Home | History | Annotate | Download | only in tzcode
      1 /*
      2 ** This file is in the public domain, so clarified as of
      3 ** 1996-06-05 by Arthur David Olson.
      4 */
      5 
      6 #ifndef lint
      7 #ifndef NOID
      8 static char elsieid[] = "@(#)localtime.c    8.3";
      9 #endif /* !defined NOID */
     10 #endif /* !defined lint */
     11 
     12 /*
     13 ** Leap second handling from Bradley White.
     14 ** POSIX-style TZ environment variable handling from Guy Harris.
     15 */
     16 
     17 /*LINTLIBRARY*/
     18 
     19 #include "private.h"
     20 #include "tzfile.h"
     21 #include "fcntl.h"
     22 #include "float.h"  /* for FLT_MAX and DBL_MAX */
     23 
     24 #include "thread_private.h"
     25 #include <sys/system_properties.h>
     26 
     27 #ifndef TZ_ABBR_MAX_LEN
     28 #define TZ_ABBR_MAX_LEN 16
     29 #endif /* !defined TZ_ABBR_MAX_LEN */
     30 
     31 #ifndef TZ_ABBR_CHAR_SET
     32 #define TZ_ABBR_CHAR_SET \
     33     "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
     34 #endif /* !defined TZ_ABBR_CHAR_SET */
     35 
     36 #ifndef TZ_ABBR_ERR_CHAR
     37 #define TZ_ABBR_ERR_CHAR    '_'
     38 #endif /* !defined TZ_ABBR_ERR_CHAR */
     39 
     40 #define INDEXFILE "/system/usr/share/zoneinfo/zoneinfo.idx"
     41 #define DATAFILE "/system/usr/share/zoneinfo/zoneinfo.dat"
     42 #define NAMELEN 40
     43 #define INTLEN 4
     44 #define READLEN (NAMELEN + 3 * INTLEN)
     45 
     46 /*
     47 ** SunOS 4.1.1 headers lack O_BINARY.
     48 */
     49 
     50 #ifdef O_BINARY
     51 #define OPEN_MODE   (O_RDONLY | O_BINARY)
     52 #endif /* defined O_BINARY */
     53 #ifndef O_BINARY
     54 #define OPEN_MODE   O_RDONLY
     55 #endif /* !defined O_BINARY */
     56 
     57 #if 0
     58 #  define  XLOG(xx)  printf xx , fflush(stdout)
     59 #else
     60 #  define  XLOG(x)   do{}while (0)
     61 #endif
     62 
     63 /* Add the following function implementations:
     64  *  timelocal()
     65  *  timegm()
     66  *  time2posix()
     67  *  posix2time()
     68  */
     69 #define STD_INSPIRED 1
     70 
     71 /* THREAD-SAFETY SUPPORT GOES HERE */
     72 static pthread_mutex_t  _tzMutex = PTHREAD_MUTEX_INITIALIZER;
     73 
     74 static __inline__ void _tzLock(void)
     75 {
     76     if (__isthreaded)
     77         pthread_mutex_lock(&_tzMutex);
     78 }
     79 
     80 static __inline__ void _tzUnlock(void)
     81 {
     82     if (__isthreaded)
     83         pthread_mutex_unlock(&_tzMutex);
     84 }
     85 
     86 /* Complex computations to determine the min/max of time_t depending
     87  * on TYPE_BIT / TYPE_SIGNED / TYPE_INTEGRAL.
     88  * These macros cannot be used in pre-processor directives, so we
     89  * let the C compiler do the work, which makes things a bit funky.
     90  */
     91 static const time_t TIME_T_MAX =
     92     TYPE_INTEGRAL(time_t) ?
     93         ( TYPE_SIGNED(time_t) ?
     94             ~((time_t)1 << (TYPE_BIT(time_t)-1))
     95         :
     96             ~(time_t)0
     97         )
     98     : /* if time_t is a floating point number */
     99         ( sizeof(time_t) > sizeof(float) ? (time_t)DBL_MAX : (time_t)FLT_MAX );
    100 
    101 static const time_t TIME_T_MIN =
    102     TYPE_INTEGRAL(time_t) ?
    103         ( TYPE_SIGNED(time_t) ?
    104             ((time_t)1 << (TYPE_BIT(time_t)-1))
    105         :
    106             0
    107         )
    108     :
    109         ( sizeof(time_t) > sizeof(float) ? (time_t)DBL_MIN : (time_t)FLT_MIN );
    110 
    111 #ifndef WILDABBR
    112 /*
    113 ** Someone might make incorrect use of a time zone abbreviation:
    114 **  1.  They might reference tzname[0] before calling tzset (explicitly
    115 **      or implicitly).
    116 **  2.  They might reference tzname[1] before calling tzset (explicitly
    117 **      or implicitly).
    118 **  3.  They might reference tzname[1] after setting to a time zone
    119 **      in which Daylight Saving Time is never observed.
    120 **  4.  They might reference tzname[0] after setting to a time zone
    121 **      in which Standard Time is never observed.
    122 **  5.  They might reference tm.TM_ZONE after calling offtime.
    123 ** What's best to do in the above cases is open to debate;
    124 ** for now, we just set things up so that in any of the five cases
    125 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
    126 ** string "tzname[0] used before set", and similarly for the other cases.
    127 ** And another: initialize tzname[0] to "ERA", with an explanation in the
    128 ** manual page of what this "time zone abbreviation" means (doing this so
    129 ** that tzname[0] has the "normal" length of three characters).
    130 */
    131 #define WILDABBR    "   "
    132 #endif /* !defined WILDABBR */
    133 
    134 static char     wildabbr[] = WILDABBR;
    135 
    136 static const char   gmt[] = "GMT";
    137 
    138 /*
    139 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
    140 ** We default to US rules as of 1999-08-17.
    141 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
    142 ** implementation dependent; for historical reasons, US rules are a
    143 ** common default.
    144 */
    145 #ifndef TZDEFRULESTRING
    146 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
    147 #endif /* !defined TZDEFDST */
    148 
    149 struct ttinfo {             /* time type information */
    150     long    tt_gmtoff;  /* UTC offset in seconds */
    151     int     tt_isdst;   /* used to set tm_isdst */
    152     int     tt_abbrind; /* abbreviation list index */
    153     int     tt_ttisstd; /* TRUE if transition is std time */
    154     int     tt_ttisgmt; /* TRUE if transition is UTC */
    155 };
    156 
    157 struct lsinfo {             /* leap second information */
    158     time_t      ls_trans;   /* transition time */
    159     long        ls_corr;    /* correction to apply */
    160 };
    161 
    162 #define BIGGEST(a, b)   (((a) > (b)) ? (a) : (b))
    163 
    164 #ifdef TZNAME_MAX
    165 #define MY_TZNAME_MAX   TZNAME_MAX
    166 #endif /* defined TZNAME_MAX */
    167 #ifndef TZNAME_MAX
    168 #define MY_TZNAME_MAX   255
    169 #endif /* !defined TZNAME_MAX */
    170 
    171 /* XXX: This code should really use time64_t instead of time_t
    172  *      but we can't change it without re-generating the index
    173  *      file first with the correct data.
    174  */
    175 struct state {
    176     int     leapcnt;
    177     int     timecnt;
    178     int     typecnt;
    179     int     charcnt;
    180     int     goback;
    181     int     goahead;
    182     time_t      ats[TZ_MAX_TIMES];
    183     unsigned char   types[TZ_MAX_TIMES];
    184     struct ttinfo   ttis[TZ_MAX_TYPES];
    185     char        chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
    186                 (2 * (MY_TZNAME_MAX + 1)))];
    187     struct lsinfo   lsis[TZ_MAX_LEAPS];
    188 };
    189 
    190 struct rule {
    191     int     r_type;     /* type of rule--see below */
    192     int     r_day;      /* day number of rule */
    193     int     r_week;     /* week number of rule */
    194     int     r_mon;      /* month number of rule */
    195     long        r_time;     /* transition time of rule */
    196 };
    197 
    198 #define JULIAN_DAY      0   /* Jn - Julian day */
    199 #define DAY_OF_YEAR     1   /* n - day of year */
    200 #define MONTH_NTH_DAY_OF_WEEK   2   /* Mm.n.d - month, week, day of week */
    201 
    202 /*
    203 ** Prototypes for static functions.
