1 #if HAVE_CONFIG_H 2 # include <config.h> 3 #endif 4 5 #include <stdlib.h> /* for malloc() */ 6 #include <string.h> /* for memcpy() */ 7 8 #include "private/md5.h" 9 #include "share/alloc.h" 10 11 #ifndef FLaC__INLINE 12 #define FLaC__INLINE 13 #endif 14 15 /* 16 * This code implements the MD5 message-digest algorithm. 17 * The algorithm is due to Ron Rivest. This code was 18 * written by Colin Plumb in 1993, no copyright is claimed. 19 * This code is in the public domain; do with it what you wish. 20 * 21 * Equivalent code is available from RSA Data Security, Inc. 22 * This code has been tested against that, and is equivalent, 23 * except that you don't need to include two pages of legalese 24 * with every copy. 25 * 26 * To compute the message digest of a chunk of bytes, declare an 27 * MD5Context structure, pass it to MD5Init, call MD5Update as 28 * needed on buffers full of bytes, and then call MD5Final, which 29 * will fill a supplied 16-byte array with the digest. 30 * 31 * Changed so as no longer to depend on Colin Plumb's `usual.h' header 32 * definitions; now uses stuff from dpkg's config.h. 33 * - Ian Jackson <ijackson (at) nyx.cs.du.edu>. 34 * Still in the public domain. 35 * 36 * Josh Coalson: made some changes to integrate with libFLAC. 37 * Still in the public domain. 38 */ 39 40 /* The four core functions - F1 is optimized somewhat */ 41 42 /* #define F1(x, y, z) (x & y | ~x & z) */ 43 #define F1(x, y, z) (z ^ (x & (y ^ z))) 44 #define F2(x, y, z) F1(z, x, y) 45 #define F3(x, y, z) (x ^ y ^ z) 46 #define F4(x, y, z) (y ^ (x | ~z)) 47 48 /* This is the central step in the MD5 algorithm. */ 49 #define MD5STEP(f,w,x,y,z,in,s) \ 50 (w += f(x,y,z) + in, w = (w<<s | w>>(32-s)) + x) 51 52 /* 53 * The core of the MD5 algorithm, this alters an existing MD5 hash to 54 * reflect the addition of 16 longwords of new data. MD5Update blocks 55 * the data and converts bytes into longwords for this routine. 56 */ 57 static void FLAC__MD5Transform(FLAC__uint32 buf[4], FLAC__uint32 const in[16]) 58 { 59 register FLAC__uint32 a, b, c, d; 60 61 a = buf[0]; 62 b = buf[1]; 63 c = buf[2]; 64 d = buf[3]; 65 66 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); 67 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); 68 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); 69 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); 70 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); 71 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); 72 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); 73 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); 74 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); 75 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); 76 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); 77 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); 78 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); 79 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); 80 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); 81 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); 82 83 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); 84 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); 85 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); 86 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); 87 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); 88 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); 89 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); 90 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); 91 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); 92 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); 93 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); 94 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); 95 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); 96 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); 97 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); 98 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); 99 100 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); 101 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); 102 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); 103 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); 104 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); 105 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); 106 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); 107 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); 108 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); 109 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); 110 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); 111 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); 112 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); 113 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); 114 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); 115 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); 