1 2 /* ----------------------------------------------------------------------------------------------------------- 3 Software License for The Fraunhofer FDK AAC Codec Library for Android 4 5 Copyright 1995 - 2012 Fraunhofer-Gesellschaft zur Frderung der angewandten Forschung e.V. 6 All rights reserved. 7 8 1. INTRODUCTION 9 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements 10 the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio. 11 This FDK AAC Codec software is intended to be used on a wide variety of Android devices. 12 13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual 14 audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by 15 independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part 16 of the MPEG specifications. 17 18 Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer) 19 may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners 20 individually for the purpose of encoding or decoding bit streams in products that are compliant with 21 the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license 22 these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec 23 software may already be covered under those patent licenses when it is used for those licensed purposes only. 24 25 Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality, 26 are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional 27 applications information and documentation. 28 29 2. COPYRIGHT LICENSE 30 31 Redistribution and use in source and binary forms, with or without modification, are permitted without 32 payment of copyright license fees provided that you satisfy the following conditions: 33 34 You must retain the complete text of this software license in redistributions of the FDK AAC Codec or 35 your modifications thereto in source code form. 36 37 You must retain the complete text of this software license in the documentation and/or other materials 38 provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form. 39 You must make available free of charge copies of the complete source code of the FDK AAC Codec and your 40 modifications thereto to recipients of copies in binary form. 41 42 The name of Fraunhofer may not be used to endorse or promote products derived from this library without 43 prior written permission. 44 45 You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec 46 software or your modifications thereto. 47 48 Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software 49 and the date of any change. For modified versions of the FDK AAC Codec, the term 50 "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term 51 "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android." 52 53 3. NO PATENT LICENSE 54 55 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer, 56 ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with 57 respect to this software. 58 59 You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized 60 by appropriate patent licenses. 