    204 */
    205 
    206 /* NOTE: all internal functions assume that _tzLock() was already called */
    207 
    208 static long     detzcode P((const char * codep));
    209 static time_t   detzcode64 P((const char * codep));
    210 static int      differ_by_repeat P((time_t t1, time_t t0));
    211 static const char * getzname P((const char * strp));
    212 static const char * getqzname P((const char * strp, const int delim));
    213 static const char * getnum P((const char * strp, int * nump, int min,
    214                 int max));
    215 static const char * getsecs P((const char * strp, long * secsp));
    216 static const char * getoffset P((const char * strp, long * offsetp));
    217 static const char * getrule P((const char * strp, struct rule * rulep));
    218 static void     gmtload P((struct state * sp));
    219 static struct tm *  gmtsub P((const time_t * timep, long offset,
    220                 struct tm * tmp));
    221 static struct tm *  localsub P((const time_t * timep, long offset,
    222                 struct tm * tmp));
    223 static int      increment_overflow P((int * number, int delta));
    224 static int      leaps_thru_end_of P((int y));
    225 static int      long_increment_overflow P((long * number, int delta));
    226 static int      long_normalize_overflow P((long * tensptr,
    227                 int * unitsptr, int base));
    228 static int      normalize_overflow P((int * tensptr, int * unitsptr,
    229                 int base));
    230 static void     settzname P((void));
    231 static time_t       time1 P((struct tm * tmp,
    232                 struct tm * (*funcp) P((const time_t *,
    233                 long, struct tm *)),
    234                 long offset));
    235 static time_t       time2 P((struct tm *tmp,
    236                 struct tm * (*funcp) P((const time_t *,
    237                 long, struct tm*)),
    238                 long offset, int * okayp));
    239 static time_t       time2sub P((struct tm *tmp,
    240                 struct tm * (*funcp) P((const time_t *,
    241                 long, struct tm*)),
    242                 long offset, int * okayp, int do_norm_secs));
    243 static struct tm *  timesub P((const time_t * timep, long offset,
    244                 const struct state * sp, struct tm * tmp));
    245 static int      tmcomp P((const struct tm * atmp,
    246                 const struct tm * btmp));
    247 static time_t       transtime P((time_t janfirst, int year,
    248                 const struct rule * rulep, long offset));
    249 static int      tzload P((const char * name, struct state * sp,
    250                 int doextend));
    251 static int      tzparse P((const char * name, struct state * sp,
    252                 int lastditch));
    253 
    254 #ifdef ALL_STATE
    255 static struct state *   lclptr;
    256 static struct state *   gmtptr;
    257 #endif /* defined ALL_STATE */
    258 
    259 #ifndef ALL_STATE
    260 static struct state lclmem;
    261 static struct state gmtmem;
    262 #define lclptr      (&lclmem)
    263 #define gmtptr      (&gmtmem)
    264 #endif /* State Farm */
    265 
    266 #ifndef TZ_STRLEN_MAX
    267 #define TZ_STRLEN_MAX 255
    268 #endif /* !defined TZ_STRLEN_MAX */
    269 
    270 static char     lcl_TZname[TZ_STRLEN_MAX + 1];
    271 static int      lcl_is_set;
    272 static int      gmt_is_set;
    273 
    274 char *          tzname[2] = {
    275     wildabbr,
    276     wildabbr
    277 };
    278 
    279 /*
    280 ** Section 4.12.3 of X3.159-1989 requires that
    281 **  Except for the strftime function, these functions [asctime,
    282 **  ctime, gmtime, localtime] return values in one of two static
    283 **  objects: a broken-down time structure and an array of char.
    284 ** Thanks to Paul Eggert for noting this.
    285 */
    286 
    287 static struct tm    tmGlobal;
    288 
    289 #ifdef USG_COMPAT
    290 time_t          timezone = 0;
    291 int         daylight = 0;
    292 #endif /* defined USG_COMPAT */
    293 
    294 #ifdef ALTZONE
    295 time_t          altzone = 0;
    296 #endif /* defined ALTZONE */
    297 
    298 static long
    299 detzcode(codep)
    300 const char * const  codep;
    301 {
    302     register long   result;
    303     register int    i;
    304 
    305     result = (codep[0] & 0x80) ? ~0L : 0;
    306     for (i = 0; i < 4; ++i)
    307         result = (result << 8) | (codep[i] & 0xff);
    308     return result;
    309 }
    310 
    311 static time_t
    312 detzcode64(codep)
    313 const char * const  codep;
    314 {
    315     register time_t result;
    316     register int    i;
    317 
    318     result = (codep[0] & 0x80) ?  (~(int_fast64_t) 0) : 0;
    319     for (i = 0; i < 8; ++i)
    320         result = result * 256 + (codep[i] & 0xff);
    321     return result;
    322 }
    323 
    324 static void
    325 settzname P((void))
    326 {
    327     register struct state * const   sp = lclptr;
    328     register int            i;
    329 
    330     tzname[0] = wildabbr;
    331     tzname[1] = wildabbr;
    332 #ifdef USG_COMPAT
    333     daylight = 0;
    334     timezone = 0;
    335 #endif /* defined USG_COMPAT */
    336 #ifdef ALTZONE
    337     altzone = 0;
    338 #endif /* defined ALTZONE */
    339 #ifdef ALL_STATE
    340     if (sp == NULL) {
    341         tzname[0] = tzname[1] = gmt;
    342         return;
    343     }
    344 #endif /* defined ALL_STATE */
    345     for (i = 0; i < sp->typecnt; ++i) {
    346         register const struct ttinfo * const    ttisp = &sp->ttis[i];
    347 
    348         tzname[ttisp->tt_isdst] =
    349             &sp->chars[ttisp->tt_abbrind];
    350 #ifdef USG_COMPAT
    351         if (ttisp->tt_isdst)
    352             daylight = 1;
    353         if (i == 0 || !ttisp->tt_isdst)
    354             timezone = -(ttisp->tt_gmtoff);
    355 #endif /* defined USG_COMPAT */
    356 #ifdef ALTZONE
    357         if (i == 0 || ttisp->tt_isdst)
    358             altzone = -(ttisp->tt_gmtoff);
    359 #endif /* defined ALTZONE */
    360     }
    361     /*
    362     ** And to get the latest zone names into tzname. . .
    363     */
    364     for (i = 0; i < sp->timecnt; ++i) {
    365         register const struct ttinfo * const    ttisp =
    366                             &sp->ttis[
    367                                 sp->types[i]];
    368 
    369         tzname[ttisp->tt_isdst] =
    370             &sp->chars[ttisp->tt_abbrind];
    371     }
    372     /*
    373     ** Finally, scrub the abbreviations.
    374     ** First, replace bogus characters.
    375     */
    376     for (i = 0; i < sp->charcnt; ++i)
    377         if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
    378             sp->chars[i] = TZ_ABBR_ERR_CHAR;
    379     /*
    380     ** Second, truncate long abbreviations.
    381     */
    382     for (i = 0; i < sp->typecnt; ++i) {
    383         register const struct ttinfo * const    ttisp = &sp->ttis[i];
    384         register char *             cp = &sp->chars[ttisp->tt_abbrind];
    385 
    386         if (strlen(cp) > TZ_ABBR_MAX_LEN &&
    387             strcmp(cp, GRANDPARENTED) != 0)
    388                 *(cp + TZ_ABBR_MAX_LEN) = '\0';
    389     }
    390 }
    391 
    392 static int
    393 differ_by_repeat(t1, t0)
    394 const time_t    t1;
    395 const time_t    t0;
    396 {
    397     if (TYPE_INTEGRAL(time_t) &&
    398         TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
    399             return 0;
    400 #if SECSPERREPEAT_BITS <= 32  /* to avoid compiler warning (condition is always false) */
    401         return (t1 - t0) == SECSPERREPEAT;
    402 #else
    403         return 0;
    404 #endif
    405 }
    406 
    407 static int toint(unsigned char *s) {
    408     return (s[0] << 24) | (s[1] << 16) | (s[2] << 8) | s[3];
    409 }
    410 
    411 static int
    412 tzload(name, sp, doextend)
    413 register const char *       name;
    414 register struct state * const   sp;
    415 register const int      doextend;
    416 {
    417     register const char *       p;
    418     register int            i;
    419     register int            fid;
    420     register int            stored;
    421     register int            nread;
    422     union {
    423         struct tzhead   tzhead;
    424         char        buf[2 * sizeof(struct tzhead) +
    425                     2 * sizeof *sp +
    426                     4 * TZ_MAX_TIMES];
    427     } u;
    428     int                     toread = sizeof u.buf;
    429 
    430         if (name == NULL && (name = TZDEFAULT) == NULL) {
    431                 XLOG(("tzload: null 'name' parameter\n" ));
    432                 return -1;
    433         }
    434     {
    435         register int    doaccess;
    436         /*
    437         ** Section 4.9.1 of the C standard says that
    438         ** "FILENAME_MAX expands to an integral constant expression
    439         ** that is the size needed for an array of char large enough
    440         ** to hold the longest file name string that the implementation
    441         ** guarantees can be opened."
    442         */
    443         char        fullname[FILENAME_MAX + 1];
    444         char        *origname = (char*) name;
    445 
    446         if (name[0] == ':')
    447             ++name;
    448         doaccess = name[0] == '/';
    449         if (!doaccess) {
    450             if ((p = TZDIR) == NULL) {
    451                 XLOG(("tzload: null TZDIR macro ?\n" ));
    452                 return -1;
    453             }
    454             if ((strlen(p) + strlen(name) + 1) >= sizeof fullname) {
    455                 XLOG(( "tzload: path too long: %s/%s\n", p, name ));
    456                 return -1;
    457             }
    458             (void) strcpy(fullname, p);
    459             (void) strcat(fullname, "/");
    460             (void) strcat(fullname, name);
    461             /*
    462             ** Set doaccess if '.' (as in "../") shows up in name.
    463             */
    464             if (strchr(name, '.') != NULL)
    465                 doaccess = TRUE;
    466             name = fullname;
    467         }
    468         if (doaccess && access(name, R_OK) != 0) {
    469             XLOG(( "tzload: could not find '%s'\n", name ));
    470             return -1;
    471         }
    472         if ((fid = open(name, OPEN_MODE)) == -1) {
    473             char buf[READLEN];
    474             char name[NAMELEN + 1];
    475             int fidix = open(INDEXFILE, OPEN_MODE);
    476             int off = -1;
    477 
    478             XLOG(( "tzload: could not open '%s', trying '%s'\n", fullname, INDEXFILE ));
    479             if (fidix < 0) {
    480                 XLOG(( "tzload: could not find '%s'\n", INDEXFILE ));
    481                 return -1;
    482             }
    483 
    484             while (read(fidix, buf, sizeof(buf)) == sizeof(buf)) {
    485                 memcpy(name, buf, NAMELEN);
    486                 name[NAMELEN] = '\0';
    487 
    488                 if (strcmp(name, origname) == 0) {
    489                     off = toint((unsigned char *) buf + NAMELEN);
    490                     toread = toint((unsigned char *) buf + NAMELEN + INTLEN);
    491                     break;
    492                 }
    493             }
    494 
    495             close(fidix);
    496 
    497             if (off < 0) {
    498                 XLOG(( "tzload: invalid offset (%d)\n", off ));
    499                 return -1;
    500             }
    501 
    502             fid = open(DATAFILE, OPEN_MODE);
    503 
    504             if (fid < 0) {
    505                 XLOG(( "tzload: could not open '%s'\n", DATAFILE ));
    506                 return -1;
    507             }
    508 
    509             if (lseek(fid, off, SEEK_SET) < 0) {
    510                 XLOG(( "tzload: could not seek to %d in '%s'\n", off, DATAFILE ));
    511                 return -1;
    512             }
    513         }
    514     }
    515     nread = read(fid, u.buf, toread);
    516         if (close(fid) < 0 || nread <= 0) {
    517             XLOG(( "tzload: could not read content of '%s'\n", DATAFILE ));
    518             return -1;
    519         }
    520     for (stored = 4; stored <= 8; stored *= 2) {
    521         int     ttisstdcnt;
    522         int     ttisgmtcnt;
    523 
    524         ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
    525         ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
    526         sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
    527         sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
    528         sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
    529         sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
    530         p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
    531         if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
    532             sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
    533             sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
    534             sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
    535             (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
    536             (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
    537                 return -1;
    538         if (nread - (p - u.buf) <
    539             sp->timecnt * stored +      /* ats */
    540             sp->timecnt +           /* types */
    541             sp->typecnt * 6 +       /* ttinfos */
    542             sp->charcnt +           /* chars */
    543             sp->leapcnt * (stored + 4) +    /* lsinfos */
    544             ttisstdcnt +            /* ttisstds */
    545             ttisgmtcnt)         /* ttisgmts */
    546                 return -1;
    547         for (i = 0; i < sp->timecnt; ++i) {
    548             sp->ats[i] = (stored == 4) ?
