Home | History | Annotate | Download | only in Sema
      1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for Objective C declarations.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "clang/Sema/Lookup.h"
     16 #include "clang/Sema/ExternalSemaSource.h"
     17 #include "clang/Sema/Scope.h"
     18 #include "clang/Sema/ScopeInfo.h"
     19 #include "clang/AST/ASTConsumer.h"
     20 #include "clang/AST/Expr.h"
     21 #include "clang/AST/ExprObjC.h"
     22 #include "clang/AST/ASTContext.h"
     23 #include "clang/AST/DeclObjC.h"
     24 #include "clang/AST/ASTMutationListener.h"
     25 #include "clang/Basic/SourceManager.h"
     26 #include "clang/Sema/DeclSpec.h"
     27 #include "clang/Lex/Preprocessor.h"
     28 #include "llvm/ADT/DenseSet.h"
     29 
     30 using namespace clang;
     31 
     32 /// Check whether the given method, which must be in the 'init'
     33 /// family, is a valid member of that family.
     34 ///
     35 /// \param receiverTypeIfCall - if null, check this as if declaring it;
     36 ///   if non-null, check this as if making a call to it with the given
     37 ///   receiver type
     38 ///
     39 /// \return true to indicate that there was an error and appropriate
     40 ///   actions were taken
     41 bool Sema::checkInitMethod(ObjCMethodDecl *method,
     42                            QualType receiverTypeIfCall) {
     43   if (method->isInvalidDecl()) return true;
     44 
     45   // This castAs is safe: methods that don't return an object
     46   // pointer won't be inferred as inits and will reject an explicit
     47   // objc_method_family(init).
     48 
     49   // We ignore protocols here.  Should we?  What about Class?
     50 
     51   const ObjCObjectType *result = method->getResultType()
     52     ->castAs<ObjCObjectPointerType>()->getObjectType();
     53 
     54   if (result->isObjCId()) {
     55     return false;
     56   } else if (result->isObjCClass()) {
     57     // fall through: always an error
     58   } else {
     59     ObjCInterfaceDecl *resultClass = result->getInterface();
     60     assert(resultClass && "unexpected object type!");
     61 
     62     // It's okay for the result type to still be a forward declaration
     63     // if we're checking an interface declaration.
     64     if (!resultClass->hasDefinition()) {
     65       if (receiverTypeIfCall.isNull() &&
     66           !isa<ObjCImplementationDecl>(method->getDeclContext()))
     67         return false;
     68 
     69     // Otherwise, we try to compare class types.
     70     } else {
     71       // If this method was declared in a protocol, we can't check
     72       // anything unless we have a receiver type that's an interface.
     73       const ObjCInterfaceDecl *receiverClass = 0;
     74       if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
     75         if (receiverTypeIfCall.isNull())
     76           return false;
     77 
     78         receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
     79           ->getInterfaceDecl();
     80 
     81         // This can be null for calls to e.g. id<Foo>.
     82         if (!receiverClass) return false;
     83       } else {
     84         receiverClass = method->getClassInterface();
     85         assert(receiverClass && "method not associated with a class!");
     86       }
     87 
     88       // If either class is a subclass of the other, it's fine.
     89       if (receiverClass->isSuperClassOf(resultClass) ||
     90           resultClass->isSuperClassOf(receiverClass))
     91         return false;
     92     }
     93   }
     94 
     95   SourceLocation loc = method->getLocation();
     96 
     97   // If we're in a system header, and this is not a call, just make
     98   // the method unusable.
     99   if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
    100     method->addAttr(new (Context) UnavailableAttr(loc, Context,
    101                 "init method returns a type unrelated to its receiver type"));
    102     return true;
    103   }
    104 
    105   // Otherwise, it's an error.
    106   Diag(loc, diag::err_arc_init_method_unrelated_result_type);
    107   method->setInvalidDecl();
    108   return true;
    109 }
    110 
    111 void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
    112                                    const ObjCMethodDecl *Overridden,
    113                                    bool IsImplementation) {
    114   if (Overridden->hasRelatedResultType() &&
    115       !NewMethod->hasRelatedResultType()) {
    116     // This can only happen when the method follows a naming convention that
    117     // implies a related result type, and the original (overridden) method has
    118     // a suitable return type, but the new (overriding) method does not have
    119     // a suitable return type.
    120     QualType ResultType = NewMethod->getResultType();
    121     SourceRange ResultTypeRange;
    122     if (const TypeSourceInfo *ResultTypeInfo
    123                                         = NewMethod->getResultTypeSourceInfo())
    124       ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
    125 
    126     // Figure out which class this method is part of, if any.
    127     ObjCInterfaceDecl *CurrentClass
    128       = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
    129     if (!CurrentClass) {
    130       DeclContext *DC = NewMethod->getDeclContext();
    131       if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
    132         CurrentClass = Cat->getClassInterface();
    133       else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
    134         CurrentClass = Impl->getClassInterface();
    135       else if (ObjCCategoryImplDecl *CatImpl
    136                = dyn_cast<ObjCCategoryImplDecl>(DC))
    137         CurrentClass = CatImpl->getClassInterface();
    138     }
    139 
    140     if (CurrentClass) {
    141       Diag(NewMethod->getLocation(),
    142            diag::warn_related_result_type_compatibility_class)
    143         << Context.getObjCInterfaceType(CurrentClass)
    144         << ResultType
    145         << ResultTypeRange;
    146     } else {
    147       Diag(NewMethod->getLocation(),
    148            diag::warn_related_result_type_compatibility_protocol)
    149         << ResultType
    150         << ResultTypeRange;
    151     }
    152 
    153     if (ObjCMethodFamily Family = Overridden->getMethodFamily())
    154       Diag(Overridden->getLocation(),
    155            diag::note_related_result_type_overridden_family)
    156         << Family;
    157     else
    158       Diag(Overridden->getLocation(),
    159            diag::note_related_result_type_overridden);
    160   }
    161   if (getLangOpts().ObjCAutoRefCount) {
    162     if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
    163          Overridden->hasAttr<NSReturnsRetainedAttr>())) {
    164         Diag(NewMethod->getLocation(),
    165              diag::err_nsreturns_retained_attribute_mismatch) << 1;
    166         Diag(Overridden->getLocation(), diag::note_previous_decl)
    167         << "method";
    168     }
    169     if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
    170               Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
    171         Diag(NewMethod->getLocation(),
    172              diag::err_nsreturns_retained_attribute_mismatch) << 0;
    173         Diag(Overridden->getLocation(), diag::note_previous_decl)
    174         << "method";
    175     }
    176     ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin();
    177     for (ObjCMethodDecl::param_iterator
    178            ni = NewMethod->param_begin(), ne = NewMethod->param_end();
    179          ni != ne; ++ni, ++oi) {
    180       const ParmVarDecl *oldDecl = (*oi);
    181       ParmVarDecl *newDecl = (*ni);
    182       if (newDecl->hasAttr<NSConsumedAttr>() !=
    183           oldDecl->hasAttr<NSConsumedAttr>()) {
    184         Diag(newDecl->getLocation(),
    185              diag::err_nsconsumed_attribute_mismatch);
    186         Diag(oldDecl->getLocation(), diag::note_previous_decl)
    187           << "parameter";
    188       }
    189     }
    190   }
    191 }
    192 
    193 /// \brief Check a method declaration for compatibility with the Objective-C
    194 /// ARC conventions.
    195 static bool CheckARCMethodDecl(Sema &S, ObjCMethodDecl *method) {
    196   ObjCMethodFamily family = method->getMethodFamily();
    197   switch (family) {
    198   case OMF_None:
    199   case OMF_dealloc:
    200   case OMF_finalize:
    201   case OMF_retain:
    202   case OMF_release:
    203   case OMF_autorelease:
    204   case OMF_retainCount:
    205   case OMF_self:
    206   case OMF_performSelector:
    207     return false;
    208 
    209   case OMF_init:
    210     // If the method doesn't obey the init rules, don't bother annotating it.
    211     if (S.checkInitMethod(method, QualType()))
    212       return true;
    213 
    214     method->addAttr(new (S.Context) NSConsumesSelfAttr(SourceLocation(),
    215                                                        S.Context));
    216 
    217     // Don't add a second copy of this attribute, but otherwise don't
    218     // let it be suppressed.
    219     if (method->hasAttr<NSReturnsRetainedAttr>())
    220       return false;
    221     break;
    222 
    223   case OMF_alloc:
    224   case OMF_copy:
    225   case OMF_mutableCopy:
    226   case OMF_new:
    227     if (method->hasAttr<NSReturnsRetainedAttr>() ||
    228         method->hasAttr<NSReturnsNotRetainedAttr>() ||
    229         method->hasAttr<NSReturnsAutoreleasedAttr>())
    230       return false;
    231     break;
    232   }
    233 
    234   method->addAttr(new (S.Context) NSReturnsRetainedAttr(SourceLocation(),
    235                                                         S.Context));
    236   return false;
    237 }
    238 
    239 static void DiagnoseObjCImplementedDeprecations(Sema &S,
    240                                                 NamedDecl *ND,
    241                                                 SourceLocation ImplLoc,
    242                                                 int select) {
    243   if (ND && ND->isDeprecated()) {
    244     S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
    245     if (select == 0)
    246       S.Diag(ND->getLocation(), diag::note_method_declared_at)
    247         << ND->getDeclName();
    248     else
    249       S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
    250   }
    251 }
    252 
    253 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
    254 /// pool.
    255 void Sema::AddAnyMethodToGlobalPool(Decl *D) {
    256   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
    257 
    258   // If we don't have a valid method decl, simply return.
    259   if (!MDecl)
    260     return;
    261   if (MDecl->isInstanceMethod())
    262     AddInstanceMethodToGlobalPool(MDecl, true);
    263   else
    264     AddFactoryMethodToGlobalPool(MDecl, true);
    265 }
    266 
    267 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
    268 /// and user declared, in the method definition's AST.
    269 void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
    270   assert(getCurMethodDecl() == 0 && "Method parsing confused");
    271   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
    272 
    273   // If we don't have a valid method decl, simply return.
    274   if (!MDecl)
    275     return;
    276 
    277   // Allow all of Sema to see that we are entering a method definition.
    278   PushDeclContext(FnBodyScope, MDecl);
    279   PushFunctionScope();
    280 
    281   // Create Decl objects for each parameter, entrring them in the scope for
    282   // binding to their use.
    283 
    284   // Insert the invisible arguments, self and _cmd!
    285   MDecl->createImplicitParams(Context, MDecl->getClassInterface());
    286 
    287   PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
    288   PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
    289 
    290   // Introduce all of the other parameters into this scope.
    291   for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
    292        E = MDecl->param_end(); PI != E; ++PI) {
    293     ParmVarDecl *Param = (*PI);
    294     if (!Param->isInvalidDecl() &&
    295         RequireCompleteType(Param->getLocation(), Param->getType(),
    296                             diag::err_typecheck_decl_incomplete_type))
    297           Param->setInvalidDecl();
    298     if ((*PI)->getIdentifier())
    299       PushOnScopeChains(*PI, FnBodyScope);
    300   }
    301 
    302   // In ARC, disallow definition of retain/release/autorelease/retainCount
    303   if (getLangOpts().ObjCAutoRefCount) {
    304     switch (MDecl->getMethodFamily()) {
    305     case OMF_retain:
    306     case OMF_retainCount:
    307     case OMF_release:
    308     case OMF_autorelease:
    309       Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
    310         << MDecl->getSelector();
    311       break;
    312 
    313     case OMF_None:
    314     case OMF_dealloc:
    315     case OMF_finalize:
    316     case OMF_alloc:
    317     case OMF_init:
    318     case OMF_mutableCopy:
    319     case OMF_copy:
    320     case OMF_new:
    321     case OMF_self:
    322     case OMF_performSelector:
    323       break;
    324     }
    325   }
    326 
    327   // Warn on deprecated methods under -Wdeprecated-implementations,
    328   // and prepare for warning on missing super calls.
    329   if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
    330     if (ObjCMethodDecl *IMD =
    331           IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod()))
    332       DiagnoseObjCImplementedDeprecations(*this,
    333                                           dyn_cast<NamedDecl>(IMD),
    334                                           MDecl->getLocation(), 0);
    335 
    336     // If this is "dealloc" or "finalize", set some bit here.
    337     // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
    338     // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
    339     // Only do this if the current class actually has a superclass.
    340     if (IC->getSuperClass()) {
    341       ObjCShouldCallSuperDealloc =
    342         !(Context.getLangOpts().ObjCAutoRefCount ||
    343           Context.getLangOpts().getGC() == LangOptions::GCOnly) &&
    344         MDecl->getMethodFamily() == OMF_dealloc;
    345       ObjCShouldCallSuperFinalize =
    346         Context.getLangOpts().getGC() != LangOptions::NonGC &&
    347         MDecl->getMethodFamily() == OMF_finalize;
    348     }
    349   }
    350 }
    351 
    352 namespace {
    353 
    354 // Callback to only accept typo corrections that are Objective-C classes.
    355 // If an ObjCInterfaceDecl* is given to the constructor, then the validation
    356 // function will reject corrections to that class.
    357 class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
    358  public:
    359   ObjCInterfaceValidatorCCC() : CurrentIDecl(0) {}
    360   explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
    361       : CurrentIDecl(IDecl) {}
    362 
    363   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
    364     ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
    365     return ID && !declaresSameEntity(ID, CurrentIDecl);
    366   }
    367 
    368  private:
    369   ObjCInterfaceDecl *CurrentIDecl;
    370 };
    371 
    372 }
    373 
    374 Decl *Sema::
    375 ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
    376                          IdentifierInfo *ClassName, SourceLocation ClassLoc,
    377                          IdentifierInfo *SuperName, SourceLocation SuperLoc,
    378                          Decl * const *ProtoRefs, unsigned NumProtoRefs,
    379                          const SourceLocation *ProtoLocs,
    380                          SourceLocation EndProtoLoc, AttributeList *AttrList) {
    381   assert(ClassName && "Missing class identifier");
    382 
    383   // Check for another declaration kind with the same name.
    384   NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
    385                                          LookupOrdinaryName, ForRedeclaration);
    386 
    387   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
    388     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
    389     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
    390   }
    391 
    392   // Create a declaration to describe this @interface.
    393   ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
    394   ObjCInterfaceDecl *IDecl
    395     = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
    396                                 PrevIDecl, ClassLoc);
    397 
    398   if (PrevIDecl) {
    399     // Class already seen. Was it a definition?
    400     if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
    401       Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
    402         << PrevIDecl->getDeclName();
    403       Diag(Def->getLocation(), diag::note_previous_definition);
    404       IDecl->setInvalidDecl();
    405     }
    406   }
    407 
    408   if (AttrList)
    409     ProcessDeclAttributeList(TUScope, IDecl, AttrList);
    410   PushOnScopeChains(IDecl, TUScope);
    411 
    412   // Start the definition of this class. If we're in a redefinition case, there
    413   // may already be a definition, so we'll end up adding to it.
    414   if (!IDecl->hasDefinition())
    415     IDecl->startDefinition();
    416 
    417   if (SuperName) {
    418     // Check if a different kind of symbol declared in this scope.
