Home | History | Annotate | Download | only in CodeGen
      1 //===-- llvm/CodeGen/MachineInstr.h - MachineInstr class --------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the declaration of the MachineInstr class, which is the
     11 // basic representation for all target dependent machine instructions used by
     12 // the back end.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_CODEGEN_MACHINEINSTR_H
     17 #define LLVM_CODEGEN_MACHINEINSTR_H
     18 
     19 #include "llvm/CodeGen/MachineOperand.h"
     20 #include "llvm/MC/MCInstrDesc.h"
     21 #include "llvm/Target/TargetOpcodes.h"
     22 #include "llvm/ADT/ArrayRef.h"
     23 #include "llvm/ADT/ilist.h"
     24 #include "llvm/ADT/ilist_node.h"
     25 #include "llvm/ADT/STLExtras.h"
     26 #include "llvm/ADT/StringRef.h"
     27 #include "llvm/ADT/DenseMapInfo.h"
     28 #include "llvm/Support/DebugLoc.h"
     29 #include <vector>
     30 
     31 namespace llvm {
     32 
     33 template <typename T> class SmallVectorImpl;
     34 class AliasAnalysis;
     35 class TargetInstrInfo;
     36 class TargetRegisterClass;
     37 class TargetRegisterInfo;
     38 class MachineFunction;
     39 class MachineMemOperand;
     40 
     41 //===----------------------------------------------------------------------===//
     42 /// MachineInstr - Representation of each machine instruction.
     43 ///
     44 class MachineInstr : public ilist_node<MachineInstr> {
     45 public:
     46   typedef MachineMemOperand **mmo_iterator;
     47 
     48   /// Flags to specify different kinds of comments to output in
     49   /// assembly code.  These flags carry semantic information not
     50   /// otherwise easily derivable from the IR text.
     51   ///
     52   enum CommentFlag {
     53     ReloadReuse = 0x1
     54   };
     55 
     56   enum MIFlag {
     57     NoFlags      = 0,
     58     FrameSetup   = 1 << 0,              // Instruction is used as a part of
     59                                         // function frame setup code.
     60     InsideBundle = 1 << 1               // Instruction is inside a bundle (not
     61                                         // the first MI in a bundle)
     62   };
     63 private:
     64   const MCInstrDesc *MCID;              // Instruction descriptor.
     65 
     66   uint8_t Flags;                        // Various bits of additional
     67                                         // information about machine
     68                                         // instruction.
     69 
     70   uint8_t AsmPrinterFlags;              // Various bits of information used by
     71                                         // the AsmPrinter to emit helpful
     72                                         // comments.  This is *not* semantic
     73                                         // information.  Do not use this for
     74                                         // anything other than to convey comment
     75                                         // information to AsmPrinter.
     76 
     77   uint16_t NumMemRefs;                  // information on memory references
     78   mmo_iterator MemRefs;
     79 
     80   std::vector<MachineOperand> Operands; // the operands
     81   MachineBasicBlock *Parent;            // Pointer to the owning basic block.
     82   DebugLoc debugLoc;                    // Source line information.
     83 
     84   MachineInstr(const MachineInstr&);   // DO NOT IMPLEMENT
     85   void operator=(const MachineInstr&); // DO NOT IMPLEMENT
     86 
     87   // Intrusive list support
     88   friend struct ilist_traits<MachineInstr>;
     89   friend struct ilist_traits<MachineBasicBlock>;
     90   void setParent(MachineBasicBlock *P) { Parent = P; }
     91 
     92   /// MachineInstr ctor - This constructor creates a copy of the given
     93   /// MachineInstr in the given MachineFunction.
     94   MachineInstr(MachineFunction &, const MachineInstr &);
     95 
     96   /// MachineInstr ctor - This constructor creates a dummy MachineInstr with
     97   /// MCID NULL and no operands.
     98   MachineInstr();
     99 
    100   // The next two constructors have DebugLoc and non-DebugLoc versions;
    101   // over time, the non-DebugLoc versions should be phased out and eventually
    102   // removed.
    103 
    104   /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
    105   /// implicit operands.  It reserves space for the number of operands specified
    106   /// by the MCInstrDesc.  The version with a DebugLoc should be preferred.
    107   explicit MachineInstr(const MCInstrDesc &MCID, bool NoImp = false);
    108 
    109   /// MachineInstr ctor - Work exactly the same as the ctor above, except that
    110   /// the MachineInstr is created and added to the end of the specified basic
    111   /// block.  The version with a DebugLoc should be preferred.
    112   MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &MCID);
    113 
    114   /// MachineInstr ctor - This constructor create a MachineInstr and add the
    115   /// implicit operands.  It reserves space for number of operands specified by
    116   /// MCInstrDesc.  An explicit DebugLoc is supplied.
    117   explicit MachineInstr(const MCInstrDesc &MCID, const DebugLoc dl,
    118                         bool NoImp = false);
    119 
    120   /// MachineInstr ctor - Work exactly the same as the ctor above, except that
    121   /// the MachineInstr is created and added to the end of the specified basic
    122   /// block.