    549                 detzcode(p) : detzcode64(p);
    550             p += stored;
    551         }
    552         for (i = 0; i < sp->timecnt; ++i) {
    553             sp->types[i] = (unsigned char) *p++;
    554             if (sp->types[i] >= sp->typecnt)
    555                 return -1;
    556         }
    557         for (i = 0; i < sp->typecnt; ++i) {
    558             register struct ttinfo *    ttisp;
    559 
    560             ttisp = &sp->ttis[i];
    561             ttisp->tt_gmtoff = detzcode(p);
    562             p += 4;
    563             ttisp->tt_isdst = (unsigned char) *p++;
    564             if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
    565                 return -1;
    566             ttisp->tt_abbrind = (unsigned char) *p++;
    567             if (ttisp->tt_abbrind < 0 ||
    568                 ttisp->tt_abbrind > sp->charcnt)
    569                     return -1;
    570         }
    571         for (i = 0; i < sp->charcnt; ++i)
    572             sp->chars[i] = *p++;
    573         sp->chars[i] = '\0';    /* ensure '\0' at end */
    574         for (i = 0; i < sp->leapcnt; ++i) {
    575             register struct lsinfo *    lsisp;
    576 
    577             lsisp = &sp->lsis[i];
    578             lsisp->ls_trans = (stored == 4) ?
    579                 detzcode(p) : detzcode64(p);
    580             p += stored;
    581             lsisp->ls_corr = detzcode(p);
    582             p += 4;
    583         }
    584         for (i = 0; i < sp->typecnt; ++i) {
    585             register struct ttinfo *    ttisp;
    586 
    587             ttisp = &sp->ttis[i];
    588             if (ttisstdcnt == 0)
    589                 ttisp->tt_ttisstd = FALSE;
    590             else {
    591                 ttisp->tt_ttisstd = *p++;
    592                 if (ttisp->tt_ttisstd != TRUE &&
    593                     ttisp->tt_ttisstd != FALSE)
    594                         return -1;
    595             }
    596         }
    597         for (i = 0; i < sp->typecnt; ++i) {
    598             register struct ttinfo *    ttisp;
    599 
    600             ttisp = &sp->ttis[i];
    601             if (ttisgmtcnt == 0)
    602                 ttisp->tt_ttisgmt = FALSE;
    603             else {
    604                 ttisp->tt_ttisgmt = *p++;
    605                 if (ttisp->tt_ttisgmt != TRUE &&
    606                     ttisp->tt_ttisgmt != FALSE)
    607                         return -1;
    608             }
    609         }
    610         /*
    611         ** Out-of-sort ats should mean we're running on a
    612         ** signed time_t system but using a data file with
    613         ** unsigned values (or vice versa).
    614         */
    615         for (i = 0; i < sp->timecnt - 2; ++i)
    616             if (sp->ats[i] > sp->ats[i + 1]) {
    617                 ++i;
    618                 if (TYPE_SIGNED(time_t)) {
    619                     /*
    620                     ** Ignore the end (easy).
    621                     */
    622                     sp->timecnt = i;
    623                 } else {
    624                     /*
    625                     ** Ignore the beginning (harder).
    626                     */
    627                     register int    j;
    628 
    629                     for (j = 0; j + i < sp->timecnt; ++j) {
    630                         sp->ats[j] = sp->ats[j + i];
    631                         sp->types[j] = sp->types[j + i];
    632                     }
    633                     sp->timecnt = j;
    634                 }
    635                 break;
    636             }
    637         /*
    638         ** If this is an old file, we're done.
    639         */
    640         if (u.tzhead.tzh_version[0] == '\0')
    641             break;
    642         nread -= p - u.buf;
    643         for (i = 0; i < nread; ++i)
    644             u.buf[i] = p[i];
    645         /*
    646         ** If this is a narrow integer time_t system, we're done.
    647         */
    648         if (stored >= (int) sizeof(time_t) && TYPE_INTEGRAL(time_t))
    649             break;
    650     }
    651     if (doextend && nread > 2 &&
    652         u.buf[0] == '\n' && u.buf[nread - 1] == '\n' &&
    653         sp->typecnt + 2 <= TZ_MAX_TYPES) {
    654             struct state    ts;
    655             register int    result;
    656 
    657             u.buf[nread - 1] = '\0';
    658             result = tzparse(&u.buf[1], &ts, FALSE);
    659             if (result == 0 && ts.typecnt == 2 &&
    660                 sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
    661                     for (i = 0; i < 2; ++i)
    662                         ts.ttis[i].tt_abbrind +=
    663                             sp->charcnt;
    664                     for (i = 0; i < ts.charcnt; ++i)
    665                         sp->chars[sp->charcnt++] =
    666                             ts.chars[i];
    667                     i = 0;
    668                     while (i < ts.timecnt &&
    669                         ts.ats[i] <=
    670                         sp->ats[sp->timecnt - 1])
    671                             ++i;
    672                     while (i < ts.timecnt &&
    673                         sp->timecnt < TZ_MAX_TIMES) {
    674                         sp->ats[sp->timecnt] =
    675                             ts.ats[i];
    676                         sp->types[sp->timecnt] =
    677                             sp->typecnt +
    678                             ts.types[i];
    679                         ++sp->timecnt;
    680                         ++i;
    681                     }
    682                     sp->ttis[sp->typecnt++] = ts.ttis[0];
    683                     sp->ttis[sp->typecnt++] = ts.ttis[1];
    684             }
    685     }
    686     i = 2 * YEARSPERREPEAT;
    687     sp->goback = sp->goahead = sp->timecnt > i;
    688     sp->goback &= sp->types[i] == sp->types[0] &&
    689         differ_by_repeat(sp->ats[i], sp->ats[0]);
    690     sp->goahead &=
    691         sp->types[sp->timecnt - 1] == sp->types[sp->timecnt - 1 - i] &&
    692         differ_by_repeat(sp->ats[sp->timecnt - 1],
    693              sp->ats[sp->timecnt - 1 - i]);
    694         XLOG(( "tzload: load ok !!\n" ));
    695     return 0;
    696 }
    697 
    698 static const int    mon_lengths[2][MONSPERYEAR] = {
    699     { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
    700     { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
    701 };
    702 
    703 static const int    year_lengths[2] = {
    704     DAYSPERNYEAR, DAYSPERLYEAR
    705 };
    706 
    707 /*
    708 ** Given a pointer into a time zone string, scan until a character that is not
    709 ** a valid character in a zone name is found. Return a pointer to that
    710 ** character.
    711 */
    712 
    713 static const char *
    714 getzname(strp)
    715 register const char *   strp;
    716 {
    717     register char   c;
    718 
    719     while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
    720         c != '+')
    721             ++strp;
    722     return strp;
    723 }
    724 
    725 /*
    726 ** Given a pointer into an extended time zone string, scan until the ending
    727 ** delimiter of the zone name is located. Return a pointer to the delimiter.
    728 **
    729 ** As with getzname above, the legal character set is actually quite
    730 ** restricted, with other characters producing undefined results.
    731 ** We don't do any checking here; checking is done later in common-case code.
    732 */
    733 
    734 static const char *
    735 getqzname(register const char *strp, const int delim)
    736 {
    737     register int    c;
    738 
    739     while ((c = *strp) != '\0' && c != delim)
    740         ++strp;
    741     return strp;
    742 }
    743 
    744 /*
    745 ** Given a pointer into a time zone string, extract a number from that string.
    746 ** Check that the number is within a specified range; if it is not, return
    747 ** NULL.
    748 ** Otherwise, return a pointer to the first character not part of the number.
    749 */
    750 
    751 static const char *
    752 getnum(strp, nump, min, max)
    753 register const char *   strp;
    754 int * const     nump;
    755 const int       min;
    756 const int       max;
    757 {
    758     register char   c;
    759     register int    num;
    760 
    761     if (strp == NULL || !is_digit(c = *strp))
    762         return NULL;
    763     num = 0;
    764     do {
    765         num = num * 10 + (c - '0');
    766         if (num > max)
    767             return NULL;    /* illegal value */
    768         c = *++strp;
    769     } while (is_digit(c));
    770     if (num < min)
    771         return NULL;        /* illegal value */
    772     *nump = num;
    773     return strp;
    774 }
    775 
    776 /*
    777 ** Given a pointer into a time zone string, extract a number of seconds,
    778 ** in hh[:mm[:ss]] form, from the string.
    779 ** If any error occurs, return NULL.
    780 ** Otherwise, return a pointer to the first character not part of the number
    781 ** of seconds.
    782 */
    783 
    784 static const char *
    785 getsecs(strp, secsp)
    786 register const char *   strp;
    787 long * const        secsp;
    788 {
    789     int num;
    790 
    791     /*
    792     ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
    793     ** "M10.4.6/26", which does not conform to Posix,
    794     ** but which specifies the equivalent of
    795     ** ``02:00 on the first Sunday on or after 23 Oct''.
