Home | History | Annotate | Download | only in src
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #ifndef V8_JSREGEXP_H_
     29 #define V8_JSREGEXP_H_
     30 
     31 #include "allocation.h"
     32 #include "assembler.h"
     33 #include "zone-inl.h"
     34 
     35 namespace v8 {
     36 namespace internal {
     37 
     38 class NodeVisitor;
     39 class RegExpCompiler;
     40 class RegExpMacroAssembler;
     41 class RegExpNode;
     42 class RegExpTree;
     43 
     44 class RegExpImpl {
     45  public:
     46   // Whether V8 is compiled with native regexp support or not.
     47   static bool UsesNativeRegExp() {
     48 #ifdef V8_INTERPRETED_REGEXP
     49     return false;
     50 #else
     51     return true;
     52 #endif
     53   }
     54 
     55   // Creates a regular expression literal in the old space.
     56   // This function calls the garbage collector if necessary.
     57   static Handle<Object> CreateRegExpLiteral(Handle<JSFunction> constructor,
     58                                             Handle<String> pattern,
     59                                             Handle<String> flags,
     60                                             bool* has_pending_exception);
     61 
     62   // Returns a string representation of a regular expression.
     63   // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4.
     64   // This function calls the garbage collector if necessary.
     65   static Handle<String> ToString(Handle<Object> value);
     66 
     67   // Parses the RegExp pattern and prepares the JSRegExp object with
     68   // generic data and choice of implementation - as well as what
     69   // the implementation wants to store in the data field.
     70   // Returns false if compilation fails.
     71   static Handle<Object> Compile(Handle<JSRegExp> re,
     72                                 Handle<String> pattern,
     73                                 Handle<String> flags);
     74 
     75   // See ECMA-262 section 15.10.6.2.
     76   // This function calls the garbage collector if necessary.
     77   static Handle<Object> Exec(Handle<JSRegExp> regexp,
     78                              Handle<String> subject,
     79                              int index,
     80                              Handle<JSArray> lastMatchInfo);
     81 
     82   // Prepares a JSRegExp object with Irregexp-specific data.
     83   static void IrregexpInitialize(Handle<JSRegExp> re,
     84                                  Handle<String> pattern,
     85                                  JSRegExp::Flags flags,
     86                                  int capture_register_count);
     87 
     88 
     89   static void AtomCompile(Handle<JSRegExp> re,
     90                           Handle<String> pattern,
     91                           JSRegExp::Flags flags,
     92                           Handle<String> match_pattern);
     93 
     94   static Handle<Object> AtomExec(Handle<JSRegExp> regexp,
     95                                  Handle<String> subject,
     96                                  int index,
     97                                  Handle<JSArray> lastMatchInfo);
     98 
     99   enum IrregexpResult { RE_FAILURE = 0, RE_SUCCESS = 1, RE_EXCEPTION = -1 };
    100 
    101   // Prepare a RegExp for being executed one or more times (using
    102   // IrregexpExecOnce) on the subject.
    103   // This ensures that the regexp is compiled for the subject, and that
    104   // the subject is flat.
    105   // Returns the number of integer spaces required by IrregexpExecOnce
    106   // as its "registers" argument. If the regexp cannot be compiled,
    107   // an exception is set as pending, and this function returns negative.
    108   static int IrregexpPrepare(Handle<JSRegExp> regexp,
    109                              Handle<String> subject);
    110 
    111   // Execute a regular expression once on the subject, starting from
    112   // character "index".
    113   // If successful, returns RE_SUCCESS and set the capture positions
    114   // in the first registers.
    115   // If matching fails, returns RE_FAILURE.
    116   // If execution fails, sets a pending exception and returns RE_EXCEPTION.
    117   static IrregexpResult IrregexpExecOnce(Handle<JSRegExp> regexp,
    118                                          Handle<String> subject,
    119                                          int index,
    120                                          Vector<int> registers);
    121 
    122   // Execute an Irregexp bytecode pattern.
    123   // On a successful match, the result is a JSArray containing
    124   // captured positions. On a failure, the result is the null value.
    125   // Returns an empty handle in case of an exception.
    126   static Handle<Object> IrregexpExec(Handle<JSRegExp> regexp,
    127                                      Handle<String> subject,
    128                                      int index,
    129                                      Handle<JSArray> lastMatchInfo);
    130 
    131   // Array index in the lastMatchInfo array.
    132   static const int kLastCaptureCount = 0;
    133   static const int kLastSubject = 1;
    134   static const int kLastInput = 2;
    135   static const int kFirstCapture = 3;
    136   static const int kLastMatchOverhead = 3;
    137 
    138   // Direct offset into the lastMatchInfo array.
    139   static const int kLastCaptureCountOffset =
    140       FixedArray::kHeaderSize + kLastCaptureCount * kPointerSize;
    141   static const int kLastSubjectOffset =
    142       FixedArray::kHeaderSize + kLastSubject * kPointerSize;
    143   static const int kLastInputOffset =
    144       FixedArray::kHeaderSize + kLastInput * kPointerSize;
    145   static const int kFirstCaptureOffset =
    146       FixedArray::kHeaderSize + kFirstCapture * kPointerSize;
    147 
    148   // Used to access the lastMatchInfo array.
    149   static int GetCapture(FixedArray* array, int index) {
    150     return Smi::cast(array->get(index + kFirstCapture))->value();
    151   }
    152 
    153   static void SetLastCaptureCount(FixedArray* array, int to) {
    154     array->set(kLastCaptureCount, Smi::FromInt(to));
    155   }
    156 
    157   static void SetLastSubject(FixedArray* array, String* to) {
    158     array->set(kLastSubject, to);
    159   }
    160 
    161   static void SetLastInput(FixedArray* array, String* to) {
    162     array->set(kLastInput, to);
    163   }
    164 
    165   static void SetCapture(FixedArray* array, int index, int to) {
    166     array->set(index + kFirstCapture, Smi::FromInt(to));
    167   }
    168 
    169   static int GetLastCaptureCount(FixedArray* array) {
    170     return Smi::cast(array->get(kLastCaptureCount))->value();
    171   }
    172 
    173   // For acting on the JSRegExp data FixedArray.
    174   static int IrregexpMaxRegisterCount(FixedArray* re);
    175   static void SetIrregexpMaxRegisterCount(FixedArray* re, int value);
    176   static int IrregexpNumberOfCaptures(FixedArray* re);
    177   static int IrregexpNumberOfRegisters(FixedArray* re);
    178   static ByteArray* IrregexpByteCode(FixedArray* re, bool is_ascii);
    179   static Code* IrregexpNativeCode(FixedArray* re, bool is_ascii);
    180 
    181   // Limit the space regexps take up on the heap.  In order to limit this we
    182   // would like to keep track of the amount of regexp code on the heap.  This
    183   // is not tracked, however.  As a conservative approximation we track the
    184   // total regexp code compiled including code that has subsequently been freed
    185   // and the total executable memory at any point.
    186   static const int kRegExpExecutableMemoryLimit = 16 * MB;
    187   static const int kRegWxpCompiledLimit = 1 * MB;
    188 
    189  private:
    190   static String* last_ascii_string_;
    191   static String* two_byte_cached_string_;
    192 
    193   static bool CompileIrregexp(Handle<JSRegExp> re, bool is_ascii);
    194   static inline bool EnsureCompiledIrregexp(Handle<JSRegExp> re, bool is_ascii);
    195 
    196 
    197   // Set the subject cache.  The previous string buffer is not deleted, so the
    198   // caller should ensure that it doesn't leak.
