Home | History | Annotate | Download | only in Core
      1 //= ProgramState.cpp - Path-Sensitive "State" for tracking values --*- C++ -*--=
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements ProgramState and ProgramStateManager.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Analysis/CFG.h"
     15 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
     16 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
     17 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
     18 #include "clang/StaticAnalyzer/Core/PathSensitive/TaintManager.h"
     19 #include "llvm/Support/raw_ostream.h"
     20 
     21 using namespace clang;
     22 using namespace ento;
     23 
     24 // Give the vtable for ConstraintManager somewhere to live.
     25 // FIXME: Move this elsewhere.
     26 ConstraintManager::~ConstraintManager() {}
     27 
     28 namespace clang { namespace  ento {
     29 /// Increments the number of times this state is referenced.
     30 
     31 void ProgramStateRetain(const ProgramState *state) {
     32   ++const_cast<ProgramState*>(state)->refCount;
     33 }
     34 
     35 /// Decrement the number of times this state is referenced.
     36 void ProgramStateRelease(const ProgramState *state) {
     37   assert(state->refCount > 0);
     38   ProgramState *s = const_cast<ProgramState*>(state);
     39   if (--s->refCount == 0) {
     40     ProgramStateManager &Mgr = s->getStateManager();
     41     Mgr.StateSet.RemoveNode(s);
     42     s->~ProgramState();
     43     Mgr.freeStates.push_back(s);
     44   }
     45 }
     46 }}
     47 
     48 ProgramState::ProgramState(ProgramStateManager *mgr, const Environment& env,
     49                  StoreRef st, GenericDataMap gdm)
     50   : stateMgr(mgr),
     51     Env(env),
     52     store(st.getStore()),
     53     GDM(gdm),
     54     refCount(0) {
     55   stateMgr->getStoreManager().incrementReferenceCount(store);
     56 }
     57 
     58 ProgramState::ProgramState(const ProgramState &RHS)
     59     : llvm::FoldingSetNode(),
     60       stateMgr(RHS.stateMgr),
     61       Env(RHS.Env),
     62       store(RHS.store),
     63       GDM(RHS.GDM),
     64       refCount(0) {
     65   stateMgr->getStoreManager().incrementReferenceCount(store);
     66 }
     67 
     68 ProgramState::~ProgramState() {
     69   if (store)
     70     stateMgr->getStoreManager().decrementReferenceCount(store);
     71 }
     72 
     73 ProgramStateManager::~ProgramStateManager() {
     74   for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end();
     75        I!=E; ++I)
     76     I->second.second(I->second.first);
     77 }
     78 
     79 ProgramStateRef
     80 ProgramStateManager::removeDeadBindings(ProgramStateRef state,
     81                                    const StackFrameContext *LCtx,
     82                                    SymbolReaper& SymReaper) {
     83 
     84   // This code essentially performs a "mark-and-sweep" of the VariableBindings.
     85   // The roots are any Block-level exprs and Decls that our liveness algorithm
     86   // tells us are live.  We then see what Decls they may reference, and keep
     87   // those around.  This code more than likely can be made faster, and the
     88   // frequency of which this method is called should be experimented with
     89   // for optimum performance.
     90   ProgramState NewState = *state;
     91 
     92   NewState.Env = EnvMgr.removeDeadBindings(NewState.Env, SymReaper, state);
     93 
     94   // Clean up the store.
     95   StoreRef newStore = StoreMgr->removeDeadBindings(NewState.getStore(), LCtx,
     96                                                    SymReaper);
     97   NewState.setStore(newStore);
     98   SymReaper.setReapedStore(newStore);
     99 
    100   return getPersistentState(NewState);
    101 }
    102 
    103 ProgramStateRef ProgramStateManager::MarshalState(ProgramStateRef state,
    104                                             const StackFrameContext *InitLoc) {
    105   // make up an empty state for now.
