
   1717     ASSERT(!base.is(ip));
   1718     if (u == 1) {
   1719       add(ip, base, Operand(offset));
   1720     } else {
   1721       sub(ip, base, Operand(offset));
   1722     }
   1723     emit(cond | d*B22 | 0xD1*B20 | ip.code()*B16 | sd*B12 | 0xA*B8);
   1724   }
   1725 }
   1726 
   1727 
   1728 void Assembler::vldr(const SwVfpRegister dst,
   1729                      const MemOperand& operand,
   1730                      const Condition cond) {
   1731   ASSERT(!operand.rm().is_valid());
   1732   ASSERT(operand.am_ == Offset);
   1733   vldr(dst, operand.rn(), operand.offset(), cond);
   1734 }
   1735 
   1736 
   1737 void Assembler::vstr(const DwVfpRegister src,
   1738                      const Register base,
   1739                      int offset,
   1740                      const Condition cond) {
   1741   // MEM(Rbase + offset) = Dsrc.
   1742   // Instruction details available in ARM DDI 0406A, A8-786.
   1743   // cond(31-28) | 1101(27-24)| U000(23-20) | | Rbase(19-16) |
   1744   // Vsrc(15-12) | 1011(11-8) | (offset/4)
   1745   ASSERT(CpuFeatures::IsEnabled(VFP3));
   1746   int u = 1;
   1747   if (offset < 0) {
   1748     offset = -offset;
   1749     u = 0;
   1750   }
   1751   ASSERT(offset >= 0);
   1752   if ((offset % 4) == 0 && (offset / 4) < 256) {
   1753     emit(cond | u*B23 | 0xD0*B20 | base.code()*B16 | src.code()*B12 |
   1754          0xB*B8 | ((offset / 4) & 255));
   1755   } else {
   1756     // Larger offsets must be handled by computing the correct address
   1757     // in the ip register.
   1758     ASSERT(!base.is(ip));
   1759     if (u == 1) {
   1760       add(ip, base, Operand(offset));
   1761     } else {
   1762       sub(ip, base, Operand(offset));
   1763     }
   1764     emit(cond | 0xD0*B20 | ip.code()*B16 | src.code()*B12 | 0xB*B8);
   1765   }
   1766 }
   1767 
   1768 
   1769 void Assembler::vstr(const DwVfpRegister src,
   1770                      const MemOperand& operand,
   1771                      const Condition cond) {
   1772   ASSERT(!operand.rm().is_valid());
   1773   ASSERT(operand.am_ == Offset);
   1774   vstr(src, operand.rn(), operand.offset(), cond);
   1775 }
   1776 
   1777 
   1778 void Assembler::vstr(const SwVfpRegister src,
   1779                      const Register base,
   1780                      int offset,
   1781                      const Condition cond) {
   1782   // MEM(Rbase + offset) = SSrc.
   1783   // Instruction details available in ARM DDI 0406A, A8-786.
   1784   // cond(31-28) | 1101(27-24)| U000(23-20) | Rbase(19-16) |
   1785   // Vdst(15-12) | 1010(11-8) | (offset/4)
   1786   ASSERT(CpuFeatures::IsEnabled(VFP3));
   1787   int u = 1;
   1788   if (offset < 0) {
   1789     offset = -offset;
   1790     u = 0;
   1791   }
   1792   int sd, d;
   1793   src.split_code(&sd, &d);
   1794   ASSERT(offset >= 0);
   1795   if ((offset % 4) == 0 && (offset / 4) < 256) {
   1796     emit(cond | u*B23 | d*B22 | 0xD0*B20 | base.code()*B16 | sd*B12 |
   1797          0xA*B8 | ((offset / 4) & 255));
   1798   } else {
   1799     // Larger offsets must be handled by computing the correct address
   1800     // in the ip register.
   1801     ASSERT(!base.is(ip));
   1802     if (u == 1) {
   1803       add(ip, base, Operand(offset));
   1804     } else {
   1805       sub(ip, base, Operand(offset));
   1806     }
   1807     emit(cond | d*B22 | 0xD0*B20 | ip.code()*B16 | sd*B12 | 0xA*B8);
   1808   }
   1809 }
   1810 
   1811 
   1812 void Assembler::vstr(const SwVfpRegister src,
   1813                      const MemOperand& operand,
   1814                      const Condition cond) {
   1815   ASSERT(!operand.rm().is_valid());
   1816   ASSERT(operand.am_ == Offset);
   1817   vldr(src, operand.rn(), operand.offset(), cond);
   1818 }
   1819 
   1820 
   1821 void  Assembler::vldm(BlockAddrMode am,
   1822                       Register base,
   1823                       DwVfpRegister first,
   1824                       DwVfpRegister last,
   1825                       Condition cond) {
   1826   // Instruction details available in ARM DDI 0406A, A8-626.
   1827   // cond(31-28) | 110(27-25)| PUDW1(24-20) | Rbase(19-16) |
   1828   // first(15-12) | 1010(11-8) | (count * 2)
   1829   ASSERT(CpuFeatures::IsEnabled(VFP3));
   1830   ASSERT_LE(first.code(), last.code());
   1831   ASSERT(am == ia || am == ia_w || am == db_w);
   1832   ASSERT(!base.is(pc));
   1833 
   1834   int sd, d;
   1835   first.split_code(&sd, &d);
   1836   int count = last.code() - first.code() + 1;
   1837   emit(cond | B27 | B26 | am | d*B22 | B20 | base.code()*B16 | sd*B12 |
   1838        0xB*B8 | count*2);
   1839 }
   1840 
   1841 
   1842 void  Assembler::vstm(BlockAddrMode am,
   1843                       Register base,
   1844                       DwVfpRegister first,
   1845                       DwVfpRegister last,
   1846                       Condition cond) {
   1847   // Instruction details available in ARM DDI 0406A, A8-784.