    419     PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
    420                                 LookupOrdinaryName);
    421 
    422     if (!PrevDecl) {
    423       // Try to correct for a typo in the superclass name without correcting
    424       // to the class we're defining.
    425       ObjCInterfaceValidatorCCC Validator(IDecl);
    426       if (TypoCorrection Corrected = CorrectTypo(
    427           DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope,
    428           NULL, Validator)) {
    429         PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
    430         Diag(SuperLoc, diag::err_undef_superclass_suggest)
    431           << SuperName << ClassName << PrevDecl->getDeclName();
    432         Diag(PrevDecl->getLocation(), diag::note_previous_decl)
    433           << PrevDecl->getDeclName();
    434       }
    435     }
    436 
    437     if (declaresSameEntity(PrevDecl, IDecl)) {
    438       Diag(SuperLoc, diag::err_recursive_superclass)
    439         << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
    440       IDecl->setEndOfDefinitionLoc(ClassLoc);
    441     } else {
    442       ObjCInterfaceDecl *SuperClassDecl =
    443                                 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
    444 
    445       // Diagnose classes that inherit from deprecated classes.
    446       if (SuperClassDecl)
    447         (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
    448 
    449       if (PrevDecl && SuperClassDecl == 0) {
    450         // The previous declaration was not a class decl. Check if we have a
    451         // typedef. If we do, get the underlying class type.
    452         if (const TypedefNameDecl *TDecl =
    453               dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
    454           QualType T = TDecl->getUnderlyingType();
    455           if (T->isObjCObjectType()) {
    456             if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface())
    457               SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
    458           }
    459         }
    460 
    461         // This handles the following case:
    462         //
    463         // typedef int SuperClass;
    464         // @interface MyClass : SuperClass {} @end
    465         //
    466         if (!SuperClassDecl) {
    467           Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
    468           Diag(PrevDecl->getLocation(), diag::note_previous_definition);
    469         }
    470       }
    471 
    472       if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
    473         if (!SuperClassDecl)
    474           Diag(SuperLoc, diag::err_undef_superclass)
    475             << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
    476         else if (RequireCompleteType(SuperLoc,
    477                    Context.getObjCInterfaceType(SuperClassDecl),
    478                    PDiag(diag::err_forward_superclass)
    479                      << SuperClassDecl->getDeclName()
    480                      << ClassName
    481                    << SourceRange(AtInterfaceLoc, ClassLoc))) {
    482           SuperClassDecl = 0;
    483         }
    484       }
    485       IDecl->setSuperClass(SuperClassDecl);
    486       IDecl->setSuperClassLoc(SuperLoc);
    487       IDecl->setEndOfDefinitionLoc(SuperLoc);
    488     }
    489   } else { // we have a root class.
    490     IDecl->setEndOfDefinitionLoc(ClassLoc);
    491   }
    492 
    493   // Check then save referenced protocols.
    494   if (NumProtoRefs) {
    495     IDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
    496                            ProtoLocs, Context);
    497     IDecl->setEndOfDefinitionLoc(EndProtoLoc);
    498   }
    499 
    500   CheckObjCDeclScope(IDecl);
    501   return ActOnObjCContainerStartDefinition(IDecl);
    502 }
    503 
    504 /// ActOnCompatiblityAlias - this action is called after complete parsing of
    505 /// @compatibility_alias declaration. It sets up the alias relationships.
    506 Decl *Sema::ActOnCompatiblityAlias(SourceLocation AtLoc,
    507                                         IdentifierInfo *AliasName,
    508                                         SourceLocation AliasLocation,
    509                                         IdentifierInfo *ClassName,
    510                                         SourceLocation ClassLocation) {
    511   // Look for previous declaration of alias name
    512   NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
    513                                       LookupOrdinaryName, ForRedeclaration);
    514   if (ADecl) {
    515     if (isa<ObjCCompatibleAliasDecl>(ADecl))
    516       Diag(AliasLocation, diag::warn_previous_alias_decl);
    517     else
    518       Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
    519     Diag(ADecl->getLocation(), diag::note_previous_declaration);
    520     return 0;
    521   }
    522   // Check for class declaration
    523   NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
    524                                        LookupOrdinaryName, ForRedeclaration);
    525   if (const TypedefNameDecl *TDecl =
    526         dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
    527     QualType T = TDecl->getUnderlyingType();
    528     if (T->isObjCObjectType()) {
    529       if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
    530         ClassName = IDecl->getIdentifier();
    531         CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
    532                                   LookupOrdinaryName, ForRedeclaration);
    533       }
    534     }
    535   }
    536   ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
    537   if (CDecl == 0) {
    538     Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
    539     if (CDeclU)
    540       Diag(CDeclU->getLocation(), diag::note_previous_declaration);
    541     return 0;
    542   }
    543 
    544   // Everything checked out, instantiate a new alias declaration AST.
    545   ObjCCompatibleAliasDecl *AliasDecl =
    546     ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
    547 
    548   if (!CheckObjCDeclScope(AliasDecl))
    549     PushOnScopeChains(AliasDecl, TUScope);
    550 
    551   return AliasDecl;
    552 }
    553 
    554 bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
    555   IdentifierInfo *PName,
    556   SourceLocation &Ploc, SourceLocation PrevLoc,
    557   const ObjCList<ObjCProtocolDecl> &PList) {
    558 
    559   bool res = false;
    560   for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
    561        E = PList.end(); I != E; ++I) {
    562     if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
    563                                                  Ploc)) {
    564       if (PDecl->getIdentifier() == PName) {
    565         Diag(Ploc, diag::err_protocol_has_circular_dependency);
    566         Diag(PrevLoc, diag::note_previous_definition);
    567         res = true;
    568       }
    569 
    570       if (!PDecl->hasDefinition())
    571         continue;
    572 
    573       if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
    574             PDecl->getLocation(), PDecl->getReferencedProtocols()))
    575         res = true;
    576     }
    577   }
    578   return res;
    579 }
    580 
    581 Decl *
    582 Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
    583                                   IdentifierInfo *ProtocolName,
    584                                   SourceLocation ProtocolLoc,
    585                                   Decl * const *ProtoRefs,
    586                                   unsigned NumProtoRefs,
    587                                   const SourceLocation *ProtoLocs,
    588                                   SourceLocation EndProtoLoc,
    589                                   AttributeList *AttrList) {
    590   bool err = false;
    591   // FIXME: Deal with AttrList.
    592   assert(ProtocolName && "Missing protocol identifier");
    593   ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
    594                                               ForRedeclaration);
    595   ObjCProtocolDecl *PDecl = 0;
    596   if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : 0) {
    597     // If we already have a definition, complain.
    598     Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
    599     Diag(Def->getLocation(), diag::note_previous_definition);
    600 
    601     // Create a new protocol that is completely distinct from previous
    602     // declarations, and do not make this protocol available for name lookup.
    603     // That way, we'll end up completely ignoring the duplicate.
    604     // FIXME: Can we turn this into an error?
    605     PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
    606                                      ProtocolLoc, AtProtoInterfaceLoc,
    607                                      /*PrevDecl=*/0);
    608     PDecl->startDefinition();
    609   } else {
    610     if (PrevDecl) {
    611       // Check for circular dependencies among protocol declarations. This can
    612       // only happen if this protocol was forward-declared.
    613       ObjCList<ObjCProtocolDecl> PList;
    614       PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
    615       err = CheckForwardProtocolDeclarationForCircularDependency(
    616               ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
    617     }
    618 
    619     // Create the new declaration.
    620     PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
    621                                      ProtocolLoc, AtProtoInterfaceLoc,
    622                                      /*PrevDecl=*/PrevDecl);
    623 
    624     PushOnScopeChains(PDecl, TUScope);
    625     PDecl->startDefinition();
    626   }
    627 
    628   if (AttrList)
    629     ProcessDeclAttributeList(TUScope, PDecl, AttrList);
    630 
    631   // Merge attributes from previous declarations.
    632   if (PrevDecl)
    633     mergeDeclAttributes(PDecl, PrevDecl);
    634 
    635   if (!err && NumProtoRefs ) {
    636     /// Check then save referenced protocols.
    637     PDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
    638                            ProtoLocs, Context);
    639   }
    640 
    641   CheckObjCDeclScope(PDecl);
    642   return ActOnObjCContainerStartDefinition(PDecl);
    643 }
    644 
    645 /// FindProtocolDeclaration - This routine looks up protocols and
    646 /// issues an error if they are not declared. It returns list of
    647 /// protocol declarations in its 'Protocols' argument.
    648 void
    649 Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
    650                               const IdentifierLocPair *ProtocolId,
    651                               unsigned NumProtocols,
    652                               SmallVectorImpl<Decl *> &Protocols) {
    653   for (unsigned i = 0; i != NumProtocols; ++i) {
    654     ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
    655                                              ProtocolId[i].second);
    656     if (!PDecl) {
    657       DeclFilterCCC<ObjCProtocolDecl> Validator;
    658       TypoCorrection Corrected = CorrectTypo(
    659           DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second),
    660           LookupObjCProtocolName, TUScope, NULL, Validator);
    661       if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) {
    662         Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest)
    663           << ProtocolId[i].first << Corrected.getCorrection();
    664         Diag(PDecl->getLocation(), diag::note_previous_decl)
    665           << PDecl->getDeclName();
    666       }
    667     }
    668 
    669     if (!PDecl) {
    670       Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
    671         << ProtocolId[i].first;
    672       continue;
    673     }
    674 
    675     (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
    676 
    677     // If this is a forward declaration and we are supposed to warn in this
    678     // case, do it.
    679     if (WarnOnDeclarations && !PDecl->hasDefinition())
    680       Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
    681         << ProtocolId[i].first;
    682     Protocols.push_back(PDecl);
    683   }
    684 }
    685 
    686 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
    687 /// a class method in its extension.
    688 ///
    689 void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
    690                                             ObjCInterfaceDecl *ID) {
    691   if (!ID)
    692     return;  // Possibly due to previous error
    693 
    694   llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
    695   for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(),
    696        e =  ID->meth_end(); i != e; ++i) {
    697     ObjCMethodDecl *MD = *i;
    698     MethodMap[MD->getSelector()] = MD;
    699   }
    700 
    701   if (MethodMap.empty())
    702     return;
    703   for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(),
    704        e =  CAT->meth_end(); i != e; ++i) {
    705     ObjCMethodDecl *Method = *i;
    706     const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
    707     if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) {
    708       Diag(Method->getLocation(), diag::err_duplicate_method_decl)
    709             << Method->getDeclName();
    710       Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
    711     }
    712   }
    713 }
    714 
    715 /// ActOnForwardProtocolDeclaration - Handle @protocol foo;
    716 Sema::DeclGroupPtrTy
    717 Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
    718                                       const IdentifierLocPair *IdentList,
    719                                       unsigned NumElts,
    720                                       AttributeList *attrList) {
    721   SmallVector<Decl *, 8> DeclsInGroup;
    722   for (unsigned i = 0; i != NumElts; ++i) {
    723     IdentifierInfo *Ident = IdentList[i].first;
    724     ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentList[i].second,
    725                                                 ForRedeclaration);
    726     ObjCProtocolDecl *PDecl
    727       = ObjCProtocolDecl::Create(Context, CurContext, Ident,
    728                                  IdentList[i].second, AtProtocolLoc,
    729                                  PrevDecl);
    730 
    731     PushOnScopeChains(PDecl, TUScope);
    732     CheckObjCDeclScope(PDecl);
    733 
    734     if (attrList)
    735       ProcessDeclAttributeList(TUScope, PDecl, attrList);
    736 
    737     if (PrevDecl)
    738       mergeDeclAttributes(PDecl, PrevDecl);
    739 
    740     DeclsInGroup.push_back(PDecl);
    741   }
    742 
    743   return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
    744 }
    745 
    746 Decl *Sema::
    747 ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
    748                             IdentifierInfo *ClassName, SourceLocation ClassLoc,
    749                             IdentifierInfo *CategoryName,
    750                             SourceLocation CategoryLoc,
    751                             Decl * const *ProtoRefs,
    752                             unsigned NumProtoRefs,
    753                             const SourceLocation *ProtoLocs,
    754                             SourceLocation EndProtoLoc) {
    755   ObjCCategoryDecl *CDecl;
    756   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
    757 
    758   /// Check that class of this category is already completely declared.
    759 
    760   if (!IDecl
    761       || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
    762                              PDiag(diag::err_category_forward_interface)
    763                                << (CategoryName == 0))) {
    764     // Create an invalid ObjCCategoryDecl to serve as context for
    765     // the enclosing method declarations.  We mark the decl invalid
    766     // to make it clear that this isn't a valid AST.
    767     CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
    768                                      ClassLoc, CategoryLoc, CategoryName,IDecl);
    769     CDecl->setInvalidDecl();
    770     CurContext->addDecl(CDecl);
    771 
    772     if (!IDecl)
    773       Diag(ClassLoc, diag::err_undef_interface) << ClassName;
    774     return ActOnObjCContainerStartDefinition(CDecl);
    775   }
    776 
    777   if (!CategoryName && IDecl->getImplementation()) {
    778     Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
    779     Diag(IDecl->getImplementation()->getLocation(),
    780           diag::note_implementation_declared);
    781   }
    782 
    783   if (CategoryName) {
    784     /// Check for duplicate interface declaration for this category
    785     ObjCCategoryDecl *CDeclChain;
    786     for (CDeclChain = IDecl->getCategoryList(); CDeclChain;
    787          CDeclChain = CDeclChain->getNextClassCategory()) {
    788       if (CDeclChain->getIdentifier() == CategoryName) {
    789         // Class extensions can be declared multiple times.
    790         Diag(CategoryLoc, diag::warn_dup_category_def)
    791           << ClassName << CategoryName;
    792         Diag(CDeclChain->getLocation(), diag::note_previous_definition);
    793         break;
    794       }
    795     }
    796   }
    797 
    798   CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
    799                                    ClassLoc, CategoryLoc, CategoryName, IDecl);
    800   // FIXME: PushOnScopeChains?
    801   CurContext->addDecl(CDecl);
    802 
    803   if (NumProtoRefs) {
    804     CDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
    805                            ProtoLocs, Context);
    806     // Protocols in the class extension belong to the class.
    807     if (CDecl->IsClassExtension())
    808      IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl**)ProtoRefs,
    809                                             NumProtoRefs, Context);
    810   }
    811 
    812   CheckObjCDeclScope(CDecl);
    813   return ActOnObjCContainerStartDefinition(CDecl);
    814 }
    815 
    816 /// ActOnStartCategoryImplementation - Perform semantic checks on the
    817 /// category implementation declaration and build an ObjCCategoryImplDecl
    818 /// object.
    819 Decl *Sema::ActOnStartCategoryImplementation(
    820                       SourceLocation AtCatImplLoc,
    821                       IdentifierInfo *ClassName, SourceLocation ClassLoc,
    822                       IdentifierInfo *CatName, SourceLocation CatLoc) {
    823   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
    824   ObjCCategoryDecl *CatIDecl = 0;
    825   if (IDecl && IDecl->hasDefinition()) {
    826     CatIDecl = IDecl->FindCategoryDeclaration(CatName);
    827     if (!CatIDecl) {
    828       // Category @implementation with no corresponding @interface.