    106   ProgramState State(this,
    107                 EnvMgr.getInitialEnvironment(),
    108                 StoreMgr->getInitialStore(InitLoc),
    109                 GDMFactory.getEmptyMap());
    110 
    111   return getPersistentState(State);
    112 }
    113 
    114 ProgramStateRef ProgramState::bindCompoundLiteral(const CompoundLiteralExpr *CL,
    115                                             const LocationContext *LC,
    116                                             SVal V) const {
    117   const StoreRef &newStore =
    118     getStateManager().StoreMgr->BindCompoundLiteral(getStore(), CL, LC, V);
    119   return makeWithStore(newStore);
    120 }
    121 
    122 ProgramStateRef ProgramState::bindDecl(const VarRegion* VR, SVal IVal) const {
    123   const StoreRef &newStore =
    124     getStateManager().StoreMgr->BindDecl(getStore(), VR, IVal);
    125   return makeWithStore(newStore);
    126 }
    127 
    128 ProgramStateRef ProgramState::bindDeclWithNoInit(const VarRegion* VR) const {
    129   const StoreRef &newStore =
    130     getStateManager().StoreMgr->BindDeclWithNoInit(getStore(), VR);
    131   return makeWithStore(newStore);
    132 }
    133 
    134 ProgramStateRef ProgramState::bindLoc(Loc LV, SVal V) const {
    135   ProgramStateManager &Mgr = getStateManager();
    136   ProgramStateRef newState = makeWithStore(Mgr.StoreMgr->Bind(getStore(),
    137                                                              LV, V));
    138   const MemRegion *MR = LV.getAsRegion();
    139   if (MR && Mgr.getOwningEngine())
    140     return Mgr.getOwningEngine()->processRegionChange(newState, MR);
    141 
    142   return newState;
    143 }
    144 
    145 ProgramStateRef ProgramState::bindDefault(SVal loc, SVal V) const {
    146   ProgramStateManager &Mgr = getStateManager();
    147   const MemRegion *R = cast<loc::MemRegionVal>(loc).getRegion();
    148   const StoreRef &newStore = Mgr.StoreMgr->BindDefault(getStore(), R, V);
    149   ProgramStateRef new_state = makeWithStore(newStore);
    150   return Mgr.getOwningEngine() ?
    151            Mgr.getOwningEngine()->processRegionChange(new_state, R) :
    152            new_state;
    153 }
    154 
    155 ProgramStateRef
    156 ProgramState::invalidateRegions(ArrayRef<const MemRegion *> Regions,
    157                                 const Expr *E, unsigned Count,
    158                                 const LocationContext *LCtx,
    159                                 StoreManager::InvalidatedSymbols *IS,
    160                                 const CallOrObjCMessage *Call) const {
    161   if (!IS) {
    162     StoreManager::InvalidatedSymbols invalidated;
    163     return invalidateRegionsImpl(Regions, E, Count, LCtx,
    164                                  invalidated, Call);
    165   }
    166   return invalidateRegionsImpl(Regions, E, Count, LCtx, *IS, Call);
    167 }
    168 
    169 ProgramStateRef
    170 ProgramState::invalidateRegionsImpl(ArrayRef<const MemRegion *> Regions,
    171                                     const Expr *E, unsigned Count,
    172                                     const LocationContext *LCtx,
    173                                     StoreManager::InvalidatedSymbols &IS,
    174                                     const CallOrObjCMessage *Call) const {
    175   ProgramStateManager &Mgr = getStateManager();
    176   SubEngine* Eng = Mgr.getOwningEngine();
    177 
    178   if (Eng && Eng->wantsRegionChangeUpdate(this)) {
    179     StoreManager::InvalidatedRegions Invalidated;
    180     const StoreRef &newStore
    181       = Mgr.StoreMgr->invalidateRegions(getStore(), Regions, E, Count, LCtx, IS,
    182                                         Call, &Invalidated);
    183     ProgramStateRef newState = makeWithStore(newStore);
    184     return Eng->processRegionChanges(newState, &IS, Regions, Invalidated, Call);
    185   }
    186 
    187   const StoreRef &newStore =
    188     Mgr.StoreMgr->invalidateRegions(getStore(), Regions, E, Count, LCtx, IS,
    189                                     Call, NULL);
    190   return makeWithStore(newStore);
    191 }
    192 
    193 ProgramStateRef ProgramState::unbindLoc(Loc LV) const {
    194   assert(!isa<loc::MemRegionVal>(LV) && "Use invalidateRegion instead.");
    195 
    196   Store OldStore = getStore();
    197   const StoreRef &newStore = getStateManager().StoreMgr->Remove(OldStore, LV);
    198 
    199   if (newStore.getStore() == OldStore)
    200     return this;
    201 
    202   return makeWithStore(newStore);
    203 }
    204 
    205 ProgramStateRef
    206 ProgramState::enterStackFrame(const LocationContext *callerCtx,
    207                               const StackFrameContext *calleeCtx) const {
    208   const StoreRef &new_store =
    209     getStateManager().StoreMgr->enterStackFrame(this, callerCtx, calleeCtx);
    210   return makeWithStore(new_store);
    211 }
    212 
    213 SVal ProgramState::getSValAsScalarOrLoc(const MemRegion *R) const {
    214   // We only want to do fetches from regions that we can actually bind
    215   // values.  For example, SymbolicRegions of type 'id<...>' cannot
    216   // have direct bindings (but their can be bindings on their subregions).
