Home | History | Annotate | Download | only in tests
      1 /* GLIB sliced memory - fast threaded memory chunk allocator
      2  * Copyright (C) 2005 Tim Janik
      3  *
      4  * This library is free software; you can redistribute it and/or
      5  * modify it under the terms of the GNU Lesser General Public
      6  * License as published by the Free Software Foundation; either
      7  * version 2 of the License, or (at your option) any later version.
      8  *
      9  * This library is distributed in the hope that it will be useful,
     10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     12  * Lesser General Public License for more details.
     13  *
     14  * You should have received a copy of the GNU Lesser General Public
     15  * License along with this library; if not, write to the
     16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
     17  * Boston, MA 02111-1307, USA.
     18  */
     19 #include <glib.h>
     20 
     21 #include <stdio.h>
     22 #include <string.h>
     23 
     24 #define quick_rand32()  (rand_accu = 1664525 * rand_accu + 1013904223, rand_accu)
     25 static guint    prime_size = 1021; // 769; // 509
     26 static gboolean clean_memchunks = FALSE;
     27 static guint    number_of_blocks = 10000;          /* total number of blocks allocated */
     28 static guint    number_of_repetitions = 10000;     /* number of alloc+free repetitions */
     29 static gboolean want_corruption = FALSE;
     30 
     31 /* --- old memchunk prototypes (memchunks.c) --- */
     32 void            old_mem_chunks_init     (void);
     33 GMemChunk*      old_mem_chunk_new       (const gchar  *name,
     34                                          gint          atom_size,
     35                                          gulong        area_size,
     36                                          gint          type);
     37 void            old_mem_chunk_destroy   (GMemChunk *mem_chunk);
     38 gpointer        old_mem_chunk_alloc     (GMemChunk *mem_chunk);
     39 gpointer        old_mem_chunk_alloc0    (GMemChunk *mem_chunk);
     40 void            old_mem_chunk_free      (GMemChunk *mem_chunk,
     41                                          gpointer   mem);
     42 void            old_mem_chunk_clean     (GMemChunk *mem_chunk);
     43 void            old_mem_chunk_reset     (GMemChunk *mem_chunk);
     44 void            old_mem_chunk_print     (GMemChunk *mem_chunk);
     45 void            old_mem_chunk_info      (void);
     46 #ifndef G_ALLOC_AND_FREE
     47 #define G_ALLOC_AND_FREE  2
     48 #endif
     49 
     50 /* --- functions --- */
     51 static inline int
     52 corruption (void)
     53 {
     54   if (G_UNLIKELY (want_corruption))
     55     {
     56       /* corruption per call likelyness is about 1:4000000 */
     57       guint32 r = g_random_int() % 8000009;
     58       return r == 277 ? +1 : r == 281 ? -1 : 0;
     59     }
     60   return 0;
     61 }
     62 
     63 static inline gpointer
     64 memchunk_alloc (GMemChunk **memchunkp,
     65                 guint       size)
     66 {
     67   size = MAX (size, 1);
     68   if (G_UNLIKELY (!*memchunkp))
     69     *memchunkp = old_mem_chunk_new ("", size, 4096, G_ALLOC_AND_FREE);
     70   return old_mem_chunk_alloc (*memchunkp);
     71 }
     72 
     73 static inline void
     74 memchunk_free (GMemChunk *memchunk,
     75                gpointer   chunk)
     76 {
     77   old_mem_chunk_free (memchunk, chunk);
     78   if (clean_memchunks)
     79     old_mem_chunk_clean (memchunk);
     80 }
     81 
     82 static gpointer
     83 test_memchunk_thread (gpointer data)
     84 {
     85   GMemChunk **memchunks;
     86   guint i, j;
     87   guint8 **ps;
     88   guint   *ss;
     89   guint32 rand_accu = 2147483563;
     90   /* initialize random numbers */
     91   if (data)
     92     rand_accu = *(guint32*) data;
     93   else
     94     {
     95       GTimeVal rand_tv;
     96       g_get_current_time (&rand_tv);
     97       rand_accu = rand_tv.tv_usec + (rand_tv.tv_sec << 16);
     98     }
     99 
    100   /* prepare for memchunk creation */