    199   static void SetSubjectCache(String* subject,
    200                               char* utf8_subject,
    201                               int uft8_length,
    202                               int character_position,
    203                               int utf8_position);
    204 
    205   // A one element cache of the last utf8_subject string and its length.  The
    206   // subject JS String object is cached in the heap.  We also cache a
    207   // translation between position and utf8 position.
    208   static char* utf8_subject_cache_;
    209   static int utf8_length_cache_;
    210   static int utf8_position_;
    211   static int character_position_;
    212 };
    213 
    214 
    215 // Represents the location of one element relative to the intersection of
    216 // two sets. Corresponds to the four areas of a Venn diagram.
    217 enum ElementInSetsRelation {
    218   kInsideNone = 0,
    219   kInsideFirst = 1,
    220   kInsideSecond = 2,
    221   kInsideBoth = 3
    222 };
    223 
    224 
    225 // Represents the relation of two sets.
    226 // Sets can be either disjoint, partially or fully overlapping, or equal.
    227 class SetRelation BASE_EMBEDDED {
    228  public:
    229   // Relation is represented by a bit saying whether there are elements in
    230   // one set that is not in the other, and a bit saying that there are elements
    231   // that are in both sets.
    232 
    233   // Location of an element. Corresponds to the internal areas of
    234   // a Venn diagram.
    235   enum {
    236     kInFirst = 1 << kInsideFirst,
    237     kInSecond = 1 << kInsideSecond,
    238     kInBoth = 1 << kInsideBoth
    239   };
    240   SetRelation() : bits_(0) {}
    241   ~SetRelation() {}
    242   // Add the existence of objects in a particular
    243   void SetElementsInFirstSet() { bits_ |= kInFirst; }
    244   void SetElementsInSecondSet() { bits_ |= kInSecond; }
    245   void SetElementsInBothSets() { bits_ |= kInBoth; }
    246   // Check the currently known relation of the sets (common functions only,
    247   // for other combinations, use value() to get the bits and check them
    248   // manually).
    249   // Sets are completely disjoint.
    250   bool Disjoint() { return (bits_ & kInBoth) == 0; }
    251   // Sets are equal.
    252   bool Equals() { return (bits_ & (kInFirst | kInSecond)) == 0; }
    253   // First set contains second.
    254   bool Contains() { return (bits_ & kInSecond) == 0; }
    255   // Second set contains first.
    256   bool ContainedIn() { return (bits_ & kInFirst) == 0; }
    257   bool NonTrivialIntersection() {
    258     return (bits_ == (kInFirst | kInSecond | kInBoth));
    259   }
    260   int value() { return bits_; }
    261 
    262  private:
    263   int bits_;
    264 };
    265 
    266 
    267 class CharacterRange {
    268  public:
    269   CharacterRange() : from_(0), to_(0) { }
    270   // For compatibility with the CHECK_OK macro
    271   CharacterRange(void* null) { ASSERT_EQ(NULL, null); }  //NOLINT
    272   CharacterRange(uc16 from, uc16 to) : from_(from), to_(to) { }
    273   static void AddClassEscape(uc16 type, ZoneList<CharacterRange>* ranges);
    274   static Vector<const uc16> GetWordBounds();
    275   static inline CharacterRange Singleton(uc16 value) {
    276     return CharacterRange(value, value);
    277   }
    278   static inline CharacterRange Range(uc16 from, uc16 to) {
    279     ASSERT(from <= to);
    280     return CharacterRange(from, to);
    281   }
    282   static inline CharacterRange Everything() {
    283     return CharacterRange(0, 0xFFFF);
    284   }
    285   bool Contains(uc16 i) { return from_ <= i && i <= to_; }
    286   uc16 from() const { return from_; }
    287   void set_from(uc16 value) { from_ = value; }
    288   uc16 to() const { return to_; }
    289   void set_to(uc16 value) { to_ = value; }
    290   bool is_valid() { return from_ <= to_; }
    291   bool IsEverything(uc16 max) { return from_ == 0 && to_ >= max; }
    292   bool IsSingleton() { return (from_ == to_); }
    293   void AddCaseEquivalents(ZoneList<CharacterRange>* ranges, bool is_ascii);
    294   static void Split(ZoneList<CharacterRange>* base,
    295                     Vector<const uc16> overlay,
    296                     ZoneList<CharacterRange>** included,
    297                     ZoneList<CharacterRange>** excluded);
    298   // Whether a range list is in canonical form: Ranges ordered by from value,
    299   // and ranges non-overlapping and non-adjacent.
    300   static bool IsCanonical(ZoneList<CharacterRange>* ranges);
    301   // Convert range list to canonical form. The characters covered by the ranges
    302   // will still be the same, but no character is in more than one range, and
    303   // adjacent ranges are merged. The resulting list may be shorter than the
    304   // original, but cannot be longer.
    305   static void Canonicalize(ZoneList<CharacterRange>* ranges);
    306   // Check how the set of characters defined by a CharacterRange list relates
    307   // to the set of word characters. List must be in canonical form.
    308   static SetRelation WordCharacterRelation(ZoneList<CharacterRange>* ranges);
    309   // Takes two character range lists (representing character sets) in canonical
    310   // form and merges them.
    311   // The characters that are only covered by the first set are added to
    312   // first_set_only_out. the characters that are only in the second set are
    313   // added to second_set_only_out, and the characters that are in both are
    314   // added to both_sets_out.
    315   // The pointers to first_set_only_out, second_set_only_out and both_sets_out
    316   // should be to empty lists, but they need not be distinct, and may be NULL.
    317   // If NULL, the characters are dropped, and if two arguments are the same
    318   // pointer, the result is the union of the two sets that would be created
    319   // if the pointers had been distinct.
    320   // This way, the Merge function can compute all the usual set operations:
    321   // union (all three out-sets are equal), intersection (only both_sets_out is
    322   // non-NULL), and set difference (only first_set is non-NULL).
    323   static void Merge(ZoneList<CharacterRange>* first_set,
    324                     ZoneList<CharacterRange>* second_set,
    325                     ZoneList<CharacterRange>* first_set_only_out,
    326                     ZoneList<CharacterRange>* second_set_only_out,
    327                     ZoneList<CharacterRange>* both_sets_out);
    328   // Negate the contents of a character range in canonical form.
    329   static void Negate(ZoneList<CharacterRange>* src,
    330                      ZoneList<CharacterRange>* dst);
    331   static const int kStartMarker = (1 << 24);
    332   static const int kPayloadMask = (1 << 24) - 1;
    333 
    334  private:
    335   uc16 from_;
    336   uc16 to_;
    337 };
    338 
    339 
    340 // A set of unsigned integers that behaves especially well on small
    341 // integers (< 32).  May do zone-allocation.
    342 class OutSet: public ZoneObject {
    343  public:
    344   OutSet() : first_(0), remaining_(NULL), successors_(NULL) { }
    345   OutSet* Extend(unsigned value);
    346   bool Get(unsigned value);
    347   static const unsigned kFirstLimit = 32;
    348 
    349  private:
    350   // Destructively set a value in this set.  In most cases you want
    351   // to use Extend instead to ensure that only one instance exists
    352   // that contains the same values.
    353   void Set(unsigned value);
    354 
    355   // The successors are a list of sets that contain the same values
    356   // as this set and the one more value that is not present in this
    357   // set.