    796     */
    797     strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
    798     if (strp == NULL)
    799         return NULL;
    800     *secsp = num * (long) SECSPERHOUR;
    801     if (*strp == ':') {
    802         ++strp;
    803         strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
    804         if (strp == NULL)
    805             return NULL;
    806         *secsp += num * SECSPERMIN;
    807         if (*strp == ':') {
    808             ++strp;
    809             /* `SECSPERMIN' allows for leap seconds. */
    810             strp = getnum(strp, &num, 0, SECSPERMIN);
    811             if (strp == NULL)
    812                 return NULL;
    813             *secsp += num;
    814         }
    815     }
    816     return strp;
    817 }
    818 
    819 /*
    820 ** Given a pointer into a time zone string, extract an offset, in
    821 ** [+-]hh[:mm[:ss]] form, from the string.
    822 ** If any error occurs, return NULL.
    823 ** Otherwise, return a pointer to the first character not part of the time.
    824 */
    825 
    826 static const char *
    827 getoffset(strp, offsetp)
    828 register const char *   strp;
    829 long * const        offsetp;
    830 {
    831     register int    neg = 0;
    832 
    833     if (*strp == '-') {
    834         neg = 1;
    835         ++strp;
    836     } else if (*strp == '+')
    837         ++strp;
    838     strp = getsecs(strp, offsetp);
    839     if (strp == NULL)
    840         return NULL;        /* illegal time */
    841     if (neg)
    842         *offsetp = -*offsetp;
    843     return strp;
    844 }
    845 
    846 /*
    847 ** Given a pointer into a time zone string, extract a rule in the form
    848 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
    849 ** If a valid rule is not found, return NULL.
    850 ** Otherwise, return a pointer to the first character not part of the rule.
    851 */
    852 
    853 static const char *
    854 getrule(strp, rulep)
    855 const char *            strp;
    856 register struct rule * const    rulep;
    857 {
    858     if (*strp == 'J') {
    859         /*
    860         ** Julian day.
    861         */
    862         rulep->r_type = JULIAN_DAY;
    863         ++strp;
    864         strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
    865     } else if (*strp == 'M') {
    866         /*
    867         ** Month, week, day.
    868         */
    869         rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
    870         ++strp;
    871         strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
    872         if (strp == NULL)
    873             return NULL;
    874         if (*strp++ != '.')
    875             return NULL;
    876         strp = getnum(strp, &rulep->r_week, 1, 5);
    877         if (strp == NULL)
    878             return NULL;
    879         if (*strp++ != '.')
    880             return NULL;
    881         strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
    882     } else if (is_digit(*strp)) {
    883         /*
    884         ** Day of year.
    885         */
    886         rulep->r_type = DAY_OF_YEAR;
    887         strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
    888     } else  return NULL;        /* invalid format */
    889     if (strp == NULL)
    890         return NULL;
    891     if (*strp == '/') {
    892         /*
    893         ** Time specified.
    894         */
    895         ++strp;
    896         strp = getsecs(strp, &rulep->r_time);
    897     } else  rulep->r_time = 2 * SECSPERHOUR;    /* default = 2:00:00 */
    898     return strp;
    899 }
    900 
    901 /*
    902 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
    903 ** year, a rule, and the offset from UTC at the time that rule takes effect,
    904 ** calculate the Epoch-relative time that rule takes effect.
    905 */
    906 
    907 static time_t
    908 transtime(janfirst, year, rulep, offset)
    909 const time_t                janfirst;
    910 const int               year;
    911 register const struct rule * const  rulep;
    912 const long              offset;
    913 {
    914     register int    leapyear;
    915     register time_t value;
    916     register int    i;
    917     int     d, m1, yy0, yy1, yy2, dow;
    918 
    919     INITIALIZE(value);
    920     leapyear = isleap(year);
    921     switch (rulep->r_type) {
    922 
    923     case JULIAN_DAY:
    924         /*
    925         ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
    926         ** years.
    927         ** In non-leap years, or if the day number is 59 or less, just
    928         ** add SECSPERDAY times the day number-1 to the time of
    929         ** January 1, midnight, to get the day.
    930         */
    931         value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
    932         if (leapyear && rulep->r_day >= 60)
    933             value += SECSPERDAY;
    934         break;
    935 
    936     case DAY_OF_YEAR:
    937         /*
    938         ** n - day of year.
    939         ** Just add SECSPERDAY times the day number to the time of
    940         ** January 1, midnight, to get the day.
    941         */
    942         value = janfirst + rulep->r_day * SECSPERDAY;
    943         break;
    944 
    945     case MONTH_NTH_DAY_OF_WEEK:
    946         /*
    947         ** Mm.n.d - nth "dth day" of month m.
    948         */
    949         value = janfirst;
    950         for (i = 0; i < rulep->r_mon - 1; ++i)
    951             value += mon_lengths[leapyear][i] * SECSPERDAY;
    952 
    953         /*
    954         ** Use Zeller's Congruence to get day-of-week of first day of
    955         ** month.
    956         */
    957         m1 = (rulep->r_mon + 9) % 12 + 1;
    958         yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
    959         yy1 = yy0 / 100;
    960         yy2 = yy0 % 100;
    961         dow = ((26 * m1 - 2) / 10 +
    962             1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
    963         if (dow < 0)
    964             dow += DAYSPERWEEK;
    965 
    966         /*
    967         ** "dow" is the day-of-week of the first day of the month. Get
    968         ** the day-of-month (zero-origin) of the first "dow" day of the
    969         ** month.
    970         */
    971         d = rulep->r_day - dow;
    972         if (d < 0)
    973             d += DAYSPERWEEK;
    974         for (i = 1; i < rulep->r_week; ++i) {
    975             if (d + DAYSPERWEEK >=
    976                 mon_lengths[leapyear][rulep->r_mon - 1])
    977                     break;
    978             d += DAYSPERWEEK;
    979         }
    980 
    981         /*
    982         ** "d" is the day-of-month (zero-origin) of the day we want.
    983         */
    984         value += d * SECSPERDAY;
    985         break;
    986     }
    987 
    988     /*
    989     ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
    990     ** question. To get the Epoch-relative time of the specified local
    991     ** time on that day, add the transition time and the current offset
    992     ** from UTC.
    993     */
    994     return value + rulep->r_time + offset;
    995 }
    996 
    997 /*
    998 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
    999 ** appropriate.
   1000 */
   1001 
   1002 static int
   1003 tzparse(name, sp, lastditch)
   1004 const char *            name;
   1005 register struct state * const   sp;
   1006 const int           lastditch;
   1007 {
   1008     const char *            stdname;
   1009     const char *            dstname;
   1010     size_t              stdlen;
   1011     size_t              dstlen;
   1012     long                stdoffset;
   1013     long                dstoffset;
   1014     register time_t *       atp;
   1015     register unsigned char *    typep;
   1016     register char *         cp;
   1017     register int            load_result;
   1018 
   1019     INITIALIZE(dstname);
   1020     stdname = name;
   1021     if (lastditch) {
   1022         stdlen = strlen(name);  /* length of standard zone name */
   1023         name += stdlen;
   1024         if (stdlen >= sizeof sp->chars)
   1025             stdlen = (sizeof sp->chars) - 1;
   1026         stdoffset = 0;
   1027     } else {
   1028         if (*name == '<') {
   1029             name++;
   1030             stdname = name;
   1031             name = getqzname(name, '>');
   1032             if (*name != '>')
   1033                 return (-1);
   1034             stdlen = name - stdname;
   1035             name++;
   1036         } else {
   1037             name = getzname(name);
   1038             stdlen = name - stdname;
   1039         }
   1040         if (*name == '\0')
   1041             return -1;
   1042         name = getoffset(name, &stdoffset);
   1043         if (name == NULL)
   1044             return -1;
   1045     }
   1046     load_result = tzload(TZDEFRULES, sp, FALSE);
   1047     if (load_result != 0)
   1048         sp->leapcnt = 0;        /* so, we're off a little */
   1049     sp->timecnt = 0;
   1050     if (*name != '\0') {
   1051         if (*name == '<') {
   1052             dstname = ++name;
   1053             name = getqzname(name, '>');
   1054             if (*name != '>')
   1055                 return -1;
   1056             dstlen = name - dstname;
   1057             name++;
   1058         } else {
   1059             dstname = name;
   1060             name = getzname(name);
   1061             dstlen = name - dstname; /* length of DST zone name */
   1062         }
   1063         if (*name != '\0' && *name != ',' && *name != ';') {
   1064             name = getoffset(name, &dstoffset);
   1065             if (name == NULL)
   1066                 return -1;
   1067         } else  dstoffset = stdoffset - SECSPERHOUR;
   1068         if (*name == '\0' && load_result != 0)
   1069             name = TZDEFRULESTRING;
   1070         if (*name == ',' || *name == ';') {
   1071             struct rule start;
   1072             struct rule end;
   1073             register int    year;
   1074             register time_t janfirst;
   1075             time_t      starttime;
   1076             time_t      endtime;
   1077 
   1078             ++name;
   1079             if ((name = getrule(name, &start)) == NULL)
   1080                 return -1;
   1081             if (*name++ != ',')
   1082                 return -1;
   1083             if ((name = getrule(name, &end)) == NULL)
   1084                 return -1;
   1085             if (*name != '\0')
   1086                 return -1;
   1087             sp->typecnt = 2;    /* standard time and DST */
   1088             /*
   1089             ** Two transitions per year, from EPOCH_YEAR forward.