    217   if (!R->isBoundable())
    218     return UnknownVal();
    219 
    220   if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
    221     QualType T = TR->getValueType();
    222     if (Loc::isLocType(T) || T->isIntegerType())
    223       return getSVal(R);
    224   }
    225 
    226   return UnknownVal();
    227 }
    228 
    229 SVal ProgramState::getSVal(Loc location, QualType T) const {
    230   SVal V = getRawSVal(cast<Loc>(location), T);
    231 
    232   // If 'V' is a symbolic value that is *perfectly* constrained to
    233   // be a constant value, use that value instead to lessen the burden
    234   // on later analysis stages (so we have less symbolic values to reason
    235   // about).
    236   if (!T.isNull()) {
    237     if (SymbolRef sym = V.getAsSymbol()) {
    238       if (const llvm::APSInt *Int = getSymVal(sym)) {
    239         // FIXME: Because we don't correctly model (yet) sign-extension
    240         // and truncation of symbolic values, we need to convert
    241         // the integer value to the correct signedness and bitwidth.
    242         //
    243         // This shows up in the following:
    244         //
    245         //   char foo();
    246         //   unsigned x = foo();
    247         //   if (x == 54)
    248         //     ...
    249         //
    250         //  The symbolic value stored to 'x' is actually the conjured
    251         //  symbol for the call to foo(); the type of that symbol is 'char',
    252         //  not unsigned.
    253         const llvm::APSInt &NewV = getBasicVals().Convert(T, *Int);
    254 
    255         if (isa<Loc>(V))
    256           return loc::ConcreteInt(NewV);
    257         else
    258           return nonloc::ConcreteInt(NewV);
    259       }
    260     }
    261   }
    262 
    263   return V;
    264 }
    265 
    266 ProgramStateRef ProgramState::BindExpr(const Stmt *S,
    267                                            const LocationContext *LCtx,
    268                                            SVal V, bool Invalidate) const{
    269   Environment NewEnv =
    270     getStateManager().EnvMgr.bindExpr(Env, EnvironmentEntry(S, LCtx), V,
    271                                       Invalidate);
    272   if (NewEnv == Env)
    273     return this;
    274 
    275   ProgramState NewSt = *this;
    276   NewSt.Env = NewEnv;
    277   return getStateManager().getPersistentState(NewSt);
    278 }
    279 
    280 ProgramStateRef
    281 ProgramState::bindExprAndLocation(const Stmt *S, const LocationContext *LCtx,
    282                                   SVal location,
    283                                   SVal V) const {
    284   Environment NewEnv =
    285     getStateManager().EnvMgr.bindExprAndLocation(Env,
    286                                                  EnvironmentEntry(S, LCtx),
    287                                                  location, V);
    288 
    289   if (NewEnv == Env)
    290     return this;
    291 
    292   ProgramState NewSt = *this;
    293   NewSt.Env = NewEnv;
    294   return getStateManager().getPersistentState(NewSt);
    295 }
    296 
    297 ProgramStateRef ProgramState::assumeInBound(DefinedOrUnknownSVal Idx,
    298                                       DefinedOrUnknownSVal UpperBound,
    299                                       bool Assumption,
    300                                       QualType indexTy) const {
    301   if (Idx.isUnknown() || UpperBound.isUnknown())
    302     return this;
    303 
    304   // Build an expression for 0 <= Idx < UpperBound.