   1848   // cond(31-28) | 110(27-25)| PUDW0(24-20) | Rbase(19-16) |
   1849   // first(15-12) | 1011(11-8) | (count * 2)
   1850   ASSERT(CpuFeatures::IsEnabled(VFP3));
   1851   ASSERT_LE(first.code(), last.code());
   1852   ASSERT(am == ia || am == ia_w || am == db_w);
   1853   ASSERT(!base.is(pc));
   1854 
   1855   int sd, d;
   1856   first.split_code(&sd, &d);
   1857   int count = last.code() - first.code() + 1;
   1858   emit(cond | B27 | B26 | am | d*B22 | base.code()*B16 | sd*B12 |
   1859        0xB*B8 | count*2);
   1860 }
   1861 
   1862 void  Assembler::vldm(BlockAddrMode am,
   1863                       Register base,
   1864                       SwVfpRegister first,
   1865                       SwVfpRegister last,
   1866                       Condition cond) {
   1867   // Instruction details available in ARM DDI 0406A, A8-626.
   1868   // cond(31-28) | 110(27-25)| PUDW1(24-20) | Rbase(19-16) |
   1869   // first(15-12) | 1010(11-8) | (count/2)
   1870   ASSERT(CpuFeatures::IsEnabled(VFP3));
   1871   ASSERT_LE(first.code(), last.code());
   1872   ASSERT(am == ia || am == ia_w || am == db_w);
   1873   ASSERT(!base.is(pc));
   1874 
   1875   int sd, d;
   1876   first.split_code(&sd, &d);
   1877   int count = last.code() - first.code() + 1;
   1878   emit(cond | B27 | B26 | am | d*B22 | B20 | base.code()*B16 | sd*B12 |
   1879        0xA*B8 | count);
   1880 }
   1881 
   1882 
   1883 void  Assembler::vstm(BlockAddrMode am,
   1884                       Register base,
   1885                       SwVfpRegister first,
   1886                       SwVfpRegister last,
   1887                       Condition cond) {
   1888   // Instruction details available in ARM DDI 0406A, A8-784.
   1889   // cond(31-28) | 110(27-25)| PUDW0(24-20) | Rbase(19-16) |
   1890   // first(15-12) | 1011(11-8) | (count/2)
   1891   ASSERT(CpuFeatures::IsEnabled(VFP3));
   1892   ASSERT_LE(first.code(), last.code());
   1893   ASSERT(am == ia || am == ia_w || am == db_w);
   1894   ASSERT(!base.is(pc));
   1895 
   1896   int sd, d;
   1897   first.split_code(&sd, &d);
   1898   int count = last.code() - first.code() + 1;
   1899   emit(cond | B27 | B26 | am | d*B22 | base.code()*B16 | sd*B12 |
   1900        0xA*B8 | count);
   1901 }
   1902 
   1903 static void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi) {
   1904   uint64_t i;
   1905   memcpy(&i, &d, 8);
   1906 
   1907   *lo = i & 0xffffffff;
   1908   *hi = i >> 32;
   1909 }
   1910 
   1911 // Only works for little endian floating point formats.
   1912 // We don't support VFP on the mixed endian floating point platform.
   1913 static bool FitsVMOVDoubleImmediate(double d, uint32_t *encoding) {
   1914   ASSERT(CpuFeatures::IsEnabled(VFP3));
   1915 
   1916   // VMOV can accept an immediate of the form:
   1917   //
   1918   //  +/- m * 2^(-n) where 16 <= m <= 31 and 0 <= n <= 7
   1919   //
   1920   // The immediate is encoded using an 8-bit quantity, comprised of two
   1921   // 4-bit fields. For an 8-bit immediate of the form:
   1922   //
   1923   //  [abcdefgh]
   1924   //
   1925   // where a is the MSB and h is the LSB, an immediate 64-bit double can be
   1926   // created of the form:
   1927   //
   1928   //  [aBbbbbbb,bbcdefgh,00000000,00000000,
   1929   //      00000000,00000000,00000000,00000000]
   1930   //
   1931   // where B = ~b.
   1932   //
   1933 
   1934   uint32_t lo, hi;
   1935   DoubleAsTwoUInt32(d, &lo, &hi);
   1936 
   1937   // The most obvious constraint is the long block of zeroes.
   1938   if ((lo != 0) || ((hi & 0xffff) != 0)) {
   1939     return false;
   1940   }
   1941 
   1942   // Bits 62:55 must be all clear or all set.
   1943   if (((hi & 0x3fc00000) != 0) && ((hi & 0x3fc00000) != 0x3fc00000)) {
   1944     return false;
   1945   }
   1946 
   1947   // Bit 63 must be NOT bit 62.
   1948   if (((hi ^ (hi << 1)) & (0x40000000)) == 0) {
   1949     return false;
   1950   }
   1951 
   1952   // Create the encoded immediate in the form:
   1953   //  [00000000,0000abcd,00000000,0000efgh]
   1954   *encoding  = (hi >> 16) & 0xf;      // Low nybble.