   1090             */
   1091             sp->ttis[0].tt_gmtoff = -dstoffset;
   1092             sp->ttis[0].tt_isdst = 1;
   1093             sp->ttis[0].tt_abbrind = stdlen + 1;
   1094             sp->ttis[1].tt_gmtoff = -stdoffset;
   1095             sp->ttis[1].tt_isdst = 0;
   1096             sp->ttis[1].tt_abbrind = 0;
   1097             atp = sp->ats;
   1098             typep = sp->types;
   1099             janfirst = 0;
   1100             for (year = EPOCH_YEAR;
   1101                 sp->timecnt + 2 <= TZ_MAX_TIMES;
   1102                 ++year) {
   1103                     time_t  newfirst;
   1104 
   1105                 starttime = transtime(janfirst, year, &start,
   1106                     stdoffset);
   1107                 endtime = transtime(janfirst, year, &end,
   1108                     dstoffset);
   1109                 if (starttime > endtime) {
   1110                     *atp++ = endtime;
   1111                     *typep++ = 1;   /* DST ends */
   1112                     *atp++ = starttime;
   1113                     *typep++ = 0;   /* DST begins */
   1114                 } else {
   1115                     *atp++ = starttime;
   1116                     *typep++ = 0;   /* DST begins */
   1117                     *atp++ = endtime;
   1118                     *typep++ = 1;   /* DST ends */
   1119                 }
   1120                 sp->timecnt += 2;
   1121                 newfirst = janfirst;
   1122                 newfirst += year_lengths[isleap(year)] *
   1123                     SECSPERDAY;
   1124                 if (newfirst <= janfirst)
   1125                     break;
   1126                 janfirst = newfirst;
   1127             }
   1128         } else {
   1129             register long   theirstdoffset;
   1130             register long   theirdstoffset;
   1131             register long   theiroffset;
   1132             register int    isdst;
   1133             register int    i;
   1134             register int    j;
   1135 
   1136             if (*name != '\0')
   1137                 return -1;
   1138             /*
   1139             ** Initial values of theirstdoffset and theirdstoffset.
   1140             */
   1141             theirstdoffset = 0;
   1142             for (i = 0; i < sp->timecnt; ++i) {
   1143                 j = sp->types[i];
   1144                 if (!sp->ttis[j].tt_isdst) {
   1145                     theirstdoffset =
   1146                         -sp->ttis[j].tt_gmtoff;
   1147                     break;
   1148                 }
   1149             }
   1150             theirdstoffset = 0;
   1151             for (i = 0; i < sp->timecnt; ++i) {
   1152                 j = sp->types[i];
   1153                 if (sp->ttis[j].tt_isdst) {
   1154                     theirdstoffset =
   1155                         -sp->ttis[j].tt_gmtoff;
   1156                     break;
   1157                 }
   1158             }
   1159             /*
   1160             ** Initially we're assumed to be in standard time.
   1161             */
   1162             isdst = FALSE;
   1163             theiroffset = theirstdoffset;
   1164             /*
   1165             ** Now juggle transition times and types
   1166             ** tracking offsets as you do.
   1167             */
   1168             for (i = 0; i < sp->timecnt; ++i) {
   1169                 j = sp->types[i];
   1170                 sp->types[i] = sp->ttis[j].tt_isdst;
   1171                 if (sp->ttis[j].tt_ttisgmt) {
   1172                     /* No adjustment to transition time */
   1173                 } else {
   1174                     /*
   1175                     ** If summer time is in effect, and the
   1176                     ** transition time was not specified as
   1177                     ** standard time, add the summer time
   1178                     ** offset to the transition time;
   1179                     ** otherwise, add the standard time
   1180                     ** offset to the transition time.
   1181                     */
   1182                     /*
   1183                     ** Transitions from DST to DDST
   1184                     ** will effectively disappear since
   1185                     ** POSIX provides for only one DST
   1186                     ** offset.
   1187                     */
   1188                     if (isdst && !sp->ttis[j].tt_ttisstd) {
   1189                         sp->ats[i] += dstoffset -
   1190                             theirdstoffset;
   1191                     } else {
   1192                         sp->ats[i] += stdoffset -
   1193                             theirstdoffset;
   1194                     }
   1195                 }
   1196                 theiroffset = -sp->ttis[j].tt_gmtoff;
   1197                 if (sp->ttis[j].tt_isdst)
   1198                     theirdstoffset = theiroffset;
   1199                 else    theirstdoffset = theiroffset;
   1200             }
   1201             /*
   1202             ** Finally, fill in ttis.
   1203             ** ttisstd and ttisgmt need not be handled.
   1204             */
   1205             sp->ttis[0].tt_gmtoff = -stdoffset;
   1206             sp->ttis[0].tt_isdst = FALSE;
   1207             sp->ttis[0].tt_abbrind = 0;
   1208             sp->ttis[1].tt_gmtoff = -dstoffset;
   1209             sp->ttis[1].tt_isdst = TRUE;
   1210             sp->ttis[1].tt_abbrind = stdlen + 1;
   1211             sp->typecnt = 2;
   1212         }
   1213     } else {
   1214         dstlen = 0;
   1215         sp->typecnt = 1;        /* only standard time */
   1216         sp->timecnt = 0;
   1217         sp->ttis[0].tt_gmtoff = -stdoffset;
   1218         sp->ttis[0].tt_isdst = 0;
   1219         sp->ttis[0].tt_abbrind = 0;
   1220     }
   1221     sp->charcnt = stdlen + 1;
   1222     if (dstlen != 0)
   1223         sp->charcnt += dstlen + 1;
   1224     if ((size_t) sp->charcnt > sizeof sp->chars)
   1225         return -1;
   1226     cp = sp->chars;
   1227     (void) strncpy(cp, stdname, stdlen);
   1228     cp += stdlen;
   1229     *cp++ = '\0';
   1230     if (dstlen != 0) {
   1231         (void) strncpy(cp, dstname, dstlen);
   1232         *(cp + dstlen) = '\0';
   1233     }
   1234     return 0;
   1235 }
   1236 
   1237 static void
   1238 gmtload(sp)
   1239 struct state * const    sp;
   1240 {
   1241     if (tzload(gmt, sp, TRUE) != 0)
   1242         (void) tzparse(gmt, sp, TRUE);
   1243 }
   1244 
   1245 static void
   1246 tzsetwall P((void))
   1247 {
   1248     if (lcl_is_set < 0)
   1249         return;
   1250     lcl_is_set = -1;
   1251 
   1252 #ifdef ALL_STATE
   1253     if (lclptr == NULL) {
   1254         lclptr = (struct state *) malloc(sizeof *lclptr);
   1255         if (lclptr == NULL) {
   1256             settzname();    /* all we can do */
   1257             return;
   1258         }
   1259     }
   1260 #endif /* defined ALL_STATE */
   1261     if (tzload((char *) NULL, lclptr, TRUE) != 0)
   1262         gmtload(lclptr);
   1263     settzname();
   1264 }
   1265 
   1266 static void
   1267 tzset_locked P((void))
   1268 {
   1269     register const char *   name = NULL;
   1270     static char buf[PROP_VALUE_MAX];
   1271 
   1272     name = getenv("TZ");
   1273 
   1274     // try the "persist.sys.timezone" system property first
   1275     if (name == NULL && __system_property_get("persist.sys.timezone", buf) > 0)
   1276         name = buf;
   1277 
   1278     if (name == NULL) {
   1279         tzsetwall();
   1280         return;
   1281     }
   1282 
   1283     if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
   1284         return;
   1285     lcl_is_set = strlen(name) < sizeof lcl_TZname;
   1286     if (lcl_is_set)
   1287         (void) strcpy(lcl_TZname, name);
   1288 
   1289 #ifdef ALL_STATE
   1290     if (lclptr == NULL) {
   1291         lclptr = (struct state *) malloc(sizeof *lclptr);
   1292         if (lclptr == NULL) {
   1293             settzname();    /* all we can do */
   1294             return;
   1295         }
   1296     }
   1297 #endif /* defined ALL_STATE */
   1298     if (*name == '\0') {
   1299         /*
   1300         ** User wants it fast rather than right.
   1301         */
   1302         lclptr->leapcnt = 0;        /* so, we're off a little */
   1303         lclptr->timecnt = 0;
   1304         lclptr->typecnt = 0;
   1305         lclptr->ttis[0].tt_isdst = 0;
   1306         lclptr->ttis[0].tt_gmtoff = 0;
   1307         lclptr->ttis[0].tt_abbrind = 0;
   1308         (void) strcpy(lclptr->chars, gmt);
   1309     } else if (tzload(name, lclptr, TRUE) != 0)
   1310         if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
   1311             (void) gmtload(lclptr);
   1312     settzname();
   1313 }
   1314 
   1315 void
   1316 tzset P((void))
   1317 {
   1318     _tzLock();
   1319     tzset_locked();
   1320     _tzUnlock();
   1321 }
   1322 
   1323 /*
   1324 ** The easy way to behave "as if no library function calls" localtime
   1325 ** is to not call it--so we drop its guts into "localsub", which can be
   1326 ** freely called. (And no, the PANS doesn't require the above behavior--
   1327 ** but it *is* desirable.)
   1328 **
   1329 ** The unused offset argument is for the benefit of mktime variants.