    305   // This is the same as Idx + MIN < UpperBound + MIN, if overflow is allowed.
    306   // FIXME: This should probably be part of SValBuilder.
    307   ProgramStateManager &SM = getStateManager();
    308   SValBuilder &svalBuilder = SM.getSValBuilder();
    309   ASTContext &Ctx = svalBuilder.getContext();
    310 
    311   // Get the offset: the minimum value of the array index type.
    312   BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
    313   // FIXME: This should be using ValueManager::ArrayindexTy...somehow.
    314   if (indexTy.isNull())
    315     indexTy = Ctx.IntTy;
    316   nonloc::ConcreteInt Min(BVF.getMinValue(indexTy));
    317 
    318   // Adjust the index.
    319   SVal newIdx = svalBuilder.evalBinOpNN(this, BO_Add,
    320                                         cast<NonLoc>(Idx), Min, indexTy);
    321   if (newIdx.isUnknownOrUndef())
    322     return this;
    323 
    324   // Adjust the upper bound.
    325   SVal newBound =
    326     svalBuilder.evalBinOpNN(this, BO_Add, cast<NonLoc>(UpperBound),
    327                             Min, indexTy);
    328 
    329   if (newBound.isUnknownOrUndef())
    330     return this;
    331 
    332   // Build the actual comparison.
    333   SVal inBound = svalBuilder.evalBinOpNN(this, BO_LT,
    334                                 cast<NonLoc>(newIdx), cast<NonLoc>(newBound),
    335                                 Ctx.IntTy);
    336   if (inBound.isUnknownOrUndef())
    337     return this;
    338 
    339   // Finally, let the constraint manager take care of it.
    340   ConstraintManager &CM = SM.getConstraintManager();
    341   return CM.assume(this, cast<DefinedSVal>(inBound), Assumption);
    342 }
    343 
    344 ProgramStateRef ProgramStateManager::getInitialState(const LocationContext *InitLoc) {
    345   ProgramState State(this,
    346                 EnvMgr.getInitialEnvironment(),
    347                 StoreMgr->getInitialStore(InitLoc),
    348                 GDMFactory.getEmptyMap());
    349 
    350   return getPersistentState(State);
    351 }
    352 
    353 ProgramStateRef ProgramStateManager::getPersistentStateWithGDM(
    354                                                      ProgramStateRef FromState,
    355                                                      ProgramStateRef GDMState) {
    356   ProgramState NewState(*FromState);
    357   NewState.GDM = GDMState->GDM;
    358   return getPersistentState(NewState);
    359 }
    360 
    361 ProgramStateRef ProgramStateManager::getPersistentState(ProgramState &State) {
    362 
    363   llvm::FoldingSetNodeID ID;
    364   State.Profile(ID);
    365   void *InsertPos;
    366 
    367   if (ProgramState *I = StateSet.FindNodeOrInsertPos(ID, InsertPos))
    368     return I;
    369 
    370   ProgramState *newState = 0;
    371   if (!freeStates.empty()) {
    372     newState = freeStates.back();
    373     freeStates.pop_back();
    374   }
    375   else {
    376     newState = (ProgramState*) Alloc.Allocate<ProgramState>();
    377   }
    378   new (newState) ProgramState(State);
    379   StateSet.InsertNode(newState, InsertPos);
    380   return newState;
    381 }
    382 
    383 ProgramStateRef ProgramState::makeWithStore(const StoreRef &store) const {
    384   ProgramState NewSt(*this);
    385   NewSt.setStore(store);
    386   return getStateManager().getPersistentState(NewSt);
    387 }
    388 
    389 void ProgramState::setStore(const StoreRef &newStore) {
    390   Store newStoreStore = newStore.getStore();
    391   if (newStoreStore)
    392     stateMgr->getStoreManager().incrementReferenceCount(newStoreStore);
    393   if (store)
    394     stateMgr->getStoreManager().decrementReferenceCount(store);
    395   store = newStoreStore;
    396 }
    397 
    398 //===----------------------------------------------------------------------===//
    399 //  State pretty-printing.