    358   ZoneList<OutSet*>* successors() { return successors_; }
    359 
    360   OutSet(uint32_t first, ZoneList<unsigned>* remaining)
    361       : first_(first), remaining_(remaining), successors_(NULL) { }
    362   uint32_t first_;
    363   ZoneList<unsigned>* remaining_;
    364   ZoneList<OutSet*>* successors_;
    365   friend class Trace;
    366 };
    367 
    368 
    369 // A mapping from integers, specified as ranges, to a set of integers.
    370 // Used for mapping character ranges to choices.
    371 class DispatchTable : public ZoneObject {
    372  public:
    373   class Entry {
    374    public:
    375     Entry() : from_(0), to_(0), out_set_(NULL) { }
    376     Entry(uc16 from, uc16 to, OutSet* out_set)
    377         : from_(from), to_(to), out_set_(out_set) { }
    378     uc16 from() { return from_; }
    379     uc16 to() { return to_; }
    380     void set_to(uc16 value) { to_ = value; }
    381     void AddValue(int value) { out_set_ = out_set_->Extend(value); }
    382     OutSet* out_set() { return out_set_; }
    383    private:
    384     uc16 from_;
    385     uc16 to_;
    386     OutSet* out_set_;
    387   };
    388 
    389   class Config {
    390    public:
    391     typedef uc16 Key;
    392     typedef Entry Value;
    393     static const uc16 kNoKey;
    394     static const Entry NoValue() { return Value(); }
    395     static inline int Compare(uc16 a, uc16 b) {
    396       if (a == b)
    397         return 0;
    398       else if (a < b)
    399         return -1;
    400       else
    401         return 1;
    402     }
    403   };
    404 
    405   void AddRange(CharacterRange range, int value);
    406   OutSet* Get(uc16 value);
    407   void Dump();
    408 
    409   template <typename Callback>
    410   void ForEach(Callback* callback) { return tree()->ForEach(callback); }
    411 
    412  private:
    413   // There can't be a static empty set since it allocates its
    414   // successors in a zone and caches them.
    415   OutSet* empty() { return &empty_; }
    416   OutSet empty_;
    417   ZoneSplayTree<Config>* tree() { return &tree_; }
    418   ZoneSplayTree<Config> tree_;
    419 };
    420 
    421 
    422 #define FOR_EACH_NODE_TYPE(VISIT)                                    \
    423   VISIT(End)                                                         \
    424   VISIT(Action)                                                      \
    425   VISIT(Choice)                                                      \
    426   VISIT(BackReference)                                               \
    427   VISIT(Assertion)                                                   \
    428   VISIT(Text)
    429 
    430 
    431 #define FOR_EACH_REG_EXP_TREE_TYPE(VISIT)                            \
    432   VISIT(Disjunction)                                                 \
    433   VISIT(Alternative)                                                 \
    434   VISIT(Assertion)                                                   \
    435   VISIT(CharacterClass)                                              \
    436   VISIT(Atom)                                                        \
    437   VISIT(Quantifier)                                                  \
    438   VISIT(Capture)                                                     \
    439   VISIT(Lookahead)                                                   \
    440   VISIT(BackReference)                                               \
    441   VISIT(Empty)                                                       \
    442   VISIT(Text)
    443 
    444 
    445 #define FORWARD_DECLARE(Name) class RegExp##Name;
    446 FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)
    447 #undef FORWARD_DECLARE
    448 
    449 
    450 class TextElement {
    451  public:
    452   enum Type {UNINITIALIZED, ATOM, CHAR_CLASS};
    453   TextElement() : type(UNINITIALIZED) { }
    454   explicit TextElement(Type t) : type(t), cp_offset(-1) { }
    455   static TextElement Atom(RegExpAtom* atom);
    456   static TextElement CharClass(RegExpCharacterClass* char_class);
    457   int length();
    458   Type type;
    459   union {
    460     RegExpAtom* u_atom;
    461     RegExpCharacterClass* u_char_class;
    462   } data;
    463   int cp_offset;
    464 };
    465 
    466 
    467 class Trace;
    468 
    469 
    470 struct NodeInfo {
    471   NodeInfo()
    472       : being_analyzed(false),
    473         been_analyzed(false),
    474         follows_word_interest(false),
    475         follows_newline_interest(false),
    476         follows_start_interest(false),
    477         at_end(false),
    478         visited(false) { }
    479 
    480   // Returns true if the interests and assumptions of this node
    481   // matches the given one.
    482   bool Matches(NodeInfo* that) {
    483     return (at_end == that->at_end) &&
    484            (follows_word_interest == that->follows_word_interest) &&
    485            (follows_newline_interest == that->follows_newline_interest) &&
    486            (follows_start_interest == that->follows_start_interest);
    487   }
    488 
    489   // Updates the interests of this node given the interests of the
    490   // node preceding it.
    491   void AddFromPreceding(NodeInfo* that) {
    492     at_end |= that->at_end;
    493     follows_word_interest |= that->follows_word_interest;
    494     follows_newline_interest |= that->follows_newline_interest;
    495     follows_start_interest |= that->follows_start_interest;
    496   }
    497 
    498   bool HasLookbehind() {
    499     return follows_word_interest ||
    500            follows_newline_interest ||
    501            follows_start_interest;
    502   }
    503 
    504   // Sets the interests of this node to include the interests of the
    505   // following node.
    506   void AddFromFollowing(NodeInfo* that) {
    507     follows_word_interest |= that->follows_word_interest;
    508     follows_newline_interest |= that->follows_newline_interest;
    509     follows_start_interest |= that->follows_start_interest;
    510   }
    511 
    512   void ResetCompilationState() {
    513     being_analyzed = false;
    514     been_analyzed = false;
    515   }
    516 
    517   bool being_analyzed: 1;
    518   bool been_analyzed: 1;
    519 
    520   // These bits are set of this node has to know what the preceding
    521   // character was.
    522   bool follows_word_interest: 1;
    523   bool follows_newline_interest: 1;
    524   bool follows_start_interest: 1;
    525 
    526   bool at_end: 1;
    527   bool visited: 1;
    528 };
    529 
    530 
    531 class SiblingList {
    532  public:
    533   SiblingList() : list_(NULL) { }
    534   int length() {
    535     return list_ == NULL ? 0 : list_->length();
    536   }
    537   void Ensure(RegExpNode* parent) {
    538     if (list_ == NULL) {
    539       list_ = new ZoneList<RegExpNode*>(2);
    540       list_->Add(parent);
    541     }
    542   }
    543   void Add(RegExpNode* node) { list_->Add(node); }
    544   RegExpNode* Get(int index) { return list_->at(index); }
    545  private:
    546   ZoneList<RegExpNode*>* list_;
    547 };
    548 
    549 
    550 // Details of a quick mask-compare check that can look ahead in the
    551 // input stream.
    552 class QuickCheckDetails {
    553  public:
    554   QuickCheckDetails()
    555       : characters_(0),
    556         mask_(0),
    557         value_(0),
    558         cannot_match_(false) { }
    559   explicit QuickCheckDetails(int characters)
    560       : characters_(characters),
    561         mask_(0),
    562         value_(0),
    563         cannot_match_(false) { }
    564   bool Rationalize(bool ascii);
    565   // Merge in the information from another branch of an alternation.
    566   void Merge(QuickCheckDetails* other, int from_index);
    567   // Advance the current position by some amount.