   1330 */
   1331 
   1332 /*ARGSUSED*/
   1333 static struct tm *
   1334 localsub(timep, offset, tmp)
   1335 const time_t * const    timep;
   1336 const long      offset;
   1337 struct tm * const   tmp;
   1338 {
   1339     register struct state *     sp;
   1340     register const struct ttinfo *  ttisp;
   1341     register int            i;
   1342     register struct tm *        result;
   1343     const time_t            t = *timep;
   1344 
   1345     sp = lclptr;
   1346 #ifdef ALL_STATE
   1347     if (sp == NULL)
   1348         return gmtsub(timep, offset, tmp);
   1349 #endif /* defined ALL_STATE */
   1350     if ((sp->goback && t < sp->ats[0]) ||
   1351         (sp->goahead && t > sp->ats[sp->timecnt - 1])) {
   1352             time_t          newt = t;
   1353             register time_t     seconds;
   1354             register time_t     tcycles;
   1355             register int_fast64_t   icycles;
   1356 
   1357             if (t < sp->ats[0])
   1358                 seconds = sp->ats[0] - t;
   1359             else    seconds = t - sp->ats[sp->timecnt - 1];
   1360             --seconds;
   1361             tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
   1362             ++tcycles;
   1363             icycles = tcycles;
   1364             if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
   1365                 return NULL;
   1366             seconds = icycles;
   1367             seconds *= YEARSPERREPEAT;
   1368             seconds *= AVGSECSPERYEAR;
   1369             if (t < sp->ats[0])
   1370                 newt += seconds;
   1371             else    newt -= seconds;
   1372             if (newt < sp->ats[0] ||
   1373                 newt > sp->ats[sp->timecnt - 1])
   1374                     return NULL;    /* "cannot happen" */
   1375             result = localsub(&newt, offset, tmp);
   1376             if (result == tmp) {
   1377                 register time_t newy;
   1378 
   1379                 newy = tmp->tm_year;
   1380                 if (t < sp->ats[0])
   1381                     newy -= icycles * YEARSPERREPEAT;
   1382                 else    newy += icycles * YEARSPERREPEAT;
   1383                 tmp->tm_year = newy;
   1384                 if (tmp->tm_year != newy)
   1385                     return NULL;
   1386             }
   1387             return result;
   1388     }
   1389     if (sp->timecnt == 0 || t < sp->ats[0]) {
   1390         i = 0;
   1391         while (sp->ttis[i].tt_isdst)
   1392             if (++i >= sp->typecnt) {
   1393                 i = 0;
   1394                 break;
   1395             }
   1396     } else {
   1397         register int    lo = 1;
   1398         register int    hi = sp->timecnt;
   1399 
   1400         while (lo < hi) {
   1401             register int    mid = (lo + hi) >> 1;
   1402 
   1403             if (t < sp->ats[mid])
   1404                 hi = mid;
   1405             else    lo = mid + 1;
   1406         }
   1407         i = (int) sp->types[lo - 1];
   1408     }
   1409     ttisp = &sp->ttis[i];
   1410     /*
   1411     ** To get (wrong) behavior that's compatible with System V Release 2.0
   1412     ** you'd replace the statement below with
   1413     **  t += ttisp->tt_gmtoff;
   1414     **  timesub(&t, 0L, sp, tmp);
   1415     */
   1416     result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
   1417     tmp->tm_isdst = ttisp->tt_isdst;
   1418     tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
   1419 #ifdef TM_ZONE
   1420     tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
   1421 #endif /* defined TM_ZONE */
   1422     return result;
   1423 }
   1424 
   1425 struct tm *
   1426 localtime(timep)
   1427 const time_t * const    timep;
   1428 {
   1429     return localtime_r(timep, &tmGlobal);
   1430 }
   1431 
   1432 /*
   1433 ** Re-entrant version of localtime.
   1434 */
   1435 
   1436 struct tm *
   1437 localtime_r(timep, tmp)
   1438 const time_t * const    timep;
   1439 struct tm *     tmp;
   1440 {
   1441     struct tm*  result;
   1442 
   1443     _tzLock();
   1444     tzset_locked();
   1445     result = localsub(timep, 0L, tmp);
   1446     _tzUnlock();
   1447 
   1448     return result;
   1449 }
   1450 
   1451 /*
   1452 ** gmtsub is to gmtime as localsub is to localtime.
   1453 */
   1454 
   1455 static struct tm *
   1456 gmtsub(timep, offset, tmp)
   1457 const time_t * const    timep;
   1458 const long      offset;
   1459 struct tm * const   tmp;
   1460 {
   1461     register struct tm *    result;
   1462 
   1463     if (!gmt_is_set) {
   1464         gmt_is_set = TRUE;
   1465 #ifdef ALL_STATE
   1466         gmtptr = (struct state *) malloc(sizeof *gmtptr);
   1467         if (gmtptr != NULL)
   1468 #endif /* defined ALL_STATE */
   1469             gmtload(gmtptr);
   1470     }
   1471     result = timesub(timep, offset, gmtptr, tmp);
   1472 #ifdef TM_ZONE
   1473     /*
   1474     ** Could get fancy here and deliver something such as
   1475     ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
   1476     ** but this is no time for a treasure hunt.
   1477     */
   1478     if (offset != 0)
   1479         tmp->TM_ZONE = wildabbr;
   1480     else {
   1481 #ifdef ALL_STATE
   1482         if (gmtptr == NULL)
   1483             tmp->TM_ZONE = gmt;
   1484         else    tmp->TM_ZONE = gmtptr->chars;
   1485 #endif /* defined ALL_STATE */
   1486 #ifndef ALL_STATE
   1487         tmp->TM_ZONE = gmtptr->chars;
   1488 #endif /* State Farm */
   1489     }
   1490 #endif /* defined TM_ZONE */
   1491     return result;
   1492 }
   1493 
   1494 struct tm *
   1495 gmtime(timep)
   1496 const time_t * const    timep;
   1497 {
   1498     return gmtime_r(timep, &tmGlobal);
   1499 }
   1500 
   1501 /*
   1502 * Re-entrant version of gmtime.
   1503 */
   1504 
   1505 struct tm *
   1506 gmtime_r(timep, tmp)
   1507 const time_t * const    timep;
   1508 struct tm *     tmp;
   1509 {
   1510     struct tm*  result;
   1511 
   1512     _tzLock();
   1513     result = gmtsub(timep, 0L, tmp);
   1514     _tzUnlock();
   1515 
   1516     return result;
   1517 }
   1518 
   1519 #ifdef STD_INSPIRED
   1520 #if 0 /* disabled because there is no good documentation for this function */
   1521 struct tm *
   1522 offtime(timep, offset)
   1523 const time_t * const    timep;
   1524 const long      offset;
   1525 {
   1526     return gmtsub(timep, offset, &tmGlobal);
   1527 }
   1528 #endif /* 0 */
   1529 #endif /* defined STD_INSPIRED */
   1530 
   1531 /*
   1532 ** Return the number of leap years through the end of the given year
   1533 ** where, to make the math easy, the answer for year zero is defined as zero.
   1534 */
   1535 
   1536 static int
   1537 leaps_thru_end_of(y)
   1538 register const int  y;
   1539 {
   1540     return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
   1541         -(leaps_thru_end_of(-(y + 1)) + 1);
   1542 }
   1543 
   1544 static struct tm *
   1545 timesub(timep, offset, sp, tmp)
   1546 const time_t * const            timep;
   1547 const long              offset;
   1548 register const struct state * const sp;
   1549 register struct tm * const      tmp;
   1550 {
   1551     register const struct lsinfo *  lp;
   1552     register time_t         tdays;
   1553     register int            idays;  /* unsigned would be so 2003 */
   1554     register long           rem;
   1555     int             y;
   1556     register const int *        ip;
   1557     register long           corr;
   1558     register int            hit;
   1559     register int            i;
   1560 
   1561     corr = 0;
   1562     hit = 0;
   1563 #ifdef ALL_STATE
   1564     i = (sp == NULL) ? 0 : sp->leapcnt;
   1565 #endif /* defined ALL_STATE */
   1566 #ifndef ALL_STATE
   1567     i = sp->leapcnt;
   1568 #endif /* State Farm */
   1569     while (--i >= 0) {
   1570         lp = &sp->lsis[i];
   1571         if (*timep >= lp->ls_trans) {
   1572             if (*timep == lp->ls_trans) {
   1573                 hit = ((i == 0 && lp->ls_corr > 0) ||
   1574                     lp->ls_corr > sp->lsis[i - 1].ls_corr);
   1575                 if (hit)
   1576                     while (i > 0 &&
   1577                         sp->lsis[i].ls_trans ==
   1578                         sp->lsis[i - 1].ls_trans + 1 &&
   1579                         sp->lsis[i].ls_corr ==
   1580                         sp->lsis[i - 1].ls_corr + 1) {
   1581                             ++hit;
   1582                             --i;
   1583                     }
   1584             }
   1585             corr = lp->ls_corr;
   1586             break;
   1587         }
   1588     }
   1589     y = EPOCH_YEAR;
   1590     tdays = *timep / SECSPERDAY;
   1591     rem = *timep - tdays * SECSPERDAY;
   1592     while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
   1593         int     newy;
   1594         register time_t tdelta;
   1595         register int    idelta;
   1596         register int    leapdays;
   1597 
   1598         tdelta = tdays / DAYSPERLYEAR;
   1599         idelta = tdelta;
   1600         if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
   1601             return NULL;
   1602         if (idelta == 0)
   1603             idelta = (tdays < 0) ? -1 : 1;
   1604         newy = y;
   1605         if (increment_overflow(&newy, idelta))
   1606             return NULL;
   1607         leapdays = leaps_thru_end_of(newy - 1) -
   1608             leaps_thru_end_of(y - 1);
   1609         tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
   1610         tdays -= leapdays;
   1611         y = newy;
   1612     }
   1613     {
   1614         register long   seconds;
   1615 
   1616         seconds = tdays * SECSPERDAY + 0.5;
   1617         tdays = seconds / SECSPERDAY;
   1618         rem += seconds - tdays * SECSPERDAY;
   1619     }
   1620     /*
   1621     ** Given the range, we can now fearlessly cast...
   1622     */
   1623     idays = tdays;
   1624     rem += offset - corr;
   1625     while (rem < 0) {
   1626         rem += SECSPERDAY;
   1627         --idays;
   1628     }
   1629     while (rem >= SECSPERDAY) {
   1630         rem -= SECSPERDAY;
   1631         ++idays;
   1632     }
   1633     while (idays < 0) {
   1634         if (increment_overflow(&y, -1))
   1635             return NULL;
   1636         idays += year_lengths[isleap(y)];
   1637     }
   1638     while (idays >= year_lengths[isleap(y)]) {
   1639         idays -= year_lengths[isleap(y)];
   1640         if (increment_overflow(&y, 1))
   1641             return NULL;
   1642     }
   1643     tmp->tm_year = y;
   1644     if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
   1645         return NULL;
   1646     tmp->tm_yday = idays;
   1647     /*
   1648     ** The "extra" mods below avoid overflow problems.
