Home | History | Annotate | Download | only in libFLAC
      1 #if HAVE_CONFIG_H
      2 #  include <config.h>
      3 #endif
      4 
      5 #include <stdlib.h>		/* for malloc() */
      6 #include <string.h>		/* for memcpy() */
      7 
      8 #include "private/md5.h"
      9 #include "share/alloc.h"
     10 
     11 #ifndef FLaC__INLINE
     12 #define FLaC__INLINE
     13 #endif
     14 
     15 /*
     16  * This code implements the MD5 message-digest algorithm.
     17  * The algorithm is due to Ron Rivest.  This code was
     18  * written by Colin Plumb in 1993, no copyright is claimed.
     19  * This code is in the public domain; do with it what you wish.
     20  *
     21  * Equivalent code is available from RSA Data Security, Inc.
     22  * This code has been tested against that, and is equivalent,
     23  * except that you don't need to include two pages of legalese
     24  * with every copy.
     25  *
     26  * To compute the message digest of a chunk of bytes, declare an
     27  * MD5Context structure, pass it to MD5Init, call MD5Update as
     28  * needed on buffers full of bytes, and then call MD5Final, which
     29  * will fill a supplied 16-byte array with the digest.
     30  *
     31  * Changed so as no longer to depend on Colin Plumb's `usual.h' header
     32  * definitions; now uses stuff from dpkg's config.h.
     33  *  - Ian Jackson <ijackson (at) nyx.cs.du.edu>.
     34  * Still in the public domain.
     35  *
     36  * Josh Coalson: made some changes to integrate with libFLAC.
     37  * Still in the public domain.
     38  */
     39 
     40 /* The four core functions - F1 is optimized somewhat */
     41 
     42 /* #define F1(x, y, z) (x & y | ~x & z) */
     43 #define F1(x, y, z) (z ^ (x & (y ^ z)))
     44 #define F2(x, y, z) F1(z, x, y)
     45 #define F3(x, y, z) (x ^ y ^ z)
     46 #define F4(x, y, z) (y ^ (x | ~z))
     47 
     48 /* This is the central step in the MD5 algorithm. */
     49 #define MD5STEP(f,w,x,y,z,in,s) \
     50 	 (w += f(x,y,z) + in, w = (w<<s | w>>(32-s)) + x)
     51 
     52 /*
     53  * The core of the MD5 algorithm, this alters an existing MD5 hash to
     54  * reflect the addition of 16 longwords of new data.  MD5Update blocks
     55  * the data and converts bytes into longwords for this routine.
     56  */
     57 static void FLAC__MD5Transform(FLAC__uint32 buf[4], FLAC__uint32 const in[16])
     58 {
     59 	register FLAC__uint32 a, b, c, d;
     60 
     61 	a = buf[0];
     62 	b = buf[1];
     63 	c = buf[2];
     64 	d = buf[3];
     65 
     66 	MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
     67 	MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
     68 	MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
     69 	MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
     70 	MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
     71 	MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
     72 	MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
     73 	MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
     74 	MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
     75 	MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
     76 	MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
     77 	MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
     78 	MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
     79 	MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
     80 	MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
     81 	MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
     82 
     83 	MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
     84 	MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
     85 	MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
     86 	MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
     87 	MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
     88 	MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
     89 	MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
     90 	MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
     91 	MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
     92 	MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
     93 	MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
     94 	MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
     95 	MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
     96 	MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
     97 	MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
     98 	MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
     99 
    100 	MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
    101 	MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
    102 	MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
    103 	MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
    104 	MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
    105 	MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
    106 	MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
    107 	MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
    108 	MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
    109 	MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
    110 	MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
    111 	MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
    112 	MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
    113 	MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
    114 	MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
    115 	MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
    116 
    117 	MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
    118 	MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
    119 	MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
    120 	MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
    121 	MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
    122 	MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
    123 	MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
    124 	MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
    125 	MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
    126 	MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
    127 	MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
    128 	MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
    129 	MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
    130 	MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
    131 	MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
    132 	MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
    133 
    134 	buf[0] += a;
    135 	buf[1] += b;
    136 	buf[2] += c;
    137 	buf[3] += d;
    138 }
    139 
    140 #if WORDS_BIGENDIAN
    141 //@@@@@@ OPT: use bswap/intrinsics
    142 static void byteSwap(FLAC__uint32 *buf, unsigned words)
    143 {
    144 	register FLAC__uint32 x;
    145 	do {
    146 		x = *buf;
    147 		x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff);
    148 		*buf++ = (x >> 16) | (x << 16);
    149 	} while (--words);
    150 }
    151 static void byteSwapX16(FLAC__uint32 *buf)
    152 {
    153 	register FLAC__uint32 x;
    154 
    155 	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
    156 	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
    157 	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
    158 	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
    159 	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
    160 	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
    161 	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
    162 	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
    163 	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
    164 	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
    165 	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
    166 	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
    167 	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
    168 	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
    169 	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
    170 	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf   = (x >> 16) | (x << 16);
    171 }
    172 #else
    173 #define byteSwap(buf, words)
    174 #define byteSwapX16(buf)
    175 #endif
    176 
    177 /*
    178  * Update context to reflect the concatenation of another buffer full
    179  * of bytes.