    101   memchunks = g_alloca (sizeof (memchunks[0]) * prime_size);
    102   memset (memchunks, 0, sizeof (memchunks[0]) * prime_size);
    103 
    104   ps = g_new (guint8*, number_of_blocks);
    105   ss = g_new (guint, number_of_blocks);
    106   /* create number_of_blocks random sizes */
    107   for (i = 0; i < number_of_blocks; i++)
    108     ss[i] = quick_rand32() % prime_size;
    109   /* allocate number_of_blocks blocks */
    110   for (i = 0; i < number_of_blocks; i++)
    111     ps[i] = memchunk_alloc (&memchunks[ss[i]], ss[i]);
    112   for (j = 0; j < number_of_repetitions; j++)
    113     {
    114       /* free number_of_blocks/2 blocks */
    115       for (i = 0; i < number_of_blocks; i += 2)
    116         memchunk_free (memchunks[ss[i]], ps[i]);
    117       /* allocate number_of_blocks/2 blocks with new sizes */
    118       for (i = 0; i < number_of_blocks; i += 2)
    119         {
    120           ss[i] = quick_rand32() % prime_size;
    121           ps[i] = memchunk_alloc (&memchunks[ss[i]], ss[i]);
    122         }
    123     }
    124   /* free number_of_blocks blocks */
    125   for (i = 0; i < number_of_blocks; i++)
    126     memchunk_free (memchunks[ss[i]], ps[i]);
    127   /* alloc and free many equally sized chunks in a row */
    128   for (i = 0; i < number_of_repetitions; i++)
    129     {
    130       guint sz = quick_rand32() % prime_size;
    131       guint k = number_of_blocks / 100;
    132       for (j = 0; j < k; j++)
    133         ps[j] = memchunk_alloc (&memchunks[sz], sz);
    134       for (j = 0; j < k; j++)
    135         memchunk_free (memchunks[sz], ps[j]);
    136     }
    137   /* cleanout memchunks */
    138   for (i = 0; i < prime_size; i++)
    139     if (memchunks[i])
    140       old_mem_chunk_destroy (memchunks[i]);
    141   g_free (ps);
    142   g_free (ss);
    143 
    144   return NULL;
    145 }
    146 
    147 static gpointer
    148 test_sliced_mem_thread (gpointer data)
    149 {
    150   guint32 rand_accu = 2147483563;
    151   guint i, j;
    152   guint8 **ps;
    153   guint   *ss;
    154 
    155   /* initialize random numbers */
    156   if (data)
    157     rand_accu = *(guint32*) data;
    158   else
    159     {
    160       GTimeVal rand_tv;
    161       g_get_current_time (&rand_tv);
    162       rand_accu = rand_tv.tv_usec + (rand_tv.tv_sec << 16);
    163     }
    164 
    165   ps = g_new (guint8*, number_of_blocks);
    166   ss = g_new (guint, number_of_blocks);
    167   /* create number_of_blocks random sizes */
    168   for (i = 0; i < number_of_blocks; i++)
    169     ss[i] = quick_rand32() % prime_size;
    170   /* allocate number_of_blocks blocks */
    171   for (i = 0; i < number_of_blocks; i++)
    172     ps[i] = g_slice_alloc (ss[i] + corruption());
    173   for (j = 0; j < number_of_repetitions; j++)
    174     {
    175       /* free number_of_blocks/2 blocks */
    176       for (i = 0; i < number_of_blocks; i += 2)
    177         g_slice_free1 (ss[i] + corruption(), ps[i] + corruption());
    178       /* allocate number_of_blocks/2 blocks with new sizes */
    179       for (i = 0; i < number_of_blocks; i += 2)
    180         {
    181           ss[i] = quick_rand32() % prime_size;
    182           ps[i] = g_slice_alloc (ss[i] + corruption());
    183         }
    184     }
    185   /* free number_of_blocks blocks */
    186   for (i = 0; i < number_of_blocks; i++)
    187     g_slice_free1 (ss[i] + corruption(), ps[i] + corruption());
    188   /* alloc and free many equally sized chunks in a row */
    189   for (i = 0; i < number_of_repetitions; i++)
    190     {
    191       guint sz = quick_rand32() % prime_size;
    192       guint k = number_of_blocks / 100;
    193       for (j = 0; j < k; j++)
    194         ps[j] = g_slice_alloc (sz + corruption());
    195       for (j = 0; j < k; j++)
    196         g_slice_free1 (sz + corruption(), ps[j] + corruption());
    197     }
    198   g_free (ps);
    199   g_free (ss);
    200 
    201   return NULL;
    202 }
    203 
    204 static void
