Home | History | Annotate | Download | only in ciphers
      1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis
      2  *
      3  * LibTomCrypt is a library that provides various cryptographic
      4  * algorithms in a highly modular and flexible manner.
      5  *
      6  * The library is free for all purposes without any express
      7  * guarantee it works.
      8  *
      9  * Tom St Denis, tomstdenis (at) gmail.com, http://libtomcrypt.com
     10  */
     11 
     12 /**
     13   @file skipjack.c
     14   Skipjack Implementation by Tom St Denis
     15 */
     16 #include "tomcrypt.h"
     17 
     18 #ifdef SKIPJACK
     19 
     20 const struct ltc_cipher_descriptor skipjack_desc =
     21 {
     22     "skipjack",
     23     17,
     24     10, 10, 8, 32,
     25     &skipjack_setup,
     26     &skipjack_ecb_encrypt,
     27     &skipjack_ecb_decrypt,
     28     &skipjack_test,
     29     &skipjack_done,
     30     &skipjack_keysize,
     31     NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
     32 };
     33 
     34 static const unsigned char sbox[256] = {
     35    0xa3,0xd7,0x09,0x83,0xf8,0x48,0xf6,0xf4,0xb3,0x21,0x15,0x78,0x99,0xb1,0xaf,0xf9,
     36    0xe7,0x2d,0x4d,0x8a,0xce,0x4c,0xca,0x2e,0x52,0x95,0xd9,0x1e,0x4e,0x38,0x44,0x28,
     37    0x0a,0xdf,0x02,0xa0,0x17,0xf1,0x60,0x68,0x12,0xb7,0x7a,0xc3,0xe9,0xfa,0x3d,0x53,
     38    0x96,0x84,0x6b,0xba,0xf2,0x63,0x9a,0x19,0x7c,0xae,0xe5,0xf5,0xf7,0x16,0x6a,0xa2,
     39    0x39,0xb6,0x7b,0x0f,0xc1,0x93,0x81,0x1b,0xee,0xb4,0x1a,0xea,0xd0,0x91,0x2f,0xb8,
     40    0x55,0xb9,0xda,0x85,0x3f,0x41,0xbf,0xe0,0x5a,0x58,0x80,0x5f,0x66,0x0b,0xd8,0x90,
     41    0x35,0xd5,0xc0,0xa7,0x33,0x06,0x65,0x69,0x45,0x00,0x94,0x56,0x6d,0x98,0x9b,0x76,
     42    0x97,0xfc,0xb2,0xc2,0xb0,0xfe,0xdb,0x20,0xe1,0xeb,0xd6,0xe4,0xdd,0x47,0x4a,0x1d,
     43    0x42,0xed,0x9e,0x6e,0x49,0x3c,0xcd,0x43,0x27,0xd2,0x07,0xd4,0xde,0xc7,0x67,0x18,
     44    0x89,0xcb,0x30,0x1f,0x8d,0xc6,0x8f,0xaa,0xc8,0x74,0xdc,0xc9,0x5d,0x5c,0x31,0xa4,
     45    0x70,0x88,0x61,0x2c,0x9f,0x0d,0x2b,0x87,0x50,0x82,0x54,0x64,0x26,0x7d,0x03,0x40,
     46    0x34,0x4b,0x1c,0x73,0xd1,0xc4,0xfd,0x3b,0xcc,0xfb,0x7f,0xab,0xe6,0x3e,0x5b,0xa5,
     47    0xad,0x04,0x23,0x9c,0x14,0x51,0x22,0xf0,0x29,0x79,0x71,0x7e,0xff,0x8c,0x0e,0xe2,
     48    0x0c,0xef,0xbc,0x72,0x75,0x6f,0x37,0xa1,0xec,0xd3,0x8e,0x62,0x8b,0x86,0x10,0xe8,
     49    0x08,0x77,0x11,0xbe,0x92,0x4f,0x24,0xc5,0x32,0x36,0x9d,0xcf,0xf3,0xa6,0xbb,0xac,
     50    0x5e,0x6c,0xa9,0x13,0x57,0x25,0xb5,0xe3,0xbd,0xa8,0x3a,0x01,0x05,0x59,0x2a,0x46
     51 };
     52 
     53 /* simple x + 1 (mod 10) in one step. */
     54 static const int keystep[] =  { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
     55 
     56 /* simple x - 1 (mod 10) in one step */
     57 static const int ikeystep[] = { 9, 0, 1, 2, 3, 4, 5, 6, 7, 8 };
     58 
     59  /**
     60     Initialize the Skipjack block cipher
     61     @param key The symmetric key you wish to pass
     62     @param keylen The key length in bytes
     63     @param num_rounds The number of rounds desired (0 for default)
     64     @param skey The key in as scheduled by this function.