   1955   *encoding |= (hi >> 4) & 0x70000;   // Low three bits of the high nybble.
   1956   *encoding |= (hi >> 12) & 0x80000;  // Top bit of the high nybble.
   1957 
   1958   return true;
   1959 }
   1960 
   1961 
   1962 void Assembler::vmov(const DwVfpRegister dst,
   1963                      double imm,
   1964                      const Condition cond) {
   1965   // Dd = immediate
   1966   // Instruction details available in ARM DDI 0406B, A8-640.
   1967   ASSERT(CpuFeatures::IsEnabled(VFP3));
   1968 
   1969   uint32_t enc;
   1970   if (FitsVMOVDoubleImmediate(imm, &enc)) {
   1971     // The double can be encoded in the instruction.
   1972     emit(cond | 0xE*B24 | 0xB*B20 | dst.code()*B12 | 0xB*B8 | enc);
   1973   } else {
   1974     // Synthesise the double from ARM immediates. This could be implemented
   1975     // using vldr from a constant pool.
   1976     uint32_t lo, hi;
   1977     DoubleAsTwoUInt32(imm, &lo, &hi);
   1978 
   1979     if (lo == hi) {
   1980       // If the lo and hi parts of the double are equal, the literal is easier
   1981       // to create. This is the case with 0.0.
   1982       mov(ip, Operand(lo));
   1983       vmov(dst, ip, ip);
   1984     } else {
   1985       // Move the low part of the double into the lower of the corresponsing S
   1986       // registers of D register dst.
   1987       mov(ip, Operand(lo));
   1988       vmov(dst.low(), ip, cond);
   1989 
   1990       // Move the high part of the double into the higher of the corresponsing S
   1991       // registers of D register dst.
   1992       mov(ip, Operand(hi));
   1993       vmov(dst.high(), ip, cond);
   1994     }
   1995   }
   1996 }
   1997 
   1998 
   1999 void Assembler::vmov(const SwVfpRegister dst,
   2000                      const SwVfpRegister src,
   2001                      const Condition cond) {
   2002   // Sd = Sm
   2003   // Instruction details available in ARM DDI 0406B, A8-642.
   2004   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2005   int sd, d, sm, m;
   2006   dst.split_code(&sd, &d);
   2007   src.split_code(&sm, &m);
   2008   emit(cond | 0xE*B24 | d*B22 | 0xB*B20 | sd*B12 | 0xA*B8 | B6 | m*B5 | sm);
   2009 }
   2010 
   2011 
   2012 void Assembler::vmov(const DwVfpRegister dst,
   2013                      const DwVfpRegister src,
   2014                      const Condition cond) {
   2015   // Dd = Dm
   2016   // Instruction details available in ARM DDI 0406B, A8-642.
   2017   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2018   emit(cond | 0xE*B24 | 0xB*B20 |
   2019        dst.code()*B12 | 0x5*B9 | B8 | B6 | src.code());
   2020 }
   2021 
   2022 
   2023 void Assembler::vmov(const DwVfpRegister dst,
   2024                      const Register src1,
   2025                      const Register src2,
   2026                      const Condition cond) {
   2027   // Dm = <Rt,Rt2>.
   2028   // Instruction details available in ARM DDI 0406A, A8-646.
   2029   // cond(31-28) | 1100(27-24)| 010(23-21) | op=0(20) | Rt2(19-16) |
   2030   // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
   2031   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2032   ASSERT(!src1.is(pc) && !src2.is(pc));
   2033   emit(cond | 0xC*B24 | B22 | src2.code()*B16 |
   2034        src1.code()*B12 | 0xB*B8 | B4 | dst.code());
   2035 }
   2036 
   2037 
   2038 void Assembler::vmov(const Register dst1,
   2039                      const Register dst2,
   2040                      const DwVfpRegister src,
   2041                      const Condition cond) {
   2042   // <Rt,Rt2> = Dm.
   2043   // Instruction details available in ARM DDI 0406A, A8-646.
   2044   // cond(31-28) | 1100(27-24)| 010(23-21) | op=1(20) | Rt2(19-16) |
   2045   // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
   2046   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2047   ASSERT(!dst1.is(pc) && !dst2.is(pc));
   2048   emit(cond | 0xC*B24 | B22 | B20 | dst2.code()*B16 |
   2049        dst1.code()*B12 | 0xB*B8 | B4 | src.code());
   2050 }
   2051 
   2052 
   2053 void Assembler::vmov(const SwVfpRegister dst,
   2054                      const Register src,
   2055                      const Condition cond) {
   2056   // Sn = Rt.
   2057   // Instruction details available in ARM DDI 0406A, A8-642.
   2058   // cond(31-28) | 1110(27-24)| 000(23-21) | op=0(20) | Vn(19-16) |
   2059   // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
   2060   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2061   ASSERT(!src.is(pc));
   2062   int sn, n;
   2063   dst.split_code(&sn, &n);
   2064   emit(cond | 0xE*B24 | sn*B16 | src.code()*B12 | 0xA*B8 | n*B7 | B4);
   2065 }
   2066 
   2067 
   2068 void Assembler::vmov(const Register dst,
   2069                      const SwVfpRegister src,
   2070                      const Condition cond) {
   2071   // Rt = Sn.