    400 //===----------------------------------------------------------------------===//
    401 
    402 void ProgramState::print(raw_ostream &Out,
    403                          const char *NL, const char *Sep) const {
    404   // Print the store.
    405   ProgramStateManager &Mgr = getStateManager();
    406   Mgr.getStoreManager().print(getStore(), Out, NL, Sep);
    407 
    408   // Print out the environment.
    409   Env.print(Out, NL, Sep);
    410 
    411   // Print out the constraints.
    412   Mgr.getConstraintManager().print(this, Out, NL, Sep);
    413 
    414   // Print checker-specific data.
    415   Mgr.getOwningEngine()->printState(Out, this, NL, Sep);
    416 }
    417 
    418 void ProgramState::printDOT(raw_ostream &Out) const {
    419   print(Out, "\\l", "\\|");
    420 }
    421 
    422 void ProgramState::dump() const {
    423   print(llvm::errs());
    424 }
    425 
    426 void ProgramState::printTaint(raw_ostream &Out,
    427                               const char *NL, const char *Sep) const {
    428   TaintMapImpl TM = get<TaintMap>();
    429 
    430   if (!TM.isEmpty())
    431     Out <<"Tainted Symbols:" << NL;
    432 
    433   for (TaintMapImpl::iterator I = TM.begin(), E = TM.end(); I != E; ++I) {
    434     Out << I->first << " : " << I->second << NL;
    435   }
    436 }
    437 
    438 void ProgramState::dumpTaint() const {
    439   printTaint(llvm::errs());
    440 }
    441 
    442 //===----------------------------------------------------------------------===//
    443 // Generic Data Map.
    444 //===----------------------------------------------------------------------===//
    445 
    446 void *const* ProgramState::FindGDM(void *K) const {
    447   return GDM.lookup(K);
    448 }
    449 
    450 void*
    451 ProgramStateManager::FindGDMContext(void *K,
    452                                void *(*CreateContext)(llvm::BumpPtrAllocator&),
    453                                void (*DeleteContext)(void*)) {
    454 
    455   std::pair<void*, void (*)(void*)>& p = GDMContexts[K];
    456   if (!p.first) {
    457     p.first = CreateContext(Alloc);
    458     p.second = DeleteContext;
    459   }
    460 
    461   return p.first;
    462 }
    463 
    464 ProgramStateRef ProgramStateManager::addGDM(ProgramStateRef St, void *Key, void *Data){
    465   ProgramState::GenericDataMap M1 = St->getGDM();
    466   ProgramState::GenericDataMap M2 = GDMFactory.add(M1, Key, Data);
    467 
    468   if (M1 == M2)
    469     return St;
    470 
    471   ProgramState NewSt = *St;
    472   NewSt.GDM = M2;
    473   return getPersistentState(NewSt);
    474 }
    475 
    476 ProgramStateRef ProgramStateManager::removeGDM(ProgramStateRef state, void *Key) {
    477   ProgramState::GenericDataMap OldM = state->getGDM();
    478   ProgramState::GenericDataMap NewM = GDMFactory.remove(OldM, Key);
    479 
    480   if (NewM == OldM)
    481     return state;
    482 
    483   ProgramState NewState = *state;
    484   NewState.GDM = NewM;
    485   return getPersistentState(NewState);
    486 }
    487 
    488 void ScanReachableSymbols::anchor() { }
    489 
    490 bool ScanReachableSymbols::scan(nonloc::CompoundVal val) {
    491   for (nonloc::CompoundVal::iterator I=val.begin(), E=val.end(); I!=E; ++I)
    492     if (!scan(*I))
    493       return false;
    494 
    495   return true;
    496 }
    497 
    498 bool ScanReachableSymbols::scan(const SymExpr *sym) {
    499   unsigned &isVisited = visited[sym];
    500   if (isVisited)
    501     return true;
    502   isVisited = 1;
    503 
    504   if (!visitor.VisitSymbol(sym))
    505     return false;
    506 
    507   // TODO: should be rewritten using SymExpr::symbol_iterator.
