Home | History | Annotate | Download | only in AsmPrinter
      1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the AsmPrinter class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "asm-printer"
     15 #include "llvm/CodeGen/AsmPrinter.h"
     16 #if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
     17 #   include "DwarfDebug.h"
     18 #   include "DwarfException.h"
     19 #endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
     20 #include "llvm/Module.h"
     21 #include "llvm/CodeGen/GCMetadataPrinter.h"
     22 #include "llvm/CodeGen/MachineConstantPool.h"
     23 #include "llvm/CodeGen/MachineFrameInfo.h"
     24 #include "llvm/CodeGen/MachineFunction.h"
     25 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     26 #include "llvm/CodeGen/MachineLoopInfo.h"
     27 #include "llvm/CodeGen/MachineModuleInfo.h"
     28 #include "llvm/Analysis/ConstantFolding.h"
     29 #include "llvm/Analysis/DebugInfo.h"
     30 #include "llvm/MC/MCAsmInfo.h"
     31 #include "llvm/MC/MCContext.h"
     32 #include "llvm/MC/MCExpr.h"
     33 #include "llvm/MC/MCInst.h"
     34 #include "llvm/MC/MCSection.h"
     35 #include "llvm/MC/MCStreamer.h"
     36 #include "llvm/MC/MCSymbol.h"
     37 #include "llvm/Target/Mangler.h"
     38 #include "llvm/Target/TargetData.h"
     39 #include "llvm/Target/TargetInstrInfo.h"
     40 #include "llvm/Target/TargetLowering.h"
     41 #include "llvm/Target/TargetLoweringObjectFile.h"
     42 #include "llvm/Target/TargetOptions.h"
     43 #include "llvm/Target/TargetRegisterInfo.h"
     44 #include "llvm/Assembly/Writer.h"
     45 #include "llvm/ADT/SmallString.h"
     46 #include "llvm/ADT/Statistic.h"
     47 #include "llvm/Support/ErrorHandling.h"
     48 #include "llvm/Support/Format.h"
     49 #include "llvm/Support/MathExtras.h"
     50 #include "llvm/Support/Timer.h"
     51 #include <ctype.h>
     52 using namespace llvm;
     53 
     54 static const char *DWARFGroupName = "DWARF Emission";
     55 static const char *DbgTimerName = "DWARF Debug Writer";
     56 static const char *EHTimerName = "DWARF Exception Writer";
     57 
     58 STATISTIC(EmittedInsts, "Number of machine instrs printed");
     59 
     60 char AsmPrinter::ID = 0;
     61 
     62 typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
     63 static gcp_map_type &getGCMap(void *&P) {
     64   if (P == 0)
     65     P = new gcp_map_type();
     66   return *(gcp_map_type*)P;
     67 }
     68 
     69 
     70 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
     71 /// value in log2 form.  This rounds up to the preferred alignment if possible
     72 /// and legal.
     73 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const TargetData &TD,
     74                                    unsigned InBits = 0) {
     75   unsigned NumBits = 0;
     76   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
     77     NumBits = TD.getPreferredAlignmentLog(GVar);
     78 
     79   // If InBits is specified, round it to it.
     80   if (InBits > NumBits)
     81     NumBits = InBits;
     82 
     83   // If the GV has a specified alignment, take it into account.
     84   if (GV->getAlignment() == 0)
     85     return NumBits;
     86 
     87   unsigned GVAlign = Log2_32(GV->getAlignment());
     88 
     89   // If the GVAlign is larger than NumBits, or if we are required to obey
     90   // NumBits because the GV has an assigned section, obey it.
     91   if (GVAlign > NumBits || GV->hasSection())
     92     NumBits = GVAlign;
     93   return NumBits;
     94 }
     95 
     96 
     97 
     98 
     99 AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
    100   : MachineFunctionPass(ID),
    101     TM(tm), MAI(tm.getMCAsmInfo()),
    102     OutContext(Streamer.getContext()),
    103     OutStreamer(Streamer),
    104     LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
    105   DD = 0; DE = 0; MMI = 0; LI = 0;
    106   CurrentFnSym = CurrentFnSymForSize = 0;
    107   GCMetadataPrinters = 0;
    108   VerboseAsm = Streamer.isVerboseAsm();
    109 }
    110 
    111 AsmPrinter::~AsmPrinter() {
    112   assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized");
    113 
    114   if (GCMetadataPrinters != 0) {
    115     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
    116 
    117     for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
    118       delete I->second;
    119     delete &GCMap;
    120     GCMetadataPrinters = 0;
    121   }
    122 
    123   delete &OutStreamer;
    124 }
    125 
    126 /// getFunctionNumber - Return a unique ID for the current function.
    127 ///
    128 unsigned AsmPrinter::getFunctionNumber() const {
    129   return MF->getFunctionNumber();
    130 }
    131 
    132 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
    133   return TM.getTargetLowering()->getObjFileLowering();
    134 }
    135 
    136 
    137 /// getTargetData - Return information about data layout.
    138 const TargetData &AsmPrinter::getTargetData() const {
    139   return *TM.getTargetData();
    140 }
    141 
    142 /// getCurrentSection() - Return the current section we are emitting to.
    143 const MCSection *AsmPrinter::getCurrentSection() const {
    144   return OutStreamer.getCurrentSection();
    145 }
    146 
    147 
    148 
    149 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
    150   AU.setPreservesAll();
    151   MachineFunctionPass::getAnalysisUsage(AU);
    152   AU.addRequired<MachineModuleInfo>();
    153   AU.addRequired<GCModuleInfo>();
    154   if (isVerbose())
    155     AU.addRequired<MachineLoopInfo>();
    156 }
    157 
    158 bool AsmPrinter::doInitialization(Module &M) {
    159   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
    160   MMI->AnalyzeModule(M);
    161 
    162   // Initialize TargetLoweringObjectFile.
    163   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
    164     .Initialize(OutContext, TM);
    165 
    166   Mang = new Mangler(OutContext, *TM.getTargetData());
    167 
    168   // Allow the target to emit any magic that it wants at the start of the file.
    169   EmitStartOfAsmFile(M);
    170 
    171   // Very minimal debug info. It is ignored if we emit actual debug info. If we
    172   // don't, this at least helps the user find where a global came from.
    173   if (MAI->hasSingleParameterDotFile()) {
    174     // .file "foo.c"
    175     OutStreamer.EmitFileDirective(M.getModuleIdentifier());
    176   }
    177 
    178   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
    179   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
    180   for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
    181     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
    182       MP->beginAssembly(*this);
    183 
    184   // Emit module-level inline asm if it exists.
    185   if (!M.getModuleInlineAsm().empty()) {
    186     OutStreamer.AddComment("Start of file scope inline assembly");
    187     OutStreamer.AddBlankLine();
    188     EmitInlineAsm(M.getModuleInlineAsm()+"\n");
    189     OutStreamer.AddComment("End of file scope inline assembly");
    190     OutStreamer.AddBlankLine();
    191   }
    192 
    193 #if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
    194   if (MAI->doesSupportDebugInformation())
    195     DD = new DwarfDebug(this, &M);
    196 
    197   switch (MAI->getExceptionHandlingType()) {
    198   case ExceptionHandling::None:
    199     return false;
    200   case ExceptionHandling::SjLj:
    201   case ExceptionHandling::DwarfCFI:
    202     DE = new DwarfCFIException(this);
    203     return false;
    204   case ExceptionHandling::ARM:
    205     DE = new ARMException(this);
    206     return false;
    207   case ExceptionHandling::Win64:
    208     DE = new Win64Exception(this);
    209     return false;
    210   }
    211 #else
    212   return false;
    213 #endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
    214 
    215   llvm_unreachable("Unknown exception type.");
    216 }
    217 
    218 void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const {
    219   switch ((GlobalValue::LinkageTypes)Linkage) {
    220   case GlobalValue::CommonLinkage:
    221   case GlobalValue::LinkOnceAnyLinkage:
    222   case GlobalValue::LinkOnceODRLinkage:
    223   case GlobalValue::WeakAnyLinkage:
    224   case GlobalValue::WeakODRLinkage:
    225   case GlobalValue::LinkerPrivateWeakLinkage:
    226   case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
    227     if (MAI->getWeakDefDirective() != 0) {
    228       // .globl _foo
    229       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
    230 
    231       if ((GlobalValue::LinkageTypes)Linkage !=
    232           GlobalValue::LinkerPrivateWeakDefAutoLinkage)
    233         // .weak_definition _foo
    234         OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
    235       else
    236         OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
    237     } else if (MAI->getLinkOnceDirective() != 0) {
    238       // .globl _foo
    239       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
    240       //NOTE: linkonce is handled by the section the symbol was assigned to.
    241     } else {
    242       // .weak _foo
    243       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
    244     }
    245     break;
    246   case GlobalValue::DLLExportLinkage:
    247   case GlobalValue::AppendingLinkage:
    248     // FIXME: appending linkage variables should go into a section of
    249     // their name or something.  For now, just emit them as external.
    250   case GlobalValue::ExternalLinkage:
    251     // If external or appending, declare as a global symbol.
    252     // .globl _foo
    253     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
    254     break;
    255   case GlobalValue::PrivateLinkage:
    256   case GlobalValue::InternalLinkage:
    257   case GlobalValue::LinkerPrivateLinkage:
    258     break;
    259   default:
    260     llvm_unreachable("Unknown linkage type!");
    261   }
    262 }
    263 
    264 
    265 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
    266 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
    267   if (GV->hasInitializer()) {
    268     // Check to see if this is a special global used by LLVM, if so, emit it.
    269     if (EmitSpecialLLVMGlobal(GV))
    270       return;
    271 
    272     if (isVerbose()) {
    273       WriteAsOperand(OutStreamer.GetCommentOS(), GV,
    274                      /*PrintType=*/false, GV->getParent());
    275       OutStreamer.GetCommentOS() << '\n';
    276     }
    277   }
    278 
    279   MCSymbol *GVSym = Mang->getSymbol(GV);
    280   EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
    281 
    282   if (!GV->hasInitializer())   // External globals require no extra code.