   2072   // Instruction details available in ARM DDI 0406A, A8-642.
   2073   // cond(31-28) | 1110(27-24)| 000(23-21) | op=1(20) | Vn(19-16) |
   2074   // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
   2075   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2076   ASSERT(!dst.is(pc));
   2077   int sn, n;
   2078   src.split_code(&sn, &n);
   2079   emit(cond | 0xE*B24 | B20 | sn*B16 | dst.code()*B12 | 0xA*B8 | n*B7 | B4);
   2080 }
   2081 
   2082 
   2083 // Type of data to read from or write to VFP register.
   2084 // Used as specifier in generic vcvt instruction.
   2085 enum VFPType { S32, U32, F32, F64 };
   2086 
   2087 
   2088 static bool IsSignedVFPType(VFPType type) {
   2089   switch (type) {
   2090     case S32:
   2091       return true;
   2092     case U32:
   2093       return false;
   2094     default:
   2095       UNREACHABLE();
   2096       return false;
   2097   }
   2098 }
   2099 
   2100 
   2101 static bool IsIntegerVFPType(VFPType type) {
   2102   switch (type) {
   2103     case S32:
   2104     case U32:
   2105       return true;
   2106     case F32:
   2107     case F64:
   2108       return false;
   2109     default:
   2110       UNREACHABLE();
   2111       return false;
   2112   }
   2113 }
   2114 
   2115 
   2116 static bool IsDoubleVFPType(VFPType type) {
   2117   switch (type) {
   2118     case F32:
   2119       return false;
   2120     case F64:
   2121       return true;
   2122     default:
   2123       UNREACHABLE();
   2124       return false;
   2125   }
   2126 }
   2127 
   2128 
   2129 // Split five bit reg_code based on size of reg_type.
   2130 //  32-bit register codes are Vm:M
   2131 //  64-bit register codes are M:Vm
   2132 // where Vm is four bits, and M is a single bit.
   2133 static void SplitRegCode(VFPType reg_type,
   2134                          int reg_code,
   2135                          int* vm,
   2136                          int* m) {
   2137   ASSERT((reg_code >= 0) && (reg_code <= 31));
   2138   if (IsIntegerVFPType(reg_type) || !IsDoubleVFPType(reg_type)) {
   2139     // 32 bit type.
   2140     *m  = reg_code & 0x1;
   2141     *vm = reg_code >> 1;
   2142   } else {
   2143     // 64 bit type.
   2144     *m  = (reg_code & 0x10) >> 4;
   2145     *vm = reg_code & 0x0F;
   2146   }
   2147 }
   2148 
   2149 
   2150 // Encode vcvt.src_type.dst_type instruction.
   2151 static Instr EncodeVCVT(const VFPType dst_type,
   2152                         const int dst_code,
   2153                         const VFPType src_type,
   2154                         const int src_code,
   2155                         VFPConversionMode mode,
   2156                         const Condition cond) {
   2157   ASSERT(src_type != dst_type);
   2158   int D, Vd, M, Vm;
   2159   SplitRegCode(src_type, src_code, &Vm, &M);
   2160   SplitRegCode(dst_type, dst_code, &Vd, &D);
   2161 
   2162   if (IsIntegerVFPType(dst_type) || IsIntegerVFPType(src_type)) {
   2163     // Conversion between IEEE floating point and 32-bit integer.
   2164     // Instruction details available in ARM DDI 0406B, A8.6.295.
   2165     // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 1(19) | opc2(18-16) |
   2166     // Vd(15-12) | 101(11-9) | sz(8) | op(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
   2167     ASSERT(!IsIntegerVFPType(dst_type) || !IsIntegerVFPType(src_type));
   2168 
   2169     int sz, opc2, op;
   2170 
   2171     if (IsIntegerVFPType(dst_type)) {
   2172       opc2 = IsSignedVFPType(dst_type) ? 0x5 : 0x4;
   2173       sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0;
   2174       op = mode;
   2175     } else {
   2176       ASSERT(IsIntegerVFPType(src_type));
   2177       opc2 = 0x0;
   2178       sz = IsDoubleVFPType(dst_type) ? 0x1 : 0x0;
   2179       op = IsSignedVFPType(src_type) ? 0x1 : 0x0;
   2180     }
   2181 
   2182     return (cond | 0xE*B24 | B23 | D*B22 | 0x3*B20 | B19 | opc2*B16 |
   2183             Vd*B12 | 0x5*B9 | sz*B8 | op*B7 | B6 | M*B5 | Vm);
   2184   } else {
   2185     // Conversion between IEEE double and single precision.
   2186     // Instruction details available in ARM DDI 0406B, A8.6.298.