    180  */
    181 static void FLAC__MD5Update(FLAC__MD5Context *ctx, FLAC__byte const *buf, unsigned len)
    182 {
    183 	FLAC__uint32 t;
    184 
    185 	/* Update byte count */
    186 
    187 	t = ctx->bytes[0];
    188 	if ((ctx->bytes[0] = t + len) < t)
    189 		ctx->bytes[1]++;	/* Carry from low to high */
    190 
    191 	t = 64 - (t & 0x3f);	/* Space available in ctx->in (at least 1) */
    192 	if (t > len) {
    193 		memcpy((FLAC__byte *)ctx->in + 64 - t, buf, len);
    194 		return;
    195 	}
    196 	/* First chunk is an odd size */
    197 	memcpy((FLAC__byte *)ctx->in + 64 - t, buf, t);
    198 	byteSwapX16(ctx->in);
    199 	FLAC__MD5Transform(ctx->buf, ctx->in);
    200 	buf += t;
    201 	len -= t;
    202 
    203 	/* Process data in 64-byte chunks */
    204 	while (len >= 64) {
    205 		memcpy(ctx->in, buf, 64);
    206 		byteSwapX16(ctx->in);
    207 		FLAC__MD5Transform(ctx->buf, ctx->in);
    208 		buf += 64;
    209 		len -= 64;
    210 	}
    211 
    212 	/* Handle any remaining bytes of data. */
    213 	memcpy(ctx->in, buf, len);
    214 }
    215 
    216 /*
    217  * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
    218  * initialization constants.
    219  */
    220 void FLAC__MD5Init(FLAC__MD5Context *ctx)
    221 {
    222 	ctx->buf[0] = 0x67452301;
    223 	ctx->buf[1] = 0xefcdab89;
    224 	ctx->buf[2] = 0x98badcfe;
    225 	ctx->buf[3] = 0x10325476;
    226 
    227 	ctx->bytes[0] = 0;
    228 	ctx->bytes[1] = 0;
    229 
    230 	ctx->internal_buf = 0;
    231 	ctx->capacity = 0;
    232 }
    233 
    234 /*
    235  * Final wrapup - pad to 64-byte boundary with the bit pattern
    236  * 1 0* (64-bit count of bits processed, MSB-first)
    237  */
    238 void FLAC__MD5Final(FLAC__byte digest[16], FLAC__MD5Context *ctx)
    239 {
    240 	int count = ctx->bytes[0] & 0x3f;	/* Number of bytes in ctx->in */
    241 	FLAC__byte *p = (FLAC__byte *)ctx->in + count;
    242 
    243 	/* Set the first char of padding to 0x80.  There is always room. */
    244 	*p++ = 0x80;
    245 
    246 	/* Bytes of padding needed to make 56 bytes (-8..55) */
    247 	count = 56 - 1 - count;
    248 
    249 	if (count < 0) {	/* Padding forces an extra block */
    250 		memset(p, 0, count + 8);
    251 		byteSwapX16(ctx->in);
    252 		FLAC__MD5Transform(ctx->buf, ctx->in);
    253 		p = (FLAC__byte *)ctx->in;
    254 		count = 56;
    255 	}
    256 	memset(p, 0, count);
    257 	byteSwap(ctx->in, 14);
    258 
    259 	/* Append length in bits and transform */
    260 	ctx->in[14] = ctx->bytes[0] << 3;
    261 	ctx->in[15] = ctx->bytes[1] << 3 | ctx->bytes[0] >> 29;
    262 	FLAC__MD5Transform(ctx->buf, ctx->in);
    263 
    264 	byteSwap(ctx->buf, 4);
    265 	memcpy(digest, ctx->buf, 16);
    266 	memset(ctx, 0, sizeof(ctx));	/* In case it's sensitive */
    267 	if(0 != ctx->internal_buf) {
    268 		free(ctx->internal_buf);
    269 		ctx->internal_buf = 0;
    270 		ctx->capacity = 0;
    271 	}
    272 }
    273 
    274 /*
    275  * Convert the incoming audio signal to a byte stream
    276  */
    277 static void format_input_(FLAC__byte *buf, const FLAC__int32 * const signal[], unsigned channels, unsigned samples, unsigned bytes_per_sample)
    278 {
    279 	unsigned channel, sample;
    280 	register FLAC__int32 a_word;
    281 	register FLAC__byte *buf_ = buf;
    282 
    283 #if WORDS_BIGENDIAN
    284 #else
    285 	if(channels == 2 && bytes_per_sample == 2) {
    286 		FLAC__int16 *buf1_ = ((FLAC__int16*)buf_) + 1;
    287 		memcpy(buf_, signal[0], sizeof(FLAC__int32) * samples);
    288 		for(sample = 0; sample < samples; sample++, buf1_+=2)
    289 			*buf1_ = (FLAC__int16)signal[1][sample];
    290 	}
    291 	else if(channels == 1 && bytes_per_sample == 2) {
    292 		FLAC__int16 *buf1_ = (FLAC__int16*)buf_;
    293 		for(sample = 0; sample < samples; sample++)
    294 			*buf1_++ = (FLAC__int16)signal[0][sample];
    295 	}
    296 	else
    297 #endif
    298 	if(bytes_per_sample == 2) {
    299 		if(channels == 2) {
    300 			for(sample = 0; sample < samples; sample++) {
    301 				a_word = signal[0][sample];
    302 				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
    303 				*buf_++ = (FLAC__byte)a_word;
    304 				a_word = signal[1][sample];
    305 				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
    306 				*buf_++ = (FLAC__byte)a_word;
    307 			}
    308 		}
    309 		else if(channels == 1) {