    123   MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
    124                const MCInstrDesc &MCID);
    125 
    126   ~MachineInstr();
    127 
    128   // MachineInstrs are pool-allocated and owned by MachineFunction.
    129   friend class MachineFunction;
    130 
    131 public:
    132   const MachineBasicBlock* getParent() const { return Parent; }
    133   MachineBasicBlock* getParent() { return Parent; }
    134 
    135   /// getAsmPrinterFlags - Return the asm printer flags bitvector.
    136   ///
    137   uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
    138 
    139   /// clearAsmPrinterFlags - clear the AsmPrinter bitvector
    140   ///
    141   void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
    142 
    143   /// getAsmPrinterFlag - Return whether an AsmPrinter flag is set.
    144   ///
    145   bool getAsmPrinterFlag(CommentFlag Flag) const {
    146     return AsmPrinterFlags & Flag;
    147   }
    148 
    149   /// setAsmPrinterFlag - Set a flag for the AsmPrinter.
    150   ///
    151   void setAsmPrinterFlag(CommentFlag Flag) {
    152     AsmPrinterFlags |= (uint8_t)Flag;
    153   }
    154 
    155   /// clearAsmPrinterFlag - clear specific AsmPrinter flags
    156   ///
    157   void clearAsmPrinterFlag(CommentFlag Flag) {
    158     AsmPrinterFlags &= ~Flag;
    159   }
    160 
    161   /// getFlags - Return the MI flags bitvector.
    162   uint8_t getFlags() const {
    163     return Flags;
    164   }
    165 
    166   /// getFlag - Return whether an MI flag is set.
    167   bool getFlag(MIFlag Flag) const {
    168     return Flags & Flag;
    169   }
    170 
    171   /// setFlag - Set a MI flag.
    172   void setFlag(MIFlag Flag) {
    173     Flags |= (uint8_t)Flag;
    174   }
    175 
    176   void setFlags(unsigned flags) {
    177     Flags = flags;
    178   }
    179 
    180   /// clearFlag - Clear a MI flag.
    181   void clearFlag(MIFlag Flag) {
    182     Flags &= ~((uint8_t)Flag);
    183   }
    184 
    185   /// isInsideBundle - Return true if MI is in a bundle (but not the first MI
    186   /// in a bundle).
    187   ///
    188   /// A bundle looks like this before it's finalized:
    189   ///   ----------------
    190   ///   |      MI      |
    191   ///   ----------------
    192   ///          |
    193   ///   ----------------
    194   ///   |      MI    * |
    195   ///   ----------------
    196   ///          |
    197   ///   ----------------
    198   ///   |      MI    * |
    199   ///   ----------------
    200   /// In this case, the first MI starts a bundle but is not inside a bundle, the
    201   /// next 2 MIs are considered "inside" the bundle.
    202   ///
    203   /// After a bundle is finalized, it looks like this:
    204   ///   ----------------
    205   ///   |    Bundle    |
    206   ///   ----------------
    207   ///          |
    208   ///   ----------------
    209   ///   |      MI    * |
    210   ///   ----------------
    211   ///          |
    212   ///   ----------------
    213   ///   |      MI    * |
    214   ///   ----------------
    215   ///          |
    216   ///   ----------------
    217   ///   |      MI    * |
    218   ///   ----------------
    219   /// The first instruction has the special opcode "BUNDLE". It's not "inside"
    220   /// a bundle, but the next three MIs are.
    221   bool isInsideBundle() const {
    222     return getFlag(InsideBundle);
    223   }
    224 
    225   /// setIsInsideBundle - Set InsideBundle bit.
    226   ///
    227   void setIsInsideBundle(bool Val = true) {
    228     if (Val)
    229       setFlag(InsideBundle);
    230     else
    231       clearFlag(InsideBundle);
    232   }
    233 
    234   /// isBundled - Return true if this instruction part of a bundle. This is true
    235   /// if either itself or its following instruction is marked "InsideBundle".
    236   bool isBundled() const;
    237 
    238   /// getDebugLoc - Returns the debug location id of this MachineInstr.
    239   ///
    240   DebugLoc getDebugLoc() const { return debugLoc; }
    241 
    242   /// emitError - Emit an error referring to the source location of this
    243   /// instruction. This should only be used for inline assembly that is somehow
    244   /// impossible to compile. Other errors should have been handled much
    245   /// earlier.
    246   ///
    247   /// If this method returns, the caller should try to recover from the error.
    248   ///
    249   void emitError(StringRef Msg) const;
    250 
    251   /// getDesc - Returns the target instruction descriptor of this
    252   /// MachineInstr.
    253   const MCInstrDesc &getDesc() const { return *MCID; }
    254 
    255   /// getOpcode - Returns the opcode of this MachineInstr.
    256   ///
    257   int getOpcode() const { return MCID->Opcode; }
    258 
    259   /// Access to explicit operands of the instruction.
