1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 // Platform specific code for FreeBSD goes here. For the POSIX comaptible parts 29 // the implementation is in platform-posix.cc. 30 31 #include <pthread.h> 32 #include <semaphore.h> 33 #include <signal.h> 34 #include <sys/time.h> 35 #include <sys/resource.h> 36 #include <sys/types.h> 37 #include <sys/ucontext.h> 38 #include <stdlib.h> 39 40 #include <sys/types.h> // mmap & munmap 41 #include <sys/mman.h> // mmap & munmap 42 #include <sys/stat.h> // open 43 #include <sys/fcntl.h> // open 44 #include <unistd.h> // getpagesize 45 // If you don't have execinfo.h then you need devel/libexecinfo from ports. 46 #include <execinfo.h> // backtrace, backtrace_symbols 47 #include <strings.h> // index 48 #include <errno.h> 49 #include <stdarg.h> 50 #include <limits.h> 51 52 #undef MAP_TYPE 53 54 #include "v8.h" 55 #include "v8threads.h" 56 57 #include "platform-posix.h" 58 #include "platform.h" 59 #include "vm-state-inl.h" 60 61 62 namespace v8 { 63 namespace internal { 64 65 // 0 is never a valid thread id on FreeBSD since tids and pids share a 66 // name space and pid 0 is used to kill the group (see man 2 kill). 67 static const pthread_t kNoThread = (pthread_t) 0; 68 69 70 double ceiling(double x) { 71 // Correct as on OS X 72 if (-1.0 < x && x < 0.0) { 73 return -0.0; 74 } else { 75 return ceil(x); 76 } 77 } 78 79 80 static Mutex* limit_mutex = NULL; 81 82 83 void OS::SetUp() { 84 // Seed the random number generator. 85 // Convert the current time to a 64-bit integer first, before converting it 86 // to an unsigned. Going directly can cause an overflow and the seed to be 87 // set to all ones. The seed will be identical for different instances that 88 // call this setup code within the same millisecond. 89 uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis()); 90 srandom(static_cast<unsigned int>(seed)); 91 limit_mutex = CreateMutex(); 92 } 93 94 95 void OS::PostSetUp() { 96 // Math functions depend on CPU features therefore they are initialized after 97 // CPU. 98 MathSetup(); 99 } 100 101 102 void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) { 103 __asm__ __volatile__("" : : : "memory"); 104 *ptr = value; 105 } 106 107 108 uint64_t OS::CpuFeaturesImpliedByPlatform() { 109 return 0; // FreeBSD runs on anything. 110 } 111 112 113 int OS::ActivationFrameAlignment() { 114 // 16 byte alignment on FreeBSD 115 return 16; 116 } 117 118 119 const char* OS::LocalTimezone(double time) { 120 if (isnan(time)) return ""; 121 time_t tv = static_cast<time_t>(floor(time/msPerSecond)); 122 struct tm* t = localtime(&tv); 123 if (NULL == t) return ""; 124 return t->tm_zone; 125 } 126 127 128 double OS::LocalTimeOffset() { 129 time_t tv = time(NULL); 130 struct tm* t = localtime(&tv); 131 // tm_gmtoff includes any daylight savings offset, so subtract it. 132 return static_cast<double>(t->tm_gmtoff * msPerSecond - 133 (t->tm_isdst > 0 ? 