    829       // Create and install one.
    830       CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
    831                                           ClassLoc, CatLoc,
    832                                           CatName, IDecl);
    833       CatIDecl->setImplicit();
    834     }
    835   }
    836 
    837   ObjCCategoryImplDecl *CDecl =
    838     ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
    839                                  ClassLoc, AtCatImplLoc, CatLoc);
    840   /// Check that class of this category is already completely declared.
    841   if (!IDecl) {
    842     Diag(ClassLoc, diag::err_undef_interface) << ClassName;
    843     CDecl->setInvalidDecl();
    844   } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
    845                                  diag::err_undef_interface)) {
    846     CDecl->setInvalidDecl();
    847   }
    848 
    849   // FIXME: PushOnScopeChains?
    850   CurContext->addDecl(CDecl);
    851 
    852   // If the interface is deprecated/unavailable, warn/error about it.
    853   if (IDecl)
    854     DiagnoseUseOfDecl(IDecl, ClassLoc);
    855 
    856   /// Check that CatName, category name, is not used in another implementation.
    857   if (CatIDecl) {
    858     if (CatIDecl->getImplementation()) {
    859       Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
    860         << CatName;
    861       Diag(CatIDecl->getImplementation()->getLocation(),
    862            diag::note_previous_definition);
    863     } else {
    864       CatIDecl->setImplementation(CDecl);
    865       // Warn on implementating category of deprecated class under
    866       // -Wdeprecated-implementations flag.
    867       DiagnoseObjCImplementedDeprecations(*this,
    868                                           dyn_cast<NamedDecl>(IDecl),
    869                                           CDecl->getLocation(), 2);
    870     }
    871   }
    872 
    873   CheckObjCDeclScope(CDecl);
    874   return ActOnObjCContainerStartDefinition(CDecl);
    875 }
    876 
    877 Decl *Sema::ActOnStartClassImplementation(
    878                       SourceLocation AtClassImplLoc,
    879                       IdentifierInfo *ClassName, SourceLocation ClassLoc,
    880                       IdentifierInfo *SuperClassname,
    881                       SourceLocation SuperClassLoc) {
    882   ObjCInterfaceDecl* IDecl = 0;
    883   // Check for another declaration kind with the same name.
    884   NamedDecl *PrevDecl
    885     = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
    886                        ForRedeclaration);
    887   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
    888     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
    889     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
    890   } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
    891     RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
    892                         diag::warn_undef_interface);
    893   } else {
    894     // We did not find anything with the name ClassName; try to correct for
    895     // typos in the class name.
    896     ObjCInterfaceValidatorCCC Validator;
    897     if (TypoCorrection Corrected = CorrectTypo(
    898         DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
    899         NULL, Validator)) {
    900       // Suggest the (potentially) correct interface name. However, put the
    901       // fix-it hint itself in a separate note, since changing the name in
    902       // the warning would make the fix-it change semantics.However, don't
    903       // provide a code-modification hint or use the typo name for recovery,
    904       // because this is just a warning. The program may actually be correct.
    905       IDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
    906       DeclarationName CorrectedName = Corrected.getCorrection();
    907       Diag(ClassLoc, diag::warn_undef_interface_suggest)
    908         << ClassName << CorrectedName;
    909       Diag(IDecl->getLocation(), diag::note_previous_decl) << CorrectedName
    910         << FixItHint::CreateReplacement(ClassLoc, CorrectedName.getAsString());
    911       IDecl = 0;
    912     } else {
    913       Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
    914     }
    915   }
    916 
    917   // Check that super class name is valid class name
    918   ObjCInterfaceDecl* SDecl = 0;
    919   if (SuperClassname) {
    920     // Check if a different kind of symbol declared in this scope.
    921     PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
    922                                 LookupOrdinaryName);
    923     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
    924       Diag(SuperClassLoc, diag::err_redefinition_different_kind)
    925         << SuperClassname;
    926       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
    927     } else {
    928       SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
    929       if (SDecl && !SDecl->hasDefinition())
    930         SDecl = 0;
    931       if (!SDecl)
    932         Diag(SuperClassLoc, diag::err_undef_superclass)
    933           << SuperClassname << ClassName;
    934       else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
    935         // This implementation and its interface do not have the same
    936         // super class.
    937         Diag(SuperClassLoc, diag::err_conflicting_super_class)
    938           << SDecl->getDeclName();
    939         Diag(SDecl->getLocation(), diag::note_previous_definition);
    940       }
    941     }
    942   }
    943 
    944   if (!IDecl) {
    945     // Legacy case of @implementation with no corresponding @interface.
    946     // Build, chain & install the interface decl into the identifier.
    947 
    948     // FIXME: Do we support attributes on the @implementation? If so we should
    949     // copy them over.
    950     IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
    951                                       ClassName, /*PrevDecl=*/0, ClassLoc,
    952                                       true);
    953     IDecl->startDefinition();
    954     if (SDecl) {
    955       IDecl->setSuperClass(SDecl);
    956       IDecl->setSuperClassLoc(SuperClassLoc);
    957       IDecl->setEndOfDefinitionLoc(SuperClassLoc);
    958     } else {
    959       IDecl->setEndOfDefinitionLoc(ClassLoc);
    960     }
    961 
    962     PushOnScopeChains(IDecl, TUScope);
    963   } else {
    964     // Mark the interface as being completed, even if it was just as
    965     //   @class ....;
    966     // declaration; the user cannot reopen it.
    967     if (!IDecl->hasDefinition())
    968       IDecl->startDefinition();
    969   }
    970 
    971   ObjCImplementationDecl* IMPDecl =
    972     ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
    973                                    ClassLoc, AtClassImplLoc);
    974 
    975   if (CheckObjCDeclScope(IMPDecl))
    976     return ActOnObjCContainerStartDefinition(IMPDecl);
    977 
    978   // Check that there is no duplicate implementation of this class.
    979   if (IDecl->getImplementation()) {
    980     // FIXME: Don't leak everything!
    981     Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
    982     Diag(IDecl->getImplementation()->getLocation(),
    983          diag::note_previous_definition);
    984   } else { // add it to the list.
    985     IDecl->setImplementation(IMPDecl);
    986     PushOnScopeChains(IMPDecl, TUScope);
    987     // Warn on implementating deprecated class under
    988     // -Wdeprecated-implementations flag.
    989     DiagnoseObjCImplementedDeprecations(*this,
    990                                         dyn_cast<NamedDecl>(IDecl),
    991                                         IMPDecl->getLocation(), 1);
    992   }
    993   return ActOnObjCContainerStartDefinition(IMPDecl);
    994 }
    995 
    996 Sema::DeclGroupPtrTy
    997 Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
    998   SmallVector<Decl *, 64> DeclsInGroup;
    999   DeclsInGroup.reserve(Decls.size() + 1);
   1000 
   1001   for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
   1002     Decl *Dcl = Decls[i];
   1003     if (!Dcl)
   1004       continue;
   1005     if (Dcl->getDeclContext()->isFileContext())
   1006       Dcl->setTopLevelDeclInObjCContainer();
   1007     DeclsInGroup.push_back(Dcl);
   1008   }
   1009 
   1010   DeclsInGroup.push_back(ObjCImpDecl);
   1011 
   1012   return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
   1013 }
   1014 
   1015 void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
   1016                                     ObjCIvarDecl **ivars, unsigned numIvars,
   1017                                     SourceLocation RBrace) {
   1018   assert(ImpDecl && "missing implementation decl");
   1019   ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
   1020   if (!IDecl)
   1021     return;
   1022   /// Check case of non-existing @interface decl.
   1023   /// (legacy objective-c @implementation decl without an @interface decl).
   1024   /// Add implementations's ivar to the synthesize class's ivar list.
   1025   if (IDecl->isImplicitInterfaceDecl()) {
   1026     IDecl->setEndOfDefinitionLoc(RBrace);
   1027     // Add ivar's to class's DeclContext.
   1028     for (unsigned i = 0, e = numIvars; i != e; ++i) {
   1029       ivars[i]->setLexicalDeclContext(ImpDecl);
   1030       IDecl->makeDeclVisibleInContext(ivars[i]);
   1031       ImpDecl->addDecl(ivars[i]);
   1032     }
   1033 
   1034     return;
   1035   }
   1036   // If implementation has empty ivar list, just return.
   1037   if (numIvars == 0)
   1038     return;
   1039 
   1040   assert(ivars && "missing @implementation ivars");
   1041   if (LangOpts.ObjCNonFragileABI2) {
   1042     if (ImpDecl->getSuperClass())
   1043       Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
   1044     for (unsigned i = 0; i < numIvars; i++) {
   1045       ObjCIvarDecl* ImplIvar = ivars[i];
   1046       if (const ObjCIvarDecl *ClsIvar =
   1047             IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
   1048         Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
   1049         Diag(ClsIvar->getLocation(), diag::note_previous_definition);
   1050         continue;
   1051       }
   1052       // Instance ivar to Implementation's DeclContext.
   1053       ImplIvar->setLexicalDeclContext(ImpDecl);
   1054       IDecl->makeDeclVisibleInContext(ImplIvar);
   1055       ImpDecl->addDecl(ImplIvar);
   1056     }
   1057     return;
   1058   }
   1059   // Check interface's Ivar list against those in the implementation.
   1060   // names and types must match.
   1061   //
   1062   unsigned j = 0;
   1063   ObjCInterfaceDecl::ivar_iterator
   1064     IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
   1065   for (; numIvars > 0 && IVI != IVE; ++IVI) {
   1066     ObjCIvarDecl* ImplIvar = ivars[j++];
   1067     ObjCIvarDecl* ClsIvar = *IVI;
   1068     assert (ImplIvar && "missing implementation ivar");
   1069     assert (ClsIvar && "missing class ivar");
   1070 
   1071     // First, make sure the types match.
   1072     if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
   1073       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
   1074         << ImplIvar->getIdentifier()
   1075         << ImplIvar->getType() << ClsIvar->getType();
   1076       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
   1077     } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
   1078                ImplIvar->getBitWidthValue(Context) !=
   1079                ClsIvar->getBitWidthValue(Context)) {
   1080       Diag(ImplIvar->getBitWidth()->getLocStart(),
   1081            diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
   1082       Diag(ClsIvar->getBitWidth()->getLocStart(),
   1083            diag::note_previous_definition);
   1084     }
   1085     // Make sure the names are identical.
   1086     if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
   1087       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
   1088         << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
   1089       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
   1090     }
   1091     --numIvars;
   1092   }
   1093 
   1094   if (numIvars > 0)
   1095     Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count);
   1096   else if (IVI != IVE)
   1097     Diag((*IVI)->getLocation(), diag::err_inconsistant_ivar_count);
   1098 }
   1099 
   1100 void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
   1101                                bool &IncompleteImpl, unsigned DiagID) {
   1102   // No point warning no definition of method which is 'unavailable'.
   1103   if (method->hasAttr<UnavailableAttr>())
   1104     return;
   1105   if (!IncompleteImpl) {
   1106     Diag(ImpLoc, diag::warn_incomplete_impl);
   1107     IncompleteImpl = true;
   1108   }
   1109   if (DiagID == diag::warn_unimplemented_protocol_method)
   1110     Diag(ImpLoc, DiagID) << method->getDeclName();
   1111   else
   1112     Diag(method->getLocation(), DiagID) << method->getDeclName();
   1113 }
   1114 
   1115 /// Determines if type B can be substituted for type A.  Returns true if we can
   1116 /// guarantee that anything that the user will do to an object of type A can
   1117 /// also be done to an object of type B.  This is trivially true if the two
   1118 /// types are the same, or if B is a subclass of A.  It becomes more complex
   1119 /// in cases where protocols are involved.
   1120 ///
   1121 /// Object types in Objective-C describe the minimum requirements for an
   1122 /// object, rather than providing a complete description of a type.  For
   1123 /// example, if A is a subclass of B, then B* may refer to an instance of A.
   1124 /// The principle of substitutability means that we may use an instance of A
   1125 /// anywhere that we may use an instance of B - it will implement all of the
   1126 /// ivars of B and all of the methods of B.
   1127 ///
   1128 /// This substitutability is important when type checking methods, because
   1129 /// the implementation may have stricter type definitions than the interface.
   1130 /// The interface specifies minimum requirements, but the implementation may
   1131 /// have more accurate ones.  For example, a method may privately accept
   1132 /// instances of B, but only publish that it accepts instances of A.  Any
   1133 /// object passed to it will be type checked against B, and so will implicitly
   1134 /// by a valid A*.  Similarly, a method may return a subclass of the class that
   1135 /// it is declared as returning.
   1136 ///
   1137 /// This is most important when considering subclassing.  A method in a
   1138 /// subclass must accept any object as an argument that its superclass's
   1139 /// implementation accepts.  It may, however, accept a more general type
   1140 /// without breaking substitutability (i.e. you can still use the subclass
   1141 /// anywhere that you can use the superclass, but not vice versa).  The
   1142 /// converse requirement applies to return types: the return type for a
   1143 /// subclass method must be a valid object of the kind that the superclass
   1144 /// advertises, but it may be specified more accurately.  This avoids the need
   1145 /// for explicit down-casting by callers.
   1146 ///
   1147 /// Note: This is a stricter requirement than for assignment.
   1148 static bool isObjCTypeSubstitutable(ASTContext &Context,
   1149                                     const ObjCObjectPointerType *A,
   1150                                     const ObjCObjectPointerType *B,
   1151                                     bool rejectId) {
   1152   // Reject a protocol-unqualified id.
   1153   if (rejectId && B->isObjCIdType()) return false;
   1154 
   1155   // If B is a qualified id, then A must also be a qualified id and it must
   1156   // implement all of the protocols in B.  It may not be a qualified class.
   1157   // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
   1158   // stricter definition so it is not substitutable for id<A>.
   1159   if (B->isObjCQualifiedIdType()) {
   1160     return A->isObjCQualifiedIdType() &&
   1161            Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
   1162                                                      QualType(B,0),
   1163                                                      false);
   1164   }
   1165 
   1166   /*
   1167   // id is a special type that bypasses type checking completely.  We want a
   1168   // warning when it is used in one place but not another.
   1169   if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
   1170 
   1171 
   1172   // If B is a qualified id, then A must also be a qualified id (which it isn't
   1173   // if we've got this far)
   1174   if (B->isObjCQualifiedIdType()) return false;
   1175   */
   1176 
   1177   // Now we know that A and B are (potentially-qualified) class types.  The
   1178   // normal rules for assignment apply.
   1179   return Context.canAssignObjCInterfaces(A, B);
   1180 }
   1181 
   1182 static SourceRange getTypeRange(TypeSourceInfo *TSI) {
   1183   return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
   1184 }
   1185 
   1186 static bool CheckMethodOverrideReturn(Sema &S,
   1187                                       ObjCMethodDecl *MethodImpl,
   1188                                       ObjCMethodDecl *MethodDecl,
   1189                                       bool IsProtocolMethodDecl,
   1190                                       bool IsOverridingMode,
   1191                                       bool Warn) {
   1192   if (IsProtocolMethodDecl &&
   1193       (MethodDecl->getObjCDeclQualifier() !=
   1194        MethodImpl->getObjCDeclQualifier())) {
   1195     if (Warn) {
   1196         S.Diag(MethodImpl->getLocation(),
   1197                (IsOverridingMode ?