    260   ///
    261   unsigned getNumOperands() const { return (unsigned)Operands.size(); }
    262 
    263   const MachineOperand& getOperand(unsigned i) const {
    264     assert(i < getNumOperands() && "getOperand() out of range!");
    265     return Operands[i];
    266   }
    267   MachineOperand& getOperand(unsigned i) {
    268     assert(i < getNumOperands() && "getOperand() out of range!");
    269     return Operands[i];
    270   }
    271 
    272   /// getNumExplicitOperands - Returns the number of non-implicit operands.
    273   ///
    274   unsigned getNumExplicitOperands() const;
    275 
    276   /// iterator/begin/end - Iterate over all operands of a machine instruction.
    277   typedef std::vector<MachineOperand>::iterator mop_iterator;
    278   typedef std::vector<MachineOperand>::const_iterator const_mop_iterator;
    279 
    280   mop_iterator operands_begin() { return Operands.begin(); }
    281   mop_iterator operands_end() { return Operands.end(); }
    282 
    283   const_mop_iterator operands_begin() const { return Operands.begin(); }
    284   const_mop_iterator operands_end() const { return Operands.end(); }
    285 
    286   /// Access to memory operands of the instruction
    287   mmo_iterator memoperands_begin() const { return MemRefs; }
    288   mmo_iterator memoperands_end() const { return MemRefs + NumMemRefs; }
    289   bool memoperands_empty() const { return NumMemRefs == 0; }
    290 
    291   /// hasOneMemOperand - Return true if this instruction has exactly one
    292   /// MachineMemOperand.
    293   bool hasOneMemOperand() const {
    294     return NumMemRefs == 1;
    295   }
    296 
    297   /// API for querying MachineInstr properties. They are the same as MCInstrDesc
    298   /// queries but they are bundle aware.
    299 
    300   enum QueryType {
    301     IgnoreBundle,    // Ignore bundles
    302     AnyInBundle,     // Return true if any instruction in bundle has property
    303     AllInBundle      // Return true if all instructions in bundle have property
    304   };
    305 
    306   /// hasProperty - Return true if the instruction (or in the case of a bundle,
    307   /// the instructions inside the bundle) has the specified property.
    308   /// The first argument is the property being queried.
    309   /// The second argument indicates whether the query should look inside
    310   /// instruction bundles.
    311   bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
    312     // Inline the fast path.
    313     if (Type == IgnoreBundle || !isBundle())
    314       return getDesc().getFlags() & (1 << MCFlag);
    315 
    316     // If we have a bundle, take the slow path.
    317     return hasPropertyInBundle(1 << MCFlag, Type);
    318   }
    319 
    320   /// isVariadic - Return true if this instruction can have a variable number of
    321   /// operands.  In this case, the variable operands will be after the normal
    322   /// operands but before the implicit definitions and uses (if any are
    323   /// present).
    324   bool isVariadic(QueryType Type = IgnoreBundle) const {
    325     return hasProperty(MCID::Variadic, Type);
    326   }
    327 
    328   /// hasOptionalDef - Set if this instruction has an optional definition, e.g.
    329   /// ARM instructions which can set condition code if 's' bit is set.
    330   bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
    331     return hasProperty(MCID::HasOptionalDef, Type);
    332   }
    333 
    334   /// isPseudo - Return true if this is a pseudo instruction that doesn't
    335   /// correspond to a real machine instruction.
    336   ///
    337   bool isPseudo(QueryType Type = IgnoreBundle) const {
    338     return hasProperty(MCID::Pseudo, Type);
    339   }
    340 
    341   bool isReturn(QueryType Type = AnyInBundle) const {
    342     return hasProperty(MCID::Return, Type);
    343   }
    344 
    345   bool isCall(QueryType Type = AnyInBundle) const {
    346     return hasProperty(MCID::Call, Type);
    347   }
    348 
    349   /// isBarrier - Returns true if the specified instruction stops control flow
    350   /// from executing the instruction immediately following it.  Examples include
    351   /// unconditional branches and return instructions.
    352   bool isBarrier(QueryType Type = AnyInBundle) const {
    353     return hasProperty(MCID::Barrier, Type);
    354   }
    355 
    356   /// isTerminator - Returns true if this instruction part of the terminator for
    357   /// a basic block.  Typically this is things like return and branch
    358   /// instructions.
    359   ///
    360   /// Various passes use this to insert code into the bottom of a basic block,
    361   /// but before control flow occurs.
    362   bool isTerminator(QueryType Type = AnyInBundle) const {
    363     return hasProperty(MCID::Terminator, Type);
    364   }
    365 
    366   /// isBranch - Returns true if this is a conditional, unconditional, or
    367   /// indirect branch.  Predicates below can be used to discriminate between
    368   /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
    369   /// get more information.
    370   bool isBranch(QueryType Type = AnyInBundle) const {
    371     return hasProperty(MCID::Branch, Type);
    372   }
    373 
    374   /// isIndirectBranch - Return true if this is an indirect branch, such as a
    375   /// branch through a register.
    376   bool isIndirectBranch(QueryType Type = AnyInBundle) const {
    377     return hasProperty(MCID::IndirectBranch, Type);
    378   }
    379 
    380   /// isConditionalBranch - Return true if this is a branch which may fall
    381   /// through to the next instruction or may transfer control flow to some other
    382   /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
    383   /// information about this branch.