   1649     */
   1650     tmp->tm_wday = EPOCH_WDAY +
   1651         ((y - EPOCH_YEAR) % DAYSPERWEEK) *
   1652         (DAYSPERNYEAR % DAYSPERWEEK) +
   1653         leaps_thru_end_of(y - 1) -
   1654         leaps_thru_end_of(EPOCH_YEAR - 1) +
   1655         idays;
   1656     tmp->tm_wday %= DAYSPERWEEK;
   1657     if (tmp->tm_wday < 0)
   1658         tmp->tm_wday += DAYSPERWEEK;
   1659     tmp->tm_hour = (int) (rem / SECSPERHOUR);
   1660     rem %= SECSPERHOUR;
   1661     tmp->tm_min = (int) (rem / SECSPERMIN);
   1662     /*
   1663     ** A positive leap second requires a special
   1664     ** representation. This uses "... ??:59:60" et seq.
   1665     */
   1666     tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
   1667     ip = mon_lengths[isleap(y)];
   1668     for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
   1669         idays -= ip[tmp->tm_mon];
   1670     tmp->tm_mday = (int) (idays + 1);
   1671     tmp->tm_isdst = 0;
   1672 #ifdef TM_GMTOFF
   1673     tmp->TM_GMTOFF = offset;
   1674 #endif /* defined TM_GMTOFF */
   1675     return tmp;
   1676 }
   1677 
   1678 char *
   1679 ctime(timep)
   1680 const time_t * const    timep;
   1681 {
   1682 /*
   1683 ** Section 4.12.3.2 of X3.159-1989 requires that
   1684 **  The ctime function converts the calendar time pointed to by timer
   1685 **  to local time in the form of a string. It is equivalent to
   1686 **      asctime(localtime(timer))
   1687 */
   1688     return asctime(localtime(timep));
   1689 }
   1690 
   1691 char *
   1692 ctime_r(timep, buf)
   1693 const time_t * const    timep;
   1694 char *          buf;
   1695 {
   1696     struct tm   mytm;
   1697 
   1698     return asctime_r(localtime_r(timep, &mytm), buf);
   1699 }
   1700 
   1701 /*
   1702 ** Adapted from code provided by Robert Elz, who writes:
   1703 **  The "best" way to do mktime I think is based on an idea of Bob
   1704 **  Kridle's (so its said...) from a long time ago.
   1705 **  It does a binary search of the time_t space. Since time_t's are
   1706 **  just 32 bits, its a max of 32 iterations (even at 64 bits it
   1707 **  would still be very reasonable).
   1708 */
   1709 
   1710 #ifndef WRONG
   1711 #define WRONG   (-1)
   1712 #endif /* !defined WRONG */
   1713 
   1714 /*
   1715 ** Simplified normalize logic courtesy Paul Eggert.
   1716 */
   1717 
   1718 static int
   1719 increment_overflow(number, delta)
   1720 int *   number;
   1721 int delta;
   1722 {
   1723     unsigned  number0 = (unsigned)*number;
   1724     unsigned  number1 = (unsigned)(number0 + delta);
   1725 
   1726     *number = (int)number1;
   1727 
   1728     if (delta >= 0) {
   1729         return ((int)number1 < (int)number0);
   1730     } else {
   1731         return ((int)number1 > (int)number0);
   1732     }
   1733 }
   1734 
   1735 static int
   1736 long_increment_overflow(number, delta)
   1737 long *  number;
   1738 int delta;
   1739 {
   1740     unsigned long  number0 = (unsigned long)*number;
   1741     unsigned long  number1 = (unsigned long)(number0 + delta);
   1742 
   1743     *number = (long)number1;
   1744 
   1745     if (delta >= 0) {
   1746         return ((long)number1 < (long)number0);
   1747     } else {
   1748         return ((long)number1 > (long)number0);
   1749     }
   1750 }
   1751 
   1752 static int
   1753 normalize_overflow(tensptr, unitsptr, base)
   1754 int * const tensptr;
   1755 int * const unitsptr;
   1756 const int   base;
   1757 {
   1758     register int    tensdelta;
   1759 
   1760     tensdelta = (*unitsptr >= 0) ?
   1761         (*unitsptr / base) :
   1762         (-1 - (-1 - *unitsptr) / base);
   1763     *unitsptr -= tensdelta * base;
   1764     return increment_overflow(tensptr, tensdelta);
   1765 }
   1766 
   1767 static int
   1768 long_normalize_overflow(tensptr, unitsptr, base)
   1769 long * const    tensptr;
   1770 int * const unitsptr;
   1771 const int   base;
   1772 {
   1773     register int    tensdelta;
   1774 
   1775     tensdelta = (*unitsptr >= 0) ?
   1776         (*unitsptr / base) :
   1777         (-1 - (-1 - *unitsptr) / base);
   1778     *unitsptr -= tensdelta * base;
   1779     return long_increment_overflow(tensptr, tensdelta);
   1780 }
   1781 
   1782 static int
   1783 tmcomp(atmp, btmp)
   1784 register const struct tm * const atmp;
   1785 register const struct tm * const btmp;
   1786 {
   1787     register int    result;
   1788 
   1789     if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
   1790         (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
   1791         (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
   1792         (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
   1793         (result = (atmp->tm_min - btmp->tm_min)) == 0)
   1794             result = atmp->tm_sec - btmp->tm_sec;
   1795     return result;
   1796 }
   1797 
   1798 static time_t
   1799 time2sub(tmp, funcp, offset, okayp, do_norm_secs)
   1800 struct tm * const   tmp;
   1801 struct tm * (* const    funcp) P((const time_t*, long, struct tm*));
   1802 const long      offset;
   1803 int * const     okayp;
   1804 const int       do_norm_secs;
   1805 {
   1806     register const struct state *   sp;
   1807     register int            dir;
   1808     register int            i, j;
   1809     register int            saved_seconds;
   1810     register long           li;
   1811     register time_t         lo;
   1812     register time_t         hi;
   1813     long                y;
   1814     time_t              newt;
   1815     time_t              t;
   1816     struct tm           yourtm, mytm;
   1817 
   1818     *okayp = FALSE;
   1819     yourtm = *tmp;
   1820     if (do_norm_secs) {
   1821         if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
   1822             SECSPERMIN))
   1823                 return WRONG;
   1824     }
   1825     if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
   1826         return WRONG;
   1827     if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
   1828         return WRONG;
   1829     y = yourtm.tm_year;
   1830     if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
   1831         return WRONG;
   1832     /*
   1833     ** Turn y into an actual year number for now.
   1834     ** It is converted back to an offset from TM_YEAR_BASE later.
   1835     */
   1836     if (long_increment_overflow(&y, TM_YEAR_BASE))
   1837         return WRONG;
   1838     while (yourtm.tm_mday <= 0) {
   1839         if (long_increment_overflow(&y, -1))
   1840             return WRONG;
   1841         li = y + (1 < yourtm.tm_mon);
   1842         yourtm.tm_mday += year_lengths[isleap(li)];
   1843     }
   1844     while (yourtm.tm_mday > DAYSPERLYEAR) {
   1845         li = y + (1 < yourtm.tm_mon);
   1846         yourtm.tm_mday -= year_lengths[isleap(li)];
   1847         if (long_increment_overflow(&y, 1))
   1848             return WRONG;
   1849     }
   1850     for ( ; ; ) {
   1851         i = mon_lengths[isleap(y)][yourtm.tm_mon];
   1852         if (yourtm.tm_mday <= i)
   1853             break;
   1854         yourtm.tm_mday -= i;
   1855         if (++yourtm.tm_mon >= MONSPERYEAR) {
   1856             yourtm.tm_mon = 0;
   1857             if (long_increment_overflow(&y, 1))
   1858                 return WRONG;
   1859         }
   1860     }
   1861     if (long_increment_overflow(&y, -TM_YEAR_BASE))
   1862         return WRONG;
   1863     yourtm.tm_year = y;
   1864     if (yourtm.tm_year != y)
   1865         return WRONG;
   1866     if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
   1867         saved_seconds = 0;
   1868     else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
   1869         /*
   1870         ** We can't set tm_sec to 0, because that might push the
   1871         ** time below the minimum representable time.
   1872         ** Set tm_sec to 59 instead.
   1873         ** This assumes that the minimum representable time is
   1874         ** not in the same minute that a leap second was deleted from,
   1875         ** which is a safer assumption than using 58 would be.
   1876         */
   1877         if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
   1878             return WRONG;
   1879         saved_seconds = yourtm.tm_sec;
   1880         yourtm.tm_sec = SECSPERMIN - 1;
   1881     } else {
   1882         saved_seconds = yourtm.tm_sec;
   1883         yourtm.tm_sec = 0;
   1884     }
   1885     /*
   1886     ** Do a binary search (this works whatever time_t's type is).
   1887     */
   1888     if (!TYPE_SIGNED(time_t)) {
   1889         lo = 0;
   1890         hi = lo - 1;
   1891     } else if (!TYPE_INTEGRAL(time_t)) {
   1892         if (sizeof(time_t) > sizeof(float))
   1893             hi = (time_t) DBL_MAX;
   1894         else    hi = (time_t) FLT_MAX;
   1895         lo = -hi;
   1896     } else {
   1897         lo = 1;
   1898         for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
   1899             lo *= 2;
   1900         hi = -(lo + 1);
   1901     }
   1902     for ( ; ; ) {
   1903         t = lo / 2 + hi / 2;
   1904         if (t < lo)
   1905             t = lo;
   1906         else if (t > hi)
   1907             t = hi;
   1908         if ((*funcp)(&t, offset, &mytm) == NULL) {
   1909             /*
   1910             ** Assume that t is too extreme to be represented in
   1911             ** a struct tm; arrange things so that it is less
   1912             ** extreme on the next pass.