61 62 4. DISCLAIMER 63 64 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors 65 "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties 66 of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR 67 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages, 68 including but not limited to procurement of substitute goods or services; loss of use, data, or profits, 69 or business interruption, however caused and on any theory of liability, whether in contract, strict 70 liability, or tort (including negligence), arising in any way out of the use of this software, even if 71 advised of the possibility of such damage. 72 73 5. CONTACT INFORMATION 74 75 Fraunhofer Institute for Integrated Circuits IIS 76 Attention: Audio and Multimedia Departments - FDK AAC LL 77 Am Wolfsmantel 33 78 91058 Erlangen, Germany 79 80 www.iis.fraunhofer.de/amm 81 amm-info (at) iis.fraunhofer.de 82 ----------------------------------------------------------------------------------------------------------- */ 83 84 /*! 85 \file dct.cpp 86 \brief DCT Implementations 87 Library functions to calculate standard DCTs. This will most likely be replaced by hand-optimized 88 functions for the specific target processor. 89 90 Three different implementations of the dct type II and the dct type III transforms are provided. 91 92 By default implementations which are based on a single, standard complex FFT-kernel are used (dctII_f() and dctIII_f()). 93 These are specifically helpful in cases where optimized FFT libraries are already available. The FFT used in these 94 implementation is FFT rad2 from FDK_tools. 95 96 Of course, one might also use DCT-libraries should they be available. The DCT and DST 97 type IV implementations are only available in a version based on a complex FFT kernel. 98 */ 99 100 #include "dct.h" 101 102 103 #include "FDK_tools_rom.h" 104 #include "fft.h" 105 106 107 #if defined(__arm__) 108 #include "arm/dct_arm.cpp" 109 #endif 110 111 112 #if !defined(FUNCTION_dct_III) 113 void dct_III(FIXP_DBL *pDat, /*!< pointer to input/output */ 114 FIXP_DBL *tmp, /*!< pointer to temporal working buffer */ 115 int L, /*!< lenght of transform */ 116 int *pDat_e 117 ) 118 { 119 FDK_ASSERT(L == 64 || L == 32); 120 int i; 121 FIXP_DBL xr, accu1, accu2; 122 int inc; 123 int M = L>>1; 124 int ld_M; 125 126 if (L == 64) ld_M = 5; 127 else ld_M = 4; 128 129 /* This loop performs multiplication for index i (i*inc) */ 130 inc = (64/2) >> ld_M; /* 64/L */ 131 132 FIXP_DBL *pTmp_0 = &tmp[2]; 133 FIXP_DBL *pTmp_1 = &tmp[(M-1)*2]; 134 135 for(i=1; i<M>>1; i++,pTmp_0+=2,pTmp_1-=2) { 136 137 FIXP_DBL accu3,accu4,accu5,accu6; 138 139 cplxMultDiv2(&accu2, &accu1, pDat[L - i], pDat[i], sin_twiddle_L64[i*inc]); 140 cplxMultDiv2(&accu4, &accu3, pDat[M+i], pDat[M-i], sin_twiddle_L64[(M-i)*inc]); 141 accu3 >>= 1; accu4 >>= 1; 142 143 /* This method is better for ARM926, that uses operand2 shifted right by 1 always */ 144 cplxMultDiv2(&accu6, &accu5, (accu3 - (accu1>>1)), ((accu2>>1) + accu4), sin_twiddle_L64[(4*i)*inc]); 145 xr = (accu1>>1) + accu3; 146 pTmp_0[0] = (xr>>1) - accu5; 147 pTmp_1[0] = (xr>>1) + accu5; 148 149 xr = (accu2>>1) - accu4; 150 pTmp_0[1] = (xr>>1) - accu6; 151 pTmp_1[1] = -((xr>>1) + accu6); 152 153 } 154 155 xr = fMultDiv2(pDat[M], sin_twiddle_L64[64/2].v.re );/* cos((PI/(2*L))*M); */ 156 tmp[0] = ((pDat[0]>>1) + xr)>>1; 157 tmp[1] = ((pDat[0]>>1) - xr)>>1; 158 159 cplxMultDiv2(&accu2, &accu1, pDat[L - (M/2)], pDat[M/2], sin_twiddle_L64[64/4]); 160 tmp[M] = accu1>>1; 161 tmp[M+1] = accu2>>1; 162 163 /* dit_fft expects 1 bit scaled input values */ 164 fft(M, tmp, pDat_e); 165 166 /* ARM926: 12 cycles per 2-iteration, no overhead code by compiler */ 167 pTmp_1 = &tmp[L]; 168 for (i = M>>1; i--;) 169 { 170 FIXP_DBL tmp1, tmp2, tmp3, tmp4; 171 tmp1 = *tmp++; 172 tmp2 = *tmp++; 173 tmp3 = *--pTmp_1; 174 tmp4 = *--pTmp_1; 175 *pDat++ = tmp1; 176 *pDat++ = tmp3; 177 *pDat++ = tmp2; 178 *pDat++ = tmp4; 179 } 180 181 *pDat_e += 2; 182 } 183 #endif 184 185 #if !defined(FUNCTION_dct_II) 186 void dct_II(FIXP_DBL *pDat, /*!< pointer to input/output */ 187 FIXP_DBL *tmp, /*!< pointer to temporal working buffer */ 188 int L, /*!< lenght of transform */ 189 int *pDat_e 190 ) 191 { 192 FDK_ASSERT(L == 64 || L == 32); 193 FIXP_DBL accu1,accu2; 194 FIXP_DBL *pTmp_0, *pTmp_1; 195 196 int i; 197 int inc; 198 int M = L>>1; 199 int ld_M; 200 201 FDK_ASSERT(L == 64 || L == 32); 202 ld_M = 4 + (L >> 6); /* L=64: 5, L=32: 4 */ 203 204 inc = (64/2) >> ld_M; /* L=64: 1, L=32: 2 */ 205 206 FIXP_DBL *pdat = &pDat[0]; 207 FIXP_DBL accu3, accu4; 208 pTmp_0 = &tmp[0]; 209 pTmp_1 = &tmp[L-1]; 210 for (i = M>>1; i--; ) 211 { 212 accu1 = *pdat++; 213 accu2 = *pdat++; 214 accu3 = *pdat++; 215 accu4 = *pdat++; 216 accu1 >>= 1; 217 accu2 >>= 1; 218 accu3 >>= 1; 219 accu4 >>= 1; 220 *pTmp_0++ = accu1; 221 *pTmp_0++ = accu3; 222 *pTmp_1-- = accu2; 223 *pTmp_1-- = accu4; 224 } 225 226 227 fft(M, tmp, pDat_e); 228 229 pTmp_0 = &tmp[2]; 230 pTmp_1 = &tmp[(M-1)*2]; 231 232 for (i=1; i<M>>1; i++,pTmp_0+=2,pTmp_1-=2) { 233 234 FIXP_DBL a1,a2; 235 FIXP_DBL accu3, accu4; 236 237 a1 = ((pTmp_0[1]>>1) + (pTmp_1[1]>>1)); 238 a2 = ((pTmp_1[0]>>1) - (pTmp_0[0]>>1)); 239 240 cplxMultDiv2(&accu1, &accu2, a2, a1, sin_twiddle_L64[(4*i)*inc]); 241 accu1<<=1; accu2<<=1; 242 243 a1 = ((pTmp_0[0]>>1) + (pTmp_1[0]>>1)); 244 a2 = ((pTmp_0[1]>>1) - (pTmp_1[1]>>1)); 245 246 cplxMultDiv2(&accu3, &accu4, (a1 + accu2), -(accu1 + a2), sin_twiddle_L64[i*inc]); 247 pDat[L - i] = accu4; 248 pDat[i] = accu3; 249 250 cplxMultDiv2(&accu3, &accu4, (a1 - accu2), -(accu1 - a2), sin_twiddle_L64[(M-i)*inc]); 251 pDat[M + i] = accu4; 252 pDat[M - i] = accu3; 253 254 } 255 256 cplxMultDiv2(&accu1, &accu2, tmp[M], tmp[M+1], sin_twiddle_L64[(M/2)*inc]); 257 pDat[L - (M/2)] = accu2; 258 pDat[M/2] = accu1; 259 260 pDat[0] = (tmp[0]>>1)+(tmp[1]>>1); 261 pDat[M] = fMult(((tmp[0]>>1)-(tmp[1]>>1)), sin_twiddle_L64[64/2].v.re);/* cos((PI/(2*L))*M); */ 262 263 *pDat_e += 2; 264 } 265 #endif 266 267 static 268 void getTables(const FIXP_WTP **twiddle, const FIXP_STP **sin_twiddle, int *sin_step, int length) 269 { 270 int ld2_length; 271 272 /* Get ld2 of length - 2 + 1 273 -2: because first table entry is window of size 4 274 +1: because we already include +1 because of ceil(log2(length)) */ 275 ld2_length = DFRACT_BITS-1-fNormz((FIXP_DBL)length) - 1; 276 277 /* Extract sort of "eigenvalue" (the 4 left