    568   void Advance(int by, bool ascii);
    569   void Clear();
    570   bool cannot_match() { return cannot_match_; }
    571   void set_cannot_match() { cannot_match_ = true; }
    572   struct Position {
    573     Position() : mask(0), value(0), determines_perfectly(false) { }
    574     uc16 mask;
    575     uc16 value;
    576     bool determines_perfectly;
    577   };
    578   int characters() { return characters_; }
    579   void set_characters(int characters) { characters_ = characters; }
    580   Position* positions(int index) {
    581     ASSERT(index >= 0);
    582     ASSERT(index < characters_);
    583     return positions_ + index;
    584   }
    585   uint32_t mask() { return mask_; }
    586   uint32_t value() { return value_; }
    587 
    588  private:
    589   // How many characters do we have quick check information from.  This is
    590   // the same for all branches of a choice node.
    591   int characters_;
    592   Position positions_[4];
    593   // These values are the condensate of the above array after Rationalize().
    594   uint32_t mask_;
    595   uint32_t value_;
    596   // If set to true, there is no way this quick check can match at all.
    597   // E.g., if it requires to be at the start of the input, and isn't.
    598   bool cannot_match_;
    599 };
    600 
    601 
    602 class RegExpNode: public ZoneObject {
    603  public:
    604   RegExpNode() : first_character_set_(NULL), trace_count_(0) { }
    605   virtual ~RegExpNode();
    606   virtual void Accept(NodeVisitor* visitor) = 0;
    607   // Generates a goto to this node or actually generates the code at this point.
    608   virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
    609   // How many characters must this node consume at a minimum in order to
    610   // succeed.  If we have found at least 'still_to_find' characters that
    611   // must be consumed there is no need to ask any following nodes whether
    612   // they are sure to eat any more characters.  The not_at_start argument is
    613   // used to indicate that we know we are not at the start of the input.  In
    614   // this case anchored branches will always fail and can be ignored when
    615   // determining how many characters are consumed on success.
    616   virtual int EatsAtLeast(int still_to_find,
    617                           int recursion_depth,
    618                           bool not_at_start) = 0;
    619   // Emits some quick code that checks whether the preloaded characters match.
    620   // Falls through on certain failure, jumps to the label on possible success.
    621   // If the node cannot make a quick check it does nothing and returns false.
    622   bool EmitQuickCheck(RegExpCompiler* compiler,
    623                       Trace* trace,
    624                       bool preload_has_checked_bounds,
    625                       Label* on_possible_success,
    626                       QuickCheckDetails* details_return,
    627                       bool fall_through_on_failure);
    628   // For a given number of characters this returns a mask and a value.  The
    629   // next n characters are anded with the mask and compared with the value.
    630   // A comparison failure indicates the node cannot match the next n characters.
    631   // A comparison success indicates the node may match.
    632   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    633                                     RegExpCompiler* compiler,
    634                                     int characters_filled_in,
    635                                     bool not_at_start) = 0;
    636   static const int kNodeIsTooComplexForGreedyLoops = -1;
    637   virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
    638   Label* label() { return &label_; }
    639   // If non-generic code is generated for a node (i.e. the node is not at the
    640   // start of the trace) then it cannot be reused.  This variable sets a limit
    641   // on how often we allow that to happen before we insist on starting a new
    642   // trace and generating generic code for a node that can be reused by flushing
    643   // the deferred actions in the current trace and generating a goto.
    644   static const int kMaxCopiesCodeGenerated = 10;
    645 
    646   NodeInfo* info() { return &info_; }
    647 
    648   void AddSibling(RegExpNode* node) { siblings_.Add(node); }
    649 
    650   // Static version of EnsureSibling that expresses the fact that the
    651   // result has the same type as the input.
    652   template <class C>
    653   static C* EnsureSibling(C* node, NodeInfo* info, bool* cloned) {
    654     return static_cast<C*>(node->EnsureSibling(info, cloned));
    655   }
    656 
    657   SiblingList* siblings() { return &siblings_; }
    658   void set_siblings(SiblingList* other) { siblings_ = *other; }
    659 
    660   // Return the set of possible next characters recognized by the regexp
    661   // (or a safe subset, potentially the set of all characters).
    662   ZoneList<CharacterRange>* FirstCharacterSet();
    663 
    664   // Compute (if possible within the budget of traversed nodes) the
    665   // possible first characters of the input matched by this node and
    666   // its continuation. Returns the remaining budget after the computation.
    667   // If the budget is spent, the result is negative, and the cached
    668   // first_character_set_ value isn't set.
    669   virtual int ComputeFirstCharacterSet(int budget);
    670 
    671   // Get and set the cached first character set value.
    672   ZoneList<CharacterRange>* first_character_set() {
    673     return first_character_set_;
    674   }
    675   void set_first_character_set(ZoneList<CharacterRange>* character_set) {
    676     first_character_set_ = character_set;
    677   }
    678 
    679  protected:
    680   enum LimitResult { DONE, CONTINUE };
    681   static const int kComputeFirstCharacterSetFail = -1;
    682 
    683   LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
    684 
    685   // Returns a sibling of this node whose interests and assumptions
    686   // match the ones in the given node info.  If no sibling exists NULL
    687   // is returned.
    688   RegExpNode* TryGetSibling(NodeInfo* info);
    689 
    690   // Returns a sibling of this node whose interests match the ones in
    691   // the given node info.  The info must not contain any assertions.
    692   // If no node exists a new one will be created by cloning the current
    693   // node.  The result will always be an instance of the same concrete
    694   // class as this node.
    695   RegExpNode* EnsureSibling(NodeInfo* info, bool* cloned);
    696 
    697   // Returns a clone of this node initialized using the copy constructor
    698   // of its concrete class.  Note that the node may have to be pre-
    699   // processed before it is on a usable state.
    700   virtual RegExpNode* Clone() = 0;
    701 
    702  private:
    703   static const int kFirstCharBudget = 10;
    704   Label label_;
    705   NodeInfo info_;
    706   SiblingList siblings_;
    707   ZoneList<CharacterRange>* first_character_set_;
    708   // This variable keeps track of how many times code has been generated for
    709   // this node (in different traces).  We don't keep track of where the
    710   // generated code is located unless the code is generated at the start of
    711   // a trace, in which case it is generic and can be reused by flushing the
    712   // deferred operations in the current trace and generating a goto.
    713   int trace_count_;
    714 };
    715 
    716 
    717 // A simple closed interval.