    283     return;
    284 
    285   if (MAI->hasDotTypeDotSizeDirective())
    286     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
    287 
    288   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
    289 
    290   const TargetData *TD = TM.getTargetData();
    291   uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
    292 
    293   // If the alignment is specified, we *must* obey it.  Overaligning a global
    294   // with a specified alignment is a prompt way to break globals emitted to
    295   // sections and expected to be contiguous (e.g. ObjC metadata).
    296   unsigned AlignLog = getGVAlignmentLog2(GV, *TD);
    297 
    298   // Handle common and BSS local symbols (.lcomm).
    299   if (GVKind.isCommon() || GVKind.isBSSLocal()) {
    300     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
    301     unsigned Align = 1 << AlignLog;
    302 
    303     // Handle common symbols.
    304     if (GVKind.isCommon()) {
    305       if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
    306         Align = 0;
    307 
    308       // .comm _foo, 42, 4
    309       OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
    310       return;
    311     }
    312 
    313     // Handle local BSS symbols.
    314     if (MAI->hasMachoZeroFillDirective()) {
    315       const MCSection *TheSection =
    316         getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
    317       // .zerofill __DATA, __bss, _foo, 400, 5
    318       OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
    319       return;
    320     }
    321 
    322     if (MAI->getLCOMMDirectiveType() != LCOMM::None &&
    323         (MAI->getLCOMMDirectiveType() != LCOMM::NoAlignment || Align == 1)) {
    324       // .lcomm _foo, 42
    325       OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
    326       return;
    327     }
    328 
    329     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
    330       Align = 0;
    331 
    332     // .local _foo
    333     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
    334     // .comm _foo, 42, 4
    335     OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
    336     return;
    337   }
    338 
    339   const MCSection *TheSection =
    340     getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
    341 
    342   // Handle the zerofill directive on darwin, which is a special form of BSS
    343   // emission.
    344   if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
    345     if (Size == 0) Size = 1;  // zerofill of 0 bytes is undefined.
    346 
    347     // .globl _foo
    348     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
    349     // .zerofill __DATA, __common, _foo, 400, 5
    350     OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
    351     return;
    352   }
    353 
    354   // Handle thread local data for mach-o which requires us to output an
    355   // additional structure of data and mangle the original symbol so that we
    356   // can reference it later.
    357   //
    358   // TODO: This should become an "emit thread local global" method on TLOF.
    359   // All of this macho specific stuff should be sunk down into TLOFMachO and
    360   // stuff like "TLSExtraDataSection" should no longer be part of the parent
    361   // TLOF class.  This will also make it more obvious that stuff like
    362   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
    363   // specific code.
    364   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
    365     // Emit the .tbss symbol
    366     MCSymbol *MangSym =
    367       OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
    368 
    369     if (GVKind.isThreadBSS())
    370       OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
    371     else if (GVKind.isThreadData()) {
    372       OutStreamer.SwitchSection(TheSection);
    373 
    374       EmitAlignment(AlignLog, GV);
    375       OutStreamer.EmitLabel(MangSym);
    376 
    377       EmitGlobalConstant(GV->getInitializer());
    378     }
    379 
    380     OutStreamer.AddBlankLine();
    381 
    382     // Emit the variable struct for the runtime.
    383     const MCSection *TLVSect
    384       = getObjFileLowering().getTLSExtraDataSection();
    385 
    386     OutStreamer.SwitchSection(TLVSect);
    387     // Emit the linkage here.
    388     EmitLinkage(GV->getLinkage(), GVSym);
    389     OutStreamer.EmitLabel(GVSym);
    390 
    391     // Three pointers in size:
    392     //   - __tlv_bootstrap - used to make sure support exists
    393     //   - spare pointer, used when mapped by the runtime
    394     //   - pointer to mangled symbol above with initializer
    395     unsigned PtrSize = TD->getPointerSizeInBits()/8;
    396     OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
    397                           PtrSize, 0);
    398     OutStreamer.EmitIntValue(0, PtrSize, 0);
    399     OutStreamer.EmitSymbolValue(MangSym, PtrSize, 0);
    400 
    401     OutStreamer.AddBlankLine();
    402     return;
    403   }
    404 
    405   OutStreamer.SwitchSection(TheSection);
    406 
    407   EmitLinkage(GV->getLinkage(), GVSym);
    408   EmitAlignment(AlignLog, GV);
    409 
    410   OutStreamer.EmitLabel(GVSym);
    411 
    412   EmitGlobalConstant(GV->getInitializer());
    413 
    414   if (MAI->hasDotTypeDotSizeDirective())
    415     // .size foo, 42
    416     OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
    417 
    418   OutStreamer.AddBlankLine();
    419 }
    420 
    421 /// EmitFunctionHeader - This method emits the header for the current
    422 /// function.
    423 void AsmPrinter::EmitFunctionHeader() {
    424   // Print out constants referenced by the function
    425   EmitConstantPool();
    426 
    427   // Print the 'header' of function.
    428   const Function *F = MF->getFunction();
    429 
    430   OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
    431   EmitVisibility(CurrentFnSym, F->getVisibility());
    432 
    433   EmitLinkage(F->getLinkage(), CurrentFnSym);
    434   EmitAlignment(MF->getAlignment(), F);
    435 
    436   if (MAI->hasDotTypeDotSizeDirective())
    437     OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
    438 
    439   if (isVerbose()) {
    440     WriteAsOperand(OutStreamer.GetCommentOS(), F,
    441                    /*PrintType=*/false, F->getParent());
    442     OutStreamer.GetCommentOS() << '\n';
    443   }
    444 
    445   // Emit the CurrentFnSym.  This is a virtual function to allow targets to
    446   // do their wild and crazy things as required.
    447   EmitFunctionEntryLabel();
    448 
    449   // If the function had address-taken blocks that got deleted, then we have
    450   // references to the dangling symbols.  Emit them at the start of the function
    451   // so that we don't get references to undefined symbols.
    452   std::vector<MCSymbol*> DeadBlockSyms;
    453   MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
    454   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
    455     OutStreamer.AddComment("Address taken block that was later removed");
    456     OutStreamer.EmitLabel(DeadBlockSyms[i]);
    457   }
    458 
    459   // Add some workaround for linkonce linkage on Cygwin\MinGW.
    460   if (MAI->getLinkOnceDirective() != 0 &&
    461       (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) {
    462     // FIXME: What is this?
    463     MCSymbol *FakeStub =
    464       OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+
    465                                    CurrentFnSym->getName());
    466     OutStreamer.EmitLabel(FakeStub);
    467   }
    468 
    469   // Emit pre-function debug and/or EH information.
    470 #if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
    471   if (DE) {
    472     NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
    473     DE->BeginFunction(MF);
    474   }
    475   if (DD) {
    476     NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
    477     DD->beginFunction(MF);
    478   }
    479 #endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
    480 }
    481 
    482 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
    483 /// function.  This can be overridden by targets as required to do custom stuff.
    484 void AsmPrinter::EmitFunctionEntryLabel() {
    485   // The function label could have already been emitted if two symbols end up
    486   // conflicting due to asm renaming.  Detect this and emit an error.
    487   if (CurrentFnSym->isUndefined()) {
    488     OutStreamer.ForceCodeRegion();
    489     return OutStreamer.EmitLabel(CurrentFnSym);
    490   }
    491 
    492   report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
    493                      "' label emitted multiple times to assembly file");
    494 }
    495 
    496 
    497 /// EmitComments - Pretty-print comments for instructions.
    498 static void EmitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
    499   const MachineFunction *MF = MI.getParent()->getParent();
    500   const TargetMachine &TM = MF->getTarget();
    501 
    502   // Check for spills and reloads
    503   int FI;
    504 
    505   const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
    506 
    507   // We assume a single instruction only has a spill or reload, not
    508   // both.
    509   const MachineMemOperand *MMO;
    510   if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
    511     if (FrameInfo->isSpillSlotObjectIndex(FI)) {
    512       MMO = *MI.memoperands_begin();
    513       CommentOS << MMO->getSize() << "-byte Reload\n";
    514     }
    515   } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
    516     if (FrameInfo->isSpillSlotObjectIndex(FI))
    517       CommentOS << MMO->getSize() << "-byte Folded Reload\n";
    518   } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
    519     if (FrameInfo->isSpillSlotObjectIndex(FI)) {
    520       MMO = *MI.memoperands_begin();
    521       CommentOS << MMO->getSize() << "-byte Spill\n";
    522     }
    523   } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
    524     if (FrameInfo->isSpillSlotObjectIndex(FI))
    525       CommentOS << MMO->getSize() << "-byte Folded Spill\n";
    526   }
    527 
    528   // Check for spill-induced copies
    529   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
    530     CommentOS << " Reload Reuse\n";
    531 }
    532 
    533 /// EmitImplicitDef - This method emits the specified machine instruction
    534 /// that is an implicit def.
    535 static void EmitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) {
    536   unsigned RegNo = MI->getOperand(0).getReg();
    537   AP.OutStreamer.AddComment(Twine("implicit-def: ") +
    538                             AP.TM.getRegisterInfo()->getName(RegNo));
    539   AP.OutStreamer.AddBlankLine();
    540 }
    541 
    542 static void EmitKill(const MachineInstr *MI, AsmPrinter &AP) {
    543   std::string Str = "kill:";
    544   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    545     const MachineOperand &Op = MI->getOperand(i);
    546     assert(Op.isReg() && "KILL instruction must have only register operands");
    547     Str += ' ';
    548     Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
    549     Str += (Op.isDef() ? "<def>" : "<kill>");
    550   }
    551   AP.OutStreamer.AddComment(Str);
    552   AP.OutStreamer.AddBlankLine();
    553 }
    554 
    555 /// EmitDebugValueComment - This method handles the target-independent form
    556 /// of DBG_VALUE, returning true if it was able to do so.  A false return
    557 /// means the target will need to handle MI in EmitInstruction.
    558 static bool EmitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
    559   // This code handles only the 3-operand target-independent form.
    560   if (MI->getNumOperands() != 3)
    561     return false;
    562 
    563   SmallString<128> Str;
    564   raw_svector_ostream OS(Str);
    565   OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: ";
    566 
    567   // cast away const; DIetc do not take const operands for some reason.