most bits) of length. */ 278 switch ( (length) >> (ld2_length-1) ) { 279 case 0x4: /* radix 2 */ 280 *sin_twiddle = SineTable512; 281 *sin_step = 1<<(9 - ld2_length); 282 *twiddle = windowSlopes[0][0][ld2_length-1]; 283 break; 284 case 0x7: /* 10 ms */ 285 *sin_twiddle = SineTable480; 286 *sin_step = 1<<(8 - ld2_length); 287 *twiddle = windowSlopes[0][1][ld2_length]; 288 break; 289 default: 290 *sin_twiddle = NULL; 291 *sin_step = 0; 292 *twiddle = NULL; 293 break; 294 } 295 296 FDK_ASSERT(*twiddle != NULL); 297 298 FDK_ASSERT(*sin_step > 0); 299 300 } 301 302 #if !defined(FUNCTION_dct_IV) 303 304 void dct_IV(FIXP_DBL *pDat, 305 int L, 306 int *pDat_e) 307 { 308 int sin_step = 0; 309 int M = L >> 1; 310 311 const FIXP_WTP *twiddle; 312 const FIXP_STP *sin_twiddle; 313 314 FDK_ASSERT(L >= 4); 315 316 getTables(&twiddle, &sin_twiddle, &sin_step, L); 317 318 #ifdef FUNCTION_dct_IV_func1 319 if (M>=4 && (M&3) == 0) { 320 /* ARM926: 44 cycles for 2 iterations = 22 cycles/iteration */ 321 dct_IV_func1(M>>2, twiddle, &pDat[0], &pDat[L-1]); 322 } else 323 #endif /* FUNCTION_dct_IV_func1 */ 324 { 325 FIXP_DBL *RESTRICT pDat_0 = &pDat[0]; 326 FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2]; 327 register int i; 328 329 /* 29 cycles on ARM926 */ 330 for (i = 0; i < M-1; i+=2,pDat_0+=2,pDat_1-=2) 331 { 332 register FIXP_DBL accu1,accu2,accu3,accu4; 333 334 accu1 = pDat_1[1]; accu2 = pDat_0[0]; 335 accu3 = pDat_0[1]; accu4 = pDat_1[0]; 336 337 cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]); 338 cplxMultDiv2(&accu3, &accu4, accu4, accu3, twiddle[i+1]); 339 340 pDat_0[0] = accu2; pDat_0[1] = accu1; 341 pDat_1[0] = accu4; pDat_1[1] = -accu3; 342 } 343 if (M&1) 344 { 345 register FIXP_DBL accu1,accu2; 346 347 accu1 = pDat_1[1]; accu2 = pDat_0[0]; 348 349 cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]); 350 351 pDat_0[0] = accu2; pDat_0[1] = accu1; 352 } 353 } 354 355 fft(M, pDat, pDat_e); 356 357 #ifdef FUNCTION_dct_IV_func2 358 if (M>=4 && (M&3) == 0) { 359 /* ARM926: 42 cycles for 2 iterations = 21 cycles/iteration */ 360 dct_IV_func2(M>>2, sin_twiddle, &pDat[0], &pDat[L], sin_step); 361 } else 362 #endif /* FUNCTION_dct_IV_func2 */ 363 { 364 FIXP_DBL *RESTRICT pDat_0 = &pDat[0]; 365 FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2]; 366 register FIXP_DBL accu1,accu2,accu3,accu4; 367 int idx, i; 368 369 /* Sin and Cos values are 0.0f and 1.0f */ 370 accu1 = pDat_1[0]; 371 accu2 = pDat_1[1]; 372 373 pDat_1[1] = -(pDat_0[1]>>1); 374 pDat_0[0] = (pDat_0[0]>>1); 375 376 377 /* 28 cycles for ARM926 */ 378 for (idx = sin_step,i=1; i<(M+1)>>1; i++, idx+=sin_step) 379 { 380 FIXP_STP twd = sin_twiddle[idx]; 381 cplxMultDiv2(&accu3, &accu4, accu1, accu2, twd); 382 pDat_0[1] = accu3; 383 pDat_1[0] = accu4; 384 385 pDat_0+=2; 386 pDat_1-=2; 387 388 cplxMultDiv2(&accu3, &accu4, pDat_0[1], pDat_0[0], twd); 389 390 accu1 = pDat_1[0]; 391 accu2 = pDat_1[1]; 392 393 pDat_1[1] = -accu3; 394 pDat_0[0] = accu4; 395 } 396 397 if ( (M&1) == 0 ) 398 { 399 /* Last Sin and Cos value pair are the same */ 400 accu1 = fMultDiv2(accu1, WTC(0x5a82799a)); 401 accu2 = fMultDiv2(accu2, WTC(0x5a82799a)); 402 403 pDat_1[0] = accu1 + accu2; 404 pDat_0[1] = accu1 - accu2; 405 } 406 } 407 408 /* Add twiddeling scale. */ 409 *pDat_e += 2; 410 } 411 #endif /* defined (FUNCTION_dct_IV) */ 412 413 #if !defined(FUNCTION_dst_IV) 414 void dst_IV(FIXP_DBL *pDat, 415 int L, 416 int *pDat_e ) 417 { 418 int sin_step = 0; 419 int M = L >> 1; 420 421 const FIXP_WTP *twiddle; 422 const FIXP_STP *sin_twiddle; 423 424 #ifdef DSTIV2_ENABLE 425 if (L == 2) { 426 const FIXP_STP tab = STCP(0x7641AF3D, 0x30FB9452); 427 FIXP_DBL tmp1, tmp2; 428 429 cplxMultDiv2(&tmp2, &tmp1, pDat[0], pDat[1], tab); 430 431 pDat[0] = tmp1; 432 pDat[1] = tmp2; 433 434 *pDat_e += 1; 435 436 return; 437 } 438 #else 439 FDK_ASSERT(L >= 4); 440 #endif 441 442 getTables(&twiddle, &sin_twiddle, &sin_step, L); 443 444 #ifdef FUNCTION_dst_IV_func1 445 if ( (M>=4) && ((M&3) == 0) ) { 446 dst_IV_func1(M, twiddle, &pDat[0], &pDat[L]); 447 } else 448 #endif 449 { 450 FIXP_DBL *RESTRICT pDat_0 = &pDat[0]; 451 FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2]; 452 453 register int i; 454 455 /* 34 cycles on ARM926 */ 456 for (i = 0; i < M-1; i+=2,pDat_0+=2,pDat_1-=2) 457 { 458 register FIXP_DBL accu1,accu2,accu3,accu4; 459 460 accu1 = pDat_1[1]; accu2 = -pDat_0[0]; 461 accu3 = pDat_0[1]; accu4 = -pDat_1[0]; 462 463 cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]); 464 cplxMultDiv2(&accu3, &accu4, accu4, accu3, twiddle[i+1]); 465 466 pDat_0[0] = accu2; pDat_0[1] = accu1; 467 pDat_1[0] = accu4; pDat_1[1] = -accu3; 468 } 469 if (M&1) 470 { 471 register FIXP_DBL accu1,accu2; 472 473 accu1 = pDat_1[1]; accu2 = -pDat_0[0]; 474 475 cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]); 476 477 pDat_0[0] = accu2; pDat_0[1] = accu1; 478 } 479 } 480 481 fft(M, pDat, pDat_e); 482 483 #ifdef FUNCTION_dst_IV_func2 484 if ( (M>=4) && ((M&3) == 0) ) { 485 dst_IV_func2(M>>2, sin_twiddle + sin_step, &pDat[0], &pDat[L - 1], sin_step); 486 } else 487 #endif /* FUNCTION_dst_IV_func2 */ 488 { 489 FIXP_DBL *RESTRICT pDat_0; 490 FIXP_DBL *RESTRICT pDat_1; 491 register FIXP_DBL accu1,accu2,accu3,accu4; 492 int idx, i; 493 494 pDat_0 = &pDat[0]; 495 pDat_1 = &pDat[L - 2]; 496 497 /* Sin and Cos values are 0.0f and 1.0f */ 498 accu1 = pDat_1[0]; 499 accu2 = pDat_1[1]; 500 501 pDat_1[1] = -(pDat_0[0]>>1); 502 pDat_0[0] = (pDat_0[1]>>1); 503 504 for (idx = sin_step,i=1; i<(M+1)>>1; i++, idx+=sin_step) 505 { 506 FIXP_STP twd = sin_twiddle[idx]; 507 508 cplxMultDiv2(&accu3, &accu4, accu1, accu2, twd); 509 pDat_1[0] = -accu3; 510 pDat_0[1] = -accu4; 511 512 pDat_0+=2; 513 pDat_1-=2; 514 515 cplxMultDiv2(&accu3, &accu4, pDat_0[1], pDat_0[0], twd); 516 517 accu1 = pDat_1[0]; 518 accu2 = pDat_1[1]; 519 520 pDat_0[0] = accu3; 521 pDat_1[1] = -accu4; 522 } 523 524 if ( (M&1) == 0 ) 525 { 526 /* Last Sin and Cos value pair are the same */ 527 accu1 = fMultDiv2(accu1, WTC(0x5a82799a)); 528 accu2 = fMultDiv2(accu2, WTC(0x5a82799a)); 529 530 pDat_0[1] = - accu1 - accu2; 531 pDat_1[0] = accu2 - accu1; 532 } 533 } 534 535 /* Add twiddeling scale. */ 536 *pDat_e += 2; 537 } 538 #endif /* !defined(FUNCTION_dst_IV) */ 539 540 541