3600 * msPerSecond : 0)); 134 } 135 136 137 // We keep the lowest and highest addresses mapped as a quick way of 138 // determining that pointers are outside the heap (used mostly in assertions 139 // and verification). The estimate is conservative, i.e., not all addresses in 140 // 'allocated' space are actually allocated to our heap. The range is 141 // [lowest, highest), inclusive on the low and and exclusive on the high end. 142 static void* lowest_ever_allocated = reinterpret_cast<void*>(-1); 143 static void* highest_ever_allocated = reinterpret_cast<void*>(0); 144 145 146 static void UpdateAllocatedSpaceLimits(void* address, int size) { 147 ASSERT(limit_mutex != NULL); 148 ScopedLock lock(limit_mutex); 149 150 lowest_ever_allocated = Min(lowest_ever_allocated, address); 151 highest_ever_allocated = 152 Max(highest_ever_allocated, 153 reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size)); 154 } 155 156 157 bool OS::IsOutsideAllocatedSpace(void* address) { 158 return address < lowest_ever_allocated || address >= highest_ever_allocated; 159 } 160 161 162 size_t OS::AllocateAlignment() { 163 return getpagesize(); 164 } 165 166 167 void* OS::Allocate(const size_t requested, 168 size_t* allocated, 169 bool executable) { 170 const size_t msize = RoundUp(requested, getpagesize()); 171 int prot = PROT_READ | PROT_WRITE | (executable ? PROT_EXEC : 0); 172 void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANON, -1, 0); 173 174 if (mbase == MAP_FAILED) { 175 LOG(ISOLATE, StringEvent("OS::Allocate", "mmap failed")); 176 return NULL; 177 } 178 *allocated = msize; 179 UpdateAllocatedSpaceLimits(mbase, msize); 180 return mbase; 181 } 182 183 184 void OS::Free(void* buf, const size_t length) { 185 // TODO(1240712): munmap has a return value which is ignored here. 186 int result = munmap(buf, length); 187 USE(result); 188 ASSERT(result == 0); 189 } 190 191 192 void OS::Sleep(int milliseconds) { 193 unsigned int ms = static_cast<unsigned int>(milliseconds); 194 usleep(1000 * ms); 195 } 196 197 198 void OS::Abort() { 199 // Redirect to std abort to signal abnormal program termination. 200 abort(); 201 } 202 203 204 void OS::DebugBreak() { 205 #if (defined(__arm__) || defined(__thumb__)) 206 # if defined(CAN_USE_ARMV5_INSTRUCTIONS) 207 asm("bkpt 0"); 208 # endif 209 #else 210 asm("int $3"); 211 #endif 212 } 213 214 215 class PosixMemoryMappedFile : public OS::MemoryMappedFile { 216 public: 217 PosixMemoryMappedFile(FILE* file, void* memory, int size) 218 : file_(file), memory_(memory), size_(size) { } 219 virtual ~PosixMemoryMappedFile(); 220 virtual void* memory() { return memory_; } 221 virtual int size() { return size_; } 222 private: 223 FILE* file_; 224 void* memory_; 225 int size_; 226 }; 227 228 229 OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) { 230 FILE* file = fopen(name, "r+"); 231 if (file == NULL) return NULL; 232 233 fseek(file, 0, SEEK_END); 234 int size = ftell(file); 235 236 void* memory = 237 mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0); 238 return new PosixMemoryMappedFile(file, memory, size); 239 } 240 241 242 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size, 243 void* initial) { 244 FILE* file = fopen(name, "w+"); 245 if (file == NULL) return NULL; 246 int result = fwrite(initial, size, 1, file); 247 if (result < 1) { 248 fclose(file); 249 return NULL; 250 } 251 void* memory = 252 mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0); 253 return new PosixMemoryMappedFile(file, memory, size); 254 } 255 256 257 PosixMemoryMappedFile::~PosixMemoryMappedFile() { 258 if (memory_) munmap(memory_, size_); 259 fclose(file_); 260 } 261 262 263 static unsigned StringToLong(char* buffer) { 264 return static_cast<unsigned>(strtol(buffer, NULL, 16)); // NOLINT 265 } 266 267 268 void OS::LogSharedLibraryAddresses() { 269 static const int MAP_LENGTH = 1024; 270 int fd = open("/proc/self/maps", O_RDONLY); 271 if (fd < 0) return; 272 while (true) { 273 char addr_buffer[11]; 274 addr_buffer[0] = '0'; 275 addr_buffer[1] = 'x'; 276 addr_buffer[10] = 0; 277 int result = read(fd, addr_buffer + 2, 8); 278 if (result < 8) break; 279 unsigned start = StringToLong(addr_buffer); 280 result = read(fd, addr_buffer + 2, 1); 281 if (result < 1) break; 282 if (addr_buffer[2] != '-') break; 283 result = read(fd, addr_buffer + 2, 8); 284 if (result < 8) break; 285 unsigned end = StringToLong(addr_buffer); 286 char buffer[MAP_LENGTH]; 287 int bytes_read = -1; 288 do { 289 bytes_read++; 290 if (bytes_read >= MAP_LENGTH - 1) 291 break; 292 result = read(fd, buffer + bytes_read, 1); 293 if (result < 1) break; 294 } while (buffer[bytes_read] != '\n'); 295 buffer[bytes_read] = 0; 296 // Ignore mappings that are not executable. 297 if (buffer[3] != 'x') continue; 298 char* start_of_path = index(buffer, '/'); 299 // There may be no filename in this line. Skip to next. 300 if (start_of_path == NULL) continue; 301 buffer[bytes_read] = 0; 302 LOG(i::Isolate::Current(), SharedLibraryEvent(start_of_path, start, end)); 303 } 304 close(fd); 305 } 306 307 308 void OS::SignalCodeMovingGC() { 309 } 310 311 312 int OS::StackWalk(Vector<OS::StackFrame> frames) { 313 int frames_size = frames.length(); 314 ScopedVector<void*> addresses(frames_size); 315 316 int frames_count = backtrace(addresses.start(), frames_size); 317 318 char** symbols = backtrace_symbols(addresses.start(), frames_count); 319 if (symbols == NULL) { 320 return kStackWalkError; 321 } 322 323 for (int i = 0; i < frames_count; i++) { 324 frames[i].address = addresses[i]; 325 // Format a text representation of the frame based on the information 326 // available. 327 SNPrintF(MutableCStrVector(frames[i].text, kStackWalkMaxTextLen), 328 "%s", 329 symbols[i]); 330 // Make sure line termination is in place. 331 frames[i].text[kStackWalkMaxTextLen - 1] = '\0'; 332 } 333 334 free(symbols); 335 336 return frames_count; 337 } 338 339 340 // Constants used for mmap. 341 static const int kMmapFd = -1; 342 static const int kMmapFdOffset = 0; 343 344 VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { } 345 346 VirtualMemory::VirtualMemory(size_t size) { 347 address_ = ReserveRegion(size); 348 size_ = size; 349 } 350 351 352 VirtualMemory::VirtualMemory(size_t size, size_t alignment) 353 : address_(NULL), size_(0) { 354 ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment()))); 355 size_t request_size = RoundUp(size + alignment, 356 static_cast<intptr_t>(OS::AllocateAlignment())); 357 void* reservation = mmap(OS::GetRandomMmapAddr(), 358 request_size, 359 PROT_NONE, 360 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, 361 kMmapFd, 362 kMmapFdOffset); 363 if (reservation == MAP_FAILED) return; 364 365 Address base = static_cast<Address>(reservation); 366 Address aligned_base = RoundUp(base, alignment); 367 ASSERT_LE(base, aligned_base); 368 369 // Unmap extra memory reserved before and after the desired block. 