    384   bool isConditionalBranch(QueryType Type = AnyInBundle) const {
    385     return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type);
    386   }
    387 
    388   /// isUnconditionalBranch - Return true if this is a branch which always
    389   /// transfers control flow to some other block.  The
    390   /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
    391   /// about this branch.
    392   bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
    393     return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type);
    394   }
    395 
    396   // isPredicable - Return true if this instruction has a predicate operand that
    397   // controls execution.  It may be set to 'always', or may be set to other
    398   /// values.   There are various methods in TargetInstrInfo that can be used to
    399   /// control and modify the predicate in this instruction.
    400   bool isPredicable(QueryType Type = AllInBundle) const {
    401     // If it's a bundle than all bundled instructions must be predicable for this
    402     // to return true.
    403     return hasProperty(MCID::Predicable, Type);
    404   }
    405 
    406   /// isCompare - Return true if this instruction is a comparison.
    407   bool isCompare(QueryType Type = IgnoreBundle) const {
    408     return hasProperty(MCID::Compare, Type);
    409   }
    410 
    411   /// isMoveImmediate - Return true if this instruction is a move immediate
    412   /// (including conditional moves) instruction.
    413   bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
    414     return hasProperty(MCID::MoveImm, Type);
    415   }
    416 
    417   /// isBitcast - Return true if this instruction is a bitcast instruction.
    418   ///
    419   bool isBitcast(QueryType Type = IgnoreBundle) const {
    420     return hasProperty(MCID::Bitcast, Type);
    421   }
    422 
    423   /// isNotDuplicable - Return true if this instruction cannot be safely
    424   /// duplicated.  For example, if the instruction has a unique labels attached
    425   /// to it, duplicating it would cause multiple definition errors.
    426   bool isNotDuplicable(QueryType Type = AnyInBundle) const {
    427     return hasProperty(MCID::NotDuplicable, Type);
    428   }
    429 
    430   /// hasDelaySlot - Returns true if the specified instruction has a delay slot
    431   /// which must be filled by the code generator.
    432   bool hasDelaySlot(QueryType Type = AnyInBundle) const {
    433     return hasProperty(MCID::DelaySlot, Type);
    434   }
    435 
    436   /// canFoldAsLoad - Return true for instructions that can be folded as
    437   /// memory operands in other instructions. The most common use for this
    438   /// is instructions that are simple loads from memory that don't modify
    439   /// the loaded value in any way, but it can also be used for instructions
    440   /// that can be expressed as constant-pool loads, such as V_SETALLONES
    441   /// on x86, to allow them to be folded when it is beneficial.
    442   /// This should only be set on instructions that return a value in their
    443   /// only virtual register definition.
    444   bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
    445     return hasProperty(MCID::FoldableAsLoad, Type);
    446   }
    447 
    448   //===--------------------------------------------------------------------===//
    449   // Side Effect Analysis
    450   //===--------------------------------------------------------------------===//
    451 
    452   /// mayLoad - Return true if this instruction could possibly read memory.
    453   /// Instructions with this flag set are not necessarily simple load
    454   /// instructions, they may load a value and modify it, for example.
    455   bool mayLoad(QueryType Type = AnyInBundle) const {
    456     return hasProperty(MCID::MayLoad, Type);
    457   }
    458 
    459 
    460   /// mayStore - Return true if this instruction could possibly modify memory.
    461   /// Instructions with this flag set are not necessarily simple store
    462   /// instructions, they may store a modified value based on their operands, or
    463   /// may not actually modify anything, for example.
    464   bool mayStore(QueryType Type = AnyInBundle) const {
    465     return hasProperty(MCID::MayStore, Type);
    466   }
    467 
    468   //===--------------------------------------------------------------------===//
    469   // Flags that indicate whether an instruction can be modified by a method.
    470   //===--------------------------------------------------------------------===//
    471 
    472   /// isCommutable - Return true if this may be a 2- or 3-address
    473   /// instruction (of the form "X = op Y, Z, ..."), which produces the same
    474   /// result if Y and Z are exchanged.  If this flag is set, then the
    475   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
    476   /// instruction.
    477   ///
    478   /// Note that this flag may be set on instructions that are only commutable
    479   /// sometimes.  In these cases, the call to commuteInstruction will fail.
    480   /// Also note that some instructions require non-trivial modification to
    481   /// commute them.
    482   bool isCommutable(QueryType Type = IgnoreBundle) const {
    483     return hasProperty(MCID::Commutable, Type);
    484   }
    485 
    486   /// isConvertibleTo3Addr - Return true if this is a 2-address instruction
    487   /// which can be changed into a 3-address instruction if needed.  Doing this
    488   /// transformation can be profitable in the register allocator, because it
    489   /// means that the instruction can use a 2-address form if possible, but
    490   /// degrade into a less efficient form if the source and dest register cannot
    491   /// be assigned to the same register.  For example, this allows the x86
    492   /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
    493   /// is the same speed as the shift but has bigger code size.
    494   ///
    495   /// If this returns true, then the target must implement the
    496   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
    497   /// is allowed to fail if the transformation isn't valid for this specific
    498   /// instruction (e.g. shl reg, 4 on x86).