   2187     // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0111(19-16) |
   2188     // Vd(15-12) | 101(11-9) | sz(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
   2189     int sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0;
   2190     return (cond | 0xE*B24 | B23 | D*B22 | 0x3*B20 | 0x7*B16 |
   2191             Vd*B12 | 0x5*B9 | sz*B8 | B7 | B6 | M*B5 | Vm);
   2192   }
   2193 }
   2194 
   2195 
   2196 void Assembler::vcvt_f64_s32(const DwVfpRegister dst,
   2197                              const SwVfpRegister src,
   2198                              VFPConversionMode mode,
   2199                              const Condition cond) {
   2200   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2201   emit(EncodeVCVT(F64, dst.code(), S32, src.code(), mode, cond));
   2202 }
   2203 
   2204 
   2205 void Assembler::vcvt_f32_s32(const SwVfpRegister dst,
   2206                              const SwVfpRegister src,
   2207                              VFPConversionMode mode,
   2208                              const Condition cond) {
   2209   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2210   emit(EncodeVCVT(F32, dst.code(), S32, src.code(), mode, cond));
   2211 }
   2212 
   2213 
   2214 void Assembler::vcvt_f64_u32(const DwVfpRegister dst,
   2215                              const SwVfpRegister src,
   2216                              VFPConversionMode mode,
   2217                              const Condition cond) {
   2218   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2219   emit(EncodeVCVT(F64, dst.code(), U32, src.code(), mode, cond));
   2220 }
   2221 
   2222 
   2223 void Assembler::vcvt_s32_f64(const SwVfpRegister dst,
   2224                              const DwVfpRegister src,
   2225                              VFPConversionMode mode,
   2226                              const Condition cond) {
   2227   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2228   emit(EncodeVCVT(S32, dst.code(), F64, src.code(), mode, cond));
   2229 }
   2230 
   2231 
   2232 void Assembler::vcvt_u32_f64(const SwVfpRegister dst,
   2233                              const DwVfpRegister src,
   2234                              VFPConversionMode mode,
   2235                              const Condition cond) {
   2236   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2237   emit(EncodeVCVT(U32, dst.code(), F64, src.code(), mode, cond));
   2238 }
   2239 
   2240 
   2241 void Assembler::vcvt_f64_f32(const DwVfpRegister dst,
   2242                              const SwVfpRegister src,
   2243                              VFPConversionMode mode,
   2244                              const Condition cond) {
   2245   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2246   emit(EncodeVCVT(F64, dst.code(), F32, src.code(), mode, cond));
   2247 }
   2248 
   2249 
   2250 void Assembler::vcvt_f32_f64(const SwVfpRegister dst,
   2251                              const DwVfpRegister src,
   2252                              VFPConversionMode mode,
   2253                              const Condition cond) {
   2254   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2255   emit(EncodeVCVT(F32, dst.code(), F64, src.code(), mode, cond));
   2256 }
   2257 
   2258 
   2259 void Assembler::vneg(const DwVfpRegister dst,
   2260                      const DwVfpRegister src,
   2261                      const Condition cond) {
   2262   emit(cond | 0xE*B24 | 0xB*B20 | B16 | dst.code()*B12 |
   2263        0x5*B9 | B8 | B6 | src.code());
   2264 }
   2265 
   2266 
   2267 void Assembler::vabs(const DwVfpRegister dst,
   2268                      const DwVfpRegister src,
   2269                      const Condition cond) {
   2270   emit(cond | 0xE*B24 | 0xB*B20 | dst.code()*B12 |
   2271        0x5*B9 | B8 | 0x3*B6 | src.code());
   2272 }
   2273 
   2274 
   2275 void Assembler::vadd(const DwVfpRegister dst,
   2276                      const DwVfpRegister src1,
   2277                      const DwVfpRegister src2,
   2278                      const Condition cond) {
   2279   // Dd = vadd(Dn, Dm) double precision floating point addition.
   2280   // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
   2281   // Instruction details available in ARM DDI 0406A, A8-536.
   2282   // cond(31-28) | 11100(27-23)| D=?(22) | 11(21-20) | Vn(19-16) |
   2283   // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 0(6) | M=?(5) | 0(4) | Vm(3-0)
   2284   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2285   emit(cond | 0xE*B24 | 0x3*B20 | src1.code()*B16 |
   2286        dst.code()*B12 | 0x5*B9 | B8 | src2.code());
   2287 }
   2288 
   2289 
   2290 void Assembler::vsub(const DwVfpRegister dst,
   2291                      const DwVfpRegister src1,
   2292                      const DwVfpRegister src2,
   2293                      const Condition cond) {
   2294   // Dd = vsub(Dn, Dm) double precision floating point subtraction.
   2295   // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
   2296   // Instruction details available in ARM DDI 0406A, A8-784.
   2297   // cond(31-28) | 11100(27-23)| D=?(22) | 11(21-20) | Vn(19-16) |
   2298   // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 1(6) | M=?(5) | 0(4) | Vm(3-0)
   2299   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2300   emit(cond | 0xE*B24 | 0x3*B20 | src1.code()*B16 |
   2301        dst.code()*B12 | 0x5*B9 | B8 | B6 | src2.code());
   2302 }
   2303 
   2304 
   2305 void Assembler::vmul(const DwVfpRegister dst,
   2306                      const DwVfpRegister src1,
   2307                      const DwVfpRegister src2,
   2308                      const Condition cond) {
   2309   // Dd = vmul(Dn, Dm) double precision floating point multiplication.
   2310   // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
   2311   // Instruction details available in ARM DDI 0406A, A8-784.
   2312   // cond(31-28) | 11100(27-23)| D=?(22) | 10(21-20) | Vn(19-16) |
   2313   // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 0(6) | M=?(5) | 0(4) | Vm(3-0)
   2314   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2315   emit(cond | 0xE*B24 | 0x2*B20 | src1.code()*B16 |
   2316        dst.code()*B12 | 0x5*B9 | B8 | src2.code());
   2317 }
   2318 
   2319 
   2320 void Assembler::vdiv(const DwVfpRegister dst,
   2321                      const DwVfpRegister src1,
   2322                      const DwVfpRegister src2,
   2323                      const Condition cond) {
   2324   // Dd = vdiv(Dn, Dm) double precision floating point division.