116 117 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); 118 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); 119 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); 120 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); 121 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); 122 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); 123 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); 124 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); 125 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); 126 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); 127 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); 128 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); 129 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); 130 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); 131 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); 132 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); 133 134 buf[0] += a; 135 buf[1] += b; 136 buf[2] += c; 137 buf[3] += d; 138 } 139 140 #if WORDS_BIGENDIAN 141 //@@@@@@ OPT: use bswap/intrinsics 142 static void byteSwap(FLAC__uint32 *buf, unsigned words) 143 { 144 register FLAC__uint32 x; 145 do { 146 x = *buf; 147 x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); 148 *buf++ = (x >> 16) | (x << 16); 149 } while (--words); 150 } 151 static void byteSwapX16(FLAC__uint32 *buf) 152 { 153 register FLAC__uint32 x; 154 155 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); 156 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); 157 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); 158 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); 159 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); 160 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); 161 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); 162 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); 163 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); 164 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); 165 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); 166 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); 167 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); 168 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); 169 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); 170 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf = (x >> 16) | (x << 16); 171 } 172 #else 173 #define byteSwap(buf, words) 174 #define byteSwapX16(buf) 175 #endif 176 177 /* 178 * Update context to reflect the concatenation of another buffer full 179 * of bytes. 180 */ 181 static void FLAC__MD5Update(FLAC__MD5Context *ctx, FLAC__byte const *buf, unsigned len) 182 { 183 FLAC__uint32 t; 184 185 /* Update byte count */ 186 187 t = ctx->bytes[0]; 188 if ((ctx->bytes[0] = t + len) < t) 189 ctx->bytes[1]++; /* Carry from low to high */ 190 191 t = 64 - (t & 0x3f); /* Space available in ctx->in (at least 1) */ 192 if (t > len) { 193 memcpy((FLAC__byte *)ctx->in + 64 - t, buf, len); 194 return; 195 } 196 /* First chunk is an odd size */ 197 memcpy((FLAC__byte *)ctx->in + 64 - t, buf, t); 198 byteSwapX16(ctx->in); 199 FLAC__MD5Transform(ctx->buf, ctx->in); 200 buf += t; 201 len -= t; 202 203 /* Process data in 64-byte chunks */ 204 while (len >= 64) { 205 memcpy(ctx->in, buf, 64); 206 byteSwapX16(ctx->in); 207 FLAC__MD5Transform(ctx->buf, ctx->in); 208 buf += 64; 209 len -= 64; 210 } 211 212 /* Handle any remaining bytes of data. */ 213 memcpy(ctx->in, buf, len); 214 } 215 216 /* 217 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious 218 * initialization constants. 219 */ 220 void FLAC__MD5Init(FLAC__MD5Context *ctx) 221 { 222 ctx->buf[0] = 0x67452301; 223 ctx->buf[1] = 0xefcdab89; 224 ctx->buf[2] = 0x98badcfe; 225 ctx->buf[3] = 0x10325476; 226 227 ctx->bytes[0] = 0; 228 ctx->bytes[1] = 0; 229 230 ctx->internal_buf = 0; 231 ctx->capacity = 0; 232 } 233 234 /* 235 * Final wrapup - pad to 64-byte boundary with the bit pattern 236 * 1 0* (64-bit count of bits processed, MSB-first) 237 */ 238 void FLAC__MD5Final(FLAC__byte digest[16], FLAC__MD5Context *ctx) 239 { 240 int count = ctx->bytes[0] & 0x3f; /* Number of bytes in ctx->in */ 241 FLAC__byte *p = (FLAC__byte *)ctx->in + count; 242 243 /* Set the first char of padding to 0x80. There is always room. */ 244 *p++ = 0x80; 245 246 /* Bytes of padding needed to make 56 bytes (-8..55) */ 247 count = 56 - 1 - count; 248 249 if (count < 0) { /* Padding forces an extra block */ 250 memset(p, 0, count + 8); 251 byteSwapX16(ctx->in); 252 FLAC__MD5Transform(ctx->buf, ctx->in); 253 p = (FLAC__byte *)ctx->in; 254 count = 56; 255 } 256 memset(p, 0, count); 257 byteSwap(ctx->in, 14); 258 259 /* Append length in bits and transform */ 260 ctx->in[14] = ctx->bytes[0] << 3; 261 ctx->in[15] = ctx->bytes[1] << 3 | ctx->bytes[0] >> 29; 262 FLAC__MD5Transform(ctx->buf, ctx->in); 263 264 byteSwap(ctx->buf, 4); 265 memcpy(digest, ctx->buf, 16); 