    499   ///
    500   bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
    501     return hasProperty(MCID::ConvertibleTo3Addr, Type);
    502   }
    503 
    504   /// usesCustomInsertionHook - Return true if this instruction requires
    505   /// custom insertion support when the DAG scheduler is inserting it into a
    506   /// machine basic block.  If this is true for the instruction, it basically
    507   /// means that it is a pseudo instruction used at SelectionDAG time that is
    508   /// expanded out into magic code by the target when MachineInstrs are formed.
    509   ///
    510   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
    511   /// is used to insert this into the MachineBasicBlock.
    512   bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
    513     return hasProperty(MCID::UsesCustomInserter, Type);
    514   }
    515 
    516   /// hasPostISelHook - Return true if this instruction requires *adjustment*
    517   /// after instruction selection by calling a target hook. For example, this
    518   /// can be used to fill in ARM 's' optional operand depending on whether
    519   /// the conditional flag register is used.
    520   bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
    521     return hasProperty(MCID::HasPostISelHook, Type);
    522   }
    523 
    524   /// isRematerializable - Returns true if this instruction is a candidate for
    525   /// remat.  This flag is deprecated, please don't use it anymore.  If this
    526   /// flag is set, the isReallyTriviallyReMaterializable() method is called to
    527   /// verify the instruction is really rematable.
    528   bool isRematerializable(QueryType Type = AllInBundle) const {
    529     // It's only possible to re-mat a bundle if all bundled instructions are
    530     // re-materializable.
    531     return hasProperty(MCID::Rematerializable, Type);
    532   }
    533 
    534   /// isAsCheapAsAMove - Returns true if this instruction has the same cost (or
    535   /// less) than a move instruction. This is useful during certain types of
    536   /// optimizations (e.g., remat during two-address conversion or machine licm)
    537   /// where we would like to remat or hoist the instruction, but not if it costs
    538   /// more than moving the instruction into the appropriate register. Note, we
    539   /// are not marking copies from and to the same register class with this flag.
    540   bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
    541     // Only returns true for a bundle if all bundled instructions are cheap.
    542     // FIXME: This probably requires a target hook.
    543     return hasProperty(MCID::CheapAsAMove, Type);
    544   }
    545 
    546   /// hasExtraSrcRegAllocReq - Returns true if this instruction source operands
    547   /// have special register allocation requirements that are not captured by the
    548   /// operand register classes. e.g. ARM::STRD's two source registers must be an
    549   /// even / odd pair, ARM::STM registers have to be in ascending order.
    550   /// Post-register allocation passes should not attempt to change allocations
    551   /// for sources of instructions with this flag.
    552   bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
    553     return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
    554   }
    555 
    556   /// hasExtraDefRegAllocReq - Returns true if this instruction def operands
    557   /// have special register allocation requirements that are not captured by the
    558   /// operand register classes. e.g. ARM::LDRD's two def registers must be an
    559   /// even / odd pair, ARM::LDM registers have to be in ascending order.
    560   /// Post-register allocation passes should not attempt to change allocations
    561   /// for definitions of instructions with this flag.
    562   bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
    563     return hasProperty(MCID::ExtraDefRegAllocReq, Type);
    564   }
    565 
    566 
    567   enum MICheckType {
    568     CheckDefs,      // Check all operands for equality
    569     CheckKillDead,  // Check all operands including kill / dead markers
    570     IgnoreDefs,     // Ignore all definitions
    571     IgnoreVRegDefs  // Ignore virtual register definitions
    572   };
    573 
    574   /// isIdenticalTo - Return true if this instruction is identical to (same
    575   /// opcode and same operands as) the specified instruction.
    576   bool isIdenticalTo(const MachineInstr *Other,
    577                      MICheckType Check = CheckDefs) const;
    578 
    579   /// removeFromParent - This method unlinks 'this' from the containing basic
    580   /// block, and returns it, but does not delete it.
    581   MachineInstr *removeFromParent();
    582 
    583   /// eraseFromParent - This method unlinks 'this' from the containing basic
    584   /// block and deletes it.
    585   void eraseFromParent();
    586 
    587   /// isLabel - Returns true if the MachineInstr represents a label.
    588   ///
    589   bool isLabel() const {
    590     return getOpcode() == TargetOpcode::PROLOG_LABEL ||
    591            getOpcode() == TargetOpcode::EH_LABEL ||
    592            getOpcode() == TargetOpcode::GC_LABEL;
    593   }
    594 
    595   bool isPrologLabel() const {
    596     return getOpcode() == TargetOpcode::PROLOG_LABEL;
    597   }
    598   bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
    599   bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
    600   bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
    601 
    602   bool isPHI() const { return getOpcode() == TargetOpcode::PHI; }
    603   bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
    604   bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
    605   bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; }
    606   bool isStackAligningInlineAsm() const;
    607   bool isInsertSubreg() const {
    608     return getOpcode() == TargetOpcode::INSERT_SUBREG;
    609   }
    610   bool isSubregToReg() const {
    611     return getOpcode() == TargetOpcode::SUBREG_TO_REG;
    612   }
    613   bool isRegSequence() const {
    614     return getOpcode() == TargetOpcode::REG_SEQUENCE;
    615   }
    616   bool isBundle() const {
    617     return getOpcode() == TargetOpcode::BUNDLE;
    618   }
    619   bool isCopy() const {
    620     return getOpcode() == TargetOpcode::COPY;
    621   }
    622   bool isFullCopy() const {
    623     return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
    624   }
    625 
    626   /// isCopyLike - Return true if the instruction behaves like a copy.