    508   switch (sym->getKind()) {
    509     case SymExpr::RegionValueKind:
    510     case SymExpr::ConjuredKind:
    511     case SymExpr::DerivedKind:
    512     case SymExpr::ExtentKind:
    513     case SymExpr::MetadataKind:
    514       break;
    515     case SymExpr::CastSymbolKind:
    516       return scan(cast<SymbolCast>(sym)->getOperand());
    517     case SymExpr::SymIntKind:
    518       return scan(cast<SymIntExpr>(sym)->getLHS());
    519     case SymExpr::IntSymKind:
    520       return scan(cast<IntSymExpr>(sym)->getRHS());
    521     case SymExpr::SymSymKind: {
    522       const SymSymExpr *x = cast<SymSymExpr>(sym);
    523       return scan(x->getLHS()) && scan(x->getRHS());
    524     }
    525   }
    526   return true;
    527 }
    528 
    529 bool ScanReachableSymbols::scan(SVal val) {
    530   if (loc::MemRegionVal *X = dyn_cast<loc::MemRegionVal>(&val))
    531     return scan(X->getRegion());
    532 
    533   if (nonloc::LocAsInteger *X = dyn_cast<nonloc::LocAsInteger>(&val))
    534     return scan(X->getLoc());
    535 
    536   if (SymbolRef Sym = val.getAsSymbol())
    537     return scan(Sym);
    538 
    539   if (const SymExpr *Sym = val.getAsSymbolicExpression())
    540     return scan(Sym);
    541 
    542   if (nonloc::CompoundVal *X = dyn_cast<nonloc::CompoundVal>(&val))
    543     return scan(*X);
    544 
    545   return true;
    546 }
    547 
    548 bool ScanReachableSymbols::scan(const MemRegion *R) {
    549   if (isa<MemSpaceRegion>(R))
    550     return true;
    551 
    552   unsigned &isVisited = visited[R];
    553   if (isVisited)
    554     return true;
    555   isVisited = 1;
    556 
    557 
    558   if (!visitor.VisitMemRegion(R))
    559     return false;
    560 
    561   // If this is a symbolic region, visit the symbol for the region.
    562   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
    563     if (!visitor.VisitSymbol(SR->getSymbol()))
    564       return false;
    565 
    566   // If this is a subregion, also visit the parent regions.
    567   if (const SubRegion *SR = dyn_cast<SubRegion>(R))
    568     if (!scan(SR->getSuperRegion()))
    569       return false;
    570 
    571   // Now look at the binding to this region (if any).
    572   if (!scan(state->getSValAsScalarOrLoc(R)))
    573     return false;
    574 
    575   // Now look at the subregions.
    576   if (!SRM.get())
    577     SRM.reset(state->getStateManager().getStoreManager().
    578                                            getSubRegionMap(state->getStore()));
    579 
    580   return SRM->iterSubRegions(R, *this);
    581 }
    582 
    583 bool ProgramState::scanReachableSymbols(SVal val, SymbolVisitor& visitor) const {
    584   ScanReachableSymbols S(this, visitor);
    585   return S.scan(val);
    586 }
    587 
    588 bool ProgramState::scanReachableSymbols(const SVal *I, const SVal *E,
    589                                    SymbolVisitor &visitor) const {
    590   ScanReachableSymbols S(this, visitor);
    591   for ( ; I != E; ++I) {
    592     if (!S.scan(*I))
    593       return false;
    594   }
    595   return true;
    596 }
    597 
    598 bool ProgramState::scanReachableSymbols(const MemRegion * const *I,
    599                                    const MemRegion * const *E,
    600                                    SymbolVisitor &visitor) const {
    601   ScanReachableSymbols S(this, visitor);
    602   for ( ; I != E; ++I) {
    603     if (!S.scan(*I))
    604       return false;
    605   }
    606   return true;
    607 }
    608 
    609 ProgramStateRef ProgramState::addTaint(const Stmt *S,
    610                                            const LocationContext *LCtx,
    611                                            TaintTagType Kind) const {
    612   if (const Expr *E = dyn_cast_or_null<Expr>(S))
    613     S = E->IgnoreParens();
    614 
    615   SymbolRef Sym = getSVal(S, LCtx).getAsSymbol();
    616   if (Sym)
    617     return addTaint(Sym, Kind);
    618 
    619   const MemRegion *R = getSVal(S, LCtx).getAsRegion();
    620   addTaint(R, Kind);
    621 
    622   // Cannot add taint, so just return the state.