266 memset(ctx, 0, sizeof(ctx)); /* In case it's sensitive */ 267 if(0 != ctx->internal_buf) { 268 free(ctx->internal_buf); 269 ctx->internal_buf = 0; 270 ctx->capacity = 0; 271 } 272 } 273 274 /* 275 * Convert the incoming audio signal to a byte stream 276 */ 277 static void format_input_(FLAC__byte *buf, const FLAC__int32 * const signal[], unsigned channels, unsigned samples, unsigned bytes_per_sample) 278 { 279 unsigned channel, sample; 280 register FLAC__int32 a_word; 281 register FLAC__byte *buf_ = buf; 282 283 #if WORDS_BIGENDIAN 284 #else 285 if(channels == 2 && bytes_per_sample == 2) { 286 FLAC__int16 *buf1_ = ((FLAC__int16*)buf_) + 1; 287 memcpy(buf_, signal[0], sizeof(FLAC__int32) * samples); 288 for(sample = 0; sample < samples; sample++, buf1_+=2) 289 *buf1_ = (FLAC__int16)signal[1][sample]; 290 } 291 else if(channels == 1 && bytes_per_sample == 2) { 292 FLAC__int16 *buf1_ = (FLAC__int16*)buf_; 293 for(sample = 0; sample < samples; sample++) 294 *buf1_++ = (FLAC__int16)signal[0][sample]; 295 } 296 else 297 #endif 298 if(bytes_per_sample == 2) { 299 if(channels == 2) { 300 for(sample = 0; sample < samples; sample++) { 301 a_word = signal[0][sample]; 302 *buf_++ = (FLAC__byte)a_word; a_word >>= 8; 303 *buf_++ = (FLAC__byte)a_word; 304 a_word = signal[1][sample]; 305 *buf_++ = (FLAC__byte)a_word; a_word >>= 8; 306 *buf_++ = (FLAC__byte)a_word; 307 } 308 } 309 else if(channels == 1) { 310 for(sample = 0; sample < samples; sample++) { 311 a_word = signal[0][sample]; 312 *buf_++ = (FLAC__byte)a_word; a_word >>= 8; 313 *buf_++ = (FLAC__byte)a_word; 314 } 315 } 316 else { 317 for(sample = 0; sample < samples; sample++) { 318 for(channel = 0; channel < channels; channel++) { 319 a_word = signal[channel][sample]; 320 *buf_++ = (FLAC__byte)a_word; a_word >>= 8; 321 *buf_++ = (FLAC__byte)a_word; 322 } 323 } 324 } 325 } 326 else if(bytes_per_sample == 3) { 327 if(channels == 2) { 328 for(sample = 0; sample < samples; sample++) { 329 a_word = signal[0][sample]; 330 *buf_++ = (FLAC__byte)a_word; a_word >>= 8; 331 *buf_++ = (FLAC__byte)a_word; a_word >>= 8; 332 *buf_++ = (FLAC__byte)a_word; 333 a_word = signal[1][sample]; 334 *buf_++ = (FLAC__byte)a_word; a_word >>= 8; 335 *buf_++ = (FLAC__byte)a_word; a_word >>= 8; 336 *buf_++ = (FLAC__byte)a_word; 337 } 338 } 339 else if(channels == 1) { 340 for(sample = 0; sample < samples; sample++) { 341 a_word = signal[0][sample]; 342 *buf_++ = (FLAC__byte)a_word; a_word >>= 8; 343 *buf_++ = (FLAC__byte)a_word; a_word >>= 8; 344 *buf_++ = (FLAC__byte)a_word; 345 } 346 } 347 else { 348 for(sample = 0; sample < samples; sample++) { 349 for(channel = 0; channel < channels; channel++) { 350 a_word = signal[channel][sample]; 351 *buf_++ = (FLAC__byte)a_word; a_word >>= 8; 352 *buf_++ = (FLAC__byte)a_word; a_word >>= 8; 353 *buf_++ = (FLAC__byte)a_word; 354 } 355 } 356 } 357 } 358 else if(bytes_per_sample == 1) { 359 if(channels == 2) { 360 for(sample = 0; sample < samples; sample++) { 361 a_word = signal[0][sample]; 362 *buf_++ = (FLAC__byte)a_word; 363 a_word = signal[1][sample]; 364 *buf_++ = (FLAC__byte)a_word; 365 } 366 } 367 else if(channels == 1) { 368 for(sample = 0; sample < samples; sample++) { 369 a_word = signal[0][sample]; 370 *buf_++ = (FLAC__byte)a_word; 371 } 372 } 373 else { 374 for(sample = 0; sample < samples; sample++) { 375 for(channel = 0; channel < channels; channel++) { 376 a_word = signal[channel][sample]; 377 *buf_++ = (FLAC__byte)a_word; 378 } 379 } 380 } 381 } 382 else { /* bytes_per_sample == 4, maybe optimize more later */ 383 for(sample = 0; sample < samples; sample++) { 384 for(channel = 0; channel < channels; channel++) { 385 a_word = signal[channel][sample]; 386 *buf_++ = (FLAC__byte)a_word; a_word >>= 8; 387 *buf_++ = (FLAC__byte)a_word; a_word >>= 8; 388 *buf_++ = (FLAC__byte)a_word; a_word >>= 8; 389 *buf_++ = (FLAC__byte)a_word; 390 } 391 } 392 } 393 } 394 395 /* 396 * Convert the incoming audio signal to a byte stream and FLAC__MD5Update it. 397 */ 398 FLAC__bool FLAC__MD5Accumulate(FLAC__MD5Context *ctx, const FLAC__int32 * const signal[], unsigned channels, unsigned samples, unsigned bytes_per_sample) 399 { 400 const size_t bytes_needed = (size_t)channels * (size_t)samples * (size_t)bytes_per_sample; 401 402 /* overflow check */ 403 if((size_t)channels > SIZE_MAX / (size_t)bytes_per_sample) 404 return false; 405 if((size_t)channels * (size_t)bytes_per_sample > SIZE_MAX / (size_t)samples) 406 return false; 407 408 if(ctx->capacity < bytes_needed) { 409 FLAC__byte *tmp = (FLAC__byte*)realloc(ctx->internal_buf, bytes_needed); 410 if(0 == tmp) { 411 free(ctx->internal_buf); 412 if(0 == (ctx->internal_buf = (FLAC__byte*)safe_malloc_(bytes_needed))) 413 return false; 414 } 415 ctx->internal_buf = tmp; 416 ctx->capacity = bytes_needed; 417 } 418 419 format_input_(ctx->internal_buf, signal, channels, samples, bytes_per_sample); 420 421 FLAC__MD5Update(ctx, ctx->internal_buf, bytes_needed); 422 423 return true; 424 } 425