     65     @return CRYPT_OK if successful
     66  */
     67 int skipjack_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
     68 {
     69    int x;
     70 
     71    LTC_ARGCHK(key  != NULL);
     72    LTC_ARGCHK(skey != NULL);
     73 
     74    if (keylen != 10) {
     75       return CRYPT_INVALID_KEYSIZE;
     76    }
     77 
     78    if (num_rounds != 32 && num_rounds != 0) {
     79       return CRYPT_INVALID_ROUNDS;
     80    }
     81 
     82    /* make sure the key is in range for platforms where CHAR_BIT != 8 */
     83    for (x = 0; x < 10; x++) {
     84        skey->skipjack.key[x] = key[x] & 255;
     85    }
     86 
     87    return CRYPT_OK;
     88 }
     89 
     90 #define RULE_A \
     91    tmp = g_func(w1, &kp, skey->skipjack.key);      \
     92    w1  = tmp ^ w4 ^ x;                            \
     93    w4  = w3; w3 = w2;                             \
     94    w2  = tmp;
     95 
     96 #define RULE_B \
     97    tmp  = g_func(w1, &kp, skey->skipjack.key);     \
     98    tmp1 = w4; w4  = w3;                           \
     99    w3   = w1 ^ w2 ^ x;                            \
    100    w1   = tmp1; w2 = tmp;
    101 
    102 #define RULE_A1 \
    103    tmp = w1 ^ w2 ^ x;                             \
    104    w1  = ig_func(w2, &kp, skey->skipjack.key);     \
    105    w2  = w3; w3 = w4; w4 = tmp;
    106 
    107 #define RULE_B1 \
    108    tmp = ig_func(w2, &kp, skey->skipjack.key);     \
    109    w2  = tmp ^ w3 ^ x;                            \
    110    w3  = w4; w4 = w1; w1 = tmp;
    111 
    112 static unsigned g_func(unsigned w, int *kp, unsigned char *key)
    113 {
    114    unsigned char g1,g2;
    115 
    116    g1 = (w >> 8) & 255; g2 = w & 255;
    117    g1 ^= sbox[g2^key[*kp]]; *kp = keystep[*kp];
    118    g2 ^= sbox[g1^key[*kp]]; *kp = keystep[*kp];
    119    g1 ^= sbox[g2^key[*kp]]; *kp = keystep[*kp];
    120    g2 ^= sbox[g1^key[*kp]]; *kp = keystep[*kp];
    121    return ((unsigned)g1<<8)|(unsigned)g2;
    122 }
    123 
    124 static unsigned ig_func(unsigned w, int *kp, unsigned char *key)
    125 {
    126    unsigned char g1,g2;
    127 
    128    g1 = (w >> 8) & 255; g2 = w & 255;
    129    *kp = ikeystep[*kp]; g2 ^= sbox[g1^key[*kp]];
    130    *kp = ikeystep[*kp]; g1 ^= sbox[g2^key[*kp]];
    131    *kp = ikeystep[*kp]; g2 ^= sbox[g1^key[*kp]];
    132    *kp = ikeystep[*kp]; g1 ^= sbox[g2^key[*kp]];
    133    return ((unsigned)g1<<8)|(unsigned)g2;
    134 }
    135 
    136 /**
    137   Encrypts a block of text with Skipjack
    138   @param pt The input plaintext (8 bytes)
    139   @param ct The output ciphertext (8 bytes)
    140   @param skey The key as scheduled
    141   @return CRYPT_OK if successful
    142 */
    143 #ifdef LTC_CLEAN_STACK
    144 static int _skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
    145 #else
    146 int skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
    147 #endif
    148 {
    149    unsigned w1,w2,w3,w4,tmp,tmp1;
    150    int x, kp;
    151 