    623   return this;
    624 }
    625 
    626 ProgramStateRef ProgramState::addTaint(const MemRegion *R,
    627                                            TaintTagType Kind) const {
    628   if (const SymbolicRegion *SR = dyn_cast_or_null<SymbolicRegion>(R))
    629     return addTaint(SR->getSymbol(), Kind);
    630   return this;
    631 }
    632 
    633 ProgramStateRef ProgramState::addTaint(SymbolRef Sym,
    634                                            TaintTagType Kind) const {
    635   // If this is a symbol cast, remove the cast before adding the taint. Taint
    636   // is cast agnostic.
    637   while (const SymbolCast *SC = dyn_cast<SymbolCast>(Sym))
    638     Sym = SC->getOperand();
    639 
    640   ProgramStateRef NewState = set<TaintMap>(Sym, Kind);
    641   assert(NewState);
    642   return NewState;
    643 }
    644 
    645 bool ProgramState::isTainted(const Stmt *S, const LocationContext *LCtx,
    646                              TaintTagType Kind) const {
    647   if (const Expr *E = dyn_cast_or_null<Expr>(S))
    648     S = E->IgnoreParens();
    649 
    650   SVal val = getSVal(S, LCtx);
    651   return isTainted(val, Kind);
    652 }
    653 
    654 bool ProgramState::isTainted(SVal V, TaintTagType Kind) const {
    655   if (const SymExpr *Sym = V.getAsSymExpr())
    656     return isTainted(Sym, Kind);
    657   if (const MemRegion *Reg = V.getAsRegion())
    658     return isTainted(Reg, Kind);
    659   return false;
    660 }
    661 
    662 bool ProgramState::isTainted(const MemRegion *Reg, TaintTagType K) const {
    663   if (!Reg)
    664     return false;
    665 
    666   // Element region (array element) is tainted if either the base or the offset
    667   // are tainted.
    668   if (const ElementRegion *ER = dyn_cast<ElementRegion>(Reg))
    669     return isTainted(ER->getSuperRegion(), K) || isTainted(ER->getIndex(), K);
    670 
    671   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg))
    672     return isTainted(SR->getSymbol(), K);
    673 
    674   if (const SubRegion *ER = dyn_cast<SubRegion>(Reg))
    675     return isTainted(ER->getSuperRegion(), K);
    676 
    677   return false;
    678 }
    679 
    680 bool ProgramState::isTainted(SymbolRef Sym, TaintTagType Kind) const {
    681   if (!Sym)
    682     return false;
    683 
    684   // Traverse all the symbols this symbol depends on to see if any are tainted.
    685   bool Tainted = false;
    686   for (SymExpr::symbol_iterator SI = Sym->symbol_begin(), SE =Sym->symbol_end();
    687        SI != SE; ++SI) {
    688     assert(isa<SymbolData>(*SI));
    689     const TaintTagType *Tag = get<TaintMap>(*SI);
    690     Tainted = (Tag && *Tag == Kind);
    691 
    692     // If this is a SymbolDerived with a tainted parent, it's also tainted.
    693     if (const SymbolDerived *SD = dyn_cast<SymbolDerived>(*SI))
    694       Tainted = Tainted || isTainted(SD->getParentSymbol(), Kind);
    695 
    696     // If memory region is tainted, data is also tainted.
    697     if (const SymbolRegionValue *SRV = dyn_cast<SymbolRegionValue>(*SI))
    698       Tainted = Tainted || isTainted(SRV->getRegion(), Kind);
    699 
    700     // If If this is a SymbolCast from a tainted value, it's also tainted.
    701     if (const SymbolCast *SC = dyn_cast<SymbolCast>(*SI))
    702       Tainted = Tainted || isTainted(SC->getOperand(), Kind);
    703 
    704     if (Tainted)
    705       return true;
    706   }
    707 
    708   return Tainted;
    709 }
    710