   1198                  diag::warn_conflicting_overriding_ret_type_modifiers
   1199                  : diag::warn_conflicting_ret_type_modifiers))
   1200           << MethodImpl->getDeclName()
   1201           << getTypeRange(MethodImpl->getResultTypeSourceInfo());
   1202         S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
   1203           << getTypeRange(MethodDecl->getResultTypeSourceInfo());
   1204     }
   1205     else
   1206       return false;
   1207   }
   1208 
   1209   if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(),
   1210                                        MethodDecl->getResultType()))
   1211     return true;
   1212   if (!Warn)
   1213     return false;
   1214 
   1215   unsigned DiagID =
   1216     IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
   1217                      : diag::warn_conflicting_ret_types;
   1218 
   1219   // Mismatches between ObjC pointers go into a different warning
   1220   // category, and sometimes they're even completely whitelisted.
   1221   if (const ObjCObjectPointerType *ImplPtrTy =
   1222         MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) {
   1223     if (const ObjCObjectPointerType *IfacePtrTy =
   1224           MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) {
   1225       // Allow non-matching return types as long as they don't violate
   1226       // the principle of substitutability.  Specifically, we permit
   1227       // return types that are subclasses of the declared return type,
   1228       // or that are more-qualified versions of the declared type.
   1229       if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
   1230         return false;
   1231 
   1232       DiagID =
   1233         IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
   1234                           : diag::warn_non_covariant_ret_types;
   1235     }
   1236   }
   1237 
   1238   S.Diag(MethodImpl->getLocation(), DiagID)
   1239     << MethodImpl->getDeclName()
   1240     << MethodDecl->getResultType()
   1241     << MethodImpl->getResultType()
   1242     << getTypeRange(MethodImpl->getResultTypeSourceInfo());
   1243   S.Diag(MethodDecl->getLocation(),
   1244          IsOverridingMode ? diag::note_previous_declaration
   1245                           : diag::note_previous_definition)
   1246     << getTypeRange(MethodDecl->getResultTypeSourceInfo());
   1247   return false;
   1248 }
   1249 
   1250 static bool CheckMethodOverrideParam(Sema &S,
   1251                                      ObjCMethodDecl *MethodImpl,
   1252                                      ObjCMethodDecl *MethodDecl,
   1253                                      ParmVarDecl *ImplVar,
   1254                                      ParmVarDecl *IfaceVar,
   1255                                      bool IsProtocolMethodDecl,
   1256                                      bool IsOverridingMode,
   1257                                      bool Warn) {
   1258   if (IsProtocolMethodDecl &&
   1259       (ImplVar->getObjCDeclQualifier() !=
   1260        IfaceVar->getObjCDeclQualifier())) {
   1261     if (Warn) {
   1262       if (IsOverridingMode)
   1263         S.Diag(ImplVar->getLocation(),
   1264                diag::warn_conflicting_overriding_param_modifiers)
   1265             << getTypeRange(ImplVar->getTypeSourceInfo())
   1266             << MethodImpl->getDeclName();
   1267       else S.Diag(ImplVar->getLocation(),
   1268              diag::warn_conflicting_param_modifiers)
   1269           << getTypeRange(ImplVar->getTypeSourceInfo())
   1270           << MethodImpl->getDeclName();
   1271       S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
   1272           << getTypeRange(IfaceVar->getTypeSourceInfo());
   1273     }
   1274     else
   1275       return false;
   1276   }
   1277 
   1278   QualType ImplTy = ImplVar->getType();
   1279   QualType IfaceTy = IfaceVar->getType();
   1280 
   1281   if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
   1282     return true;
   1283 
   1284   if (!Warn)
   1285     return false;
   1286   unsigned DiagID =
   1287     IsOverridingMode ? diag::warn_conflicting_overriding_param_types
   1288                      : diag::warn_conflicting_param_types;
   1289 
   1290   // Mismatches between ObjC pointers go into a different warning
   1291   // category, and sometimes they're even completely whitelisted.
   1292   if (const ObjCObjectPointerType *ImplPtrTy =
   1293         ImplTy->getAs<ObjCObjectPointerType>()) {
   1294     if (const ObjCObjectPointerType *IfacePtrTy =
   1295           IfaceTy->getAs<ObjCObjectPointerType>()) {
   1296       // Allow non-matching argument types as long as they don't
   1297       // violate the principle of substitutability.  Specifically, the
   1298       // implementation must accept any objects that the superclass
   1299       // accepts, however it may also accept others.
   1300       if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
   1301         return false;
   1302 
   1303       DiagID =
   1304       IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
   1305                        :  diag::warn_non_contravariant_param_types;
   1306     }
   1307   }
   1308 
   1309   S.Diag(ImplVar->getLocation(), DiagID)
   1310     << getTypeRange(ImplVar->getTypeSourceInfo())
   1311     << MethodImpl->getDeclName() << IfaceTy << ImplTy;
   1312   S.Diag(IfaceVar->getLocation(),
   1313          (IsOverridingMode ? diag::note_previous_declaration
   1314                         : diag::note_previous_definition))
   1315     << getTypeRange(IfaceVar->getTypeSourceInfo());
   1316   return false;
   1317 }
   1318 
   1319 /// In ARC, check whether the conventional meanings of the two methods
   1320 /// match.  If they don't, it's a hard error.
   1321 static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
   1322                                       ObjCMethodDecl *decl) {
   1323   ObjCMethodFamily implFamily = impl->getMethodFamily();
   1324   ObjCMethodFamily declFamily = decl->getMethodFamily();
   1325   if (implFamily == declFamily) return false;
   1326 
   1327   // Since conventions are sorted by selector, the only possibility is
   1328   // that the types differ enough to cause one selector or the other
   1329   // to fall out of the family.
   1330   assert(implFamily == OMF_None || declFamily == OMF_None);
   1331 
   1332   // No further diagnostics required on invalid declarations.
   1333   if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
   1334 
   1335   const ObjCMethodDecl *unmatched = impl;
   1336   ObjCMethodFamily family = declFamily;
   1337   unsigned errorID = diag::err_arc_lost_method_convention;
   1338   unsigned noteID = diag::note_arc_lost_method_convention;
   1339   if (declFamily == OMF_None) {
   1340     unmatched = decl;
   1341     family = implFamily;
   1342     errorID = diag::err_arc_gained_method_convention;
   1343     noteID = diag::note_arc_gained_method_convention;
   1344   }
   1345 
   1346   // Indexes into a %select clause in the diagnostic.
   1347   enum FamilySelector {
   1348     F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
   1349   };
   1350   FamilySelector familySelector = FamilySelector();
   1351 
   1352   switch (family) {
   1353   case OMF_None: llvm_unreachable("logic error, no method convention");
   1354   case OMF_retain:
   1355   case OMF_release:
   1356   case OMF_autorelease:
   1357   case OMF_dealloc:
   1358   case OMF_finalize:
   1359   case OMF_retainCount:
   1360   case OMF_self:
   1361   case OMF_performSelector:
   1362     // Mismatches for these methods don't change ownership
   1363     // conventions, so we don't care.
   1364     return false;
   1365 
   1366   case OMF_init: familySelector = F_init; break;
   1367   case OMF_alloc: familySelector = F_alloc; break;
   1368   case OMF_copy: familySelector = F_copy; break;
   1369   case OMF_mutableCopy: familySelector = F_mutableCopy; break;
   1370   case OMF_new: familySelector = F_new; break;
   1371   }
   1372 
   1373   enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
   1374   ReasonSelector reasonSelector;
   1375 
   1376   // The only reason these methods don't fall within their families is
   1377   // due to unusual result types.
   1378   if (unmatched->getResultType()->isObjCObjectPointerType()) {
   1379     reasonSelector = R_UnrelatedReturn;
   1380   } else {
   1381     reasonSelector = R_NonObjectReturn;
   1382   }
   1383 
   1384   S.Diag(impl->getLocation(), errorID) << familySelector << reasonSelector;
   1385   S.Diag(decl->getLocation(), noteID) << familySelector << reasonSelector;
   1386 
   1387   return true;
   1388 }
   1389 
   1390 void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
   1391                                        ObjCMethodDecl *MethodDecl,
   1392                                        bool IsProtocolMethodDecl) {
   1393   if (getLangOpts().ObjCAutoRefCount &&
   1394       checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
   1395     return;
   1396 
   1397   CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
   1398                             IsProtocolMethodDecl, false,
   1399                             true);
   1400 
   1401   for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
   1402        IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end();
   1403        IM != EM; ++IM, ++IF) {
   1404     CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
   1405                              IsProtocolMethodDecl, false, true);
   1406   }
   1407 
   1408   if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
   1409     Diag(ImpMethodDecl->getLocation(),
   1410          diag::warn_conflicting_variadic);
   1411     Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
   1412   }
   1413 }
   1414 
   1415 void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
   1416                                        ObjCMethodDecl *Overridden,
   1417                                        bool IsProtocolMethodDecl) {
   1418 
   1419   CheckMethodOverrideReturn(*this, Method, Overridden,
   1420                             IsProtocolMethodDecl, true,
   1421                             true);
   1422 
   1423   for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
   1424        IF = Overridden->param_begin(), EM = Method->param_end();
   1425        IM != EM; ++IM, ++IF) {
   1426     CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
   1427                              IsProtocolMethodDecl, true, true);
   1428   }
   1429 
   1430   if (Method->isVariadic() != Overridden->isVariadic()) {
   1431     Diag(Method->getLocation(),
   1432          diag::warn_conflicting_overriding_variadic);
   1433     Diag(Overridden->getLocation(), diag::note_previous_declaration);
   1434   }
   1435 }
   1436 
   1437 /// WarnExactTypedMethods - This routine issues a warning if method
   1438 /// implementation declaration matches exactly that of its declaration.
   1439 void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
   1440                                  ObjCMethodDecl *MethodDecl,
   1441                                  bool IsProtocolMethodDecl) {
   1442   // don't issue warning when protocol method is optional because primary
   1443   // class is not required to implement it and it is safe for protocol
   1444   // to implement it.
   1445   if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
   1446     return;
   1447   // don't issue warning when primary class's method is
   1448   // depecated/unavailable.
   1449   if (MethodDecl->hasAttr<UnavailableAttr>() ||
   1450       MethodDecl->hasAttr<DeprecatedAttr>())
   1451     return;
   1452 
   1453   bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
   1454                                       IsProtocolMethodDecl, false, false);
   1455   if (match)
   1456     for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
   1457          IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end();
   1458          IM != EM; ++IM, ++IF) {
   1459       match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
   1460                                        *IM, *IF,
   1461                                        IsProtocolMethodDecl, false, false);
   1462       if (!match)
   1463         break;
   1464     }
   1465   if (match)
   1466     match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
   1467   if (match)
   1468     match = !(MethodDecl->isClassMethod() &&
   1469               MethodDecl->getSelector() == GetNullarySelector("load", Context));
   1470 
   1471   if (match) {
   1472     Diag(ImpMethodDecl->getLocation(),
   1473          diag::warn_category_method_impl_match);
   1474     Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
   1475       << MethodDecl->getDeclName();
   1476   }
   1477 }
   1478 
   1479 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
   1480 /// improve the efficiency of selector lookups and type checking by associating
   1481 /// with each protocol / interface / category the flattened instance tables. If
   1482 /// we used an immutable set to keep the table then it wouldn't add significant
   1483 /// memory cost and it would be handy for lookups.
   1484 
   1485 /// CheckProtocolMethodDefs - This routine checks unimplemented methods
   1486 /// Declared in protocol, and those referenced by it.
   1487 void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc,
   1488                                    ObjCProtocolDecl *PDecl,
   1489                                    bool& IncompleteImpl,
   1490                                    const llvm::DenseSet<Selector> &InsMap,
   1491                                    const llvm::DenseSet<Selector> &ClsMap,
   1492                                    ObjCContainerDecl *CDecl) {
   1493   ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
   1494   ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
   1495                                : dyn_cast<ObjCInterfaceDecl>(CDecl);
   1496   assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
   1497 
   1498   ObjCInterfaceDecl *Super = IDecl->getSuperClass();
   1499   ObjCInterfaceDecl *NSIDecl = 0;
   1500   if (getLangOpts().NeXTRuntime) {
   1501     // check to see if class implements forwardInvocation method and objects
   1502     // of this class are derived from 'NSProxy' so that to forward requests
   1503     // from one object to another.
   1504     // Under such conditions, which means that every method possible is
   1505     // implemented in the class, we should not issue "Method definition not
   1506     // found" warnings.
   1507     // FIXME: Use a general GetUnarySelector method for this.
   1508     IdentifierInfo* II = &Context.Idents.get("forwardInvocation");
   1509     Selector fISelector = Context.Selectors.getSelector(1, &II);
   1510     if (InsMap.count(fISelector))
   1511       // Is IDecl derived from 'NSProxy'? If so, no instance methods
   1512       // need be implemented in the implementation.
   1513       NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy"));
   1514   }
   1515 
   1516   // If a method lookup fails locally we still need to look and see if
   1517   // the method was implemented by a base class or an inherited
   1518   // protocol. This lookup is slow, but occurs rarely in correct code
   1519   // and otherwise would terminate in a warning.
   1520 
   1521   // check unimplemented instance methods.
   1522   if (!NSIDecl)
   1523     for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(),
   1524          E = PDecl->instmeth_end(); I != E; ++I) {
   1525       ObjCMethodDecl *method = *I;
   1526       if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
   1527           !method->isSynthesized() && !InsMap.count(method->getSelector()) &&
   1528           (!Super ||
   1529            !Super->lookupInstanceMethod(method->getSelector()))) {
   1530             // If a method is not implemented in the category implementation but
   1531             // has been declared in its primary class, superclass,
   1532             // or in one of their protocols, no need to issue the warning.
   1533             // This is because method will be implemented in the primary class
   1534             // or one of its super class implementation.
   1535 
   1536             // Ugly, but necessary. Method declared in protcol might have
   1537             // have been synthesized due to a property declared in the class which
   1538             // uses the protocol.
   1539             if (ObjCMethodDecl *MethodInClass =
   1540                   IDecl->lookupInstanceMethod(method->getSelector(),
   1541                                               true /*shallowCategoryLookup*/))
   1542               if (C || MethodInClass->isSynthesized())
   1543                 continue;
   1544             unsigned DIAG = diag::warn_unimplemented_protocol_method;
   1545             if (Diags.getDiagnosticLevel(DIAG, ImpLoc)
   1546                 != DiagnosticsEngine::Ignored) {
   1547               WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
   1548               Diag(method->getLocation(), diag::note_method_declared_at)
   1549                 << method->getDeclName();
   1550               Diag(CDecl->getLocation(), diag::note_required_for_protocol_at)
   1551                 << PDecl->getDeclName();
   1552             }
   1553           }
   1554     }
   1555   // check unimplemented class methods
   1556   for (ObjCProtocolDecl::classmeth_iterator
   1557          I = PDecl->classmeth_begin(), E = PDecl->classmeth_end();
   1558        I != E; ++I) {
   1559     ObjCMethodDecl *method = *I;
   1560     if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
   1561         !ClsMap.count(method->getSelector()) &&
   1562         (!Super || !Super->lookupClassMethod(method->getSelector()))) {
   1563       // See above comment for instance method lookups.