   2325   // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
   2326   // Instruction details available in ARM DDI 0406A, A8-584.
   2327   // cond(31-28) | 11101(27-23)| D=?(22) | 00(21-20) | Vn(19-16) |
   2328   // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=? | 0(6) | M=?(5) | 0(4) | Vm(3-0)
   2329   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2330   emit(cond | 0xE*B24 | B23 | src1.code()*B16 |
   2331        dst.code()*B12 | 0x5*B9 | B8 | src2.code());
   2332 }
   2333 
   2334 
   2335 void Assembler::vcmp(const DwVfpRegister src1,
   2336                      const DwVfpRegister src2,
   2337                      const Condition cond) {
   2338   // vcmp(Dd, Dm) double precision floating point comparison.
   2339   // Instruction details available in ARM DDI 0406A, A8-570.
   2340   // cond(31-28) | 11101 (27-23)| D=?(22) | 11 (21-20) | 0100 (19-16) |
   2341   // Vd(15-12) | 101(11-9) | sz(8)=1 | E(7)=0 | 1(6) | M(5)=? | 0(4) | Vm(3-0)
   2342   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2343   emit(cond | 0xE*B24 |B23 | 0x3*B20 | B18 |
   2344        src1.code()*B12 | 0x5*B9 | B8 | B6 | src2.code());
   2345 }
   2346 
   2347 
   2348 void Assembler::vcmp(const DwVfpRegister src1,
   2349                      const double src2,
   2350                      const Condition cond) {
   2351   // vcmp(Dd, Dm) double precision floating point comparison.
   2352   // Instruction details available in ARM DDI 0406A, A8-570.
   2353   // cond(31-28) | 11101 (27-23)| D=?(22) | 11 (21-20) | 0101 (19-16) |
   2354   // Vd(15-12) | 101(11-9) | sz(8)=1 | E(7)=0 | 1(6) | M(5)=? | 0(4) | 0000(3-0)
   2355   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2356   ASSERT(src2 == 0.0);
   2357   emit(cond | 0xE*B24 |B23 | 0x3*B20 | B18 | B16 |
   2358        src1.code()*B12 | 0x5*B9 | B8 | B6);
   2359 }
   2360 
   2361 
   2362 void Assembler::vmsr(Register dst, Condition cond) {
   2363   // Instruction details available in ARM DDI 0406A, A8-652.
   2364   // cond(31-28) | 1110 (27-24) | 1110(23-20)| 0001 (19-16) |
   2365   // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0)
   2366   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2367   emit(cond | 0xE*B24 | 0xE*B20 |  B16 |
   2368        dst.code()*B12 | 0xA*B8 | B4);
   2369 }
   2370 
   2371 
   2372 void Assembler::vmrs(Register dst, Condition cond) {
   2373   // Instruction details available in ARM DDI 0406A, A8-652.
   2374   // cond(31-28) | 1110 (27-24) | 1111(23-20)| 0001 (19-16) |
   2375   // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0)
   2376   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2377   emit(cond | 0xE*B24 | 0xF*B20 |  B16 |
   2378        dst.code()*B12 | 0xA*B8 | B4);
   2379 }
   2380 
   2381 
   2382 void Assembler::vsqrt(const DwVfpRegister dst,
   2383                       const DwVfpRegister src,
   2384                       const Condition cond) {
   2385   // cond(31-28) | 11101 (27-23)| D=?(22) | 11 (21-20) | 0001 (19-16) |
   2386   // Vd(15-12) | 101(11-9) | sz(8)=1 | 11 (7-6) | M(5)=? | 0(4) | Vm(3-0)
   2387   ASSERT(CpuFeatures::IsEnabled(VFP3));
   2388   emit(cond | 0xE*B24 | B23 | 0x3*B20 | B16 |
   2389        dst.code()*B12 | 0x5*B9 | B8 | 3*B6 | src.code());
   2390 }
   2391 
   2392 
   2393 // Pseudo instructions.
   2394 void Assembler::nop(int type) {
   2395   // This is mov rx, rx.
   2396   ASSERT(0 <= type && type <= 14);  // mov pc, pc is not a nop.
   2397   emit(al | 13*B21 | type*B12 | type);
   2398 }
   2399 
   2400 
   2401 bool Assembler::IsNop(Instr instr, int type) {
   2402   // Check for mov rx, rx where x = type.
   2403   ASSERT(0 <= type && type <= 14);  // mov pc, pc is not a nop.
   2404   return instr == (al | 13*B21 | type*B12 | type);
   2405 }
   2406 
   2407 
   2408 bool Assembler::ImmediateFitsAddrMode1Instruction(int32_t imm32) {
   2409   uint32_t dummy1;
   2410   uint32_t dummy2;
   2411   return fits_shifter(imm32, &dummy1, &dummy2, NULL);
   2412 }
   2413 
   2414 
   2415 // Debugging.