    152    LTC_ARGCHK(pt   != NULL);
    153    LTC_ARGCHK(ct   != NULL);
    154    LTC_ARGCHK(skey != NULL);
    155 
    156    /* load block */
    157    w1 = ((unsigned)pt[0]<<8)|pt[1];
    158    w2 = ((unsigned)pt[2]<<8)|pt[3];
    159    w3 = ((unsigned)pt[4]<<8)|pt[5];
    160    w4 = ((unsigned)pt[6]<<8)|pt[7];
    161 
    162    /* 8 rounds of RULE A */
    163    for (x = 1, kp = 0; x < 9; x++) {
    164        RULE_A;
    165    }
    166 
    167    /* 8 rounds of RULE B */
    168    for (; x < 17; x++) {
    169        RULE_B;
    170    }
    171 
    172    /* 8 rounds of RULE A */
    173    for (; x < 25; x++) {
    174        RULE_A;
    175    }
    176 
    177    /* 8 rounds of RULE B */
    178    for (; x < 33; x++) {
    179        RULE_B;
    180    }
    181 
    182    /* store block */
    183    ct[0] = (w1>>8)&255; ct[1] = w1&255;
    184    ct[2] = (w2>>8)&255; ct[3] = w2&255;
    185    ct[4] = (w3>>8)&255; ct[5] = w3&255;
    186    ct[6] = (w4>>8)&255; ct[7] = w4&255;
    187 
    188    return CRYPT_OK;
    189 }
    190 
    191 #ifdef LTC_CLEAN_STACK
    192 int skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
    193 {
    194    int err = _skipjack_ecb_encrypt(pt, ct, skey);
    195    burn_stack(sizeof(unsigned) * 8 + sizeof(int) * 2);
    196    return err;
    197 }
    198 #endif
    199 
    200 /**
    201   Decrypts a block of text with Skipjack
    202   @param ct The input ciphertext (8 bytes)
    203   @param pt The output plaintext (8 bytes)
    204   @param skey The key as scheduled
    205   @return CRYPT_OK if successful
    206 */
    207 #ifdef LTC_CLEAN_STACK
    208 static int _skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
    209 #else
    210 int skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
    211 #endif
    212 {
    213    unsigned w1,w2,w3,w4,tmp;
    214    int x, kp;
    215 
    216    LTC_ARGCHK(pt   != NULL);
    217    LTC_ARGCHK(ct   != NULL);
    218    LTC_ARGCHK(skey != NULL);
    219 
    220    /* load block */
    221    w1 = ((unsigned)ct[0]<<8)|ct[1];
    222    w2 = ((unsigned)ct[2]<<8)|ct[3];
    223    w3 = ((unsigned)ct[4]<<8)|ct[5];
    224    w4 = ((unsigned)ct[6]<<8)|ct[7];
    225 
    226    /* 8 rounds of RULE B^-1
    227 
    228       Note the value "kp = 8" comes from "kp = (32 * 4) mod 10" where 32*4 is 128 which mod 10 is 8
    229     */
    230    for (x = 32, kp = 8; x > 24; x--) {
    231        RULE_B1;
    232    }
    233 
    234    /* 8 rounds of RULE A^-1 */
    235    for (; x > 16; x--) {
    236        RULE_A1;
    237    }
    238 
    239 
    240    /* 8 rounds of RULE B^-1 */
    241    for (; x > 8; x--) {
    242        RULE_B1;
    243    }
    244 
    245    /* 8 rounds of RULE A^-1 */
    246    for (; x > 0; x--) {
    247        RULE_A1;
    248    }
    249 
    250    /* store block */
    251    pt[0] = (w1>>8)&255; pt[1] = w1&255;
    252    pt[2] = (w2>>8)&255; pt[3] = w2&255;
    253    pt[4] = (w3>>8)&255; pt[5] = w3&255;
    254    pt[6] = (w4>>8)&255; pt[7] = w4&255;