   1564       if (C && IDecl->lookupClassMethod(method->getSelector(),
   1565                                         true /*shallowCategoryLookup*/))
   1566         continue;
   1567       unsigned DIAG = diag::warn_unimplemented_protocol_method;
   1568       if (Diags.getDiagnosticLevel(DIAG, ImpLoc) !=
   1569             DiagnosticsEngine::Ignored) {
   1570         WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
   1571         Diag(method->getLocation(), diag::note_method_declared_at)
   1572           << method->getDeclName();
   1573         Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) <<
   1574           PDecl->getDeclName();
   1575       }
   1576     }
   1577   }
   1578   // Check on this protocols's referenced protocols, recursively.
   1579   for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(),
   1580        E = PDecl->protocol_end(); PI != E; ++PI)
   1581     CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, CDecl);
   1582 }
   1583 
   1584 /// MatchAllMethodDeclarations - Check methods declared in interface
   1585 /// or protocol against those declared in their implementations.
   1586 ///
   1587 void Sema::MatchAllMethodDeclarations(const llvm::DenseSet<Selector> &InsMap,
   1588                                       const llvm::DenseSet<Selector> &ClsMap,
   1589                                       llvm::DenseSet<Selector> &InsMapSeen,
   1590                                       llvm::DenseSet<Selector> &ClsMapSeen,
   1591                                       ObjCImplDecl* IMPDecl,
   1592                                       ObjCContainerDecl* CDecl,
   1593                                       bool &IncompleteImpl,
   1594                                       bool ImmediateClass,
   1595                                       bool WarnCategoryMethodImpl) {
   1596   // Check and see if instance methods in class interface have been
   1597   // implemented in the implementation class. If so, their types match.
   1598   for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(),
   1599        E = CDecl->instmeth_end(); I != E; ++I) {
   1600     if (InsMapSeen.count((*I)->getSelector()))
   1601         continue;
   1602     InsMapSeen.insert((*I)->getSelector());
   1603     if (!(*I)->isSynthesized() &&
   1604         !InsMap.count((*I)->getSelector())) {
   1605       if (ImmediateClass)
   1606         WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
   1607                             diag::note_undef_method_impl);
   1608       continue;
   1609     } else {
   1610       ObjCMethodDecl *ImpMethodDecl =
   1611         IMPDecl->getInstanceMethod((*I)->getSelector());
   1612       assert(CDecl->getInstanceMethod((*I)->getSelector()) &&
   1613              "Expected to find the method through lookup as well");
   1614       ObjCMethodDecl *MethodDecl = *I;
   1615       // ImpMethodDecl may be null as in a @dynamic property.
   1616       if (ImpMethodDecl) {
   1617         if (!WarnCategoryMethodImpl)
   1618           WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
   1619                                       isa<ObjCProtocolDecl>(CDecl));
   1620         else if (!MethodDecl->isSynthesized())
   1621           WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
   1622                                 isa<ObjCProtocolDecl>(CDecl));
   1623       }
   1624     }
   1625   }
   1626 
   1627   // Check and see if class methods in class interface have been
   1628   // implemented in the implementation class. If so, their types match.
   1629    for (ObjCInterfaceDecl::classmeth_iterator
   1630        I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) {
   1631      if (ClsMapSeen.count((*I)->getSelector()))
   1632        continue;
   1633      ClsMapSeen.insert((*I)->getSelector());
   1634     if (!ClsMap.count((*I)->getSelector())) {
   1635       if (ImmediateClass)
   1636         WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
   1637                             diag::note_undef_method_impl);
   1638     } else {
   1639       ObjCMethodDecl *ImpMethodDecl =
   1640         IMPDecl->getClassMethod((*I)->getSelector());
   1641       assert(CDecl->getClassMethod((*I)->getSelector()) &&
   1642              "Expected to find the method through lookup as well");
   1643       ObjCMethodDecl *MethodDecl = *I;
   1644       if (!WarnCategoryMethodImpl)
   1645         WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
   1646                                     isa<ObjCProtocolDecl>(CDecl));
   1647       else
   1648         WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
   1649                               isa<ObjCProtocolDecl>(CDecl));
   1650     }
   1651   }
   1652 
   1653   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
   1654     // Also methods in class extensions need be looked at next.
   1655     for (const ObjCCategoryDecl *ClsExtDecl = I->getFirstClassExtension();
   1656          ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension())
   1657       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1658                                  IMPDecl,
   1659                                  const_cast<ObjCCategoryDecl *>(ClsExtDecl),
   1660                                  IncompleteImpl, false,
   1661                                  WarnCategoryMethodImpl);
   1662 
   1663     // Check for any implementation of a methods declared in protocol.
   1664     for (ObjCInterfaceDecl::all_protocol_iterator
   1665           PI = I->all_referenced_protocol_begin(),
   1666           E = I->all_referenced_protocol_end(); PI != E; ++PI)
   1667       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1668                                  IMPDecl,
   1669                                  (*PI), IncompleteImpl, false,
   1670                                  WarnCategoryMethodImpl);
   1671 
   1672     // FIXME. For now, we are not checking for extact match of methods
   1673     // in category implementation and its primary class's super class.
   1674     if (!WarnCategoryMethodImpl && I->getSuperClass())
   1675       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1676                                  IMPDecl,
   1677                                  I->getSuperClass(), IncompleteImpl, false);
   1678   }
   1679 }
   1680 
   1681 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
   1682 /// category matches with those implemented in its primary class and
   1683 /// warns each time an exact match is found.
   1684 void Sema::CheckCategoryVsClassMethodMatches(
   1685                                   ObjCCategoryImplDecl *CatIMPDecl) {
   1686   llvm::DenseSet<Selector> InsMap, ClsMap;
   1687 
   1688   for (ObjCImplementationDecl::instmeth_iterator
   1689        I = CatIMPDecl->instmeth_begin(),
   1690        E = CatIMPDecl->instmeth_end(); I!=E; ++I)
   1691     InsMap.insert((*I)->getSelector());
   1692 
   1693   for (ObjCImplementationDecl::classmeth_iterator
   1694        I = CatIMPDecl->classmeth_begin(),
   1695        E = CatIMPDecl->classmeth_end(); I != E; ++I)
   1696     ClsMap.insert((*I)->getSelector());
   1697   if (InsMap.empty() && ClsMap.empty())
   1698     return;
   1699 
   1700   // Get category's primary class.
   1701   ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
   1702   if (!CatDecl)
   1703     return;
   1704   ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
   1705   if (!IDecl)
   1706     return;
   1707   llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen;
   1708   bool IncompleteImpl = false;
   1709   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1710                              CatIMPDecl, IDecl,
   1711                              IncompleteImpl, false,
   1712                              true /*WarnCategoryMethodImpl*/);
   1713 }
   1714 
   1715 void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
   1716                                      ObjCContainerDecl* CDecl,
   1717                                      bool IncompleteImpl) {
   1718   llvm::DenseSet<Selector> InsMap;
   1719   // Check and see if instance methods in class interface have been
   1720   // implemented in the implementation class.
   1721   for (ObjCImplementationDecl::instmeth_iterator
   1722          I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I)
   1723     InsMap.insert((*I)->getSelector());
   1724 
   1725   // Check and see if properties declared in the interface have either 1)
   1726   // an implementation or 2) there is a @synthesize/@dynamic implementation
   1727   // of the property in the @implementation.
   1728   if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl))
   1729     if  (!(LangOpts.ObjCDefaultSynthProperties && LangOpts.ObjCNonFragileABI2) ||
   1730       IDecl->isObjCRequiresPropertyDefs())
   1731       DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
   1732 
   1733   llvm::DenseSet<Selector> ClsMap;
   1734   for (ObjCImplementationDecl::classmeth_iterator
   1735        I = IMPDecl->classmeth_begin(),
   1736        E = IMPDecl->classmeth_end(); I != E; ++I)
   1737     ClsMap.insert((*I)->getSelector());
   1738 
   1739   // Check for type conflict of methods declared in a class/protocol and
   1740   // its implementation; if any.
   1741   llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen;
   1742   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1743                              IMPDecl, CDecl,
   1744                              IncompleteImpl, true);
   1745 
   1746   // check all methods implemented in category against those declared
   1747   // in its primary class.
   1748   if (ObjCCategoryImplDecl *CatDecl =
   1749         dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
   1750     CheckCategoryVsClassMethodMatches(CatDecl);
   1751 
   1752   // Check the protocol list for unimplemented methods in the @implementation
   1753   // class.
   1754   // Check and see if class methods in class interface have been
   1755   // implemented in the implementation class.
   1756 
   1757   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
   1758     for (ObjCInterfaceDecl::all_protocol_iterator
   1759           PI = I->all_referenced_protocol_begin(),
   1760           E = I->all_referenced_protocol_end(); PI != E; ++PI)
   1761       CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
   1762                               InsMap, ClsMap, I);
   1763     // Check class extensions (unnamed categories)
   1764     for (const ObjCCategoryDecl *Categories = I->getFirstClassExtension();
   1765          Categories; Categories = Categories->getNextClassExtension())
   1766       ImplMethodsVsClassMethods(S, IMPDecl,
   1767                                 const_cast<ObjCCategoryDecl*>(Categories),
   1768                                 IncompleteImpl);
   1769   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
   1770     // For extended class, unimplemented methods in its protocols will
   1771     // be reported in the primary class.
   1772     if (!C->IsClassExtension()) {
   1773       for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(),
   1774            E = C->protocol_end(); PI != E; ++PI)
   1775         CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
   1776                                 InsMap, ClsMap, CDecl);
   1777       // Report unimplemented properties in the category as well.
   1778       // When reporting on missing setter/getters, do not report when
   1779       // setter/getter is implemented in category's primary class
   1780       // implementation.
   1781       if (ObjCInterfaceDecl *ID = C->getClassInterface())
   1782         if (ObjCImplDecl *IMP = ID->getImplementation()) {
   1783           for (ObjCImplementationDecl::instmeth_iterator
   1784                I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I)
   1785             InsMap.insert((*I)->getSelector());
   1786         }
   1787       DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
   1788     }
   1789   } else
   1790     llvm_unreachable("invalid ObjCContainerDecl type.");
   1791 }
   1792 
   1793 /// ActOnForwardClassDeclaration -
   1794 Sema::DeclGroupPtrTy
   1795 Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
   1796                                    IdentifierInfo **IdentList,
   1797                                    SourceLocation *IdentLocs,
   1798                                    unsigned NumElts) {
   1799   SmallVector<Decl *, 8> DeclsInGroup;
   1800   for (unsigned i = 0; i != NumElts; ++i) {
   1801     // Check for another declaration kind with the same name.
   1802     NamedDecl *PrevDecl
   1803       = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
   1804                          LookupOrdinaryName, ForRedeclaration);
   1805     if (PrevDecl && PrevDecl->isTemplateParameter()) {
   1806       // Maybe we will complain about the shadowed template parameter.
   1807       DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl);
   1808       // Just pretend that we didn't see the previous declaration.
   1809       PrevDecl = 0;
   1810     }
   1811 
   1812     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
   1813       // GCC apparently allows the following idiom:
   1814       //
   1815       // typedef NSObject < XCElementTogglerP > XCElementToggler;
   1816       // @class XCElementToggler;
   1817       //
   1818       // Here we have chosen to ignore the forward class declaration
   1819       // with a warning. Since this is the implied behavior.
   1820       TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
   1821       if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
   1822         Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
   1823         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   1824       } else {
   1825         // a forward class declaration matching a typedef name of a class refers
   1826         // to the underlying class. Just ignore the forward class with a warning
   1827         // as this will force the intended behavior which is to lookup the typedef
   1828         // name.
   1829         if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
   1830           Diag(AtClassLoc, diag::warn_forward_class_redefinition) << IdentList[i];
   1831           Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   1832           continue;
   1833         }
   1834       }
   1835     }
   1836 
   1837     // Create a declaration to describe this forward declaration.
   1838     ObjCInterfaceDecl *PrevIDecl
   1839       = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
   1840     ObjCInterfaceDecl *IDecl
   1841       = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
   1842                                   IdentList[i], PrevIDecl, IdentLocs[i]);
   1843     IDecl->setAtEndRange(IdentLocs[i]);
   1844 
   1845     PushOnScopeChains(IDecl, TUScope);
   1846     CheckObjCDeclScope(IDecl);
   1847     DeclsInGroup.push_back(IDecl);
   1848   }
   1849 
   1850   return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
   1851 }
   1852 
   1853 static bool tryMatchRecordTypes(ASTContext &Context,
   1854                                 Sema::MethodMatchStrategy strategy,
   1855                                 const Type *left, const Type *right);
   1856 
   1857 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
   1858                        QualType leftQT, QualType rightQT) {
   1859   const Type *left =
   1860     Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
   1861   const Type *right =
   1862     Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
   1863 
   1864   if (left == right) return true;
   1865 
   1866   // If we're doing a strict match, the types have to match exactly.
   1867   if (strategy == Sema::MMS_strict) return false;
   1868 
   1869   if (left->isIncompleteType() || right->isIncompleteType()) return false;
   1870 
   1871   // Otherwise, use this absurdly complicated algorithm to try to
   1872   // validate the basic, low-level compatibility of the two types.
   1873 
   1874   // As a minimum, require the sizes and alignments to match.
   1875   if (Context.getTypeInfo(left) != Context.getTypeInfo(right))
   1876     return false;
   1877 
   1878   // Consider all the kinds of non-dependent canonical types:
   1879   // - functions and arrays aren't possible as return and parameter types
   1880 
   1881   // - vector types of equal size can be arbitrarily mixed
   1882   if (isa<VectorType>(left)) return isa<VectorType>(right);
   1883   if (isa<VectorType>(right)) return false;
   1884 
   1885   // - references should only match references of identical type
   1886   // - structs, unions, and Objective-C objects must match more-or-less
   1887   //   exactly
   1888   // - everything else should be a scalar
   1889   if (!left->isScalarType() || !right->isScalarType())
   1890     return tryMatchRecordTypes(Context, strategy, left, right);
   1891 
   1892   // Make scalars agree in kind, except count bools as chars, and group
   1893   // all non-member pointers together.
   1894   Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
   1895   Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
   1896   if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
   1897   if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
   1898   if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
   1899     leftSK = Type::STK_ObjCObjectPointer;
   1900   if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
   1901     rightSK = Type::STK_ObjCObjectPointer;
   1902 
   1903   // Note that data member pointers and function member pointers don't
   1904   // intermix because of the size differences.