370 if (aligned_base != base) { 371 size_t prefix_size = static_cast<size_t>(aligned_base - base); 372 OS::Free(base, prefix_size); 373 request_size -= prefix_size; 374 } 375 376 size_t aligned_size = RoundUp(size, OS::AllocateAlignment()); 377 ASSERT_LE(aligned_size, request_size); 378 379 if (aligned_size != request_size) { 380 size_t suffix_size = request_size - aligned_size; 381 OS::Free(aligned_base + aligned_size, suffix_size); 382 request_size -= suffix_size; 383 } 384 385 ASSERT(aligned_size == request_size); 386 387 address_ = static_cast<void*>(aligned_base); 388 size_ = aligned_size; 389 } 390 391 392 VirtualMemory::~VirtualMemory() { 393 if (IsReserved()) { 394 bool result = ReleaseRegion(address(), size()); 395 ASSERT(result); 396 USE(result); 397 } 398 } 399 400 401 bool VirtualMemory::IsReserved() { 402 return address_ != NULL; 403 } 404 405 406 void VirtualMemory::Reset() { 407 address_ = NULL; 408 size_ = 0; 409 } 410 411 412 bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) { 413 return CommitRegion(address, size, is_executable); 414 } 415 416 417 bool VirtualMemory::Uncommit(void* address, size_t size) { 418 return UncommitRegion(address, size); 419 } 420 421 422 bool VirtualMemory::Guard(void* address) { 423 OS::Guard(address, OS::CommitPageSize()); 424 return true; 425 } 426 427 428 void* VirtualMemory::ReserveRegion(size_t size) { 429 void* result = mmap(OS::GetRandomMmapAddr(), 430 size, 431 PROT_NONE, 432 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, 433 kMmapFd, 434 kMmapFdOffset); 435 436 if (result == MAP_FAILED) return NULL; 437 438 return result; 439 } 440 441 442 bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) { 443 int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0); 444 if (MAP_FAILED == mmap(base, 445 size, 446 prot, 447 MAP_PRIVATE | MAP_ANON | MAP_FIXED, 448 kMmapFd, 449 kMmapFdOffset)) { 450 return false; 451 } 452 453 UpdateAllocatedSpaceLimits(base, size); 454 return true; 455 } 456 457 458 bool VirtualMemory::UncommitRegion(void* base, size_t size) { 459 return mmap(base, 460 size, 461 PROT_NONE, 462 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | MAP_FIXED, 463 kMmapFd, 464 kMmapFdOffset) != MAP_FAILED; 465 } 466 467 468 bool VirtualMemory::ReleaseRegion(void* base, size_t size) { 469 return munmap(base, size) == 0; 470 } 471 472 473 class Thread::PlatformData : public Malloced { 474 public: 475 pthread_t thread_; // Thread handle for pthread. 476 }; 477 478 479 Thread::Thread(const Options& options) 480 : data_(new PlatformData), 481 stack_size_(options.stack_size()) { 482 set_name(options.name()); 483 } 484 485 486 Thread::~Thread() { 487 delete data_; 488 } 489 490 491 static void* ThreadEntry(void* arg) { 492 Thread* thread = reinterpret_cast<Thread*>(arg); 493 // This is also initialized by the first argument to pthread_create() but we 494 // don't know which thread will run first (the original thread or the new 495 // one) so we initialize it here too. 496 thread->data()->thread_ = pthread_self(); 497 ASSERT(thread->data()->thread_ != kNoThread); 498 thread->Run(); 499 return NULL; 500 } 501 502 503 void Thread::set_name(const char* name) { 504 strncpy(name_, name, sizeof(name_)); 505 name_[sizeof(name_) - 1] = '\0'; 506 } 507 508 509 void Thread::Start() { 510 pthread_attr_t* attr_ptr = NULL; 511 pthread_attr_t attr; 512 if (stack_size_ > 0) { 513 pthread_attr_init(&attr); 514 pthread_attr_setstacksize(&attr, static_cast<size_t>(stack_size_)); 515 attr_ptr = &attr; 516 } 517 pthread_create(&data_->thread_, attr_ptr, ThreadEntry, this); 518 ASSERT(data_->thread_ != kNoThread); 519 } 520 521 522 void Thread::Join() { 523 pthread_join(data_->thread_, NULL); 524 } 525 526 527 Thread::LocalStorageKey Thread::CreateThreadLocalKey() { 528 pthread_key_t key; 529 int result = pthread_key_create(&key, NULL); 530 USE(result); 531 ASSERT(result == 0); 532 return