   2416 void Assembler::RecordJSReturn() {
   2417   positions_recorder()->WriteRecordedPositions();
   2418   CheckBuffer();
   2419   RecordRelocInfo(RelocInfo::JS_RETURN);
   2420 }
   2421 
   2422 
   2423 void Assembler::RecordDebugBreakSlot() {
   2424   positions_recorder()->WriteRecordedPositions();
   2425   CheckBuffer();
   2426   RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT);
   2427 }
   2428 
   2429 
   2430 void Assembler::RecordComment(const char* msg) {
   2431   if (FLAG_code_comments) {
   2432     CheckBuffer();
   2433     RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
   2434   }
   2435 }
   2436 
   2437 
   2438 void Assembler::GrowBuffer() {
   2439   if (!own_buffer_) FATAL("external code buffer is too small");
   2440 
   2441   // Compute new buffer size.
   2442   CodeDesc desc;  // the new buffer
   2443   if (buffer_size_ < 4*KB) {
   2444     desc.buffer_size = 4*KB;
   2445   } else if (buffer_size_ < 1*MB) {
   2446     desc.buffer_size = 2*buffer_size_;
   2447   } else {
   2448     desc.buffer_size = buffer_size_ + 1*MB;
   2449   }
   2450   CHECK_GT(desc.buffer_size, 0);  // no overflow
   2451 
   2452   // Set up new buffer.
   2453   desc.buffer = NewArray<byte>(desc.buffer_size);
   2454 
   2455   desc.instr_size = pc_offset();
   2456   desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
   2457 
   2458   // Copy the data.
   2459   int pc_delta = desc.buffer - buffer_;
   2460   int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
   2461   memmove(desc.buffer, buffer_, desc.instr_size);
   2462   memmove(reloc_info_writer.pos() + rc_delta,
   2463           reloc_info_writer.pos(), desc.reloc_size);
   2464 
   2465   // Switch buffers.
   2466   DeleteArray(buffer_);
   2467   buffer_ = desc.buffer;
   2468   buffer_size_ = desc.buffer_size;
   2469   pc_ += pc_delta;
   2470   reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
   2471                                reloc_info_writer.last_pc() + pc_delta);
   2472 
   2473   // None of our relocation types are pc relative pointing outside the code
   2474   // buffer nor pc absolute pointing inside the code buffer, so there is no need
   2475   // to relocate any emitted relocation entries.
   2476 
   2477   // Relocate pending relocation entries.
   2478   for (int i = 0; i < num_pending_reloc_info_; i++) {
   2479     RelocInfo& rinfo = pending_reloc_info_[i];
   2480     ASSERT(rinfo.rmode() != RelocInfo::COMMENT &&
   2481            rinfo.rmode() != RelocInfo::POSITION);
   2482     if (rinfo.rmode() != RelocInfo::JS_RETURN) {
   2483       rinfo.set_pc(rinfo.pc() + pc_delta);
   2484     }
   2485   }
   2486 }
   2487 
   2488 
   2489 void Assembler::db(uint8_t data) {
   2490   // No relocation info should be pending while using db. db is used
   2491   // to write pure data with no pointers and the constant pool should
   2492   // be emitted before using db.
   2493   ASSERT(num_pending_reloc_info_ == 0);
   2494   CheckBuffer();
   2495   *reinterpret_cast<uint8_t*>(pc_) = data;
   2496   pc_ += sizeof(uint8_t);
   2497 }
   2498 
   2499 
   2500 void Assembler::dd(uint32_t data) {
   2501   // No relocation info should be pending while using dd. dd is used
   2502   // to write pure data with no pointers and the constant pool should
   2503   // be emitted before using dd.
   2504   ASSERT(num_pending_reloc_info_ == 0);
   2505   CheckBuffer();
   2506   *reinterpret_cast<uint32_t*>(pc_) = data;
   2507   pc_ += sizeof(uint32_t);
   2508 }
   2509 
   2510 
   2511 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
   2512   // We do not try to reuse pool constants.
   2513   RelocInfo rinfo(pc_, rmode, data, NULL);
   2514   if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::DEBUG_BREAK_SLOT) {
   2515     // Adjust code for new modes.
   2516     ASSERT(RelocInfo::IsDebugBreakSlot(rmode)
   2517            || RelocInfo::IsJSReturn(rmode)
   2518            || RelocInfo::IsComment(rmode)
   2519            || RelocInfo::IsPosition(rmode));
   2520     // These modes do not need an entry in the constant pool.
   2521   } else {
   2522     ASSERT(num_pending_reloc_info_ < kMaxNumPendingRelocInfo);
   2523     if (num_pending_reloc_info_ == 0) {
   2524       first_const_pool_use_ = pc_offset();
   2525     }
   2526     pending_reloc_info_[num_pending_reloc_info_++] = rinfo;
   2527     // Make sure the constant pool is not emitted in place of the next
   2528     // instruction for which we just recorded relocation info.
   2529     BlockConstPoolFor(1);
   2530   }
   2531   if (rinfo.rmode() != RelocInfo::NONE) {
   2532     // Don't record external references unless the heap will be serialized.