   1905 
   1906   return (leftSK == rightSK);
   1907 }
   1908 
   1909 static bool tryMatchRecordTypes(ASTContext &Context,
   1910                                 Sema::MethodMatchStrategy strategy,
   1911                                 const Type *lt, const Type *rt) {
   1912   assert(lt && rt && lt != rt);
   1913 
   1914   if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
   1915   RecordDecl *left = cast<RecordType>(lt)->getDecl();
   1916   RecordDecl *right = cast<RecordType>(rt)->getDecl();
   1917 
   1918   // Require union-hood to match.
   1919   if (left->isUnion() != right->isUnion()) return false;
   1920 
   1921   // Require an exact match if either is non-POD.
   1922   if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
   1923       (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
   1924     return false;
   1925 
   1926   // Require size and alignment to match.
   1927   if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false;
   1928 
   1929   // Require fields to match.
   1930   RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
   1931   RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
   1932   for (; li != le && ri != re; ++li, ++ri) {
   1933     if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
   1934       return false;
   1935   }
   1936   return (li == le && ri == re);
   1937 }
   1938 
   1939 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and
   1940 /// returns true, or false, accordingly.
   1941 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
   1942 bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
   1943                                       const ObjCMethodDecl *right,
   1944                                       MethodMatchStrategy strategy) {
   1945   if (!matchTypes(Context, strategy,
   1946                   left->getResultType(), right->getResultType()))
   1947     return false;
   1948 
   1949   if (getLangOpts().ObjCAutoRefCount &&
   1950       (left->hasAttr<NSReturnsRetainedAttr>()
   1951          != right->hasAttr<NSReturnsRetainedAttr>() ||
   1952        left->hasAttr<NSConsumesSelfAttr>()
   1953          != right->hasAttr<NSConsumesSelfAttr>()))
   1954     return false;
   1955 
   1956   ObjCMethodDecl::param_const_iterator
   1957     li = left->param_begin(), le = left->param_end(), ri = right->param_begin();
   1958 
   1959   for (; li != le; ++li, ++ri) {
   1960     assert(ri != right->param_end() && "Param mismatch");
   1961     const ParmVarDecl *lparm = *li, *rparm = *ri;
   1962 
   1963     if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
   1964       return false;
   1965 
   1966     if (getLangOpts().ObjCAutoRefCount &&
   1967         lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
   1968       return false;
   1969   }
   1970   return true;
   1971 }
   1972 
   1973 void Sema::addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method) {
   1974   // If the list is empty, make it a singleton list.
   1975   if (List->Method == 0) {
   1976     List->Method = Method;
   1977     List->Next = 0;
   1978     return;
   1979   }
   1980 
   1981   // We've seen a method with this name, see if we have already seen this type
   1982   // signature.
   1983   ObjCMethodList *Previous = List;
   1984   for (; List; Previous = List, List = List->Next) {
   1985     if (!MatchTwoMethodDeclarations(Method, List->Method))
   1986       continue;
   1987 
   1988     ObjCMethodDecl *PrevObjCMethod = List->Method;
   1989 
   1990     // Propagate the 'defined' bit.
   1991     if (Method->isDefined())
   1992       PrevObjCMethod->setDefined(true);
   1993 
   1994     // If a method is deprecated, push it in the global pool.
   1995     // This is used for better diagnostics.
   1996     if (Method->isDeprecated()) {
   1997       if (!PrevObjCMethod->isDeprecated())
   1998         List->Method = Method;
   1999     }
   2000     // If new method is unavailable, push it into global pool
   2001     // unless previous one is deprecated.
   2002     if (Method->isUnavailable()) {
   2003       if (PrevObjCMethod->getAvailability() < AR_Deprecated)
   2004         List->Method = Method;
   2005     }
   2006 
   2007     return;
   2008   }
   2009 
   2010   // We have a new signature for an existing method - add it.
   2011   // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
   2012   ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
   2013   Previous->Next = new (Mem) ObjCMethodList(Method, 0);
   2014 }
   2015 
   2016 /// \brief Read the contents of the method pool for a given selector from
   2017 /// external storage.
   2018 void Sema::ReadMethodPool(Selector Sel) {
   2019   assert(ExternalSource && "We need an external AST source");
   2020   ExternalSource->ReadMethodPool(Sel);
   2021 }
   2022 
   2023 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
   2024                                  bool instance) {
   2025   // Ignore methods of invalid containers.
   2026   if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
   2027     return;
   2028 
   2029   if (ExternalSource)
   2030     ReadMethodPool(Method->getSelector());
   2031 
   2032   GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
   2033   if (Pos == MethodPool.end())
   2034     Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
   2035                                            GlobalMethods())).first;
   2036 
   2037   Method->setDefined(impl);
   2038 
   2039   ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
   2040   addMethodToGlobalList(&Entry, Method);
   2041 }
   2042 
   2043 /// Determines if this is an "acceptable" loose mismatch in the global
   2044 /// method pool.  This exists mostly as a hack to get around certain
   2045 /// global mismatches which we can't afford to make warnings / errors.
   2046 /// Really, what we want is a way to take a method out of the global
   2047 /// method pool.
   2048 static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
   2049                                        ObjCMethodDecl *other) {
   2050   if (!chosen->isInstanceMethod())
   2051     return false;
   2052 
   2053   Selector sel = chosen->getSelector();
   2054   if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
   2055     return false;
   2056 
   2057   // Don't complain about mismatches for -length if the method we
   2058   // chose has an integral result type.
   2059   return (chosen->getResultType()->isIntegerType());
   2060 }
   2061 
   2062 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
   2063                                                bool receiverIdOrClass,
   2064                                                bool warn, bool instance) {
   2065   if (ExternalSource)
   2066     ReadMethodPool(Sel);
   2067 
   2068   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
   2069   if (Pos == MethodPool.end())
   2070     return 0;
   2071 
   2072   ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
   2073 
   2074   if (warn && MethList.Method && MethList.Next) {
   2075     bool issueDiagnostic = false, issueError = false;
   2076 
   2077     // We support a warning which complains about *any* difference in
   2078     // method signature.
   2079     bool strictSelectorMatch =
   2080       (receiverIdOrClass && warn &&
   2081        (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl,
   2082                                  R.getBegin()) !=
   2083       DiagnosticsEngine::Ignored));
   2084     if (strictSelectorMatch)
   2085       for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
   2086         if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method,
   2087                                         MMS_strict)) {
   2088           issueDiagnostic = true;
   2089           break;
   2090         }
   2091       }
   2092 
   2093     // If we didn't see any strict differences, we won't see any loose
   2094     // differences.  In ARC, however, we also need to check for loose
   2095     // mismatches, because most of them are errors.
   2096     if (!strictSelectorMatch ||
   2097         (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
   2098       for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
   2099         // This checks if the methods differ in type mismatch.
   2100         if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method,
   2101                                         MMS_loose) &&
   2102             !isAcceptableMethodMismatch(MethList.Method, Next->Method)) {
   2103           issueDiagnostic = true;
   2104           if (getLangOpts().ObjCAutoRefCount)
   2105             issueError = true;
   2106           break;
   2107         }
   2108       }
   2109 
   2110     if (issueDiagnostic) {
   2111       if (issueError)
   2112         Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
   2113       else if (strictSelectorMatch)
   2114         Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
   2115       else
   2116         Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
   2117 
   2118       Diag(MethList.Method->getLocStart(),
   2119            issueError ? diag::note_possibility : diag::note_using)
   2120         << MethList.Method->getSourceRange();
   2121       for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next)
   2122         Diag(Next->Method->getLocStart(), diag::note_also_found)
   2123           << Next->Method->getSourceRange();
   2124     }
   2125   }
   2126   return MethList.Method;
   2127 }
   2128 
   2129 ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
   2130   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
   2131   if (Pos == MethodPool.end())
   2132     return 0;
   2133 
   2134   GlobalMethods &Methods = Pos->second;
   2135 
   2136   if (Methods.first.Method && Methods.first.Method->isDefined())
   2137     return Methods.first.Method;
   2138   if (Methods.second.Method && Methods.second.Method->isDefined())
   2139     return Methods.second.Method;
   2140   return 0;
   2141 }
   2142 
   2143 /// CompareMethodParamsInBaseAndSuper - This routine compares methods with
   2144 /// identical selector names in current and its super classes and issues
   2145 /// a warning if any of their argument types are incompatible.
   2146 void Sema::CompareMethodParamsInBaseAndSuper(Decl *ClassDecl,
   2147                                              ObjCMethodDecl *Method,
   2148                                              bool IsInstance)  {
   2149   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
   2150   if (ID == 0) return;
   2151 
   2152   while (ObjCInterfaceDecl *SD = ID->getSuperClass()) {
   2153     ObjCMethodDecl *SuperMethodDecl =
   2154         SD->lookupMethod(Method->getSelector(), IsInstance);
   2155     if (SuperMethodDecl == 0) {
   2156       ID = SD;
   2157       continue;
   2158     }
   2159     ObjCMethodDecl::param_iterator ParamI = Method->param_begin(),
   2160       E = Method->param_end();
   2161     ObjCMethodDecl::param_iterator PrevI = SuperMethodDecl->param_begin();
   2162     for (; ParamI != E; ++ParamI, ++PrevI) {
   2163       // Number of parameters are the same and is guaranteed by selector match.
   2164       assert(PrevI != SuperMethodDecl->param_end() && "Param mismatch");
   2165       QualType T1 = Context.getCanonicalType((*ParamI)->getType());
   2166       QualType T2 = Context.getCanonicalType((*PrevI)->getType());
   2167       // If type of argument of method in this class does not match its
   2168       // respective argument type in the super class method, issue warning;
   2169       if (!Context.typesAreCompatible(T1, T2)) {
   2170         Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
   2171           << T1 << T2;
   2172         Diag(SuperMethodDecl->getLocation(), diag::note_previous_declaration);
   2173         return;
   2174       }
   2175     }
   2176     ID = SD;
   2177   }
   2178 }
   2179 
   2180 /// DiagnoseDuplicateIvars -
   2181 /// Check for duplicate ivars in the entire class at the start of
   2182 /// @implementation. This becomes necesssary because class extension can
   2183 /// add ivars to a class in random order which will not be known until
   2184 /// class's @implementation is seen.
   2185 void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
   2186                                   ObjCInterfaceDecl *SID) {
   2187   for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
   2188        IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
   2189     ObjCIvarDecl* Ivar = (*IVI);
   2190     if (Ivar->isInvalidDecl())
   2191       continue;
   2192     if (IdentifierInfo *II = Ivar->getIdentifier()) {
   2193       ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
   2194       if (prevIvar) {
   2195         Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
   2196         Diag(prevIvar->getLocation(), diag::note_previous_declaration);
   2197         Ivar->setInvalidDecl();
   2198       }
   2199     }
   2200   }
   2201 }
   2202 
   2203 Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
   2204   switch (CurContext->getDeclKind()) {
   2205     case Decl::ObjCInterface:
   2206       return Sema::OCK_Interface;
   2207     case Decl::ObjCProtocol:
   2208       return Sema::OCK_Protocol;
   2209     case Decl::ObjCCategory:
   2210       if (dyn_cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
   2211         return Sema::OCK_ClassExtension;
   2212       else
   2213         return Sema::OCK_Category;
   2214     case Decl::ObjCImplementation:
   2215       return Sema::OCK_Implementation;
   2216     case Decl::ObjCCategoryImpl:
   2217       return Sema::OCK_CategoryImplementation;
   2218 
   2219     default:
   2220       return Sema::OCK_None;
   2221   }
   2222 }
   2223 
   2224 // Note: For class/category implemenations, allMethods/allProperties is
   2225 // always null.
   2226 Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd,
   2227                        Decl **allMethods, unsigned allNum,
   2228                        Decl **allProperties, unsigned pNum,
   2229                        DeclGroupPtrTy *allTUVars, unsigned tuvNum) {
   2230 
   2231   if (getObjCContainerKind() == Sema::OCK_None)
   2232     return 0;
   2233 
   2234   assert(AtEnd.isValid() && "Invalid location for '@end'");
   2235 
   2236   ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
   2237   Decl *ClassDecl = cast<Decl>(OCD);
   2238 
   2239   bool isInterfaceDeclKind =
   2240         isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
   2241          || isa<ObjCProtocolDecl>(ClassDecl);
   2242   bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
   2243 
   2244   // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
   2245   llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
   2246   llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
   2247 
   2248   for (unsigned i = 0; i < allNum; i++ ) {
   2249     ObjCMethodDecl *Method =
   2250       cast_or_null<ObjCMethodDecl>(allMethods[i]);
   2251 
   2252     if (!Method) continue;  // Already issued a diagnostic.
   2253     if (Method->isInstanceMethod()) {
   2254       /// Check for instance method of the same name with incompatible types
   2255       const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
   2256       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
   2257                               : false;
   2258       if ((isInterfaceDeclKind && PrevMethod && !match)
   2259           || (checkIdenticalMethods && match)) {
   2260           Diag(Method->getLocation(), diag::err_duplicate_method_decl)
   2261             << Method->getDeclName();
   2262           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   2263         Method->setInvalidDecl();
   2264       } else {
   2265         if (PrevMethod) {
   2266           Method->setAsRedeclaration(PrevMethod);
   2267           if (!Context.getSourceManager().isInSystemHeader(
   2268                  Method->getLocation()))
   2269             Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
   2270               << Method->getDeclName();
   2271           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   2272         }
   2273         InsMap[Method->getSelector()] = Method;
   2274         /// The following allows us to typecheck messages to "id".
   2275         AddInstanceMethodToGlobalPool(Method);
   2276         // verify that the instance method conforms to the same definition of
   2277         // parent methods if it shadows one.
   2278         CompareMethodParamsInBaseAndSuper(ClassDecl, Method, true);
   2279       }
   2280     } else {
   2281       /// Check for class method of the same name with incompatible types
   2282       const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
   2283       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
   2284                               : false;
   2285       if ((isInterfaceDeclKind && PrevMethod && !match)
   2286           || (checkIdenticalMethods && match)) {
   2287         Diag(Method->getLocation(), diag::err_duplicate_method_decl)
   2288           << Method->getDeclName();
   2289         Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   2290         Method->setInvalidDecl();
   2291       } else {
   2292         if (PrevMethod) {
   2293           Method->setAsRedeclaration(PrevMethod);
   2294           if (!Context.getSourceManager().isInSystemHeader(
   2295                  Method->getLocation()))
   2296             Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
   2297               << Method->getDeclName();
   2298           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   2299         }
   2300         ClsMap[Method->getSelector()] = Method;
   2301         /// The following allows us to typecheck messages to "Class".
   2302         AddFactoryMethodToGlobalPool(Method);
   2303         // verify that the class method conforms to the same definition of
   2304         // parent methods if it shadows one.
   2305         CompareMethodParamsInBaseAndSuper(ClassDecl, Method, false);
   2306       }
   2307     }
   2308   }
   2309   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
   2310     // Compares properties declared in this class to those of its
   2311     // super class.
   2312     ComparePropertiesInBaseAndSuper(I);
   2313     CompareProperties(I, I);
   2314   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
   2315     // Categories are used to extend the class by declaring new methods.
   2316     // By the same token, they are also used to add new properties. No
   2317     // need to compare the added property to those in the class.