    627   /// This does not include native copy instructions.
    628   bool isCopyLike() const {
    629     return isCopy() || isSubregToReg();
    630   }
    631 
    632   /// isIdentityCopy - Return true is the instruction is an identity copy.
    633   bool isIdentityCopy() const {
    634     return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
    635       getOperand(0).getSubReg() == getOperand(1).getSubReg();
    636   }
    637 
    638   /// getBundleSize - Return the number of instructions inside the MI bundle.
    639   unsigned getBundleSize() const;
    640 
    641   /// readsRegister - Return true if the MachineInstr reads the specified
    642   /// register. If TargetRegisterInfo is passed, then it also checks if there
    643   /// is a read of a super-register.
    644   /// This does not count partial redefines of virtual registers as reads:
    645   ///   %reg1024:6 = OP.
    646   bool readsRegister(unsigned Reg, const TargetRegisterInfo *TRI = NULL) const {
    647     return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
    648   }
    649 
    650   /// readsVirtualRegister - Return true if the MachineInstr reads the specified
    651   /// virtual register. Take into account that a partial define is a
    652   /// read-modify-write operation.
    653   bool readsVirtualRegister(unsigned Reg) const {
    654     return readsWritesVirtualRegister(Reg).first;
    655   }
    656 
    657   /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
    658   /// indicating if this instruction reads or writes Reg. This also considers
    659   /// partial defines.
    660   /// If Ops is not null, all operand indices for Reg are added.
    661   std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg,
    662                                       SmallVectorImpl<unsigned> *Ops = 0) const;
    663 
    664   /// killsRegister - Return true if the MachineInstr kills the specified
    665   /// register. If TargetRegisterInfo is passed, then it also checks if there is
    666   /// a kill of a super-register.
    667   bool killsRegister(unsigned Reg, const TargetRegisterInfo *TRI = NULL) const {
    668     return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
    669   }
    670 
    671   /// definesRegister - Return true if the MachineInstr fully defines the
    672   /// specified register. If TargetRegisterInfo is passed, then it also checks
    673   /// if there is a def of a super-register.
    674   /// NOTE: It's ignoring subreg indices on virtual registers.
    675   bool definesRegister(unsigned Reg, const TargetRegisterInfo *TRI=NULL) const {
    676     return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
    677   }
    678 
    679   /// modifiesRegister - Return true if the MachineInstr modifies (fully define
    680   /// or partially define) the specified register.
    681   /// NOTE: It's ignoring subreg indices on virtual registers.
    682   bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const {
    683     return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
    684   }
    685 
    686   /// registerDefIsDead - Returns true if the register is dead in this machine
    687   /// instruction. If TargetRegisterInfo is passed, then it also checks
    688   /// if there is a dead def of a super-register.
    689   bool registerDefIsDead(unsigned Reg,
    690                          const TargetRegisterInfo *TRI = NULL) const {
    691     return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
    692   }
    693 
    694   /// findRegisterUseOperandIdx() - Returns the operand index that is a use of
    695   /// the specific register or -1 if it is not found. It further tightens
    696   /// the search criteria to a use that kills the register if isKill is true.
    697   int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false,
    698                                 const TargetRegisterInfo *TRI = NULL) const;
    699 
    700   /// findRegisterUseOperand - Wrapper for findRegisterUseOperandIdx, it returns
    701   /// a pointer to the MachineOperand rather than an index.
    702   MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false,
    703                                          const TargetRegisterInfo *TRI = NULL) {
    704     int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
    705     return (Idx == -1) ? NULL : &getOperand(Idx);
    706   }
    707 
    708   /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
    709   /// the specified register or -1 if it is not found. If isDead is true, defs
    710   /// that are not dead are skipped. If Overlap is true, then it also looks for
    711   /// defs that merely overlap the specified register. If TargetRegisterInfo is
    712   /// non-null, then it also checks if there is a def of a super-register.
    713   /// This may also return a register mask operand when Overlap is true.
    714   int findRegisterDefOperandIdx(unsigned Reg,
    715                                 bool isDead = false, bool Overlap = false,
    716                                 const TargetRegisterInfo *TRI = NULL) const;
    717 
    718   /// findRegisterDefOperand - Wrapper for findRegisterDefOperandIdx, it returns
    719   /// a pointer to the MachineOperand rather than an index.
    720   MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false,
    721                                          const TargetRegisterInfo *TRI = NULL) {
    722     int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI);
    723     return (Idx == -1) ? NULL : &getOperand(Idx);
    724   }
    725 
    726   /// findFirstPredOperandIdx() - Find the index of the first operand in the
    727   /// operand list that is used to represent the predicate. It returns -1 if
    728   /// none is found.
