1 #include <tommath.h> 2 #ifdef BN_MP_PRIME_NEXT_PRIME_C 3 /* LibTomMath, multiple-precision integer library -- Tom St Denis 4 * 5 * LibTomMath is a library that provides multiple-precision 6 * integer arithmetic as well as number theoretic functionality. 7 * 8 * The library was designed directly after the MPI library by 9 * Michael Fromberger but has been written from scratch with 10 * additional optimizations in place. 11 * 12 * The library is free for all purposes without any express 13 * guarantee it works. 14 * 15 * Tom St Denis, tomstdenis (at) gmail.com, http://math.libtomcrypt.com 16 */ 17 18 /* finds the next prime after the number "a" using "t" trials 19 * of Miller-Rabin. 20 * 21 * bbs_style = 1 means the prime must be congruent to 3 mod 4 22 */ 23 int mp_prime_next_prime(mp_int *a, int t, int bbs_style) 24 { 25 int err, res, x, y; 26 mp_digit res_tab[PRIME_SIZE], step, kstep; 27 mp_int b; 28 29 /* ensure t is valid */ 30 if (t <= 0 || t > PRIME_SIZE) { 31 return MP_VAL; 32 } 33 34 /* force positive */ 35 a->sign = MP_ZPOS; 36 37 /* simple algo if a is less than the largest prime in the table */ 38 if (mp_cmp_d(a, ltm_prime_tab[PRIME_SIZE-1]) == MP_LT) { 39 /* find which prime it is bigger than */ 40 for (x = PRIME_SIZE - 2; x >= 0; x--) { 41 if (mp_cmp_d(a, ltm_prime_tab[x]) != MP_LT) { 42 if (bbs_style == 1) { 43 /* ok we found a prime smaller or 44 * equal [so the next is larger] 45 * 46 * however, the prime must be 47 * congruent to 3 mod 4 48 */ 49 if ((ltm_prime_tab[x + 1] & 3) != 3) { 50 /* scan upwards for a prime congruent to 3 mod 4 */ 51 for (y = x + 1; y < PRIME_SIZE; y++) { 52 if ((ltm_prime_tab[y] & 3) == 3) { 53 mp_set(a, ltm_prime_tab[y]); 54 return MP_OKAY; 55 } 56 } 57 } 58 } else { 59 mp_set(a, ltm_prime_tab[x + 1]); 60 return MP_OKAY; 61 } 62 } 63 } 64 /* at this point a maybe 1 */ 65 if (mp_cmp_d(a, 1) == MP_EQ) { 66 mp_set(a, 2); 67 return MP_OKAY; 68 } 69 /* fall through to the sieve */ 70 } 71 72 /* generate a prime congruent to 3 mod 4 or 1/3 mod 4? */ 73 if (bbs_style == 1) { 74 kstep = 4; 75 } else { 76 kstep = 2; 77 } 78 79 /* at this point we will use a combination of a sieve and Miller-Rabin */ 80 81 if (bbs_style == 1) { 82 /* if a mod 4 != 3 subtract the correct value to make it so */ 83 if ((a->dp[0] & 3) != 3) { 84 if ((err = mp_sub_d(a, (a->dp[0] & 3) + 1, a)) != MP_OKAY) { return err; }; 85 } 86 } else { 87 if (mp_iseven(a) == 1) { 88 /* force odd */ 89 if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) { 90 return err; 91 } 92 } 93 } 94 95 /* generate the restable */ 96 for (x = 1; x < PRIME_SIZE; x++) { 97 if ((err = mp_mod_d(a, ltm_prime_tab[x], res_tab + x)) != MP_OKAY) { 98 return err; 99 } 100 } 101 102 /* init temp used for Miller-Rabin Testing */ 103 if ((err = mp_init(&b)) != MP_OKAY) { 104 return err; 105 } 106 107 for (;;) { 108 /* skip to the next non-trivially divisible candidate */ 109 step = 0; 110 do { 111 /* y == 1 if any residue was zero [e.g. cannot be prime] */ 112 y = 0; 113 114 /* increase step to next candidate */ 115 step += kstep; 116 117 /* compute the new residue without using division */ 118 for (x = 1; x < PRIME_SIZE; x++) { 119 /* add the step to each residue */ 120 res_tab[x] += kstep; 121 122 /* subtract the modulus [instead of using division] */ 123 if (res_tab[x] >= ltm_prime_tab[x]) { 124 res_tab[x] -= ltm_prime_tab[x]; 125 } 126 127 /* set flag if zero */ 128 if (res_tab[x] == 0) { 129 y = 1; 130 } 131 } 132 } while (y == 1 && step < ((((mp_digit)1)<<DIGIT_BIT) - kstep)); 133 134 /* add the step */ 135 if ((err = mp_add_d(a, step, a)) != MP_OKAY) { 136 goto LBL_ERR; 137 } 138 139 /* if didn't pass sieve and step == MAX then skip test */ 140 if (y == 1 && step >= ((((mp_digit)1)<<DIGIT_BIT) - kstep)) { 141 continue; 142 } 143 144 /* is this prime? */ 145 for (x = 0; x < t; x++) { 146 mp_set(&b, ltm_prime_tab[t]); 147 if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) { 148 goto LBL_ERR; 149 } 150 if (res == MP_NO) { 151 break; 152 } 153 } 154 155 if (res == MP_YES) { 156 break; 157 } 158 } 159 160 err = MP_OKAY; 161 LBL_ERR: 162 mp_clear(&b); 163 return err; 164 } 165 166 #endif 167 168 /* $Source: /cvs/libtom/libtommath/bn_mp_prime_next_prime.c,v $ */ 169 /* $Revision: 1.3 $ */ 170 /* $Date: 2006/03/31 14:18:44 $ */ 171