   2318 
   2319     // Compare protocol properties with those in category
   2320     CompareProperties(C, C);
   2321     if (C->IsClassExtension()) {
   2322       ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
   2323       DiagnoseClassExtensionDupMethods(C, CCPrimary);
   2324     }
   2325   }
   2326   if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
   2327     if (CDecl->getIdentifier())
   2328       // ProcessPropertyDecl is responsible for diagnosing conflicts with any
   2329       // user-defined setter/getter. It also synthesizes setter/getter methods
   2330       // and adds them to the DeclContext and global method pools.
   2331       for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(),
   2332                                             E = CDecl->prop_end();
   2333            I != E; ++I)
   2334         ProcessPropertyDecl(*I, CDecl);
   2335     CDecl->setAtEndRange(AtEnd);
   2336   }
   2337   if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
   2338     IC->setAtEndRange(AtEnd);
   2339     if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
   2340       // Any property declared in a class extension might have user
   2341       // declared setter or getter in current class extension or one
   2342       // of the other class extensions. Mark them as synthesized as
   2343       // property will be synthesized when property with same name is
   2344       // seen in the @implementation.
   2345       for (const ObjCCategoryDecl *ClsExtDecl =
   2346            IDecl->getFirstClassExtension();
   2347            ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
   2348         for (ObjCContainerDecl::prop_iterator I = ClsExtDecl->prop_begin(),
   2349              E = ClsExtDecl->prop_end(); I != E; ++I) {
   2350           ObjCPropertyDecl *Property = (*I);
   2351           // Skip over properties declared @dynamic
   2352           if (const ObjCPropertyImplDecl *PIDecl
   2353               = IC->FindPropertyImplDecl(Property->getIdentifier()))
   2354             if (PIDecl->getPropertyImplementation()
   2355                   == ObjCPropertyImplDecl::Dynamic)
   2356               continue;
   2357 
   2358           for (const ObjCCategoryDecl *CExtDecl =
   2359                IDecl->getFirstClassExtension();
   2360                CExtDecl; CExtDecl = CExtDecl->getNextClassExtension()) {
   2361             if (ObjCMethodDecl *GetterMethod =
   2362                 CExtDecl->getInstanceMethod(Property->getGetterName()))
   2363               GetterMethod->setSynthesized(true);
   2364             if (!Property->isReadOnly())
   2365               if (ObjCMethodDecl *SetterMethod =
   2366                   CExtDecl->getInstanceMethod(Property->getSetterName()))
   2367                 SetterMethod->setSynthesized(true);
   2368           }
   2369         }
   2370       }
   2371       ImplMethodsVsClassMethods(S, IC, IDecl);
   2372       AtomicPropertySetterGetterRules(IC, IDecl);
   2373       DiagnoseOwningPropertyGetterSynthesis(IC);
   2374 
   2375       bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
   2376       if (IDecl->getSuperClass() == NULL) {
   2377         // This class has no superclass, so check that it has been marked with
   2378         // __attribute((objc_root_class)).
   2379         if (!HasRootClassAttr) {
   2380           SourceLocation DeclLoc(IDecl->getLocation());
   2381           SourceLocation SuperClassLoc(PP.getLocForEndOfToken(DeclLoc));
   2382           Diag(DeclLoc, diag::warn_objc_root_class_missing)
   2383             << IDecl->getIdentifier();
   2384           // See if NSObject is in the current scope, and if it is, suggest
   2385           // adding " : NSObject " to the class declaration.
   2386           NamedDecl *IF = LookupSingleName(TUScope,
   2387                                            NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
   2388                                            DeclLoc, LookupOrdinaryName);
   2389           ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
   2390           if (NSObjectDecl && NSObjectDecl->getDefinition()) {
   2391             Diag(SuperClassLoc, diag::note_objc_needs_superclass)
   2392               << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
   2393           } else {
   2394             Diag(SuperClassLoc, diag::note_objc_needs_superclass);
   2395           }
   2396         }
   2397       } else if (HasRootClassAttr) {
   2398         // Complain that only root classes may have this attribute.
   2399         Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
   2400       }
   2401 
   2402       if (LangOpts.ObjCNonFragileABI2) {
   2403         while (IDecl->getSuperClass()) {
   2404           DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
   2405           IDecl = IDecl->getSuperClass();
   2406         }
   2407       }
   2408     }
   2409     SetIvarInitializers(IC);
   2410   } else if (ObjCCategoryImplDecl* CatImplClass =
   2411                                    dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
   2412     CatImplClass->setAtEndRange(AtEnd);
   2413 
   2414     // Find category interface decl and then check that all methods declared
   2415     // in this interface are implemented in the category @implementation.
   2416     if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
   2417       for (ObjCCategoryDecl *Categories = IDecl->getCategoryList();
   2418            Categories; Categories = Categories->getNextClassCategory()) {
   2419         if (Categories->getIdentifier() == CatImplClass->getIdentifier()) {
   2420           ImplMethodsVsClassMethods(S, CatImplClass, Categories);
   2421           break;
   2422         }
   2423       }
   2424     }
   2425   }
   2426   if (isInterfaceDeclKind) {
   2427     // Reject invalid vardecls.
   2428     for (unsigned i = 0; i != tuvNum; i++) {
   2429       DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
   2430       for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
   2431         if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
   2432           if (!VDecl->hasExternalStorage())
   2433             Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
   2434         }
   2435     }
   2436   }
   2437   ActOnObjCContainerFinishDefinition();
   2438 
   2439   for (unsigned i = 0; i != tuvNum; i++) {
   2440     DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
   2441     for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
   2442       (*I)->setTopLevelDeclInObjCContainer();
   2443     Consumer.HandleTopLevelDeclInObjCContainer(DG);
   2444   }
   2445 
   2446   return ClassDecl;
   2447 }
   2448 
   2449 
   2450 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
   2451 /// objective-c's type qualifier from the parser version of the same info.
   2452 static Decl::ObjCDeclQualifier
   2453 CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
   2454   return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
   2455 }
   2456 
   2457 static inline
   2458 bool containsInvalidMethodImplAttribute(ObjCMethodDecl *IMD,
   2459                                         const AttrVec &A) {
   2460   // If method is only declared in implementation (private method),
   2461   // No need to issue any diagnostics on method definition with attributes.
   2462   if (!IMD)
   2463     return false;
   2464 
   2465   // method declared in interface has no attribute.
   2466   // But implementation has attributes. This is invalid
   2467   if (!IMD->hasAttrs())
   2468     return true;
   2469 
   2470   const AttrVec &D = IMD->getAttrs();
   2471   if (D.size() != A.size())
   2472     return true;
   2473 
   2474   // attributes on method declaration and definition must match exactly.
   2475   // Note that we have at most a couple of attributes on methods, so this
   2476   // n*n search is good enough.
   2477   for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i) {
   2478     bool match = false;
   2479     for (AttrVec::const_iterator i1 = D.begin(), e1 = D.end(); i1 != e1; ++i1) {
   2480       if ((*i)->getKind() == (*i1)->getKind()) {
   2481         match = true;
   2482         break;
   2483       }
   2484     }
   2485     if (!match)
   2486       return true;
   2487   }
   2488   return false;
   2489 }
   2490 
   2491 namespace  {
   2492   /// \brief Describes the compatibility of a result type with its method.
   2493   enum ResultTypeCompatibilityKind {
   2494     RTC_Compatible,
   2495     RTC_Incompatible,
   2496     RTC_Unknown
   2497   };
   2498 }
   2499 
   2500 /// \brief Check whether the declared result type of the given Objective-C
   2501 /// method declaration is compatible with the method's class.
   2502 ///
   2503 static ResultTypeCompatibilityKind
   2504 CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
   2505                                     ObjCInterfaceDecl *CurrentClass) {
   2506   QualType ResultType = Method->getResultType();
   2507 
   2508   // If an Objective-C method inherits its related result type, then its
   2509   // declared result type must be compatible with its own class type. The
   2510   // declared result type is compatible if:
   2511   if (const ObjCObjectPointerType *ResultObjectType
   2512                                 = ResultType->getAs<ObjCObjectPointerType>()) {
   2513     //   - it is id or qualified id, or
   2514     if (ResultObjectType->isObjCIdType() ||
   2515         ResultObjectType->isObjCQualifiedIdType())
   2516       return RTC_Compatible;
   2517 
   2518     if (CurrentClass) {
   2519       if (ObjCInterfaceDecl *ResultClass
   2520                                       = ResultObjectType->getInterfaceDecl()) {
   2521         //   - it is the same as the method's class type, or
   2522         if (declaresSameEntity(CurrentClass, ResultClass))
   2523           return RTC_Compatible;
   2524 
   2525         //   - it is a superclass of the method's class type
   2526         if (ResultClass->isSuperClassOf(CurrentClass))
   2527           return RTC_Compatible;
   2528       }
   2529     } else {
   2530       // Any Objective-C pointer type might be acceptable for a protocol
   2531       // method; we just don't know.
   2532       return RTC_Unknown;
   2533     }
   2534   }
   2535 
   2536   return RTC_Incompatible;
   2537 }
   2538 
   2539 namespace {
   2540 /// A helper class for searching for methods which a particular method
   2541 /// overrides.
   2542 class OverrideSearch {
   2543 public:
   2544   Sema &S;
   2545   ObjCMethodDecl *Method;
   2546   llvm::SmallPtrSet<ObjCContainerDecl*, 128> Searched;
   2547   llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden;
   2548   bool Recursive;
   2549 
   2550 public:
   2551   OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
   2552     Selector selector = method->getSelector();
   2553 
   2554     // Bypass this search if we've never seen an instance/class method
   2555     // with this selector before.
   2556     Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
   2557     if (it == S.MethodPool.end()) {
   2558       if (!S.ExternalSource) return;
   2559       S.ReadMethodPool(selector);
   2560 
   2561       it = S.MethodPool.find(selector);
   2562       if (it == S.MethodPool.end())
   2563         return;
   2564     }
   2565     ObjCMethodList &list =
   2566       method->isInstanceMethod() ? it->second.first : it->second.second;
   2567     if (!list.Method) return;
   2568 
   2569     ObjCContainerDecl *container
   2570       = cast<ObjCContainerDecl>(method->getDeclContext());
   2571 
   2572     // Prevent the search from reaching this container again.  This is
   2573     // important with categories, which override methods from the
   2574     // interface and each other.
   2575     Searched.insert(container);
   2576     searchFromContainer(container);
   2577   }
   2578 
   2579   typedef llvm::SmallPtrSet<ObjCMethodDecl*, 128>::iterator iterator;
   2580   iterator begin() const { return Overridden.begin(); }
   2581   iterator end() const { return Overridden.end(); }
   2582 
   2583 private:
   2584   void searchFromContainer(ObjCContainerDecl *container) {
   2585     if (container->isInvalidDecl()) return;
   2586 
   2587     switch (container->getDeclKind()) {
   2588 #define OBJCCONTAINER(type, base) \
   2589     case Decl::type: \
   2590       searchFrom(cast<type##Decl>(container)); \
   2591       break;
   2592 #define ABSTRACT_DECL(expansion)
   2593 #define DECL(type, base) \
   2594     case Decl::type:
   2595 #include "clang/AST/DeclNodes.inc"
   2596       llvm_unreachable("not an ObjC container!");
   2597     }
   2598   }
   2599 
   2600   void searchFrom(ObjCProtocolDecl *protocol) {
   2601     if (!protocol->hasDefinition())
   2602       return;
   2603 
   2604     // A method in a protocol declaration overrides declarations from
   2605     // referenced ("parent") protocols.
   2606     search(protocol->getReferencedProtocols());
   2607   }
   2608 
   2609   void searchFrom(ObjCCategoryDecl *category) {
   2610     // A method in a category declaration overrides declarations from
   2611     // the main class and from protocols the category references.
   2612     search(category->getClassInterface());
   2613     search(category->getReferencedProtocols());
   2614   }
   2615 
   2616   void searchFrom(ObjCCategoryImplDecl *impl) {
   2617     // A method in a category definition that has a category
   2618     // declaration overrides declarations from the category
   2619     // declaration.
   2620     if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
   2621       search(category);
   2622 
   2623     // Otherwise it overrides declarations from the class.
   2624     } else {
   2625       search(impl->getClassInterface());
   2626     }
   2627   }
   2628 
   2629   void searchFrom(ObjCInterfaceDecl *iface) {
   2630     // A method in a class declaration overrides declarations from
   2631     if (!iface->hasDefinition())
   2632       return;
   2633 
   2634     //   - categories,
   2635     for (ObjCCategoryDecl *category = iface->getCategoryList();
   2636            category; category = category->getNextClassCategory())
   2637       search(category);
   2638 
   2639     //   - the super class, and
   2640     if (ObjCInterfaceDecl *super = iface->getSuperClass())
   2641       search(super);
   2642 
   2643     //   - any referenced protocols.
   2644     search(iface->getReferencedProtocols());
   2645   }
   2646 
   2647   void searchFrom(ObjCImplementationDecl *impl) {
   2648     // A method in a class implementation overrides declarations from
   2649     // the class interface.
   2650     search(impl->getClassInterface());
   2651   }
   2652 
   2653 
   2654   void search(const ObjCProtocolList &protocols) {
   2655     for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
   2656          i != e; ++i)
   2657       search(*i);
   2658   }
   2659 
   2660   void search(ObjCContainerDecl *container) {
   2661     // Abort if we've already searched this container.
   2662     if (!Searched.insert(container)) return;
   2663 
   2664     // Check for a method in this container which matches this selector.
   2665     ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
   2666                                                 Method->isInstanceMethod());
   2667 
   2668     // If we find one, record it and bail out.
   2669     if (meth) {
   2670       Overridden.insert(meth);
   2671       return;
   2672     }
   2673 
   2674     // Otherwise, search for methods that a hypothetical method here
   2675     // would have overridden.
   2676 
   2677     // Note that we're now in a recursive case.
   2678     Recursive = true;
   2679 
   2680     searchFromContainer(container);
   2681   }
   2682 };
   2683 }
   2684 
   2685 Decl *Sema::ActOnMethodDeclaration(
   2686     Scope *S,
   2687     SourceLocation MethodLoc, SourceLocation EndLoc,
   2688     tok::TokenKind MethodType,
   2689     ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
   2690     ArrayRef<SourceLocation> SelectorLocs,
   2691     Selector Sel,
   2692     // optional arguments. The number of types/arguments is obtained
   2693     // from the Sel.getNumArgs().
   2694     ObjCArgInfo *ArgInfo,
   2695     DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
   2696     AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
   2697     bool isVariadic, bool MethodDefinition) {
   2698   // Make sure we can establish a context for the method.
   2699   if (!CurContext->isObjCContainer()) {
   2700     Diag(MethodLoc, diag::error_missing_method_context);
   2701     return 0;
   2702   }
   2703   ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
   2704   Decl *ClassDecl = cast<Decl>(OCD);
   2705   QualType resultDeclType;
   2706 
   2707   bool HasRelatedResultType = false;
   2708   TypeSourceInfo *ResultTInfo = 0;
   2709   if (ReturnType) {
   2710     resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo);
   2711 
   2712     // Methods cannot return interface types. All ObjC objects are
   2713     // passed by reference.