    568   DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata()));
    569   if (V.getContext().isSubprogram())
    570     OS << DISubprogram(V.getContext()).getDisplayName() << ":";
    571   OS << V.getName() << " <- ";
    572 
    573   // Register or immediate value. Register 0 means undef.
    574   if (MI->getOperand(0).isFPImm()) {
    575     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
    576     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
    577       OS << (double)APF.convertToFloat();
    578     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
    579       OS << APF.convertToDouble();
    580     } else {
    581       // There is no good way to print long double.  Convert a copy to
    582       // double.  Ah well, it's only a comment.
    583       bool ignored;
    584       APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
    585                   &ignored);
    586       OS << "(long double) " << APF.convertToDouble();
    587     }
    588   } else if (MI->getOperand(0).isImm()) {
    589     OS << MI->getOperand(0).getImm();
    590   } else if (MI->getOperand(0).isCImm()) {
    591     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
    592   } else {
    593     assert(MI->getOperand(0).isReg() && "Unknown operand type");
    594     if (MI->getOperand(0).getReg() == 0) {
    595       // Suppress offset, it is not meaningful here.
    596       OS << "undef";
    597       // NOTE: Want this comment at start of line, don't emit with AddComment.
    598       AP.OutStreamer.EmitRawText(OS.str());
    599       return true;
    600     }
    601     OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg());
    602   }
    603 
    604   OS << '+' << MI->getOperand(1).getImm();
    605   // NOTE: Want this comment at start of line, don't emit with AddComment.
    606   AP.OutStreamer.EmitRawText(OS.str());
    607   return true;
    608 }
    609 
    610 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
    611   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
    612       MF->getFunction()->needsUnwindTableEntry())
    613     return CFI_M_EH;
    614 
    615   if (MMI->hasDebugInfo())
    616     return CFI_M_Debug;
    617 
    618   return CFI_M_None;
    619 }
    620 
    621 bool AsmPrinter::needsSEHMoves() {
    622   return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
    623     MF->getFunction()->needsUnwindTableEntry();
    624 }
    625 
    626 bool AsmPrinter::needsRelocationsForDwarfStringPool() const {
    627   return MAI->doesDwarfUseRelocationsForStringPool();
    628 }
    629 
    630 void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
    631   MCSymbol *Label = MI.getOperand(0).getMCSymbol();
    632 
    633   if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
    634     return;
    635 
    636   if (needsCFIMoves() == CFI_M_None)
    637     return;
    638 
    639   if (MMI->getCompactUnwindEncoding() != 0)
    640     OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
    641 
    642   MachineModuleInfo &MMI = MF->getMMI();
    643   std::vector<MachineMove> &Moves = MMI.getFrameMoves();
    644   bool FoundOne = false;
    645   (void)FoundOne;
    646   for (std::vector<MachineMove>::iterator I = Moves.begin(),
    647          E = Moves.end(); I != E; ++I) {
    648     if (I->getLabel() == Label) {
    649       EmitCFIFrameMove(*I);
    650       FoundOne = true;
    651     }
    652   }
    653   assert(FoundOne);
    654 }
    655 
    656 /// EmitFunctionBody - This method emits the body and trailer for a
    657 /// function.
    658 void AsmPrinter::EmitFunctionBody() {
    659   // Emit target-specific gunk before the function body.
    660   EmitFunctionBodyStart();
    661 
    662   bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo();
    663 
    664   // Print out code for the function.
    665   bool HasAnyRealCode = false;
    666   const MachineInstr *LastMI = 0;
    667   for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
    668        I != E; ++I) {
    669     // Print a label for the basic block.
    670     EmitBasicBlockStart(I);
    671     for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
    672          II != IE; ++II) {
    673       LastMI = II;
    674 
    675       // Print the assembly for the instruction.
    676       if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() &&
    677           !II->isDebugValue()) {
    678         HasAnyRealCode = true;
    679 
    680         ++EmittedInsts;
    681       }
    682 #if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
    683       if (ShouldPrintDebugScopes) {
    684         NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
    685         DD->beginInstruction(II);
    686       }
    687 #endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
    688 
    689       if (isVerbose())
    690         EmitComments(*II, OutStreamer.GetCommentOS());
    691 
    692       switch (II->getOpcode()) {
    693       case TargetOpcode::PROLOG_LABEL:
    694         emitPrologLabel(*II);
    695         break;
    696 
    697       case TargetOpcode::EH_LABEL:
    698       case TargetOpcode::GC_LABEL:
    699         OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
    700         break;
    701       case TargetOpcode::INLINEASM:
    702         EmitInlineAsm(II);
    703         break;
    704       case TargetOpcode::DBG_VALUE:
    705         if (isVerbose()) {
    706           if (!EmitDebugValueComment(II, *this))
    707             EmitInstruction(II);
    708         }
    709         break;
    710       case TargetOpcode::IMPLICIT_DEF:
    711         if (isVerbose()) EmitImplicitDef(II, *this);
    712         break;
    713       case TargetOpcode::KILL:
    714         if (isVerbose()) EmitKill(II, *this);
    715         break;
    716       default:
    717         if (!TM.hasMCUseLoc())
    718           MCLineEntry::Make(&OutStreamer, getCurrentSection());
    719 
    720         EmitInstruction(II);
    721         break;
    722       }
    723 
    724 #if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
    725       if (ShouldPrintDebugScopes) {
    726         NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
    727         DD->endInstruction(II);
    728       }
    729 #endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
    730     }
    731   }
    732 
    733   // If the last instruction was a prolog label, then we have a situation where
    734   // we emitted a prolog but no function body. This results in the ending prolog
    735   // label equaling the end of function label and an invalid "row" in the
    736   // FDE. We need to emit a noop in this situation so that the FDE's rows are
    737   // valid.
    738   bool RequiresNoop = LastMI && LastMI->isPrologLabel();
    739 
    740   // If the function is empty and the object file uses .subsections_via_symbols,
    741   // then we need to emit *something* to the function body to prevent the
    742   // labels from collapsing together.  Just emit a noop.
    743   if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
    744     MCInst Noop;
    745     TM.getInstrInfo()->getNoopForMachoTarget(Noop);
    746     if (Noop.getOpcode()) {
    747       OutStreamer.AddComment("avoids zero-length function");
    748       OutStreamer.EmitInstruction(Noop);
    749     } else  // Target not mc-ized yet.
    750       OutStreamer.EmitRawText(StringRef("\tnop\n"));
    751   }
    752 
    753   const Function *F = MF->getFunction();
    754   for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) {
    755     const BasicBlock *BB = i;
    756     if (!BB->hasAddressTaken())
    757       continue;
    758     MCSymbol *Sym = GetBlockAddressSymbol(BB);
    759     if (Sym->isDefined())
    760       continue;
    761     OutStreamer.AddComment("Address of block that was removed by CodeGen");
    762     OutStreamer.EmitLabel(Sym);
    763   }
    764 
    765   // Emit target-specific gunk after the function body.
    766   EmitFunctionBodyEnd();
    767 
    768   // If the target wants a .size directive for the size of the function, emit
    769   // it.
    770   if (MAI->hasDotTypeDotSizeDirective()) {
    771     // Create a symbol for the end of function, so we can get the size as
    772     // difference between the function label and the temp label.
    773     MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
    774     OutStreamer.EmitLabel(FnEndLabel);
    775 
    776     const MCExpr *SizeExp =
    777       MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
    778                               MCSymbolRefExpr::Create(CurrentFnSymForSize,
    779                                                       OutContext),
    780                               OutContext);
    781     OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
    782   }
    783 
    784   // Emit post-function debug information.
    785 #if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
    786   if (DD) {
    787     NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
    788     DD->endFunction(MF);
    789   }
    790   if (DE) {
    791     NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
    792     DE->EndFunction();
    793   }
    794 #endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
    795   MMI->EndFunction();
    796 
    797   // Print out jump tables referenced by the function.
    798   EmitJumpTableInfo();
    799 
    800   OutStreamer.AddBlankLine();
    801 }
    802 
    803 /// getDebugValueLocation - Get location information encoded by DBG_VALUE
    804 /// operands.
    805 MachineLocation AsmPrinter::
    806 getDebugValueLocation(const MachineInstr *MI) const {
    807   // Target specific DBG_VALUE instructions are handled by each target.
    808   return MachineLocation();
    809 }
    810 
    811 /// EmitDwarfRegOp - Emit dwarf register operation.
    812 void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const {
    813   const TargetRegisterInfo *TRI = TM.getRegisterInfo();
    814   int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
    815 
    816   for (const uint16_t *SR = TRI->getSuperRegisters(MLoc.getReg());
    817        *SR && Reg < 0; ++SR) {
    818     Reg = TRI->getDwarfRegNum(*SR, false);
    819     // FIXME: Get the bit range this register uses of the superregister
    820     // so that we can produce a DW_OP_bit_piece
    821   }
    822 
    823   // FIXME: Handle cases like a super register being encoded as
    824   // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33
    825 
    826   // FIXME: We have no reasonable way of handling errors in here. The
    827   // caller might be in the middle of an dwarf expression. We should
    828   // probably assert that Reg >= 0 once debug info generation is more mature.
    829 
    830   if (int Offset =  MLoc.getOffset()) {
    831     if (Reg < 32) {
    832       OutStreamer.AddComment(
    833         dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
    834       EmitInt8(dwarf::DW_OP_breg0 + Reg);
    835     } else {
    836       OutStreamer.AddComment("DW_OP_bregx");
    837       EmitInt8(dwarf::DW_OP_bregx);
    838       OutStreamer.AddComment(Twine(Reg));
    839       EmitULEB128(Reg);
    840     }
    841     EmitSLEB128(Offset);
    842   } else {
    843     if (Reg < 32) {
    844       OutStreamer.AddComment(
    845         dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
    846       EmitInt8(dwarf::DW_OP_reg0 + Reg);
    847     } else {
    848       OutStreamer.AddComment("DW_OP_regx");
    849       EmitInt8(dwarf::DW_OP_regx);
    850       OutStreamer.AddComment(Twine(Reg));
    851       EmitULEB128(Reg);
    852     }
    853   }
    854 
    855   // FIXME: Produce a DW_OP_bit_piece if we used a superregister
    856 }
    857 
    858 bool AsmPrinter::doFinalization(Module &M) {
    859   // Emit global variables.