static_cast<LocalStorageKey>(key); 533 } 534 535 536 void Thread::DeleteThreadLocalKey(LocalStorageKey key) { 537 pthread_key_t pthread_key = static_cast<pthread_key_t>(key); 538 int result = pthread_key_delete(pthread_key); 539 USE(result); 540 ASSERT(result == 0); 541 } 542 543 544 void* Thread::GetThreadLocal(LocalStorageKey key) { 545 pthread_key_t pthread_key = static_cast<pthread_key_t>(key); 546 return pthread_getspecific(pthread_key); 547 } 548 549 550 void Thread::SetThreadLocal(LocalStorageKey key, void* value) { 551 pthread_key_t pthread_key = static_cast<pthread_key_t>(key); 552 pthread_setspecific(pthread_key, value); 553 } 554 555 556 void Thread::YieldCPU() { 557 sched_yield(); 558 } 559 560 561 class FreeBSDMutex : public Mutex { 562 public: 563 FreeBSDMutex() { 564 pthread_mutexattr_t attrs; 565 int result = pthread_mutexattr_init(&attrs); 566 ASSERT(result == 0); 567 result = pthread_mutexattr_settype(&attrs, PTHREAD_MUTEX_RECURSIVE); 568 ASSERT(result == 0); 569 result = pthread_mutex_init(&mutex_, &attrs); 570 ASSERT(result == 0); 571 } 572 573 virtual ~FreeBSDMutex() { pthread_mutex_destroy(&mutex_); } 574 575 virtual int Lock() { 576 int result = pthread_mutex_lock(&mutex_); 577 return result; 578 } 579 580 virtual int Unlock() { 581 int result = pthread_mutex_unlock(&mutex_); 582 return result; 583 } 584 585 virtual bool TryLock() { 586 int result = pthread_mutex_trylock(&mutex_); 587 // Return false if the lock is busy and locking failed. 588 if (result == EBUSY) { 589 return false; 590 } 591 ASSERT(result == 0); // Verify no other errors. 592 return true; 593 } 594 595 private: 596 pthread_mutex_t mutex_; // Pthread mutex for POSIX platforms. 597 }; 598 599 600 Mutex* OS::CreateMutex() { 601 return new FreeBSDMutex(); 602 } 603 604 605 class FreeBSDSemaphore : public Semaphore { 606 public: 607 explicit FreeBSDSemaphore(int count) { sem_init(&sem_, 0, count); } 608 virtual ~FreeBSDSemaphore() { sem_destroy(&sem_); } 609 610 virtual void Wait(); 611 virtual bool Wait(int timeout); 612 virtual void Signal() { sem_post(&sem_); } 613 private: 614 sem_t sem_; 615 }; 616 617 618 void FreeBSDSemaphore::Wait() { 619 while (true) { 620 int result = sem_wait(&sem_); 621 if (result == 0) return; // Successfully got semaphore. 622 CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup. 623 } 624 } 625 626 627 bool FreeBSDSemaphore::Wait(int timeout) { 628 const long kOneSecondMicros = 1000000; // NOLINT 629 630 // Split timeout into second and nanosecond parts. 631 struct timeval delta; 632 delta.tv_usec = timeout % kOneSecondMicros; 633 delta.tv_sec = timeout / kOneSecondMicros; 634 635 struct timeval current_time; 636 // Get the current time. 637 if (gettimeofday(¤t_time, NULL) == -1) { 638 return false; 639 } 640 641 // Calculate time for end of timeout. 642 struct timeval end_time; 643 timeradd(¤t_time, &delta, &end_time); 644 645 struct timespec ts; 646 TIMEVAL_TO_TIMESPEC(&end_time, &ts); 647 while (true) { 648 int result = sem_timedwait(&sem_, &ts); 649 if (result == 0) return true; // Successfully got semaphore. 650 if (result == -1 && errno == ETIMEDOUT) return false; // Timeout. 