    718 class Interval {
    719  public:
    720   Interval() : from_(kNone), to_(kNone) { }
    721   Interval(int from, int to) : from_(from), to_(to) { }
    722   Interval Union(Interval that) {
    723     if (that.from_ == kNone)
    724       return *this;
    725     else if (from_ == kNone)
    726       return that;
    727     else
    728       return Interval(Min(from_, that.from_), Max(to_, that.to_));
    729   }
    730   bool Contains(int value) {
    731     return (from_ <= value) && (value <= to_);
    732   }
    733   bool is_empty() { return from_ == kNone; }
    734   int from() { return from_; }
    735   int to() { return to_; }
    736   static Interval Empty() { return Interval(); }
    737   static const int kNone = -1;
    738  private:
    739   int from_;
    740   int to_;
    741 };
    742 
    743 
    744 class SeqRegExpNode: public RegExpNode {
    745  public:
    746   explicit SeqRegExpNode(RegExpNode* on_success)
    747       : on_success_(on_success) { }
    748   RegExpNode* on_success() { return on_success_; }
    749   void set_on_success(RegExpNode* node) { on_success_ = node; }
    750  private:
    751   RegExpNode* on_success_;
    752 };
    753 
    754 
    755 class ActionNode: public SeqRegExpNode {
    756  public:
    757   enum Type {
    758     SET_REGISTER,
    759     INCREMENT_REGISTER,
    760     STORE_POSITION,
    761     BEGIN_SUBMATCH,
    762     POSITIVE_SUBMATCH_SUCCESS,
    763     EMPTY_MATCH_CHECK,
    764     CLEAR_CAPTURES
    765   };
    766   static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success);
    767   static ActionNode* IncrementRegister(int reg, RegExpNode* on_success);
    768   static ActionNode* StorePosition(int reg,
    769                                    bool is_capture,
    770                                    RegExpNode* on_success);
    771   static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
    772   static ActionNode* BeginSubmatch(int stack_pointer_reg,
    773                                    int position_reg,
    774                                    RegExpNode* on_success);
    775   static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg,
    776                                              int restore_reg,
    777                                              int clear_capture_count,
    778                                              int clear_capture_from,
    779                                              RegExpNode* on_success);
    780   static ActionNode* EmptyMatchCheck(int start_register,
    781                                      int repetition_register,
    782                                      int repetition_limit,
    783                                      RegExpNode* on_success);
    784   virtual void Accept(NodeVisitor* visitor);
    785   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    786   virtual int EatsAtLeast(int still_to_find,
    787                           int recursion_depth,
    788                           bool not_at_start);
    789   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    790                                     RegExpCompiler* compiler,
    791                                     int filled_in,
    792                                     bool not_at_start) {
    793     return on_success()->GetQuickCheckDetails(
    794         details, compiler, filled_in, not_at_start);
    795   }
    796   Type type() { return type_; }
    797   // TODO(erikcorry): We should allow some action nodes in greedy loops.
    798   virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
    799   virtual ActionNode* Clone() { return new ActionNode(*this); }
    800   virtual int ComputeFirstCharacterSet(int budget);
    801 
    802  private:
    803   union {
    804     struct {
    805       int reg;
    806       int value;
    807     } u_store_register;
    808     struct {
    809       int reg;
    810     } u_increment_register;
    811     struct {
    812       int reg;
    813       bool is_capture;
    814     } u_position_register;
    815     struct {
    816       int stack_pointer_register;
    817       int current_position_register;
    818       int clear_register_count;
    819       int clear_register_from;
    820     } u_submatch;
    821     struct {
    822       int start_register;
    823       int repetition_register;
    824       int repetition_limit;
    825     } u_empty_match_check;
    826     struct {
    827       int range_from;
    828       int range_to;
    829     } u_clear_captures;
    830   } data_;
    831   ActionNode(Type type, RegExpNode* on_success)
    832       : SeqRegExpNode(on_success),
    833         type_(type) { }
    834   Type type_;
    835   friend class DotPrinter;
    836 };
    837 
    838 
    839 class TextNode: public SeqRegExpNode {
    840  public:
    841   TextNode(ZoneList<TextElement>* elms,
    842            RegExpNode* on_success)
    843       : SeqRegExpNode(on_success),
    844         elms_(elms) { }
    845   TextNode(RegExpCharacterClass* that,
    846            RegExpNode* on_success)
    847       : SeqRegExpNode(on_success),
    848         elms_(new ZoneList<TextElement>(1)) {
    849     elms_->Add(TextElement::CharClass(that));
    850   }
    851   virtual void Accept(NodeVisitor* visitor);
    852   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    853   virtual int EatsAtLeast(int still_to_find,
    854                           int recursion_depth,
    855                           bool not_at_start);
    856   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    857                                     RegExpCompiler* compiler,
    858                                     int characters_filled_in,
    859                                     bool not_at_start);
    860   ZoneList<TextElement>* elements() { return elms_; }
    861   void MakeCaseIndependent(bool is_ascii);
    862   virtual int GreedyLoopTextLength();
    863   virtual TextNode* Clone() {
    864     TextNode* result = new TextNode(*this);
    865     result->CalculateOffsets();
    866     return result;
    867   }
    868   void CalculateOffsets();
    869   virtual int ComputeFirstCharacterSet(int budget);
    870 
    871  private:
    872   enum TextEmitPassType {
    873     NON_ASCII_MATCH,             // Check for characters that can't match.
    874     SIMPLE_CHARACTER_MATCH,      // Case-dependent single character check.
    875     NON_LETTER_CHARACTER_MATCH,  // Check characters that have no case equivs.
    876     CASE_CHARACTER_MATCH,        // Case-independent single character check.
    877     CHARACTER_CLASS_MATCH        // Character class.
    878   };
    879   static bool SkipPass(int pass, bool ignore_case);
    880   static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH;
    881   static const int kLastPass = CHARACTER_CLASS_MATCH;
    882   void TextEmitPass(RegExpCompiler* compiler,
    883                     TextEmitPassType pass,
    884                     bool preloaded,
    885                     Trace* trace,
    886                     bool first_element_checked,
    887                     int* checked_up_to);
    888   int Length();
    889   ZoneList<TextElement>* elms_;
    890 };
    891 
    892 
    893 class AssertionNode: public SeqRegExpNode {
    894  public:
    895   enum AssertionNodeType {
    896     AT_END,
    897     AT_START,
    898     AT_BOUNDARY,
    899     AT_NON_BOUNDARY,
    900     AFTER_NEWLINE,
    901     // Types not directly expressible in regexp syntax.
    902     // Used for modifying a boundary node if its following character is
    903     // known to be word and/or non-word.
    904     AFTER_NONWORD_CHARACTER,
    905     AFTER_WORD_CHARACTER
    906   };
    907   static AssertionNode* AtEnd(RegExpNode* on_success) {
    908     return new AssertionNode(AT_END, on_success);
    909   }
    910   static AssertionNode* AtStart(RegExpNode* on_success) {
    911     return new AssertionNode(AT_START, on_success);
    912   }
    913   static AssertionNode* AtBoundary(RegExpNode* on_success) {
    914     return new AssertionNode(AT_BOUNDARY, on_success);
    915   }
    916   static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
    917     return new AssertionNode(AT_NON_BOUNDARY, on_success);
    918   }
    919   static AssertionNode* AfterNewline(RegExpNode* on_success) {
    920     return new AssertionNode(AFTER_NEWLINE, on_success);
    921   }
    922   virtual void Accept(NodeVisitor* visitor);
    923   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    924   virtual int EatsAtLeast(int still_to_find,
    925                           int recursion_depth,
    926                           bool not_at_start);
    927   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    928                                     RegExpCompiler* compiler,
    929                                     int filled_in,
    930                                     bool not_at_start);
    931   virtual int ComputeFirstCharacterSet(int budget);
    932   virtual AssertionNode* Clone() { return new AssertionNode(*this); }
    933   AssertionNodeType type() { return type_; }
    934   void set_type(AssertionNodeType type) { type_ = type; }
    935 
    936  private:
    937   AssertionNode(AssertionNodeType t, RegExpNode* on_success)
    938       : SeqRegExpNode(on_success), type_(t) { }
    939   AssertionNodeType type_;
    940 };
    941 
    942 
    943 class BackReferenceNode: public SeqRegExpNode {
    944  public:
    945   BackReferenceNode(int start_reg,
    946                     int end_reg,
    947                     RegExpNode* on_success)
    948       : SeqRegExpNode(on_success),
    949         start_reg_(start_reg),
    950         end_reg_(end_reg) { }
    951   virtual void Accept(NodeVisitor* visitor);
    952   int start_register() { return start_reg_; }
    953   int end_register() { return end_reg_; }
    954   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    955   virtual int EatsAtLeast(int still_to_find,
    956                           int recursion_depth,
    957                           bool not_at_start);
    958   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    959                                     RegExpCompiler* compiler,
    960                                     int characters_filled_in,
    961                                     bool not_at_start) {
    962     return;
    963   }
    964   virtual BackReferenceNode* Clone() { return new BackReferenceNode(*this); }
    965   virtual int ComputeFirstCharacterSet(int budget);
    966 
    967  private:
    968   int start_reg_;
    969   int end_reg_;
    970 };
    971 
    972 
    973 class EndNode: public RegExpNode {
    974  public:
    975   enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
    976   explicit EndNode(Action action) : action_(action) { }
    977   virtual void Accept(NodeVisitor* visitor);
    978   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    979   virtual int EatsAtLeast(int still_to_find,
    980                           int recursion_depth,
    981                           bool not_at_start) { return 0; }
    982   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    983                                     RegExpCompiler* compiler,
    984                                     int characters_filled_in,
    985                                     bool not_at_start) {
    986     // Returning 0 from EatsAtLeast should ensure we never get here.