    205 usage (void)
    206 {
    207   g_print ("Usage: slice-test [n_threads] [G|S|M|O][f][c][~] [maxblocksize] [seed]\n");
    208 }
    209 
    210 int
    211 main (int   argc,
    212       char *argv[])
    213 {
    214   guint seed32, *seedp = NULL;
    215   gboolean ccounters = FALSE, use_memchunks = FALSE;
    216   guint n_threads = 1;
    217   const gchar *mode = "slab allocator + magazine cache", *emode = " ";
    218   if (argc > 1)
    219     n_threads = g_ascii_strtoull (argv[1], NULL, 10);
    220   if (argc > 2)
    221     {
    222       guint i, l = strlen (argv[2]);
    223       for (i = 0; i < l; i++)
    224         switch (argv[2][i])
    225           {
    226           case 'G': /* GLib mode */
    227             g_slice_set_config (G_SLICE_CONFIG_ALWAYS_MALLOC, FALSE);
    228             g_slice_set_config (G_SLICE_CONFIG_BYPASS_MAGAZINES, FALSE);
    229             mode = "slab allocator + magazine cache";
    230             break;
    231           case 'S': /* slab mode */
    232             g_slice_set_config (G_SLICE_CONFIG_ALWAYS_MALLOC, FALSE);
    233             g_slice_set_config (G_SLICE_CONFIG_BYPASS_MAGAZINES, TRUE);
    234             mode = "slab allocator";
    235             break;
    236           case 'M': /* malloc mode */
    237             g_slice_set_config (G_SLICE_CONFIG_ALWAYS_MALLOC, TRUE);
    238             mode = "system malloc";
    239             break;
    240           case 'O': /* old memchunks */
    241             use_memchunks = TRUE;
    242             mode = "old memchunks";
    243             break;
    244           case 'f': /* eager freeing */
    245             g_slice_set_config (G_SLICE_CONFIG_WORKING_SET_MSECS, 0);
    246             clean_memchunks = TRUE;
    247             emode = " with eager freeing";
    248             break;
    249           case 'c': /* print contention counters */
    250             ccounters = TRUE;
    251             break;
    252           case '~':
    253             want_corruption = TRUE; /* force occasional corruption */
    254             break;
    255           default:
    256             usage();
    257             return 1;
    258           }
    259     }
    260   if (argc > 3)
    261     prime_size = g_ascii_strtoull (argv[3], NULL, 10);
    262   if (argc > 4)
    263     {
    264       seed32 = g_ascii_strtoull (argv[4], NULL, 10);
    265       seedp = &seed32;
    266     }
    267 
    268   g_thread_init (NULL);
    269 
    270   if (argc <= 1)
    271     usage();
    272 
    273   {
    274     gchar strseed[64] = "<random>";
    275     GThread **threads;
    276     guint i;
    277 
    278     if (seedp)
    279       g_snprintf (strseed, 64, "%u", *seedp);
    280     g_print ("Starting %d threads allocating random blocks <= %u bytes with seed=%s using %s%s\n", n_threads, prime_size, strseed, mode, emode);
    281 
    282     threads = g_alloca (sizeof(GThread*) * n_threads);
    283     if (!use_memchunks)
    284       for (i = 0; i < n_threads; i++)
    285         threads[i] = g_thread_create_full (test_sliced_mem_thread, seedp, 0, TRUE, FALSE, 0, NULL);
    286     else
    287       {
    288         old_mem_chunks_init();
    289         for (i = 0; i < n_threads; i++)
    290           threads[i] = g_thread_create_full (test_memchunk_thread, seedp, 0, TRUE, FALSE, 0, NULL);
    291       }
    292     for (i = 0; i < n_threads; i++)
    293       g_thread_join (threads[i]);
    294 
    295     if (ccounters)
    296       {
    297         guint n, n_chunks = g_slice_get_config (G_SLICE_CONFIG_CHUNK_SIZES);
    298         g_print ("    ChunkSize | MagazineSize | Contention\n");
    299         for (i = 0; i < n_chunks; i++)
    300           {
    301             gint64 *vals = g_slice_get_config_state (G_SLICE_CONFIG_CONTENTION_COUNTER, i, &n);
    302             g_print ("  %9llu   |  %9llu   |  %9llu\n", vals[0], vals[2], vals[1]);
    303             g_free (vals);
    304           }
    305       }
    306     else
    307       g_print ("Done.\n");
    308     return 0;
    309   }
    310 }
    311