651 CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup. 652 } 653 } 654 655 656 Semaphore* OS::CreateSemaphore(int count) { 657 return new FreeBSDSemaphore(count); 658 } 659 660 661 static pthread_t GetThreadID() { 662 pthread_t thread_id = pthread_self(); 663 return thread_id; 664 } 665 666 667 class Sampler::PlatformData : public Malloced { 668 public: 669 PlatformData() : vm_tid_(GetThreadID()) {} 670 671 pthread_t vm_tid() const { return vm_tid_; } 672 673 private: 674 pthread_t vm_tid_; 675 }; 676 677 678 static void ProfilerSignalHandler(int signal, siginfo_t* info, void* context) { 679 USE(info); 680 if (signal != SIGPROF) return; 681 Isolate* isolate = Isolate::UncheckedCurrent(); 682 if (isolate == NULL || !isolate->IsInitialized() || !isolate->IsInUse()) { 683 // We require a fully initialized and entered isolate. 684 return; 685 } 686 if (v8::Locker::IsActive() && 687 !isolate->thread_manager()->IsLockedByCurrentThread()) { 688 return; 689 } 690 691 Sampler* sampler = isolate->logger()->sampler(); 692 if (sampler == NULL || !sampler->IsActive()) return; 693 694 TickSample sample_obj; 695 TickSample* sample = CpuProfiler::TickSampleEvent(isolate); 696 if (sample == NULL) sample = &sample_obj; 697 698 // Extracting the sample from the context is extremely machine dependent. 699 ucontext_t* ucontext = reinterpret_cast<ucontext_t*>(context); 700 mcontext_t& mcontext = ucontext->uc_mcontext; 701 sample->state = isolate->current_vm_state(); 702 #if V8_HOST_ARCH_IA32 703 sample->pc = reinterpret_cast<Address>(mcontext.mc_eip); 704 sample->sp = reinterpret_cast<Address>(mcontext.mc_esp); 705 sample->fp = reinterpret_cast<Address>(mcontext.mc_ebp); 706 #elif V8_HOST_ARCH_X64 707 sample->pc = reinterpret_cast<Address>(mcontext.mc_rip); 708 sample->sp = reinterpret_cast<Address>(mcontext.mc_rsp); 709 sample->fp = reinterpret_cast<Address>(mcontext.mc_rbp); 710 #elif V8_HOST_ARCH_ARM 711 sample->pc = reinterpret_cast<Address>(mcontext.mc_r15); 712 sample->sp = reinterpret_cast<Address>(mcontext.mc_r13); 713 sample->fp = reinterpret_cast<Address>(mcontext.mc_r11); 714 #endif 715 sampler->SampleStack(sample); 716 sampler->Tick(sample); 717 } 718 719 720 class SignalSender : public Thread { 721 public: 722 enum SleepInterval { 723 HALF_INTERVAL, 724 FULL_INTERVAL 725 }; 726 727 static const int kSignalSenderStackSize = 64 * KB; 728 729 explicit SignalSender(int interval) 730 : Thread(Thread::Options("SignalSender", kSignalSenderStackSize)), 731 interval_(interval) {} 732 733 static void AddActiveSampler(Sampler* sampler) { 734 ScopedLock lock(mutex_.Pointer()); 735 SamplerRegistry::AddActiveSampler(sampler); 736 if (instance_ == NULL) { 737 // Install a signal handler. 738 struct sigaction sa; 739 sa.sa_sigaction = ProfilerSignalHandler; 740 sigemptyset(&sa.sa_mask); 741 sa.sa_flags = SA_RESTART | SA_SIGINFO; 742 signal_handler_installed_ = 743 (sigaction(SIGPROF, &sa, &old_signal_handler_) == 0); 744 745 // Start a thread that sends SIGPROF signal to VM threads. 746 instance_ = new SignalSender(sampler->interval()); 747 instance_->Start(); 748 } else { 749 ASSERT(instance_->interval_ == sampler->interval()); 750 } 751 } 752 753 static void RemoveActiveSampler(Sampler* sampler) { 754 ScopedLock lock(mutex_.Pointer()); 755 SamplerRegistry::RemoveActiveSampler(sampler); 756 if (SamplerRegistry::GetState() == SamplerRegistry::HAS_NO_SAMPLERS) { 757 RuntimeProfiler::StopRuntimeProfilerThreadBeforeShutdown(instance_); 758 delete instance_; 759 instance_ = NULL; 760 761 // Restore the old signal handler. 762 if (signal_handler_installed_) { 763 sigaction(SIGPROF, &old_signal_handler_, 0); 764 signal_handler_installed_ = false; 765 } 766 } 767 } 768 769 // Implement Thread::Run(). 