    987     UNREACHABLE();
    988   }
    989   virtual EndNode* Clone() { return new EndNode(*this); }
    990  private:
    991   Action action_;
    992 };
    993 
    994 
    995 class NegativeSubmatchSuccess: public EndNode {
    996  public:
    997   NegativeSubmatchSuccess(int stack_pointer_reg,
    998                           int position_reg,
    999                           int clear_capture_count,
   1000                           int clear_capture_start)
   1001       : EndNode(NEGATIVE_SUBMATCH_SUCCESS),
   1002         stack_pointer_register_(stack_pointer_reg),
   1003         current_position_register_(position_reg),
   1004         clear_capture_count_(clear_capture_count),
   1005         clear_capture_start_(clear_capture_start) { }
   1006   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
   1007 
   1008  private:
   1009   int stack_pointer_register_;
   1010   int current_position_register_;
   1011   int clear_capture_count_;
   1012   int clear_capture_start_;
   1013 };
   1014 
   1015 
   1016 class Guard: public ZoneObject {
   1017  public:
   1018   enum Relation { LT, GEQ };
   1019   Guard(int reg, Relation op, int value)
   1020       : reg_(reg),
   1021         op_(op),
   1022         value_(value) { }
   1023   int reg() { return reg_; }
   1024   Relation op() { return op_; }
   1025   int value() { return value_; }
   1026 
   1027  private:
   1028   int reg_;
   1029   Relation op_;
   1030   int value_;
   1031 };
   1032 
   1033 
   1034 class GuardedAlternative {
   1035  public:
   1036   explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { }
   1037   void AddGuard(Guard* guard);
   1038   RegExpNode* node() { return node_; }
   1039   void set_node(RegExpNode* node) { node_ = node; }
   1040   ZoneList<Guard*>* guards() { return guards_; }
   1041 
   1042  private:
   1043   RegExpNode* node_;
   1044   ZoneList<Guard*>* guards_;
   1045 };
   1046 
   1047 
   1048 class AlternativeGeneration;
   1049 
   1050 
   1051 class ChoiceNode: public RegExpNode {
   1052  public:
   1053   explicit ChoiceNode(int expected_size)
   1054       : alternatives_(new ZoneList<GuardedAlternative>(expected_size)),
   1055         table_(NULL),
   1056         not_at_start_(false),
   1057         being_calculated_(false) { }
   1058   virtual void Accept(NodeVisitor* visitor);
   1059   void AddAlternative(GuardedAlternative node) { alternatives()->Add(node); }
   1060   ZoneList<GuardedAlternative>* alternatives() { return alternatives_; }
   1061   DispatchTable* GetTable(bool ignore_case);
   1062   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
   1063   virtual int EatsAtLeast(int still_to_find,
   1064                           int recursion_depth,
   1065                           bool not_at_start);
   1066   int EatsAtLeastHelper(int still_to_find,
   1067                         int recursion_depth,
   1068                         RegExpNode* ignore_this_node,
   1069                         bool not_at_start);
   1070   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
   1071                                     RegExpCompiler* compiler,
   1072                                     int characters_filled_in,
   1073                                     bool not_at_start);
   1074   virtual ChoiceNode* Clone() { return new ChoiceNode(*this); }
   1075 
   1076   bool being_calculated() { return being_calculated_; }
   1077   bool not_at_start() { return not_at_start_; }
   1078   void set_not_at_start() { not_at_start_ = true; }
   1079   void set_being_calculated(bool b) { being_calculated_ = b; }
   1080   virtual bool try_to_emit_quick_check_for_alternative(int i) { return true; }
   1081 
   1082  protected:
   1083   int GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative);
   1084   ZoneList<GuardedAlternative>* alternatives_;
   1085 
   1086  private:
   1087   friend class DispatchTableConstructor;
   1088   friend class Analysis;
   1089   void GenerateGuard(RegExpMacroAssembler* macro_assembler,
   1090                      Guard* guard,
   1091                      Trace* trace);
   1092   int CalculatePreloadCharacters(RegExpCompiler* compiler, bool not_at_start);
   1093   void EmitOutOfLineContinuation(RegExpCompiler* compiler,
   1094                                  Trace* trace,
   1095                                  GuardedAlternative alternative,
   1096                                  AlternativeGeneration* alt_gen,
   1097                                  int preload_characters,
   1098                                  bool next_expects_preload);
   1099   DispatchTable* table_;
   1100   // If true, this node is never checked at the start of the input.
   1101   // Allows a new trace to start with at_start() set to false.
   1102   bool not_at_start_;
   1103   bool being_calculated_;
   1104 };
   1105 
   1106 
   1107 class NegativeLookaheadChoiceNode: public ChoiceNode {
   1108  public:
   1109   explicit NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,
   1110                                        GuardedAlternative then_do_this)
   1111       : ChoiceNode(2) {
   1112     AddAlternative(this_must_fail);
   1113     AddAlternative(then_do_this);
   1114   }
   1115   virtual int EatsAtLeast(int still_to_find,
   1116                           int recursion_depth,
   1117                           bool not_at_start);
   1118   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
   1119                                     RegExpCompiler* compiler,
   1120                                     int characters_filled_in,
   1121                                     bool not_at_start);
   1122   // For a negative lookahead we don't emit the quick check for the
   1123   // alternative that is expected to fail.  This is because quick check code
   1124   // starts by loading enough characters for the alternative that takes fewest
   1125   // characters, but on a negative lookahead the negative branch did not take
   1126   // part in that calculation (EatsAtLeast) so the assumptions don't hold.