    729   int findFirstPredOperandIdx() const;
    730 
    731   /// findInlineAsmFlagIdx() - Find the index of the flag word operand that
    732   /// corresponds to operand OpIdx on an inline asm instruction.  Returns -1 if
    733   /// getOperand(OpIdx) does not belong to an inline asm operand group.
    734   ///
    735   /// If GroupNo is not NULL, it will receive the number of the operand group
    736   /// containing OpIdx.
    737   ///
    738   /// The flag operand is an immediate that can be decoded with methods like
    739   /// InlineAsm::hasRegClassConstraint().
    740   ///
    741   int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = 0) const;
    742 
    743   /// getRegClassConstraint - Compute the static register class constraint for
    744   /// operand OpIdx.  For normal instructions, this is derived from the
    745   /// MCInstrDesc.  For inline assembly it is derived from the flag words.
    746   ///
    747   /// Returns NULL if the static register classs constraint cannot be
    748   /// determined.
    749   ///
    750   const TargetRegisterClass*
    751   getRegClassConstraint(unsigned OpIdx,
    752                         const TargetInstrInfo *TII,
    753                         const TargetRegisterInfo *TRI) const;
    754 
    755   /// isRegTiedToUseOperand - Given the index of a register def operand,
    756   /// check if the register def is tied to a source operand, due to either
    757   /// two-address elimination or inline assembly constraints. Returns the
    758   /// first tied use operand index by reference if UseOpIdx is not null.
    759   bool isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx = 0) const;
    760 
    761   /// isRegTiedToDefOperand - Return true if the use operand of the specified
    762   /// index is tied to an def operand. It also returns the def operand index by
    763   /// reference if DefOpIdx is not null.
    764   bool isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx = 0) const;
    765 
    766   /// clearKillInfo - Clears kill flags on all operands.
    767   ///
    768   void clearKillInfo();
    769 
    770   /// copyKillDeadInfo - Copies kill / dead operand properties from MI.
    771   ///
    772   void copyKillDeadInfo(const MachineInstr *MI);
    773 
    774   /// copyPredicates - Copies predicate operand(s) from MI.
    775   void copyPredicates(const MachineInstr *MI);
    776 
    777   /// substituteRegister - Replace all occurrences of FromReg with ToReg:SubIdx,
    778   /// properly composing subreg indices where necessary.
    779   void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx,
    780                           const TargetRegisterInfo &RegInfo);
    781 
    782   /// addRegisterKilled - We have determined MI kills a register. Look for the
    783   /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
    784   /// add a implicit operand if it's not found. Returns true if the operand
    785   /// exists / is added.
    786   bool addRegisterKilled(unsigned IncomingReg,
    787                          const TargetRegisterInfo *RegInfo,
    788                          bool AddIfNotFound = false);
    789 
    790   /// clearRegisterKills - Clear all kill flags affecting Reg.  If RegInfo is
    791   /// provided, this includes super-register kills.
    792   void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo);
    793 
    794   /// addRegisterDead - We have determined MI defined a register without a use.
    795   /// Look for the operand that defines it and mark it as IsDead. If
    796   /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
    797   /// true if the operand exists / is added.
    798   bool addRegisterDead(unsigned IncomingReg, const TargetRegisterInfo *RegInfo,
    799                        bool AddIfNotFound = false);
    800 
    801   /// addRegisterDefined - We have determined MI defines a register. Make sure
    802   /// there is an operand defining Reg.
    803   void addRegisterDefined(unsigned IncomingReg,
    804                           const TargetRegisterInfo *RegInfo = 0);
    805 
    806   /// setPhysRegsDeadExcept - Mark every physreg used by this instruction as
    807   /// dead except those in the UsedRegs list.
    808   ///
    809   /// On instructions with register mask operands, also add implicit-def
    810   /// operands for all registers in UsedRegs.
    811   void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
    812                              const TargetRegisterInfo &TRI);
    813 
    814   /// isSafeToMove - Return true if it is safe to move this instruction. If
    815   /// SawStore is set to true, it means that there is a store (or call) between
    816   /// the instruction's location and its intended destination.
    817   bool isSafeToMove(const TargetInstrInfo *TII, AliasAnalysis *AA,
    818                     bool &SawStore) const;
    819 
    820   /// isSafeToReMat - Return true if it's safe to rematerialize the specified
    821   /// instruction which defined the specified register instead of copying it.
    822   bool isSafeToReMat(const TargetInstrInfo *TII, AliasAnalysis *AA,
    823                      unsigned DstReg) const;
    824 
    825   /// hasVolatileMemoryRef - Return true if this instruction may have a
    826   /// volatile memory reference, or if the information describing the
    827   /// memory reference is not available. Return false if it is known to
    828   /// have no volatile memory references.
    829   bool hasVolatileMemoryRef() const;
    830 
    831   /// isInvariantLoad - Return true if this instruction is loading from a
    832   /// location whose value is invariant across the function.  For example,
    833   /// loading a value from the constant pool or from the argument area of
    834   /// a function if it does not change.  This should only return true of *all*
    835   /// loads the instruction does are invariant (if it does multiple loads).