    255 
    256    return CRYPT_OK;
    257 }
    258 
    259 #ifdef LTC_CLEAN_STACK
    260 int skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
    261 {
    262    int err = _skipjack_ecb_decrypt(ct, pt, skey);
    263    burn_stack(sizeof(unsigned) * 7 + sizeof(int) * 2);
    264    return err;
    265 }
    266 #endif
    267 
    268 /**
    269   Performs a self-test of the Skipjack block cipher
    270   @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
    271 */
    272 int skipjack_test(void)
    273 {
    274  #ifndef LTC_TEST
    275     return CRYPT_NOP;
    276  #else
    277    static const struct {
    278        unsigned char key[10], pt[8], ct[8];
    279    } tests[] = {
    280    {
    281        { 0x00, 0x99, 0x88, 0x77, 0x66, 0x55, 0x44, 0x33, 0x22, 0x11 },
    282        { 0x33, 0x22, 0x11, 0x00, 0xdd, 0xcc, 0xbb, 0xaa },
    283        { 0x25, 0x87, 0xca, 0xe2, 0x7a, 0x12, 0xd3, 0x00 }
    284    }
    285    };
    286    unsigned char buf[2][8];
    287    int x, y, err;
    288    symmetric_key key;
    289 
    290    for (x = 0; x < (int)(sizeof(tests) / sizeof(tests[0])); x++) {
    291       /* setup key */
    292       if ((err = skipjack_setup(tests[x].key, 10, 0, &key)) != CRYPT_OK) {
    293          return err;
    294       }
    295 
    296       /* encrypt and decrypt */
    297       skipjack_ecb_encrypt(tests[x].pt, buf[0], &key);
    298       skipjack_ecb_decrypt(buf[0], buf[1], &key);
    299 
    300       /* compare */
    301       if (XMEMCMP(buf[0], tests[x].ct, 8) != 0 || XMEMCMP(buf[1], tests[x].pt, 8) != 0) {
    302          return CRYPT_FAIL_TESTVECTOR;
    303       }
    304 
    305       /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
    306       for (y = 0; y < 8; y++) buf[0][y] = 0;
    307       for (y = 0; y < 1000; y++) skipjack_ecb_encrypt(buf[0], buf[0], &key);
    308       for (y = 0; y < 1000; y++) skipjack_ecb_decrypt(buf[0], buf[0], &key);
    309       for (y = 0; y < 8; y++) if (buf[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
    310    }
    311 
    312    return CRYPT_OK;
    313   #endif
    314 }
    315 
    316 /** Terminate the context
    317    @param skey    The scheduled key
    318 */
    319 void skipjack_done(symmetric_key *skey)
    320 {
    321 }
    322 
    323 /**
    324   Gets suitable key size
    325   @param keysize [in/out] The length of the recommended key (in bytes).  This function will store the suitable size back in this variable.
    326   @return CRYPT_OK if the input key size is acceptable.
    327 */
    328 int skipjack_keysize(int *keysize)
    329 {
    330    LTC_ARGCHK(keysize != NULL);
    331    if (*keysize < 10) {
    332       return CRYPT_INVALID_KEYSIZE;
    333    } else if (*keysize > 10) {
    334       *keysize = 10;
    335    }
    336    return CRYPT_OK;
    337 }
    338 
    339 #endif
    340 
    341 /* $Source: /cvs/libtom/libtomcrypt/src/ciphers/skipjack.c,v $ */
    342 /* $Revision: 1.12 $ */
    343 /* $Date: 2006/11/08 23:01:06 $ */
    344