   1127   virtual bool try_to_emit_quick_check_for_alternative(int i) { return i != 0; }
   1128   virtual int ComputeFirstCharacterSet(int budget);
   1129 };
   1130 
   1131 
   1132 class LoopChoiceNode: public ChoiceNode {
   1133  public:
   1134   explicit LoopChoiceNode(bool body_can_be_zero_length)
   1135       : ChoiceNode(2),
   1136         loop_node_(NULL),
   1137         continue_node_(NULL),
   1138         body_can_be_zero_length_(body_can_be_zero_length) { }
   1139   void AddLoopAlternative(GuardedAlternative alt);
   1140   void AddContinueAlternative(GuardedAlternative alt);
   1141   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
   1142   virtual int EatsAtLeast(int still_to_find,
   1143                           int recursion_depth,
   1144                           bool not_at_start);
   1145   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
   1146                                     RegExpCompiler* compiler,
   1147                                     int characters_filled_in,
   1148                                     bool not_at_start);
   1149   virtual int ComputeFirstCharacterSet(int budget);
   1150   virtual LoopChoiceNode* Clone() { return new LoopChoiceNode(*this); }
   1151   RegExpNode* loop_node() { return loop_node_; }
   1152   RegExpNode* continue_node() { return continue_node_; }
   1153   bool body_can_be_zero_length() { return body_can_be_zero_length_; }
   1154   virtual void Accept(NodeVisitor* visitor);
   1155 
   1156  private:
   1157   // AddAlternative is made private for loop nodes because alternatives
   1158   // should not be added freely, we need to keep track of which node
   1159   // goes back to the node itself.
   1160   void AddAlternative(GuardedAlternative node) {
   1161     ChoiceNode::AddAlternative(node);
   1162   }
   1163 
   1164   RegExpNode* loop_node_;
   1165   RegExpNode* continue_node_;
   1166   bool body_can_be_zero_length_;
   1167 };
   1168 
   1169 
   1170 // There are many ways to generate code for a node.  This class encapsulates
   1171 // the current way we should be generating.  In other words it encapsulates
   1172 // the current state of the code generator.  The effect of this is that we
   1173 // generate code for paths that the matcher can take through the regular
   1174 // expression.  A given node in the regexp can be code-generated several times
   1175 // as it can be part of several traces.  For example for the regexp:
   1176 // /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
   1177 // of the foo-bar-baz trace and once as part of the foo-ip-baz trace.  The code
   1178 // to match foo is generated only once (the traces have a common prefix).  The
   1179 // code to store the capture is deferred and generated (twice) after the places
   1180 // where baz has been matched.
   1181 class Trace {
   1182  public:
   1183   // A value for a property that is either known to be true, know to be false,
   1184   // or not known.
   1185   enum TriBool {
   1186     UNKNOWN = -1, FALSE = 0, TRUE = 1
   1187   };
   1188 
   1189   class DeferredAction {
   1190    public:
   1191     DeferredAction(ActionNode::Type type, int reg)
   1192         : type_(type), reg_(reg), next_(NULL) { }
   1193     DeferredAction* next() { return next_; }
   1194     bool Mentions(int reg);
   1195     int reg() { return reg_; }
   1196     ActionNode::Type type() { return type_; }
   1197    private:
   1198     ActionNode::Type type_;
   1199     int reg_;
   1200     DeferredAction* next_;
   1201     friend class Trace;
   1202   };
   1203 
   1204   class DeferredCapture : public DeferredAction {
   1205    public:
   1206     DeferredCapture(int reg, bool is_capture, Trace* trace)
   1207         : DeferredAction(ActionNode::STORE_POSITION, reg),
   1208           cp_offset_(trace->cp_offset()),
   1209           is_capture_(is_capture) { }
   1210     int cp_offset() { return cp_offset_; }
   1211     bool is_capture() { return is_capture_; }
   1212    private:
   1213     int cp_offset_;
   1214     bool is_capture_;
   1215     void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
   1216   };
   1217 
   1218   class DeferredSetRegister : public DeferredAction {
   1219    public:
   1220     DeferredSetRegister(int reg, int value)
   1221         : DeferredAction(ActionNode::SET_REGISTER, reg),
   1222           value_(value) { }
   1223     int value() { return value_; }
   1224    private:
   1225     int value_;
   1226   };
   1227 
   1228   class DeferredClearCaptures : public DeferredAction {
   1229    public:
   1230     explicit DeferredClearCaptures(Interval range)
   1231         : DeferredAction(ActionNode::CLEAR_CAPTURES, -1),
   1232           range_(range) { }
   1233     Interval range() { return range_; }
   1234    private:
   1235     Interval range_;
   1236   };
   1237 
   1238   class DeferredIncrementRegister : public DeferredAction {
   1239    public:
   1240     explicit DeferredIncrementRegister(int reg)
   1241         : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { }
   1242   };
   1243 
   1244   Trace()
   1245       : cp_offset_(0),
   1246         actions_(NULL),
   1247         backtrack_(NULL),
   1248         stop_node_(NULL),
   1249         loop_label_(NULL),
   1250         characters_preloaded_(0),
   1251         bound_checked_up_to_(0),
   1252         flush_budget_(100),
   1253         at_start_(UNKNOWN) { }
   1254 
   1255   // End the trace.  This involves flushing the deferred actions in the trace
   1256   // and pushing a backtrack location onto the backtrack stack.  Once this is
   1257   // done we can start a new trace or go to one that has already been
   1258   // generated.
   1259   void Flush(RegExpCompiler* compiler, RegExpNode* successor);
   1260   int cp_offset() { return cp_offset_; }
   1261   DeferredAction* actions() { return actions_; }
   1262   // A trivial trace is one that has no deferred actions or other state that
   1263   // affects the assumptions used when generating code.  There is no recorded
   1264   // backtrack location in a trivial trace, so with a trivial trace we will
   1265   // generate code that, on a failure to match, gets the backtrack location
   1266   // from the backtrack stack rather than using a direct jump instruction.  We
   1267   // always start code generation with a trivial trace and non-trivial traces
   1268   // are created as we emit code for nodes or add to the list of deferred
   1269   // actions in the trace.  The location of the code generated for a node using
   1270   // a trivial trace is recorded in a label in the node so that gotos can be
   1271   // generated to that code.
   1272   bool is_trivial() {
   1273     return backtrack_ == NULL &&
   1274            actions_ == NULL &&
   1275            cp_offset_ == 0 &&
   1276            characters_preloaded_ == 0 &&
   1277            bound_checked_up_to_ == 0 &&
   1278            quick_check_performed_.characters() == 0 &&
   1279            at_start_ == UNKNOWN;
   1280   }
   1281   TriBool at_start() { return at_start_; }
   1282   void set_at_start(bool at_start) { at_start_ = at_start ? TRUE : FALSE; }
   1283   Label* backtrack() { return backtrack_; }
   1284   Label* loop_label() { return loop_label_; }
   1285   RegExpNode* stop_node() { return stop_node_; }
   1286   int characters_preloaded() { return characters_preloaded_; }
   1287   int bound_checked_up_to() { return bound_checked_up_to_; }
   1288   int flush_budget() { return flush_budget_; }
   1289   QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
   1290   bool mentions_reg(int reg);
   1291   // Returns true if a deferred position store exists to the specified
   1292   // register and stores the offset in the out-parameter.  Otherwise
   1293   // returns false.
   1294   bool GetStoredPosition(int reg, int* cp_offset);
   1295   // These set methods and AdvanceCurrentPositionInTrace should be used only on
   1296   // new traces - the intention is that traces are immutable after creation.