    310 			for(sample = 0; sample < samples; sample++) {
    311 				a_word = signal[0][sample];
    312 				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
    313 				*buf_++ = (FLAC__byte)a_word;
    314 			}
    315 		}
    316 		else {
    317 			for(sample = 0; sample < samples; sample++) {
    318 				for(channel = 0; channel < channels; channel++) {
    319 					a_word = signal[channel][sample];
    320 					*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
    321 					*buf_++ = (FLAC__byte)a_word;
    322 				}
    323 			}
    324 		}
    325 	}
    326 	else if(bytes_per_sample == 3) {
    327 		if(channels == 2) {
    328 			for(sample = 0; sample < samples; sample++) {
    329 				a_word = signal[0][sample];
    330 				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
    331 				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
    332 				*buf_++ = (FLAC__byte)a_word;
    333 				a_word = signal[1][sample];
    334 				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
    335 				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
    336 				*buf_++ = (FLAC__byte)a_word;
    337 			}
    338 		}
    339 		else if(channels == 1) {
    340 			for(sample = 0; sample < samples; sample++) {
    341 				a_word = signal[0][sample];
    342 				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
    343 				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
    344 				*buf_++ = (FLAC__byte)a_word;
    345 			}
    346 		}
    347 		else {
    348 			for(sample = 0; sample < samples; sample++) {
    349 				for(channel = 0; channel < channels; channel++) {
    350 					a_word = signal[channel][sample];
    351 					*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
    352 					*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
    353 					*buf_++ = (FLAC__byte)a_word;
    354 				}
    355 			}
    356 		}
    357 	}
    358 	else if(bytes_per_sample == 1) {
    359 		if(channels == 2) {
    360 			for(sample = 0; sample < samples; sample++) {
    361 				a_word = signal[0][sample];
    362 				*buf_++ = (FLAC__byte)a_word;
    363 				a_word = signal[1][sample];
    364 				*buf_++ = (FLAC__byte)a_word;
    365 			}
    366 		}
    367 		else if(channels == 1) {
    368 			for(sample = 0; sample < samples; sample++) {
    369 				a_word = signal[0][sample];
    370 				*buf_++ = (FLAC__byte)a_word;
    371 			}
    372 		}
    373 		else {
    374 			for(sample = 0; sample < samples; sample++) {
    375 				for(channel = 0; channel < channels; channel++) {
    376 					a_word = signal[channel][sample];
    377 					*buf_++ = (FLAC__byte)a_word;
    378 				}
    379 			}
    380 		}
    381 	}
    382 	else { /* bytes_per_sample == 4, maybe optimize more later */
    383 		for(sample = 0; sample < samples; sample++) {
    384 			for(channel = 0; channel < channels; channel++) {
    385 				a_word = signal[channel][sample];
    386 				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
    387 				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
    388 				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
    389 				*buf_++ = (FLAC__byte)a_word;
    390 			}
    391 		}
    392 	}
    393 }
    394 
    395 /*
    396  * Convert the incoming audio signal to a byte stream and FLAC__MD5Update it.
    397  */
    398 FLAC__bool FLAC__MD5Accumulate(FLAC__MD5Context *ctx, const FLAC__int32 * const signal[], unsigned channels, unsigned samples, unsigned bytes_per_sample)
    399 {
    400 	const size_t bytes_needed = (size_t)channels * (size_t)samples * (size_t)bytes_per_sample;
    401 
    402 	/* overflow check */
    403 	if((size_t)channels > SIZE_MAX / (size_t)bytes_per_sample)
    404 		return false;
    405 	if((size_t)channels * (size_t)bytes_per_sample > SIZE_MAX / (size_t)samples)
    406 		return false;
    407 
    408 	if(ctx->capacity < bytes_needed) {
    409 		FLAC__byte *tmp = (FLAC__byte*)realloc(ctx->internal_buf, bytes_needed);
    410 		if(0 == tmp) {
    411 			free(ctx->internal_buf);
    412 			if(0 == (ctx->internal_buf = (FLAC__byte*)safe_malloc_(bytes_needed)))
    413 				return false;
    414 		}
    415 		ctx->internal_buf = tmp;
    416 		ctx->capacity = bytes_needed;
    417 	}
    418 
    419 	format_input_(ctx->internal_buf, signal, channels, samples, bytes_per_sample);
    420 
    421 	FLAC__MD5Update(ctx, ctx->internal_buf, bytes_needed);
    422 
    423 	return true;
    424 }
    425