    836   bool isInvariantLoad(AliasAnalysis *AA) const;
    837 
    838   /// isConstantValuePHI - If the specified instruction is a PHI that always
    839   /// merges together the same virtual register, return the register, otherwise
    840   /// return 0.
    841   unsigned isConstantValuePHI() const;
    842 
    843   /// hasUnmodeledSideEffects - Return true if this instruction has side
    844   /// effects that are not modeled by mayLoad / mayStore, etc.
    845   /// For all instructions, the property is encoded in MCInstrDesc::Flags
    846   /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
    847   /// INLINEASM instruction, in which case the side effect property is encoded
    848   /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
    849   ///
    850   bool hasUnmodeledSideEffects() const;
    851 
    852   /// allDefsAreDead - Return true if all the defs of this instruction are dead.
    853   ///
    854   bool allDefsAreDead() const;
    855 
    856   /// copyImplicitOps - Copy implicit register operands from specified
    857   /// instruction to this instruction.
    858   void copyImplicitOps(const MachineInstr *MI);
    859 
    860   //
    861   // Debugging support
    862   //
    863   void print(raw_ostream &OS, const TargetMachine *TM = 0) const;
    864   void dump() const;
    865 
    866   //===--------------------------------------------------------------------===//
    867   // Accessors used to build up machine instructions.
    868 
    869   /// addOperand - Add the specified operand to the instruction.  If it is an
    870   /// implicit operand, it is added to the end of the operand list.  If it is
    871   /// an explicit operand it is added at the end of the explicit operand list
    872   /// (before the first implicit operand).
    873   void addOperand(const MachineOperand &Op);
    874 
    875   /// setDesc - Replace the instruction descriptor (thus opcode) of
    876   /// the current instruction with a new one.
    877   ///
    878   void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
    879 
    880   /// setDebugLoc - Replace current source information with new such.
    881   /// Avoid using this, the constructor argument is preferable.
    882   ///
    883   void setDebugLoc(const DebugLoc dl) { debugLoc = dl; }
    884 
    885   /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
    886   /// fewer operand than it started with.
    887   ///
    888   void RemoveOperand(unsigned i);
    889 
    890   /// addMemOperand - Add a MachineMemOperand to the machine instruction.
    891   /// This function should be used only occasionally. The setMemRefs function
    892   /// is the primary method for setting up a MachineInstr's MemRefs list.
    893   void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
    894 
    895   /// setMemRefs - Assign this MachineInstr's memory reference descriptor
    896   /// list. This does not transfer ownership.
    897   void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
    898     MemRefs = NewMemRefs;
    899     NumMemRefs = NewMemRefsEnd - NewMemRefs;
    900   }
    901 
    902 private:
    903   /// getRegInfo - If this instruction is embedded into a MachineFunction,
    904   /// return the MachineRegisterInfo object for the current function, otherwise
    905   /// return null.
    906   MachineRegisterInfo *getRegInfo();
    907 
    908   /// addImplicitDefUseOperands - Add all implicit def and use operands to
    909   /// this instruction.
    910   void addImplicitDefUseOperands();
    911 
    912   /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
    913   /// this instruction from their respective use lists.  This requires that the
    914   /// operands already be on their use lists.
    915   void RemoveRegOperandsFromUseLists();
    916 
    917   /// AddRegOperandsToUseLists - Add all of the register operands in
    918   /// this instruction from their respective use lists.  This requires that the
    919   /// operands not be on their use lists yet.
    920   void AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo);
    921 
    922   /// hasPropertyInBundle - Slow path for hasProperty when we're dealing with a
    923   /// bundle.
    924   bool hasPropertyInBundle(unsigned Mask, QueryType Type) const;
    925 };
    926 
    927 /// MachineInstrExpressionTrait - Special DenseMapInfo traits to compare
    928 /// MachineInstr* by *value* of the instruction rather than by pointer value.
    929 /// The hashing and equality testing functions ignore definitions so this is
    930 /// useful for CSE, etc.
    931 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
    932   static inline MachineInstr *getEmptyKey() {
    933     return 0;
    934   }
    935 
    936   static inline MachineInstr *getTombstoneKey() {
    937     return reinterpret_cast<MachineInstr*>(-1);
    938   }
    939 
    940   static unsigned getHashValue(const MachineInstr* const &MI);
    941 
    942   static bool isEqual(const MachineInstr* const &LHS,
    943                       const MachineInstr* const &RHS) {
    944     if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
    945         LHS == getEmptyKey() || LHS == getTombstoneKey())
    946       return LHS == RHS;
    947     return LHS->isIdenticalTo(RHS, MachineInstr::IgnoreVRegDefs);
    948   }
    949 };
    950 
    951 //===----------------------------------------------------------------------===//
    952 // Debugging Support
    953 
    954 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
    955   MI.print(OS);
    956   return OS;
    957 }
    958 
    959 } // End llvm namespace
    960 
    961 #endif
    962