   1297   void add_action(DeferredAction* new_action) {
   1298     ASSERT(new_action->next_ == NULL);
   1299     new_action->next_ = actions_;
   1300     actions_ = new_action;
   1301   }
   1302   void set_backtrack(Label* backtrack) { backtrack_ = backtrack; }
   1303   void set_stop_node(RegExpNode* node) { stop_node_ = node; }
   1304   void set_loop_label(Label* label) { loop_label_ = label; }
   1305   void set_characters_preloaded(int count) { characters_preloaded_ = count; }
   1306   void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; }
   1307   void set_flush_budget(int to) { flush_budget_ = to; }
   1308   void set_quick_check_performed(QuickCheckDetails* d) {
   1309     quick_check_performed_ = *d;
   1310   }
   1311   void InvalidateCurrentCharacter();
   1312   void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler);
   1313 
   1314  private:
   1315   int FindAffectedRegisters(OutSet* affected_registers);
   1316   void PerformDeferredActions(RegExpMacroAssembler* macro,
   1317                                int max_register,
   1318                                OutSet& affected_registers,
   1319                                OutSet* registers_to_pop,
   1320                                OutSet* registers_to_clear);
   1321   void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
   1322                                 int max_register,
   1323                                 OutSet& registers_to_pop,
   1324                                 OutSet& registers_to_clear);
   1325   int cp_offset_;
   1326   DeferredAction* actions_;
   1327   Label* backtrack_;
   1328   RegExpNode* stop_node_;
   1329   Label* loop_label_;
   1330   int characters_preloaded_;
   1331   int bound_checked_up_to_;
   1332   QuickCheckDetails quick_check_performed_;
   1333   int flush_budget_;
   1334   TriBool at_start_;
   1335 };
   1336 
   1337 
   1338 class NodeVisitor {
   1339  public:
   1340   virtual ~NodeVisitor() { }
   1341 #define DECLARE_VISIT(Type)                                          \
   1342   virtual void Visit##Type(Type##Node* that) = 0;
   1343 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
   1344 #undef DECLARE_VISIT
   1345   virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
   1346 };
   1347 
   1348 
   1349 // Node visitor used to add the start set of the alternatives to the
   1350 // dispatch table of a choice node.
   1351 class DispatchTableConstructor: public NodeVisitor {
   1352  public:
   1353   DispatchTableConstructor(DispatchTable* table, bool ignore_case)
   1354       : table_(table),
   1355         choice_index_(-1),
   1356         ignore_case_(ignore_case) { }
   1357 
   1358   void BuildTable(ChoiceNode* node);
   1359 
   1360   void AddRange(CharacterRange range) {
   1361     table()->AddRange(range, choice_index_);
   1362   }
   1363 
   1364   void AddInverse(ZoneList<CharacterRange>* ranges);
   1365 
   1366 #define DECLARE_VISIT(Type)                                          \
   1367   virtual void Visit##Type(Type##Node* that);
   1368 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
   1369 #undef DECLARE_VISIT
   1370 
   1371   DispatchTable* table() { return table_; }
   1372   void set_choice_index(int value) { choice_index_ = value; }
   1373 
   1374  protected:
   1375   DispatchTable* table_;
   1376   int choice_index_;
   1377   bool ignore_case_;
   1378 };
   1379 
   1380 
   1381 // Assertion propagation moves information about assertions such as
   1382 // \b to the affected nodes.  For instance, in /.\b./ information must
   1383 // be propagated to the first '.' that whatever follows needs to know
   1384 // if it matched a word or a non-word, and to the second '.' that it
   1385 // has to check if it succeeds a word or non-word.  In this case the
   1386 // result will be something like:
   1387 //
   1388 //   +-------+        +------------+
   1389 //   |   .   |        |      .     |
   1390 //   +-------+  --->  +------------+
   1391 //   | word? |        | check word |
   1392 //   +-------+        +------------+
   1393 class Analysis: public NodeVisitor {
   1394  public:
   1395   Analysis(bool ignore_case, bool is_ascii)
   1396       : ignore_case_(ignore_case),
   1397         is_ascii_(is_ascii),
   1398         error_message_(NULL) { }
   1399   void EnsureAnalyzed(RegExpNode* node);
   1400 
   1401 #define DECLARE_VISIT(Type)                                          \
   1402   virtual void Visit##Type(Type##Node* that);
   1403 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
   1404 #undef DECLARE_VISIT
   1405   virtual void VisitLoopChoice(LoopChoiceNode* that);
   1406 
   1407   bool has_failed() { return error_message_ != NULL; }
   1408   const char* error_message() {
   1409     ASSERT(error_message_ != NULL);
   1410     return error_message_;
   1411   }
   1412   void fail(const char* error_message) {
   1413     error_message_ = error_message;
   1414   }
   1415 
   1416  private:
   1417   bool ignore_case_;
   1418   bool is_ascii_;
   1419   const char* error_message_;
   1420 
   1421   DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
   1422 };
   1423 
   1424 
   1425 struct RegExpCompileData {
   1426   RegExpCompileData()
   1427     : tree(NULL),
   1428       node(NULL),
   1429       simple(true),
   1430       contains_anchor(false),
   1431       capture_count(0) { }
   1432   RegExpTree* tree;
   1433   RegExpNode* node;
   1434   bool simple;
   1435   bool contains_anchor;
   1436   Handle<String> error;
   1437   int capture_count;
   1438 };
   1439 
   1440 
   1441 class RegExpEngine: public AllStatic {
   1442  public:
   1443   struct CompilationResult {
   1444     explicit CompilationResult(const char* error_message)
   1445         : error_message(error_message),
   1446           code(HEAP->the_hole_value()),
   1447           num_registers(0) {}
   1448     CompilationResult(Object* code, int registers)
   1449       : error_message(NULL),
   1450         code(code),
   1451         num_registers(registers) {}
   1452     const char* error_message;
   1453     Object* code;
   1454     int num_registers;
   1455   };
   1456 
   1457   static CompilationResult Compile(RegExpCompileData* input,
   1458                                    bool ignore_case,
   1459                                    bool multiline,
   1460                                    Handle<String> pattern,
   1461                                    bool is_ascii);
   1462 
   1463   static void DotPrint(const char* label, RegExpNode* node, bool ignore_case);
   1464 };
   1465 
   1466 
   1467 class OffsetsVector {
   1468  public:
   1469   inline OffsetsVector(int num_registers, Isolate* isolate)
   1470       : offsets_vector_length_(num_registers) {
   1471     if (offsets_vector_length_ > Isolate::kJSRegexpStaticOffsetsVectorSize) {
   1472       vector_ = NewArray<int>(offsets_vector_length_);
   1473     } else {
   1474       vector_ = isolate->jsregexp_static_offsets_vector();
   1475     }
   1476   }
   1477   inline ~OffsetsVector() {
   1478     if (offsets_vector_length_ > Isolate::kJSRegexpStaticOffsetsVectorSize) {
   1479       DeleteArray(vector_);
   1480       vector_ = NULL;
   1481     }
   1482   }
   1483   inline int* vector() { return vector_; }
   1484   inline int length() { return offsets_vector_length_; }
   1485 
   1486   static const int kStaticOffsetsVectorSize = 50;
   1487 
   1488  private:
   1489   static Address static_offsets_vector_address(Isolate* isolate) {
   1490     return reinterpret_cast<Address>(isolate->jsregexp_static_offsets_vector());
   1491   }
   1492 
   1493   int* vector_;
   1494   int offsets_vector_length_;
   1495 
   1496   friend class ExternalReference;
   1497 };
   1498 
   1499 
   1500 } }  // namespace v8::internal
   1501 
   1502 #endif  // V8_JSREGEXP_H_
   1503