    860   for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
    861        I != E; ++I)
    862     EmitGlobalVariable(I);
    863 
    864   // Emit visibility info for declarations
    865   for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
    866     const Function &F = *I;
    867     if (!F.isDeclaration())
    868       continue;
    869     GlobalValue::VisibilityTypes V = F.getVisibility();
    870     if (V == GlobalValue::DefaultVisibility)
    871       continue;
    872 
    873     MCSymbol *Name = Mang->getSymbol(&F);
    874     EmitVisibility(Name, V, false);
    875   }
    876 
    877   // Emit module flags.
    878   SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
    879   M.getModuleFlagsMetadata(ModuleFlags);
    880   if (!ModuleFlags.empty())
    881     getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM);
    882 
    883   // Finalize debug and EH information.
    884 #if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
    885   if (DE) {
    886     {
    887       NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
    888       DE->EndModule();
    889     }
    890     delete DE; DE = 0;
    891   }
    892   if (DD) {
    893     {
    894       NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
    895       DD->endModule();
    896     }
    897     delete DD; DD = 0;
    898   }
    899 #endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
    900 
    901   // If the target wants to know about weak references, print them all.
    902   if (MAI->getWeakRefDirective()) {
    903     // FIXME: This is not lazy, it would be nice to only print weak references
    904     // to stuff that is actually used.  Note that doing so would require targets
    905     // to notice uses in operands (due to constant exprs etc).  This should
    906     // happen with the MC stuff eventually.
    907 
    908     // Print out module-level global variables here.
    909     for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
    910          I != E; ++I) {
    911       if (!I->hasExternalWeakLinkage()) continue;
    912       OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
    913     }
    914 
    915     for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
    916       if (!I->hasExternalWeakLinkage()) continue;
    917       OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
    918     }
    919   }
    920 
    921   if (MAI->hasSetDirective()) {
    922     OutStreamer.AddBlankLine();
    923     for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
    924          I != E; ++I) {
    925       MCSymbol *Name = Mang->getSymbol(I);
    926 
    927       const GlobalValue *GV = I->getAliasedGlobal();
    928       MCSymbol *Target = Mang->getSymbol(GV);
    929 
    930       if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
    931         OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
    932       else if (I->hasWeakLinkage())
    933         OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
    934       else
    935         assert(I->hasLocalLinkage() && "Invalid alias linkage");
    936 
    937       EmitVisibility(Name, I->getVisibility());
    938 
    939       // Emit the directives as assignments aka .set:
    940       OutStreamer.EmitAssignment(Name,
    941                                  MCSymbolRefExpr::Create(Target, OutContext));
    942     }
    943   }
    944 
    945   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
    946   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
    947   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
    948     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
    949       MP->finishAssembly(*this);
    950 
    951   // If we don't have any trampolines, then we don't require stack memory
    952   // to be executable. Some targets have a directive to declare this.
    953   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
    954   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
    955     if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
    956       OutStreamer.SwitchSection(S);
    957 
    958   // Allow the target to emit any magic that it wants at the end of the file,
    959   // after everything else has gone out.
    960   EmitEndOfAsmFile(M);
    961 
    962   delete Mang; Mang = 0;
    963   MMI = 0;
    964 
    965   OutStreamer.Finish();
    966   return false;
    967 }
    968 
    969 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
    970   this->MF = &MF;
    971   // Get the function symbol.
    972   CurrentFnSym = Mang->getSymbol(MF.getFunction());
    973   CurrentFnSymForSize = CurrentFnSym;
    974 
    975   if (isVerbose())
    976     LI = &getAnalysis<MachineLoopInfo>();
    977 }
    978 
    979 namespace {
    980   // SectionCPs - Keep track the alignment, constpool entries per Section.
    981   struct SectionCPs {
    982     const MCSection *S;
    983     unsigned Alignment;
    984     SmallVector<unsigned, 4> CPEs;
    985     SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
    986   };
    987 }
    988 
    989 /// EmitConstantPool - Print to the current output stream assembly
    990 /// representations of the constants in the constant pool MCP. This is
    991 /// used to print out constants which have been "spilled to memory" by
    992 /// the code generator.
    993 ///
    994 void AsmPrinter::EmitConstantPool() {
    995   const MachineConstantPool *MCP = MF->getConstantPool();
    996   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
    997   if (CP.empty()) return;
    998 
    999   // Calculate sections for constant pool entries. We collect entries to go into
   1000   // the same section together to reduce amount of section switch statements.
   1001   SmallVector<SectionCPs, 4> CPSections;
   1002   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
   1003     const MachineConstantPoolEntry &CPE = CP[i];
   1004     unsigned Align = CPE.getAlignment();
   1005 
   1006     SectionKind Kind;
   1007     switch (CPE.getRelocationInfo()) {
   1008     default: llvm_unreachable("Unknown section kind");
   1009     case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
   1010     case 1:
   1011       Kind = SectionKind::getReadOnlyWithRelLocal();
   1012       break;
   1013     case 0:
   1014     switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
   1015     case 4:  Kind = SectionKind::getMergeableConst4(); break;
   1016     case 8:  Kind = SectionKind::getMergeableConst8(); break;
   1017     case 16: Kind = SectionKind::getMergeableConst16();break;
   1018     default: Kind = SectionKind::getMergeableConst(); break;
   1019     }
   1020     }
   1021 
   1022     const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
   1023 
   1024     // The number of sections are small, just do a linear search from the
   1025     // last section to the first.
   1026     bool Found = false;
   1027     unsigned SecIdx = CPSections.size();
   1028     while (SecIdx != 0) {
   1029       if (CPSections[--SecIdx].S == S) {
   1030         Found = true;
   1031         break;
   1032       }
   1033     }
   1034     if (!Found) {
   1035       SecIdx = CPSections.size();
   1036       CPSections.push_back(SectionCPs(S, Align));
   1037     }
   1038 
   1039     if (Align > CPSections[SecIdx].Alignment)
   1040       CPSections[SecIdx].Alignment = Align;
   1041     CPSections[SecIdx].CPEs.push_back(i);
   1042   }
   1043 
   1044   // Now print stuff into the calculated sections.
   1045   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
   1046     OutStreamer.SwitchSection(CPSections[i].S);
   1047     EmitAlignment(Log2_32(CPSections[i].Alignment));
   1048 
   1049     unsigned Offset = 0;
   1050     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
   1051       unsigned CPI = CPSections[i].CPEs[j];
   1052       MachineConstantPoolEntry CPE = CP[CPI];
   1053 
   1054       // Emit inter-object padding for alignment.
   1055       unsigned AlignMask = CPE.getAlignment() - 1;
   1056       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
   1057       OutStreamer.EmitFill(NewOffset - Offset, 0/*fillval*/, 0/*addrspace*/);
   1058 
   1059       Type *Ty = CPE.getType();
   1060       Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
   1061       OutStreamer.EmitLabel(GetCPISymbol(CPI));
   1062 
   1063       if (CPE.isMachineConstantPoolEntry())
   1064         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
   1065       else
   1066         EmitGlobalConstant(CPE.Val.ConstVal);
   1067     }
   1068   }
   1069 }
   1070 
   1071 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
   1072 /// by the current function to the current output stream.
   1073 ///
   1074 void AsmPrinter::EmitJumpTableInfo() {
   1075   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
   1076   if (MJTI == 0) return;
   1077   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
   1078   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
   1079   if (JT.empty()) return;
   1080 
   1081   // Pick the directive to use to print the jump table entries, and switch to
   1082   // the appropriate section.
   1083   const Function *F = MF->getFunction();
   1084   bool JTInDiffSection = false;
   1085   if (// In PIC mode, we need to emit the jump table to the same section as the
   1086       // function body itself, otherwise the label differences won't make sense.
   1087       // FIXME: Need a better predicate for this: what about custom entries?
   1088       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
   1089       // We should also do if the section name is NULL or function is declared
   1090       // in discardable section
   1091       // FIXME: this isn't the right predicate, should be based on the MCSection
   1092       // for the function.
   1093       F->isWeakForLinker()) {
   1094     OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM));
   1095   } else {
   1096     // Otherwise, drop it in the readonly section.
   1097     const MCSection *ReadOnlySection =
   1098       getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
   1099     OutStreamer.SwitchSection(ReadOnlySection);
   1100     JTInDiffSection = true;
   1101   }
   1102 
   1103   EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getTargetData())));
   1104 
   1105   // If we know the form of the jump table, go ahead and tag it as such.
   1106   if (!JTInDiffSection) {
   1107     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32) {
   1108       OutStreamer.EmitJumpTable32Region();
   1109     } else {
   1110       OutStreamer.EmitDataRegion();
   1111     }
   1112   }
   1113 
   1114   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
   1115     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
   1116 
   1117     // If this jump table was deleted, ignore it.
   1118     if (JTBBs.empty()) continue;
   1119 
   1120     // For the EK_LabelDifference32 entry, if the target supports .set, emit a
   1121     // .set directive for each unique entry.  This reduces the number of
   1122     // relocations the assembler will generate for the jump table.
   1123     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
   1124         MAI->hasSetDirective()) {
   1125       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
   1126       const TargetLowering *TLI = TM.getTargetLowering();
   1127       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
   1128       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
   1129         const MachineBasicBlock *MBB = JTBBs[ii];
   1130         if (!EmittedSets.insert(MBB)) continue;
   1131 
   1132         // .set LJTSet, LBB32-base
   1133         const MCExpr *LHS =
   1134           MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
   1135         OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
   1136                                 MCBinaryExpr::CreateSub(LHS, Base, OutContext));
   1137       }
   1138     }
   1139 
   1140     // On some targets (e.g. Darwin) we want to emit two consecutive labels
   1141     // before each jump table.  The first label is never referenced, but tells
   1142     // the assembler and linker the extents of the jump table object.  The
   1143     // second label is actually referenced by the code.