   2714     if (resultDeclType->isObjCObjectType()) {
   2715       Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value)
   2716         << 0 << resultDeclType;
   2717       return 0;
   2718     }
   2719 
   2720     HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType());
   2721   } else { // get the type for "id".
   2722     resultDeclType = Context.getObjCIdType();
   2723     Diag(MethodLoc, diag::warn_missing_method_return_type)
   2724       << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
   2725   }
   2726 
   2727   ObjCMethodDecl* ObjCMethod =
   2728     ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel,
   2729                            resultDeclType,
   2730                            ResultTInfo,
   2731                            CurContext,
   2732                            MethodType == tok::minus, isVariadic,
   2733                            /*isSynthesized=*/false,
   2734                            /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
   2735                            MethodDeclKind == tok::objc_optional
   2736                              ? ObjCMethodDecl::Optional
   2737                              : ObjCMethodDecl::Required,
   2738                            HasRelatedResultType);
   2739 
   2740   SmallVector<ParmVarDecl*, 16> Params;
   2741 
   2742   for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
   2743     QualType ArgType;
   2744     TypeSourceInfo *DI;
   2745 
   2746     if (ArgInfo[i].Type == 0) {
   2747       ArgType = Context.getObjCIdType();
   2748       DI = 0;
   2749     } else {
   2750       ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
   2751       // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
   2752       ArgType = Context.getAdjustedParameterType(ArgType);
   2753     }
   2754 
   2755     LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
   2756                    LookupOrdinaryName, ForRedeclaration);
   2757     LookupName(R, S);
   2758     if (R.isSingleResult()) {
   2759       NamedDecl *PrevDecl = R.getFoundDecl();
   2760       if (S->isDeclScope(PrevDecl)) {
   2761         Diag(ArgInfo[i].NameLoc,
   2762              (MethodDefinition ? diag::warn_method_param_redefinition
   2763                                : diag::warn_method_param_declaration))
   2764           << ArgInfo[i].Name;
   2765         Diag(PrevDecl->getLocation(),
   2766              diag::note_previous_declaration);
   2767       }
   2768     }
   2769 
   2770     SourceLocation StartLoc = DI
   2771       ? DI->getTypeLoc().getBeginLoc()
   2772       : ArgInfo[i].NameLoc;
   2773 
   2774     ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
   2775                                         ArgInfo[i].NameLoc, ArgInfo[i].Name,
   2776                                         ArgType, DI, SC_None, SC_None);
   2777 
   2778     Param->setObjCMethodScopeInfo(i);
   2779 
   2780     Param->setObjCDeclQualifier(
   2781       CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
   2782 
   2783     // Apply the attributes to the parameter.
   2784     ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
   2785 
   2786     if (Param->hasAttr<BlocksAttr>()) {
   2787       Diag(Param->getLocation(), diag::err_block_on_nonlocal);
   2788       Param->setInvalidDecl();
   2789     }
   2790     S->AddDecl(Param);
   2791     IdResolver.AddDecl(Param);
   2792 
   2793     Params.push_back(Param);
   2794   }
   2795 
   2796   for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
   2797     ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
   2798     QualType ArgType = Param->getType();
   2799     if (ArgType.isNull())
   2800       ArgType = Context.getObjCIdType();
   2801     else
   2802       // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
   2803       ArgType = Context.getAdjustedParameterType(ArgType);
   2804     if (ArgType->isObjCObjectType()) {
   2805       Diag(Param->getLocation(),
   2806            diag::err_object_cannot_be_passed_returned_by_value)
   2807       << 1 << ArgType;
   2808       Param->setInvalidDecl();
   2809     }
   2810     Param->setDeclContext(ObjCMethod);
   2811 
   2812     Params.push_back(Param);
   2813   }
   2814 
   2815   ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
   2816   ObjCMethod->setObjCDeclQualifier(
   2817     CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
   2818 
   2819   if (AttrList)
   2820     ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
   2821 
   2822   // Add the method now.
   2823   const ObjCMethodDecl *PrevMethod = 0;
   2824   if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
   2825     if (MethodType == tok::minus) {
   2826       PrevMethod = ImpDecl->getInstanceMethod(Sel);
   2827       ImpDecl->addInstanceMethod(ObjCMethod);
   2828     } else {
   2829       PrevMethod = ImpDecl->getClassMethod(Sel);
   2830       ImpDecl->addClassMethod(ObjCMethod);
   2831     }
   2832 
   2833     ObjCMethodDecl *IMD = 0;
   2834     if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface())
   2835       IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
   2836                                 ObjCMethod->isInstanceMethod());
   2837     if (ObjCMethod->hasAttrs() &&
   2838         containsInvalidMethodImplAttribute(IMD, ObjCMethod->getAttrs())) {
   2839       SourceLocation MethodLoc = IMD->getLocation();
   2840       if (!getSourceManager().isInSystemHeader(MethodLoc)) {
   2841         Diag(EndLoc, diag::warn_attribute_method_def);
   2842         Diag(MethodLoc, diag::note_method_declared_at)
   2843           << ObjCMethod->getDeclName();
   2844       }
   2845     }
   2846   } else {
   2847     cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
   2848   }
   2849 
   2850   if (PrevMethod) {
   2851     // You can never have two method definitions with the same name.
   2852     Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
   2853       << ObjCMethod->getDeclName();
   2854     Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   2855   }
   2856 
   2857   // If this Objective-C method does not have a related result type, but we
   2858   // are allowed to infer related result types, try to do so based on the
   2859   // method family.
   2860   ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
   2861   if (!CurrentClass) {
   2862     if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
   2863       CurrentClass = Cat->getClassInterface();
   2864     else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
   2865       CurrentClass = Impl->getClassInterface();
   2866     else if (ObjCCategoryImplDecl *CatImpl
   2867                                    = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
   2868       CurrentClass = CatImpl->getClassInterface();
   2869   }
   2870 
   2871   ResultTypeCompatibilityKind RTC
   2872     = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
   2873 
   2874   // Search for overridden methods and merge information down from them.
   2875   OverrideSearch overrides(*this, ObjCMethod);
   2876   for (OverrideSearch::iterator
   2877          i = overrides.begin(), e = overrides.end(); i != e; ++i) {
   2878     ObjCMethodDecl *overridden = *i;
   2879 
   2880     // Propagate down the 'related result type' bit from overridden methods.
   2881     if (RTC != RTC_Incompatible && overridden->hasRelatedResultType())
   2882       ObjCMethod->SetRelatedResultType();
   2883 
   2884     // Then merge the declarations.
   2885     mergeObjCMethodDecls(ObjCMethod, overridden);
   2886 
   2887     // Check for overriding methods
   2888     if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
   2889         isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
   2890       CheckConflictingOverridingMethod(ObjCMethod, overridden,
   2891               isa<ObjCProtocolDecl>(overridden->getDeclContext()));
   2892   }
   2893 
   2894   bool ARCError = false;
   2895   if (getLangOpts().ObjCAutoRefCount)
   2896     ARCError = CheckARCMethodDecl(*this, ObjCMethod);
   2897 
   2898   // Infer the related result type when possible.
   2899   if (!ARCError && RTC == RTC_Compatible &&
   2900       !ObjCMethod->hasRelatedResultType() &&
   2901       LangOpts.ObjCInferRelatedResultType) {
   2902     bool InferRelatedResultType = false;
   2903     switch (ObjCMethod->getMethodFamily()) {
   2904     case OMF_None:
   2905     case OMF_copy:
   2906     case OMF_dealloc:
   2907     case OMF_finalize:
   2908     case OMF_mutableCopy:
   2909     case OMF_release:
   2910     case OMF_retainCount:
   2911     case OMF_performSelector:
   2912       break;
   2913 
   2914     case OMF_alloc:
   2915     case OMF_new:
   2916       InferRelatedResultType = ObjCMethod->isClassMethod();
   2917       break;
   2918 
   2919     case OMF_init:
   2920     case OMF_autorelease:
   2921     case OMF_retain:
   2922     case OMF_self:
   2923       InferRelatedResultType = ObjCMethod->isInstanceMethod();
   2924       break;
   2925     }
   2926 
   2927     if (InferRelatedResultType)
   2928       ObjCMethod->SetRelatedResultType();
   2929   }
   2930 
   2931   return ObjCMethod;
   2932 }
   2933 
   2934 bool Sema::CheckObjCDeclScope(Decl *D) {
   2935   // Following is also an error. But it is caused by a missing @end
   2936   // and diagnostic is issued elsewhere.
   2937   if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
   2938     return false;
   2939 
   2940   // If we switched context to translation unit while we are still lexically in
   2941   // an objc container, it means the parser missed emitting an error.
   2942   if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
   2943     return false;
   2944 
   2945   Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
   2946   D->setInvalidDecl();
   2947 
   2948   return true;
   2949 }
   2950 
   2951 /// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
   2952 /// instance variables of ClassName into Decls.
   2953 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
   2954                      IdentifierInfo *ClassName,
   2955                      SmallVectorImpl<Decl*> &Decls) {
   2956   // Check that ClassName is a valid class
   2957   ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
   2958   if (!Class) {
   2959     Diag(DeclStart, diag::err_undef_interface) << ClassName;
   2960     return;
   2961   }
   2962   if (LangOpts.ObjCNonFragileABI) {
   2963     Diag(DeclStart, diag::err_atdef_nonfragile_interface);
   2964     return;
   2965   }
   2966 
   2967   // Collect the instance variables
   2968   SmallVector<const ObjCIvarDecl*, 32> Ivars;
   2969   Context.DeepCollectObjCIvars(Class, true, Ivars);
   2970   // For each ivar, create a fresh ObjCAtDefsFieldDecl.
   2971   for (unsigned i = 0; i < Ivars.size(); i++) {
   2972     const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
   2973     RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
   2974     Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
   2975                                            /*FIXME: StartL=*/ID->getLocation(),
   2976                                            ID->getLocation(),
   2977                                            ID->getIdentifier(), ID->getType(),
   2978                                            ID->getBitWidth());
   2979     Decls.push_back(FD);
   2980   }
   2981 
   2982   // Introduce all of these fields into the appropriate scope.
   2983   for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
   2984        D != Decls.end(); ++D) {
   2985     FieldDecl *FD = cast<FieldDecl>(*D);
   2986     if (getLangOpts().CPlusPlus)
   2987       PushOnScopeChains(cast<FieldDecl>(FD), S);
   2988     else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
   2989       Record->addDecl(FD);
   2990   }
   2991 }
   2992 
   2993 /// \brief Build a type-check a new Objective-C exception variable declaration.
   2994 VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
   2995                                       SourceLocation StartLoc,
   2996                                       SourceLocation IdLoc,
   2997                                       IdentifierInfo *Id,
   2998                                       bool Invalid) {
   2999   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
   3000   // duration shall not be qualified by an address-space qualifier."
   3001   // Since all parameters have automatic store duration, they can not have
   3002   // an address space.
   3003   if (T.getAddressSpace() != 0) {
   3004     Diag(IdLoc, diag::err_arg_with_address_space);
   3005     Invalid = true;
   3006   }
   3007 
   3008   // An @catch parameter must be an unqualified object pointer type;
   3009   // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
   3010   if (Invalid) {
   3011     // Don't do any further checking.
   3012   } else if (T->isDependentType()) {
   3013     // Okay: we don't know what this type will instantiate to.
   3014   } else if (!T->isObjCObjectPointerType()) {
   3015     Invalid = true;
   3016     Diag(IdLoc ,diag::err_catch_param_not_objc_type);
   3017   } else if (T->isObjCQualifiedIdType()) {
   3018     Invalid = true;
   3019     Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
   3020   }
   3021 
   3022   VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
   3023                                  T, TInfo, SC_None, SC_None);
   3024   New->setExceptionVariable(true);
   3025 
   3026   // In ARC, infer 'retaining' for variables of retainable type.
   3027   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
   3028     Invalid = true;
   3029 
   3030   if (Invalid)
   3031     New->setInvalidDecl();
   3032   return New;
   3033 }
   3034 
   3035 Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
   3036   const DeclSpec &DS = D.getDeclSpec();
   3037 
   3038   // We allow the "register" storage class on exception variables because
   3039   // GCC did, but we drop it completely. Any other storage class is an error.
   3040   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
   3041     Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
   3042       << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
   3043   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
   3044     Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
   3045       << DS.getStorageClassSpec();
   3046   }
   3047   if (D.getDeclSpec().isThreadSpecified())
   3048     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
   3049   D.getMutableDeclSpec().ClearStorageClassSpecs();
   3050 
   3051   DiagnoseFunctionSpecifiers(D);
   3052 
   3053   // Check that there are no default arguments inside the type of this
   3054   // exception object (C++ only).
   3055   if (getLangOpts().CPlusPlus)
   3056     CheckExtraCXXDefaultArguments(D);
   3057 
   3058   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   3059   QualType ExceptionType = TInfo->getType();
   3060 
   3061   VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
   3062                                         D.getSourceRange().getBegin(),
   3063                                         D.getIdentifierLoc(),
   3064                                         D.getIdentifier(),
   3065                                         D.isInvalidType());
   3066 
   3067   // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
   3068   if (D.getCXXScopeSpec().isSet()) {
   3069     Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
   3070       << D.getCXXScopeSpec().getRange();
   3071     New->setInvalidDecl();
   3072   }
   3073 
   3074   // Add the parameter declaration into this scope.
   3075   S->AddDecl(New);
   3076   if (D.getIdentifier())
   3077     IdResolver.AddDecl(New);
   3078 
   3079   ProcessDeclAttributes(S, New, D);
   3080 
   3081   if (New->hasAttr<BlocksAttr>())
   3082     Diag(New->getLocation(), diag::err_block_on_nonlocal);
   3083   return New;
   3084 }
   3085 
   3086 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
   3087 /// initialization.
   3088 void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
   3089                                 SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
   3090   for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
   3091        Iv= Iv->getNextIvar()) {
   3092     QualType QT = Context.getBaseElementType(Iv->getType());
   3093     if (QT->isRecordType())
   3094       Ivars.push_back(Iv);
   3095   }
   3096 }
   3097 
   3098 void Sema::DiagnoseUseOfUnimplementedSelectors() {
   3099   // Load referenced selectors from the external source.
   3100   if (ExternalSource) {
   3101     SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
   3102     ExternalSource->ReadReferencedSelectors(Sels);
   3103     for (unsigned I = 0, N = Sels.size(); I != N; ++I)
   3104       ReferencedSelectors[Sels[I].first] = Sels[I].second;
   3105   }
   3106 
   3107   // Warning will be issued only when selector table is
   3108   // generated (which means there is at lease one implementation
   3109   // in the TU). This is to match gcc's behavior.
   3110   if (ReferencedSelectors.empty() ||
   3111       !Context.AnyObjCImplementation())
   3112     return;
   3113   for (llvm::DenseMap<Selector, SourceLocation>::iterator S =
   3114         ReferencedSelectors.begin(),
   3115        E = ReferencedSelectors.end(); S != E; ++S) {
   3116     Selector Sel = (*S).first;
   3117     if (!LookupImplementedMethodInGlobalPool(Sel))
   3118       Diag((*S).second, diag::warn_unimplemented_selector) << Sel;
   3119   }
   3120   return;
   3121 }
   3122