770 virtual void Run() { 771 SamplerRegistry::State state; 772 while ((state = SamplerRegistry::GetState()) != 773 SamplerRegistry::HAS_NO_SAMPLERS) { 774 bool cpu_profiling_enabled = 775 (state == SamplerRegistry::HAS_CPU_PROFILING_SAMPLERS); 776 bool runtime_profiler_enabled = RuntimeProfiler::IsEnabled(); 777 // When CPU profiling is enabled both JavaScript and C++ code is 778 // profiled. We must not suspend. 779 if (!cpu_profiling_enabled) { 780 if (rate_limiter_.SuspendIfNecessary()) continue; 781 } 782 if (cpu_profiling_enabled && runtime_profiler_enabled) { 783 if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, this)) { 784 return; 785 } 786 Sleep(HALF_INTERVAL); 787 if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile, NULL)) { 788 return; 789 } 790 Sleep(HALF_INTERVAL); 791 } else { 792 if (cpu_profiling_enabled) { 793 if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, 794 this)) { 795 return; 796 } 797 } 798 if (runtime_profiler_enabled) { 799 if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile, 800 NULL)) { 801 return; 802 } 803 } 804 Sleep(FULL_INTERVAL); 805 } 806 } 807 } 808 809 static void DoCpuProfile(Sampler* sampler, void* raw_sender) { 810 if (!sampler->IsProfiling()) return; 811 SignalSender* sender = reinterpret_cast<SignalSender*>(raw_sender); 812 sender->SendProfilingSignal(sampler->platform_data()->vm_tid()); 813 } 814 815 static void DoRuntimeProfile(Sampler* sampler, void* ignored) { 816 if (!sampler->isolate()->IsInitialized()) return; 817 sampler->isolate()->runtime_profiler()->NotifyTick(); 818 } 819 820 void SendProfilingSignal(pthread_t tid) { 821 if (!signal_handler_installed_) return; 822 pthread_kill(tid, SIGPROF); 823 } 824 825 void Sleep(SleepInterval full_or_half) { 826 // Convert ms to us and subtract 100 us to compensate delays 827 // occuring during signal delivery. 828 useconds_t interval = interval_ * 1000 - 100; 829 if (full_or_half == HALF_INTERVAL) interval /= 2; 830 int result = usleep(interval); 831 #ifdef DEBUG 832 if (result != 0 && errno != EINTR) { 833 fprintf(stderr, 834 "SignalSender usleep error; interval = %u, errno = %d\n", 835 interval, 836 errno); 837 ASSERT(result == 0 || errno == EINTR); 838 } 839 #endif 840 USE(result); 841 } 842 843 const int interval_; 844 RuntimeProfilerRateLimiter rate_limiter_; 845 846 // Protects the process wide state below. 847 static LazyMutex mutex_; 848 static SignalSender* instance_; 849 static bool signal_handler_installed_; 850 static struct sigaction old_signal_handler_; 851 852 private: 853 DISALLOW_COPY_AND_ASSIGN(SignalSender); 854 }; 855 856 LazyMutex SignalSender::mutex_ = LAZY_MUTEX_INITIALIZER; 857 SignalSender* SignalSender::instance_ = NULL; 858 struct sigaction SignalSender::old_signal_handler_; 859 bool SignalSender::signal_handler_installed_ = false; 860 861 862 Sampler::Sampler(Isolate* isolate, int interval) 863 : isolate_(isolate), 864 interval_(interval), 865 profiling_(false), 866 active_(false), 867 samples_taken_(0) { 868 data_ = new PlatformData; 869 } 870 871 872 Sampler::~Sampler() { 873 ASSERT(!IsActive()); 874 delete data_; 875 } 876 877 878 void Sampler::Start() { 879 ASSERT(!IsActive()); 880 SetActive(true); 881 SignalSender::AddActiveSampler(this); 882 } 883 884 885 void Sampler::Stop() { 886 ASSERT(IsActive()); 887 SignalSender::RemoveActiveSampler(this); 888 SetActive(false); 889 } 890 891 892 } } // namespace v8::internal 893