   1144     if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0])
   1145       // FIXME: This doesn't have to have any specific name, just any randomly
   1146       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
   1147       OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
   1148 
   1149     OutStreamer.EmitLabel(GetJTISymbol(JTI));
   1150 
   1151     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
   1152       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
   1153   }
   1154 }
   1155 
   1156 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
   1157 /// current stream.
   1158 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
   1159                                     const MachineBasicBlock *MBB,
   1160                                     unsigned UID) const {
   1161   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
   1162   const MCExpr *Value = 0;
   1163   switch (MJTI->getEntryKind()) {
   1164   case MachineJumpTableInfo::EK_Inline:
   1165     llvm_unreachable("Cannot emit EK_Inline jump table entry");
   1166   case MachineJumpTableInfo::EK_Custom32:
   1167     Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
   1168                                                               OutContext);
   1169     break;
   1170   case MachineJumpTableInfo::EK_BlockAddress:
   1171     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
   1172     //     .word LBB123
   1173     Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
   1174     break;
   1175   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
   1176     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
   1177     // with a relocation as gp-relative, e.g.:
   1178     //     .gprel32 LBB123
   1179     MCSymbol *MBBSym = MBB->getSymbol();
   1180     OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
   1181     return;
   1182   }
   1183 
   1184   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
   1185     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
   1186     // with a relocation as gp-relative, e.g.:
   1187     //     .gpdword LBB123
   1188     MCSymbol *MBBSym = MBB->getSymbol();
   1189     OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
   1190     return;
   1191   }
   1192 
   1193   case MachineJumpTableInfo::EK_LabelDifference32: {
   1194     // EK_LabelDifference32 - Each entry is the address of the block minus
   1195     // the address of the jump table.  This is used for PIC jump tables where
   1196     // gprel32 is not supported.  e.g.:
   1197     //      .word LBB123 - LJTI1_2
   1198     // If the .set directive is supported, this is emitted as:
   1199     //      .set L4_5_set_123, LBB123 - LJTI1_2
   1200     //      .word L4_5_set_123
   1201 
   1202     // If we have emitted set directives for the jump table entries, print
   1203     // them rather than the entries themselves.  If we're emitting PIC, then
   1204     // emit the table entries as differences between two text section labels.
   1205     if (MAI->hasSetDirective()) {
   1206       // If we used .set, reference the .set's symbol.
   1207       Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
   1208                                       OutContext);
   1209       break;
   1210     }
   1211     // Otherwise, use the difference as the jump table entry.
   1212     Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
   1213     const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
   1214     Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
   1215     break;
   1216   }
   1217   }
   1218 
   1219   assert(Value && "Unknown entry kind!");
   1220 
   1221   unsigned EntrySize = MJTI->getEntrySize(*TM.getTargetData());
   1222   OutStreamer.EmitValue(Value, EntrySize, /*addrspace*/0);
   1223 }
   1224 
   1225 
   1226 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
   1227 /// special global used by LLVM.  If so, emit it and return true, otherwise
   1228 /// do nothing and return false.
   1229 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
   1230   if (GV->getName() == "llvm.used") {
   1231     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
   1232       EmitLLVMUsedList(GV->getInitializer());
   1233     return true;
   1234   }
   1235 
   1236   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
   1237   if (GV->getSection() == "llvm.metadata" ||
   1238       GV->hasAvailableExternallyLinkage())
   1239     return true;
   1240 
   1241   if (!GV->hasAppendingLinkage()) return false;
   1242 
   1243   assert(GV->hasInitializer() && "Not a special LLVM global!");
   1244 
   1245   if (GV->getName() == "llvm.global_ctors") {
   1246     EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
   1247 
   1248     if (TM.getRelocationModel() == Reloc::Static &&
   1249         MAI->hasStaticCtorDtorReferenceInStaticMode()) {
   1250       StringRef Sym(".constructors_used");
   1251       OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
   1252                                       MCSA_Reference);
   1253     }
   1254     return true;
   1255   }
   1256 
   1257   if (GV->getName() == "llvm.global_dtors") {
   1258     EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
   1259 
   1260     if (TM.getRelocationModel() == Reloc::Static &&
   1261         MAI->hasStaticCtorDtorReferenceInStaticMode()) {
   1262       StringRef Sym(".destructors_used");
   1263       OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
   1264                                       MCSA_Reference);
   1265     }
   1266     return true;
   1267   }
   1268 
   1269   return false;
   1270 }
   1271 
   1272 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
   1273 /// global in the specified llvm.used list for which emitUsedDirectiveFor
   1274 /// is true, as being used with this directive.
   1275 void AsmPrinter::EmitLLVMUsedList(const Constant *List) {
   1276   // Should be an array of 'i8*'.
   1277   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
   1278   if (InitList == 0) return;
   1279 
   1280   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
   1281     const GlobalValue *GV =
   1282       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
   1283     if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang))
   1284       OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip);
   1285   }
   1286 }
   1287 
   1288 typedef std::pair<unsigned, Constant*> Structor;
   1289 
   1290 static bool priority_order(const Structor& lhs, const Structor& rhs) {
   1291   return lhs.first < rhs.first;
   1292 }
   1293 
   1294 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
   1295 /// priority.
   1296 void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
   1297   // Should be an array of '{ int, void ()* }' structs.  The first value is the
   1298   // init priority.
   1299   if (!isa<ConstantArray>(List)) return;
   1300 
   1301   // Sanity check the structors list.
   1302   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
   1303   if (!InitList) return; // Not an array!
   1304   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
   1305   if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs!
   1306   if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
   1307       !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
   1308 
   1309   // Gather the structors in a form that's convenient for sorting by priority.
   1310   SmallVector<Structor, 8> Structors;
   1311   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
   1312     ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
   1313     if (!CS) continue; // Malformed.
   1314     if (CS->getOperand(1)->isNullValue())
   1315       break;  // Found a null terminator, skip the rest.
   1316     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
   1317     if (!Priority) continue; // Malformed.
   1318     Structors.push_back(std::make_pair(Priority->getLimitedValue(65535),
   1319                                        CS->getOperand(1)));
   1320   }
   1321 
   1322   // Emit the function pointers in the target-specific order
   1323   const TargetData *TD = TM.getTargetData();
   1324   unsigned Align = Log2_32(TD->getPointerPrefAlignment());
   1325   std::stable_sort(Structors.begin(), Structors.end(), priority_order);
   1326   for (unsigned i = 0, e = Structors.size(); i != e; ++i) {
   1327     const MCSection *OutputSection =
   1328       (isCtor ?
   1329        getObjFileLowering().getStaticCtorSection(Structors[i].first) :
   1330        getObjFileLowering().getStaticDtorSection(Structors[i].first));
   1331     OutStreamer.SwitchSection(OutputSection);
   1332     if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
   1333       EmitAlignment(Align);
   1334     EmitXXStructor(Structors[i].second);
   1335   }
   1336 }
   1337 
   1338 //===--------------------------------------------------------------------===//
   1339 // Emission and print routines
   1340 //
   1341 
   1342 /// EmitInt8 - Emit a byte directive and value.
   1343 ///
   1344 void AsmPrinter::EmitInt8(int Value) const {
   1345   OutStreamer.EmitIntValue(Value, 1, 0/*addrspace*/);
   1346 }
   1347 
   1348 /// EmitInt16 - Emit a short directive and value.
   1349 ///
   1350 void AsmPrinter::EmitInt16(int Value) const {
   1351   OutStreamer.EmitIntValue(Value, 2, 0/*addrspace*/);
   1352 }
   1353 
   1354 /// EmitInt32 - Emit a long directive and value.
   1355 ///
   1356 void AsmPrinter::EmitInt32(int Value) const {
   1357   OutStreamer.EmitIntValue(Value, 4, 0/*addrspace*/);
   1358 }
   1359 
   1360 /// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
   1361 /// in bytes of the directive is specified by Size and Hi/Lo specify the
   1362 /// labels.  This implicitly uses .set if it is available.
   1363 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
   1364                                      unsigned Size) const {
   1365   // Get the Hi-Lo expression.
   1366   const MCExpr *Diff =
   1367     MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
   1368                             MCSymbolRefExpr::Create(Lo, OutContext),
   1369                             OutContext);
   1370 
   1371   if (!MAI->hasSetDirective()) {
   1372     OutStreamer.EmitValue(Diff, Size, 0/*AddrSpace*/);
   1373     return;
   1374   }
   1375 
   1376   // Otherwise, emit with .set (aka assignment).
   1377   MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
   1378   OutStreamer.EmitAssignment(SetLabel, Diff);
   1379   OutStreamer.EmitSymbolValue(SetLabel, Size, 0/*AddrSpace*/);
   1380 }
   1381 
   1382 /// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
   1383 /// where the size in bytes of the directive is specified by Size and Hi/Lo
   1384 /// specify the labels.  This implicitly uses .set if it is available.
   1385 void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
   1386                                            const MCSymbol *Lo, unsigned Size)
   1387   const {
   1388 
   1389   // Emit Hi+Offset - Lo
   1390   // Get the Hi+Offset expression.
   1391   const MCExpr *Plus =
   1392     MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
   1393                             MCConstantExpr::Create(Offset, OutContext),
   1394                             OutContext);
   1395 
   1396   // Get the Hi+Offset-Lo expression.
   1397   const MCExpr *Diff =
   1398     MCBinaryExpr::CreateSub(Plus,
   1399                             MCSymbolRefExpr::Create(Lo, OutContext),
   1400                             OutContext);
   1401 
   1402   if (!MAI->hasSetDirective())
   1403     OutStreamer.EmitValue(Diff, 4, 0/*AddrSpace*/);
   1404   else {
   1405     // Otherwise, emit with .set (aka assignment).
   1406     MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
   1407     OutStreamer.EmitAssignment(SetLabel, Diff);
   1408     OutStreamer.EmitSymbolValue(SetLabel, 4, 0/*AddrSpace*/);
   1409   }
   1410 }
   1411 
   1412 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
   1413 /// where the size in bytes of the directive is specified by Size and Label
   1414 /// specifies the label.  This implicitly uses .set if it is available.