   1913             */
   1914             dir = (t > 0) ? 1 : -1;
   1915         } else  dir = tmcomp(&mytm, &yourtm);
   1916         if (dir != 0) {
   1917             if (t == lo) {
   1918                 if (t == TIME_T_MAX)
   1919                     return WRONG;
   1920                 ++t;
   1921                 ++lo;
   1922             } else if (t == hi) {
   1923                 if (t == TIME_T_MIN)
   1924                     return WRONG;
   1925                 --t;
   1926                 --hi;
   1927             }
   1928             if (lo > hi)
   1929                 return WRONG;
   1930             if (dir > 0)
   1931                 hi = t;
   1932             else    lo = t;
   1933             continue;
   1934         }
   1935         if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
   1936             break;
   1937         /*
   1938         ** Right time, wrong type.
   1939         ** Hunt for right time, right type.
   1940         ** It's okay to guess wrong since the guess
   1941         ** gets checked.
   1942         */
   1943         /*
   1944         ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
   1945         */
   1946         sp = (const struct state *)
   1947             (((void *) funcp == (void *) localsub) ?
   1948             lclptr : gmtptr);
   1949 #ifdef ALL_STATE
   1950         if (sp == NULL)
   1951             return WRONG;
   1952 #endif /* defined ALL_STATE */
   1953         for (i = sp->typecnt - 1; i >= 0; --i) {
   1954             if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
   1955                 continue;
   1956             for (j = sp->typecnt - 1; j >= 0; --j) {
   1957                 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
   1958                     continue;
   1959                 newt = t + sp->ttis[j].tt_gmtoff -
   1960                     sp->ttis[i].tt_gmtoff;
   1961                 if ((*funcp)(&newt, offset, &mytm) == NULL)
   1962                     continue;
   1963                 if (tmcomp(&mytm, &yourtm) != 0)
   1964                     continue;
   1965                 if (mytm.tm_isdst != yourtm.tm_isdst)
   1966                     continue;
   1967                 /*
   1968                 ** We have a match.
   1969                 */
   1970                 t = newt;
   1971                 goto label;
   1972             }
   1973         }
   1974         return WRONG;
   1975     }
   1976 label:
   1977     newt = t + saved_seconds;
   1978     if ((newt < t) != (saved_seconds < 0))
   1979         return WRONG;
   1980     t = newt;
   1981     if ((*funcp)(&t, offset, tmp))
   1982         *okayp = TRUE;
   1983     return t;
   1984 }
   1985 
   1986 static time_t
   1987 time2(tmp, funcp, offset, okayp)
   1988 struct tm * const   tmp;
   1989 struct tm * (* const    funcp) P((const time_t*, long, struct tm*));
   1990 const long      offset;
   1991 int * const     okayp;
   1992 {
   1993     time_t  t;
   1994 
   1995     /*
   1996     ** First try without normalization of seconds
   1997     ** (in case tm_sec contains a value associated with a leap second).
   1998     ** If that fails, try with normalization of seconds.
   1999     */
   2000     t = time2sub(tmp, funcp, offset, okayp, FALSE);
   2001     return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
   2002 }
   2003 
   2004 static time_t
   2005 time1(tmp, funcp, offset)
   2006 struct tm * const   tmp;
   2007 struct tm * (* const    funcp) P((const time_t *, long, struct tm *));
   2008 const long      offset;
   2009 {
   2010     register time_t         t;
   2011     register const struct state *   sp;
   2012     register int            samei, otheri;
   2013     register int            sameind, otherind;
   2014     register int            i;
   2015     register int            nseen;
   2016     int             seen[TZ_MAX_TYPES];
   2017     int             types[TZ_MAX_TYPES];
   2018     int             okay;
   2019 
   2020     if (tmp->tm_isdst > 1)
   2021         tmp->tm_isdst = 1;
   2022     t = time2(tmp, funcp, offset, &okay);
   2023 #ifdef PCTS
   2024     /*
   2025     ** PCTS code courtesy Grant Sullivan.
   2026     */
   2027     if (okay)
   2028         return t;
   2029     if (tmp->tm_isdst < 0)
   2030         tmp->tm_isdst = 0;  /* reset to std and try again */
   2031 #endif /* defined PCTS */
   2032 #ifndef PCTS
   2033     if (okay || tmp->tm_isdst < 0)
   2034         return t;
   2035 #endif /* !defined PCTS */
   2036     /*
   2037     ** We're supposed to assume that somebody took a time of one type
   2038     ** and did some math on it that yielded a "struct tm" that's bad.
   2039     ** We try to divine the type they started from and adjust to the
   2040     ** type they need.
   2041     */
   2042     /*
   2043     ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
   2044     */
   2045     sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
   2046         lclptr : gmtptr);
   2047 #ifdef ALL_STATE
   2048     if (sp == NULL)
   2049         return WRONG;
   2050 #endif /* defined ALL_STATE */
   2051     for (i = 0; i < sp->typecnt; ++i)
   2052         seen[i] = FALSE;
   2053     nseen = 0;
   2054     for (i = sp->timecnt - 1; i >= 0; --i)
   2055         if (!seen[sp->types[i]]) {
   2056             seen[sp->types[i]] = TRUE;
   2057             types[nseen++] = sp->types[i];
   2058         }
   2059     for (sameind = 0; sameind < nseen; ++sameind) {
   2060         samei = types[sameind];
   2061         if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
   2062             continue;
   2063         for (otherind = 0; otherind < nseen; ++otherind) {
   2064             otheri = types[otherind];
   2065             if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
   2066                 continue;
   2067             tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
   2068                     sp->ttis[samei].tt_gmtoff;
   2069             tmp->tm_isdst = !tmp->tm_isdst;
   2070             t = time2(tmp, funcp, offset, &okay);
   2071             if (okay)
   2072                 return t;
   2073             tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
   2074                     sp->ttis[samei].tt_gmtoff;
   2075             tmp->tm_isdst = !tmp->tm_isdst;
   2076         }
   2077     }
   2078     return WRONG;
   2079 }
   2080 
   2081 time_t
   2082 mktime(tmp)
   2083 struct tm * const   tmp;
   2084 {
   2085     time_t  result;
   2086     _tzLock();
   2087     tzset_locked();
   2088     result = time1(tmp, localsub, 0L);
   2089     _tzUnlock();
   2090     return result;
   2091 }
   2092 
   2093 #ifdef STD_INSPIRED
   2094 
   2095 time_t
   2096 timelocal(tmp)
   2097 struct tm * const   tmp;
   2098 {
   2099     tmp->tm_isdst = -1; /* in case it wasn't initialized */
   2100     return mktime(tmp);
   2101 }
   2102 
   2103 time_t
   2104 timegm(tmp)
   2105 struct tm * const   tmp;
   2106 {
   2107     time_t  result;
   2108 
   2109     tmp->tm_isdst = 0;
   2110     _tzLock();
   2111     result = time1(tmp, gmtsub, 0L);
   2112     _tzUnlock();
   2113 
   2114     return result;
   2115 }
   2116 
   2117 #if 0 /* disable due to lack of clear documentation on this function */
   2118 time_t
   2119 timeoff(tmp, offset)
   2120 struct tm * const   tmp;
   2121 const long      offset;
   2122 {
   2123     time_t  result;
   2124 
   2125     tmp->tm_isdst = 0;
   2126     _tzLock();
   2127     result = time1(tmp, gmtsub, offset);
   2128     _tzUnlock();
   2129 
   2130     return result;
   2131 }
   2132 #endif /* 0 */
   2133 
   2134 #endif /* defined STD_INSPIRED */
   2135 
   2136 #ifdef CMUCS
   2137 
   2138 /*
   2139 ** The following is supplied for compatibility with
   2140 ** previous versions of the CMUCS runtime library.
   2141 */
   2142 
   2143 long
   2144 gtime(tmp)
   2145 struct tm * const   tmp;
   2146 {
   2147     const time_t    t = mktime(tmp);
   2148 
   2149     if (t == WRONG)
   2150         return -1;
   2151     return t;
   2152 }
   2153 
   2154 #endif /* defined CMUCS */
   2155 
   2156 /*
   2157 ** XXX--is the below the right way to conditionalize??
   2158 */
   2159 
   2160 #ifdef STD_INSPIRED
   2161 
   2162 /*
   2163 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
   2164 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
   2165 ** is not the case if we are accounting for leap seconds.
   2166 ** So, we provide the following conversion routines for use
   2167 ** when exchanging timestamps with POSIX conforming systems.
   2168 */
   2169 
   2170 static long
   2171 leapcorr(timep)
   2172 time_t *    timep;
   2173 {
   2174     register struct state *     sp;
   2175     register struct lsinfo *    lp;
   2176     register int            i;
   2177 
   2178     sp = lclptr;
   2179     i = sp->leapcnt;
   2180     while (--i >= 0) {
   2181         lp = &sp->lsis[i];
   2182         if (*timep >= lp->ls_trans)
   2183             return lp->ls_corr;
   2184     }
   2185     return 0;
   2186 }
   2187 
   2188 time_t
   2189 time2posix(t)
   2190 time_t  t;
   2191 {
   2192     tzset();
   2193     return t - leapcorr(&t);
   2194 }
   2195 
   2196 time_t
   2197 posix2time(t)
   2198 time_t  t;
   2199 {
   2200     time_t  x;
   2201     time_t  y;
   2202 
   2203     tzset();
   2204     /*
   2205     ** For a positive leap second hit, the result
   2206     ** is not unique. For a negative leap second
   2207     ** hit, the corresponding time doesn't exist,
   2208     ** so we return an adjacent second.
   2209     */
   2210     x = t + leapcorr(&t);
   2211     y = x - leapcorr(&x);
   2212     if (y < t) {
   2213         do {
   2214             x++;
   2215             y = x - leapcorr(&x);
   2216         } while (y < t);
   2217         if (t != y)
   2218             return x - 1;
   2219     } else if (y > t) {
   2220         do {
   2221             --x;
   2222             y = x - leapcorr(&x);
   2223         } while (y > t);
   2224         if (t != y)
   2225             return x + 1;
   2226     }
   2227     return x;
   2228 }
   2229 
   2230 #endif /* defined STD_INSPIRED */
   2231