   2533     if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
   2534 #ifdef DEBUG
   2535       if (!Serializer::enabled()) {
   2536         Serializer::TooLateToEnableNow();
   2537       }
   2538 #endif
   2539       if (!Serializer::enabled() && !emit_debug_code()) {
   2540         return;
   2541       }
   2542     }
   2543     ASSERT(buffer_space() >= kMaxRelocSize);  // too late to grow buffer here
   2544     if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
   2545       RelocInfo reloc_info_with_ast_id(pc_, rmode, RecordedAstId(), NULL);
   2546       ClearRecordedAstId();
   2547       reloc_info_writer.Write(&reloc_info_with_ast_id);
   2548     } else {
   2549       reloc_info_writer.Write(&rinfo);
   2550     }
   2551   }
   2552 }
   2553 
   2554 
   2555 void Assembler::BlockConstPoolFor(int instructions) {
   2556   int pc_limit = pc_offset() + instructions * kInstrSize;
   2557   if (no_const_pool_before_ < pc_limit) {
   2558     // If there are some pending entries, the constant pool cannot be blocked
   2559     // further than first_const_pool_use_ + kMaxDistToPool
   2560     ASSERT((num_pending_reloc_info_ == 0) ||
   2561            (pc_limit < (first_const_pool_use_ + kMaxDistToPool)));
   2562     no_const_pool_before_ = pc_limit;
   2563   }
   2564 
   2565   if (next_buffer_check_ < no_const_pool_before_) {
   2566     next_buffer_check_ = no_const_pool_before_;
   2567   }
   2568 }
   2569 
   2570 
   2571 void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
   2572   // Some short sequence of instruction mustn't be broken up by constant pool
   2573   // emission, such sequences are protected by calls to BlockConstPoolFor and
   2574   // BlockConstPoolScope.
   2575   if (is_const_pool_blocked()) {
   2576     // Something is wrong if emission is forced and blocked at the same time.
   2577     ASSERT(!force_emit);
   2578     return;
   2579   }
   2580 
   2581   // There is nothing to do if there are no pending constant pool entries.
   2582   if (num_pending_reloc_info_ == 0)  {
   2583     // Calculate the offset of the next check.
   2584     next_buffer_check_ = pc_offset() + kCheckPoolInterval;
   2585     return;
   2586   }
   2587 
   2588   // We emit a constant pool when:
   2589   //  * requested to do so by parameter force_emit (e.g. after each function).
   2590   //  * the distance to the first instruction accessing the constant pool is
   2591   //    kAvgDistToPool or more.
   2592   //  * no jump is required and the distance to the first instruction accessing
   2593   //    the constant pool is at least kMaxDistToPool / 2.
   2594   ASSERT(first_const_pool_use_ >= 0);
   2595   int dist = pc_offset() - first_const_pool_use_;
   2596   if (!force_emit && dist < kAvgDistToPool &&
   2597       (require_jump || (dist < (kMaxDistToPool / 2)))) {
   2598     return;
   2599   }
   2600 
   2601   // Check that the code buffer is large enough before emitting the constant
   2602   // pool (include the jump over the pool and the constant pool marker and
   2603   // the gap to the relocation information).
   2604   int jump_instr = require_jump ? kInstrSize : 0;
   2605   int needed_space = jump_instr + kInstrSize +
   2606                      num_pending_reloc_info_ * kInstrSize + kGap;
   2607   while (buffer_space() <= needed_space) GrowBuffer();
   2608 
   2609   {
   2610     // Block recursive calls to CheckConstPool.
   2611     BlockConstPoolScope block_const_pool(this);
   2612 
   2613     // Emit jump over constant pool if necessary.
   2614     Label after_pool;
   2615     if (require_jump) {
   2616       b(&after_pool);
   2617     }
   2618 
   2619     RecordComment("[ Constant Pool");
   2620 
   2621     // Put down constant pool marker "Undefined instruction" as specified by
   2622     // A5.6 (ARMv7) Instruction set encoding.
   2623     emit(kConstantPoolMarker | num_pending_reloc_info_);
   2624 
   2625     // Emit constant pool entries.
   2626     for (int i = 0; i < num_pending_reloc_info_; i++) {
   2627       RelocInfo& rinfo = pending_reloc_info_[i];
   2628       ASSERT(rinfo.rmode() != RelocInfo::COMMENT &&
   2629              rinfo.rmode() != RelocInfo::POSITION &&
   2630              rinfo.rmode() != RelocInfo::STATEMENT_POSITION);
   2631 
   2632       Instr instr = instr_at(rinfo.pc());
   2633       // Instruction to patch must be 'ldr rd, [pc, #offset]' with offset == 0.
   2634       ASSERT(IsLdrPcImmediateOffset(instr) &&
   2635              GetLdrRegisterImmediateOffset(instr) == 0);
   2636 
   2637       int delta = pc_ - rinfo.pc() - kPcLoadDelta;
   2638       // 0 is the smallest delta:
   2639       //   ldr rd, [pc, #0]
   2640       //   constant pool marker
   2641       //   data
   2642       ASSERT(is_uint12(delta));
   2643 
   2644       instr_at_put(rinfo.pc(), SetLdrRegisterImmediateOffset(instr, delta));
   2645       emit(rinfo.data());
   2646     }
   2647 
   2648     num_pending_reloc_info_ = 0;
   2649     first_const_pool_use_ = -1;
   2650 
   2651     RecordComment("]");
   2652 
   2653     if (after_pool.is_linked()) {
   2654       bind(&after_pool);
   2655     }
   2656   }
   2657 
   2658   // Since a constant pool was just emitted, move the check offset forward by
   2659   // the standard interval.
   2660   next_buffer_check_ = pc_offset() + kCheckPoolInterval;
   2661 }
   2662 
   2663 
   2664 } }  // namespace v8::internal
   2665 
   2666 #endif  // V8_TARGET_ARCH_ARM
   2667