   1415 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
   1416                                       unsigned Size)
   1417   const {
   1418 
   1419   // Emit Label+Offset
   1420   const MCExpr *Plus =
   1421     MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Label, OutContext),
   1422                             MCConstantExpr::Create(Offset, OutContext),
   1423                             OutContext);
   1424 
   1425   OutStreamer.EmitValue(Plus, 4, 0/*AddrSpace*/);
   1426 }
   1427 
   1428 
   1429 //===----------------------------------------------------------------------===//
   1430 
   1431 // EmitAlignment - Emit an alignment directive to the specified power of
   1432 // two boundary.  For example, if you pass in 3 here, you will get an 8
   1433 // byte alignment.  If a global value is specified, and if that global has
   1434 // an explicit alignment requested, it will override the alignment request
   1435 // if required for correctness.
   1436 //
   1437 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
   1438   if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getTargetData(), NumBits);
   1439 
   1440   if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
   1441 
   1442   if (getCurrentSection()->getKind().isText())
   1443     OutStreamer.EmitCodeAlignment(1 << NumBits);
   1444   else
   1445     OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0);
   1446 }
   1447 
   1448 //===----------------------------------------------------------------------===//
   1449 // Constant emission.
   1450 //===----------------------------------------------------------------------===//
   1451 
   1452 /// LowerConstant - Lower the specified LLVM Constant to an MCExpr.
   1453 ///
   1454 static const MCExpr *LowerConstant(const Constant *CV, AsmPrinter &AP) {
   1455   MCContext &Ctx = AP.OutContext;
   1456 
   1457   if (CV->isNullValue() || isa<UndefValue>(CV))
   1458     return MCConstantExpr::Create(0, Ctx);
   1459 
   1460   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
   1461     return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
   1462 
   1463   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
   1464     return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
   1465 
   1466   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
   1467     return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
   1468 
   1469   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
   1470   if (CE == 0) {
   1471     llvm_unreachable("Unknown constant value to lower!");
   1472   }
   1473 
   1474   switch (CE->getOpcode()) {
   1475   default:
   1476     // If the code isn't optimized, there may be outstanding folding
   1477     // opportunities. Attempt to fold the expression using TargetData as a
   1478     // last resort before giving up.
   1479     if (Constant *C =
   1480           ConstantFoldConstantExpression(CE, AP.TM.getTargetData()))
   1481       if (C != CE)
   1482         return LowerConstant(C, AP);
   1483 
   1484     // Otherwise report the problem to the user.
   1485     {
   1486       std::string S;
   1487       raw_string_ostream OS(S);
   1488       OS << "Unsupported expression in static initializer: ";
   1489       WriteAsOperand(OS, CE, /*PrintType=*/false,
   1490                      !AP.MF ? 0 : AP.MF->getFunction()->getParent());
   1491       report_fatal_error(OS.str());
   1492     }
   1493   case Instruction::GetElementPtr: {
   1494     const TargetData &TD = *AP.TM.getTargetData();
   1495     // Generate a symbolic expression for the byte address
   1496     const Constant *PtrVal = CE->getOperand(0);
   1497     SmallVector<Value*, 8> IdxVec(CE->op_begin()+1, CE->op_end());
   1498     int64_t Offset = TD.getIndexedOffset(PtrVal->getType(), IdxVec);
   1499 
   1500     const MCExpr *Base = LowerConstant(CE->getOperand(0), AP);
   1501     if (Offset == 0)
   1502       return Base;
   1503 
   1504     // Truncate/sext the offset to the pointer size.
   1505     if (TD.getPointerSizeInBits() != 64) {
   1506       int SExtAmount = 64-TD.getPointerSizeInBits();
   1507       Offset = (Offset << SExtAmount) >> SExtAmount;
   1508     }
   1509 
   1510     return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
   1511                                    Ctx);
   1512   }
   1513 
   1514   case Instruction::Trunc:
   1515     // We emit the value and depend on the assembler to truncate the generated
   1516     // expression properly.  This is important for differences between
   1517     // blockaddress labels.  Since the two labels are in the same function, it
   1518     // is reasonable to treat their delta as a 32-bit value.
   1519     // FALL THROUGH.
   1520   case Instruction::BitCast:
   1521     return LowerConstant(CE->getOperand(0), AP);
   1522 
   1523   case Instruction::IntToPtr: {
   1524     const TargetData &TD = *AP.TM.getTargetData();
   1525     // Handle casts to pointers by changing them into casts to the appropriate
   1526     // integer type.  This promotes constant folding and simplifies this code.
   1527     Constant *Op = CE->getOperand(0);
   1528     Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
   1529                                       false/*ZExt*/);
   1530     return LowerConstant(Op, AP);
   1531   }
   1532 
   1533   case Instruction::PtrToInt: {
   1534     const TargetData &TD = *AP.TM.getTargetData();
   1535     // Support only foldable casts to/from pointers that can be eliminated by
   1536     // changing the pointer to the appropriately sized integer type.
   1537     Constant *Op = CE->getOperand(0);
   1538     Type *Ty = CE->getType();
   1539 
   1540     const MCExpr *OpExpr = LowerConstant(Op, AP);
   1541 
   1542     // We can emit the pointer value into this slot if the slot is an
   1543     // integer slot equal to the size of the pointer.
   1544     if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
   1545       return OpExpr;
   1546 
   1547     // Otherwise the pointer is smaller than the resultant integer, mask off
   1548     // the high bits so we are sure to get a proper truncation if the input is
   1549     // a constant expr.
   1550     unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
   1551     const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
   1552     return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
   1553   }
   1554 
   1555   // The MC library also has a right-shift operator, but it isn't consistently
   1556   // signed or unsigned between different targets.
   1557   case Instruction::Add:
   1558   case Instruction::Sub:
   1559   case Instruction::Mul:
   1560   case Instruction::SDiv:
   1561   case Instruction::SRem:
   1562   case Instruction::Shl:
   1563   case Instruction::And:
   1564   case Instruction::Or:
   1565   case Instruction::Xor: {
   1566     const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP);
   1567     const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP);
   1568     switch (CE->getOpcode()) {
   1569     default: llvm_unreachable("Unknown binary operator constant cast expr");
   1570     case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
   1571     case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
   1572     case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
   1573     case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
   1574     case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
   1575     case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
   1576     case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
   1577     case Instruction::Or:  return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
   1578     case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
   1579     }
   1580   }
   1581   }
   1582 }
   1583 
   1584 static void EmitGlobalConstantImpl(const Constant *C, unsigned AddrSpace,
   1585                                    AsmPrinter &AP);
   1586 
   1587 /// isRepeatedByteSequence - Determine whether the given value is
   1588 /// composed of a repeated sequence of identical bytes and return the
   1589 /// byte value.  If it is not a repeated sequence, return -1.
   1590 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
   1591   StringRef Data = V->getRawDataValues();
   1592   assert(!Data.empty() && "Empty aggregates should be CAZ node");
   1593   char C = Data[0];
   1594   for (unsigned i = 1, e = Data.size(); i != e; ++i)
   1595     if (Data[i] != C) return -1;
   1596   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
   1597 }
   1598 
   1599 
   1600 /// isRepeatedByteSequence - Determine whether the given value is
   1601 /// composed of a repeated sequence of identical bytes and return the
   1602 /// byte value.  If it is not a repeated sequence, return -1.
   1603 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
   1604 
   1605   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
   1606     if (CI->getBitWidth() > 64) return -1;
   1607 
   1608     uint64_t Size = TM.getTargetData()->getTypeAllocSize(V->getType());
   1609     uint64_t Value = CI->getZExtValue();
   1610 
   1611     // Make sure the constant is at least 8 bits long and has a power
   1612     // of 2 bit width.  This guarantees the constant bit width is
   1613     // always a multiple of 8 bits, avoiding issues with padding out
   1614     // to Size and other such corner cases.
   1615     if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
   1616 
   1617     uint8_t Byte = static_cast<uint8_t>(Value);
   1618 
   1619     for (unsigned i = 1; i < Size; ++i) {
   1620       Value >>= 8;
   1621       if (static_cast<uint8_t>(Value) != Byte) return -1;
   1622     }
   1623     return Byte;
   1624   }
   1625   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
   1626     // Make sure all array elements are sequences of the same repeated
   1627     // byte.
   1628     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
   1629     int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
   1630     if (Byte == -1) return -1;
   1631 
   1632     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
   1633       int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
   1634       if (ThisByte == -1) return -1;
   1635       if (Byte != ThisByte) return -1;
   1636     }
   1637     return Byte;
   1638   }
   1639 
   1640   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
   1641     return isRepeatedByteSequence(CDS);
   1642 
   1643   return -1;
   1644 }
   1645 
   1646 static void EmitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
   1647                                              unsigned AddrSpace,AsmPrinter &AP){
   1648 
   1649   // See if we can aggregate this into a .fill, if so, emit it as such.
   1650   int Value = isRepeatedByteSequence(CDS, AP.TM);
   1651   if (Value != -1) {
   1652     uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CDS->getType());
   1653     // Don't emit a 1-byte object as a .fill.
   1654     if (Bytes > 1)
   1655       return AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
   1656   }
   1657 
   1658   // If this can be emitted with .ascii/.asciz, emit it as such.
   1659   if (CDS->isString())
   1660     return AP.OutStreamer.EmitBytes(CDS->getAsString(), AddrSpace);
   1661 
   1662   // Otherwise, emit the values in successive locations.
   1663   unsigned ElementByteSize = CDS->getElementByteSize();
   1664   if (isa<IntegerType>(CDS->getElementType())) {
   1665     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
   1666       if (AP.isVerbose())
   1667         AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
   1668                                                 CDS->getElementAsInteger(i));
   1669       AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
   1670                                   ElementByteSize, AddrSpace);
   1671     }
   1672   } else if (ElementByteSize == 4) {
   1673     // FP Constants are printed as integer constants to avoid losing
   1674     // precision.
   1675     assert(CDS->getElementType()->isFloatTy());
   1676     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
   1677       union {
   1678         float F;
   1679         uint32_t I;
   1680       };
   1681 
   1682       F = CDS->getElementAsFloat(i);
   1683       if (AP.isVerbose())
   1684         AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
   1685       AP.OutStreamer.EmitIntValue(I, 4, AddrSpace);
   1686     }
   1687   } else {
   1688     assert(CDS->getElementType()->isDoubleTy());
   1689     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
   1690       union {
   1691         double F;
   1692         uint64_t I;
   1693       };
   1694 
   1695       F = CDS->getElementAsDouble(i);
   1696       if (AP.isVerbose())
   1697         AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
   1698       AP.OutStreamer.EmitIntValue(I, 8, AddrSpace);
   1699     }
   1700   }
   1701 
   1702   const TargetData &TD = *AP.TM.getTargetData();
   1703   unsigned Size = TD.getTypeAllocSize(CDS->getType());
   1704   unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) *
   1705                         CDS->getNumElements();
   1706   if (unsigned Padding = Size - EmittedSize)
   1707     AP.OutStreamer.EmitZeros(Padding, AddrSpace);
   1708 
   1709 }
   1710 
   1711 static void EmitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace,
   1712                                     AsmPrinter &AP) {
   1713   // See if we can aggregate some values.  Make sure it can be
   1714   // represented as a series of bytes of the constant value.
   1715   int Value = isRepeatedByteSequence(CA, AP.TM);
   1716 
   1717   if (Value != -1) {
   1718     uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CA->getType());
   1719     AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
   1720   }
   1721   else {
   1722     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
   1723       EmitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP);
   1724   }
   1725 }
   1726 
   1727 static void EmitGlobalConstantVector(const ConstantVector *CV,
   1728                                      unsigned AddrSpace, AsmPrinter &AP) {
   1729   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
   1730     EmitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP);
   1731 
   1732   const TargetData &TD = *AP.TM.getTargetData();
   1733   unsigned Size = TD.getTypeAllocSize(CV->getType());
   1734   unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) *
   1735                          CV->getType()->getNumElements();
   1736   if (unsigned Padding = Size - EmittedSize)
   1737     AP.OutStreamer.EmitZeros(Padding, AddrSpace);
   1738 }
   1739 
   1740 static void EmitGlobalConstantStruct(const ConstantStruct *CS,
   1741                                      unsigned AddrSpace, AsmPrinter &AP) {
   1742   // Print the fields in successive locations. Pad to align if needed!
   1743   const TargetData *TD = AP.TM.getTargetData();
   1744   unsigned Size = TD->getTypeAllocSize(CS->getType());
   1745   const StructLayout *Layout = TD->getStructLayout(CS->getType());
   1746   uint64_t SizeSoFar = 0;
   1747   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
   1748     const Constant *Field = CS->getOperand(i);
   1749 
   1750     // Check if padding is needed and insert one or more 0s.
   1751     uint64_t FieldSize = TD->getTypeAllocSize(Field->getType());
   1752     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
   1753                         - Layout->getElementOffset(i)) - FieldSize;
   1754     SizeSoFar += FieldSize + PadSize;
   1755 
   1756     // Now print the actual field value.
   1757     EmitGlobalConstantImpl(Field, AddrSpace, AP);
   1758 
   1759     // Insert padding - this may include padding to increase the size of the
   1760     // current field up to the ABI size (if the struct is not packed) as well
   1761     // as padding to ensure that the next field starts at the right offset.
   1762     AP.OutStreamer.EmitZeros(PadSize, AddrSpace);
   1763   }
   1764   assert(SizeSoFar == Layout->getSizeInBytes() &&
   1765          "Layout of constant struct may be incorrect!");
   1766 }
   1767 
   1768 static void EmitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace,
   1769                                  AsmPrinter &AP) {
   1770   if (CFP->getType()->isHalfTy()) {
   1771     if (AP.isVerbose()) {
   1772       SmallString<10> Str;
   1773       CFP->getValueAPF().toString(Str);
   1774       AP.OutStreamer.GetCommentOS() << "half " << Str << '\n';
   1775     }
   1776     uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
   1777     AP.OutStreamer.EmitIntValue(Val, 2, AddrSpace);
   1778     return;
   1779   }
   1780 
   1781   if (CFP->getType()->isFloatTy()) {
   1782     if (AP.isVerbose()) {
   1783       float Val = CFP->getValueAPF().convertToFloat();
   1784       uint64_t IntVal = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
   1785       AP.OutStreamer.GetCommentOS() << "float " << Val << '\n'
   1786                                     << " (" << format("0x%x", IntVal) << ")\n";
   1787     }
   1788     uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
   1789     AP.OutStreamer.EmitIntValue(Val, 4, AddrSpace);
   1790     return;
   1791   }
   1792 
   1793   // FP Constants are printed as integer constants to avoid losing
   1794   // precision.
   1795   if (CFP->getType()->isDoubleTy()) {
   1796     if (AP.isVerbose()) {
   1797       double Val = CFP->getValueAPF().convertToDouble();
   1798       uint64_t IntVal = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
   1799       AP.OutStreamer.GetCommentOS() << "double " << Val << '\n'
   1800                                     << " (" << format("0x%lx", IntVal) << ")\n";
   1801     }
   1802 
   1803     uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
   1804     AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
   1805     return;
   1806   }
   1807 
   1808   if (CFP->getType()->isX86_FP80Ty()) {
   1809     // all long double variants are printed as hex
   1810     // API needed to prevent premature destruction
   1811     APInt API = CFP->getValueAPF().bitcastToAPInt();
   1812     const uint64_t *p = API.getRawData();
   1813     if (AP.isVerbose()) {
   1814       // Convert to double so we can print the approximate val as a comment.
   1815       APFloat DoubleVal = CFP->getValueAPF();
   1816       bool ignored;
   1817       DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
   1818                         &ignored);
   1819       AP.OutStreamer.GetCommentOS() << "x86_fp80 ~= "
   1820         << DoubleVal.convertToDouble() << '\n';
   1821     }
   1822 
   1823     if (AP.TM.getTargetData()->isBigEndian()) {
   1824       AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
   1825       AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
   1826     } else {
   1827       AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
   1828       AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
   1829     }
   1830 
   1831     // Emit the tail padding for the long double.
   1832     const TargetData &TD = *AP.TM.getTargetData();
   1833     AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
   1834                              TD.getTypeStoreSize(CFP->getType()), AddrSpace);
   1835     return;
   1836   }
   1837 
   1838   assert(CFP->getType()->isPPC_FP128Ty() &&
   1839          "Floating point constant type not handled");
   1840   // All long double variants are printed as hex
   1841   // API needed to prevent premature destruction.
   1842   APInt API = CFP->getValueAPF().bitcastToAPInt();
   1843   const uint64_t *p = API.getRawData();
   1844   if (AP.TM.getTargetData()->isBigEndian()) {
   1845     AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
   1846     AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
   1847   } else {
   1848     AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
   1849     AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
   1850   }
   1851 }
   1852 
   1853 static void EmitGlobalConstantLargeInt(const ConstantInt *CI,
   1854                                        unsigned AddrSpace, AsmPrinter &AP) {
   1855   const TargetData *TD = AP.TM.getTargetData();
   1856   unsigned BitWidth = CI->getBitWidth();
   1857   assert((BitWidth & 63) == 0 && "only support multiples of 64-bits");
   1858 
   1859   // We don't expect assemblers to support integer data directives
   1860   // for more than 64 bits, so we emit the data in at most 64-bit
   1861   // quantities at a time.
   1862   const uint64_t *RawData = CI->getValue().getRawData();
   1863   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
   1864     uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i];
   1865     AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
   1866   }
   1867 }
   1868 
   1869 static void EmitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace,
   1870                                    AsmPrinter &AP) {
   1871   const TargetData *TD = AP.TM.getTargetData();
   1872   uint64_t Size = TD->getTypeAllocSize(CV->getType());
   1873   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
   1874     return AP.OutStreamer.EmitZeros(Size, AddrSpace);
   1875 
   1876   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
   1877     switch (Size) {
   1878     case 1:
   1879     case 2:
   1880     case 4:
   1881     case 8:
   1882       if (AP.isVerbose())
   1883         AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
   1884                                                 CI->getZExtValue());
   1885       AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace);
   1886       return;
   1887     default:
   1888       EmitGlobalConstantLargeInt(CI, AddrSpace, AP);
   1889       return;
   1890     }
   1891   }
   1892 
   1893   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
   1894     return EmitGlobalConstantFP(CFP, AddrSpace, AP);
   1895 
   1896   if (isa<ConstantPointerNull>(CV)) {
   1897     AP.OutStreamer.EmitIntValue(0, Size, AddrSpace);
   1898     return;
   1899   }
   1900 
   1901   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
   1902     return EmitGlobalConstantDataSequential(CDS, AddrSpace, AP);
   1903 
   1904   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
   1905     return EmitGlobalConstantArray(CVA, AddrSpace, AP);
   1906 
   1907   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
   1908     return EmitGlobalConstantStruct(CVS, AddrSpace, AP);
   1909 
   1910   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
   1911     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
   1912     // vectors).
   1913     if (CE->getOpcode() == Instruction::BitCast)
   1914       return EmitGlobalConstantImpl(CE->getOperand(0), AddrSpace, AP);
   1915 
   1916     if (Size > 8) {
   1917       // If the constant expression's size is greater than 64-bits, then we have
   1918       // to emit the value in chunks. Try to constant fold the value and emit it
   1919       // that way.
   1920       Constant *New = ConstantFoldConstantExpression(CE, TD);
   1921       if (New && New != CE)
   1922         return EmitGlobalConstantImpl(New, AddrSpace, AP);
   1923     }
   1924   }
   1925 
   1926   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
   1927     return EmitGlobalConstantVector(V, AddrSpace, AP);
   1928 
   1929   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
   1930   // thread the streamer with EmitValue.
   1931   AP.OutStreamer.EmitValue(LowerConstant(CV, AP), Size, AddrSpace);
   1932 }
   1933 
   1934 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
   1935 void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
   1936   uint64_t Size = TM.getTargetData()->getTypeAllocSize(CV->getType());
   1937   if (Size)
   1938     EmitGlobalConstantImpl(CV, AddrSpace, *this);
   1939   else if (MAI->hasSubsectionsViaSymbols()) {
   1940     // If the global has zero size, emit a single byte so that two labels don't
   1941     // look like they are at the same location.
   1942     OutStreamer.EmitIntValue(0, 1, AddrSpace);
   1943   }
   1944 }
   1945 
   1946 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
   1947   // Target doesn't support this yet!
   1948   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
   1949 }
   1950 
   1951 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
   1952   if (Offset > 0)
   1953     OS << '+' << Offset;
   1954   else if (Offset < 0)
   1955     OS << Offset;
   1956 }
   1957 
   1958 //===----------------------------------------------------------------------===//
   1959 // Symbol Lowering Routines.
   1960 //===----------------------------------------------------------------------===//
   1961 
   1962 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler
   1963 /// temporary label with the specified stem and unique ID.
   1964 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const {
   1965   return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) +
   1966                                       Name + Twine(ID));
   1967 }
   1968 
   1969 /// GetTempSymbol - Return an assembler temporary label with the specified
   1970 /// stem.
   1971 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const {
   1972   return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+
   1973                                       Name);
   1974 }
   1975 
   1976 
   1977 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
   1978   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
   1979 }
   1980 
   1981 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
   1982   return MMI->getAddrLabelSymbol(BB);
   1983 }
   1984 
   1985 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
   1986 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
   1987   return OutContext.GetOrCreateSymbol
   1988     (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
   1989      + "_" + Twine(CPID));
   1990 }
   1991 
   1992 /// GetJTISymbol - Return the symbol for the specified jump table entry.
   1993 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
   1994   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
   1995 }
   1996 
   1997 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
   1998 /// FIXME: privatize to AsmPrinter.
   1999 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
   2000   return OutContext.GetOrCreateSymbol
   2001   (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
   2002    Twine(UID) + "_set_" + Twine(MBBID));
   2003 }
   2004 
   2005 /// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
   2006 /// global value name as its base, with the specified suffix, and where the
   2007 /// symbol is forced to have private linkage if ForcePrivate is true.
   2008 MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
   2009                                                    StringRef Suffix,
   2010                                                    bool ForcePrivate) const {
   2011   SmallString<60> NameStr;
   2012   Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
   2013   NameStr.append(Suffix.begin(), Suffix.end());
   2014   return OutContext.GetOrCreateSymbol(NameStr.str());
   2015 }
   2016 
   2017 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified
   2018 /// ExternalSymbol.
   2019 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
   2020   SmallString<60> NameStr;
   2021   Mang->getNameWithPrefix(NameStr, Sym);
   2022   return OutContext.GetOrCreateSymbol(NameStr.str());
   2023 }
   2024 
   2025 
   2026 
   2027 /// PrintParentLoopComment - Print comments about parent loops of this one.
   2028 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
   2029                                    unsigned FunctionNumber) {
   2030   if (Loop == 0) return;
   2031   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
   2032   OS.indent(Loop->getLoopDepth()*2)
   2033     << "Parent Loop BB" << FunctionNumber << "_"
   2034     << Loop->getHeader()->getNumber()
   2035     << " Depth=" << Loop->getLoopDepth() << '\n';
   2036 }
   2037 
   2038 
   2039 /// PrintChildLoopComment - Print comments about child loops within
   2040 /// the loop for this basic block, with nesting.
   2041 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
   2042                                   unsigned FunctionNumber) {
   2043   // Add child loop information
   2044   for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
   2045     OS.indent((*CL)->getLoopDepth()*2)
   2046       << "Child Loop BB" << FunctionNumber << "_"
   2047       << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
   2048       << '\n';
   2049     PrintChildLoopComment(OS, *CL, FunctionNumber);
   2050   }
   2051 }
   2052 
   2053 /// EmitBasicBlockLoopComments - Pretty-print comments for basic blocks.
   2054 static void EmitBasicBlockLoopComments(const MachineBasicBlock &MBB,
   2055                                        const MachineLoopInfo *LI,
   2056                                        const AsmPrinter &AP) {
   2057   // Add loop depth information
   2058   const MachineLoop *Loop = LI->getLoopFor(&MBB);
   2059   if (Loop == 0) return;
   2060 
   2061   MachineBasicBlock *Header = Loop->getHeader();
   2062   assert(Header && "No header for loop");
   2063 
   2064   // If this block is not a loop header, just print out what is the loop header
   2065   // and return.
   2066   if (Header != &MBB) {
   2067     AP.OutStreamer.AddComment("  in Loop: Header=BB" +
   2068                               Twine(AP.getFunctionNumber())+"_" +
   2069                               Twine(Loop->getHeader()->getNumber())+
   2070                               " Depth="+Twine(Loop->getLoopDepth()));
   2071     return;
   2072   }
   2073 
   2074   // Otherwise, it is a loop header.  Print out information about child and
   2075   // parent loops.
   2076   raw_ostream &OS = AP.OutStreamer.GetCommentOS();
   2077 
   2078   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
   2079 
   2080   OS << "=>";
   2081   OS.indent(Loop->getLoopDepth()*2-2);
   2082 
   2083   OS << "This ";
   2084   if (Loop->empty())
   2085     OS << "Inner ";
   2086   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
   2087 
   2088   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
   2089 }
   2090 
   2091 
   2092 /// EmitBasicBlockStart - This method prints the label for the specified
   2093 /// MachineBasicBlock, an alignment (if present) and a comment describing
   2094 /// it if appropriate.
   2095 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
   2096   // Emit an alignment directive for this block, if needed.
   2097   if (unsigned Align = MBB->getAlignment())
   2098     EmitAlignment(Align);
   2099 
   2100   // If the block has its address taken, emit any labels that were used to
   2101   // reference the block.  It is possible that there is more than one label
   2102   // here, because multiple LLVM BB's may have been RAUW'd to this block after
   2103   // the references were generated.
   2104   if (MBB->hasAddressTaken()) {
   2105     const BasicBlock *BB = MBB->getBasicBlock();
   2106     if (isVerbose())
   2107       OutStreamer.AddComment("Block address taken");
   2108 
   2109     std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
   2110 
   2111     for (unsigned i = 0, e = Syms.size(); i != e; ++i)
   2112       OutStreamer.EmitLabel(Syms[i]);
   2113   }
   2114 
   2115   // Print some verbose block comments.
   2116   if (isVerbose()) {
   2117     if (const BasicBlock *BB = MBB->getBasicBlock())
   2118       if (BB->hasName())
   2119         OutStreamer.AddComment("%" + BB->getName());
   2120     EmitBasicBlockLoopComments(*MBB, LI, *this);
   2121   }
   2122 
   2123   // Print the main label for the block.
   2124   if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
   2125     if (isVerbose() && OutStreamer.hasRawTextSupport()) {
   2126       // NOTE: Want this comment at start of line, don't emit with AddComment.
   2127       OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" +
   2128                               Twine(MBB->getNumber()) + ":");
   2129     }
   2130   } else {
   2131     OutStreamer.EmitLabel(MBB->getSymbol());
   2132   }
   2133 }
   2134 
   2135 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
   2136                                 bool IsDefinition) const {
   2137   MCSymbolAttr Attr = MCSA_Invalid;
   2138 
   2139   switch (Visibility) {
   2140   default: break;
   2141   case GlobalValue::HiddenVisibility:
   2142     if (IsDefinition)
   2143       Attr = MAI->getHiddenVisibilityAttr();
   2144     else
   2145       Attr = MAI->getHiddenDeclarationVisibilityAttr();
   2146     break;
   2147   case GlobalValue::ProtectedVisibility:
   2148     Attr = MAI->getProtectedVisibilityAttr();
   2149     break;
   2150   }
   2151 
   2152   if (Attr != MCSA_Invalid)
   2153     OutStreamer.EmitSymbolAttribute(Sym, Attr);
   2154 }
   2155 
   2156 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
   2157 /// exactly one predecessor and the control transfer mechanism between
   2158 /// the predecessor and this block is a fall-through.
   2159 bool AsmPrinter::
   2160 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
   2161   // If this is a landing pad, it isn't a fall through.  If it has no preds,
   2162   // then nothing falls through to it.
   2163   if (MBB->isLandingPad() || MBB->pred_empty())
   2164     return false;
   2165 
   2166   // If there isn't exactly one predecessor, it can't be a fall through.
   2167   MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
   2168   ++PI2;
   2169   if (PI2 != MBB->pred_end())
   2170     return false;
   2171 
   2172   // The predecessor has to be immediately before this block.
   2173   MachineBasicBlock *Pred = *PI;
   2174 
   2175   if (!Pred->isLayoutSuccessor(MBB))
   2176     return false;
   2177 
   2178   // If the block is completely empty, then it definitely does fall through.
   2179   if (Pred->empty())
   2180     return true;
   2181 
   2182   // Check the terminators in the previous blocks
   2183   for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
   2184          IE = Pred->end(); II != IE; ++II) {
   2185     MachineInstr &MI = *II;
   2186 
   2187     // If it is not a simple branch, we are in a table somewhere.
   2188     if (!MI.isBranch() || MI.isIndirectBranch())
   2189       return false;
   2190 
   2191     // If we are the operands of one of the branches, this is not
   2192     // a fall through.
   2193     for (MachineInstr::mop_iterator OI = MI.operands_begin(),
   2194            OE = MI.operands_end(); OI != OE; ++OI) {
   2195       const MachineOperand& OP = *OI;
   2196       if (OP.isJTI())
   2197         return false;
   2198       if (OP.isMBB() && OP.getMBB() == MBB)
   2199         return false;
   2200     }
   2201   }
   2202 
   2203   return true;
   2204 }
   2205 
   2206 
   2207 
   2208 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
   2209   if (!S->usesMetadata())
   2210     return 0;
   2211 
   2212   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
   2213   gcp_map_type::iterator GCPI = GCMap.find(S);
   2214   if (GCPI != GCMap.end())
   2215     return GCPI->second;
   2216 
   2217   const char *Name = S->getName().c_str();
   2218 
   2219   for (GCMetadataPrinterRegistry::iterator
   2220          I = GCMetadataPrinterRegistry::begin(),
   2221          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
   2222     if (strcmp(Name, I->getName()) == 0) {
   2223       GCMetadataPrinter *GMP = I->instantiate();
   2224       GMP->S = S;
   2225       GCMap.insert(std::make_pair(S, GMP));
   2226       return GMP;
   2227     }
   2228 
   2229   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
   2230 }
   2231