Home | History | Annotate | Download | only in fdlibm
      1 #pragma ident "@(#)k_tan.c 1.5 04/04/22 SMI"
      2 
      3 /*
      4  * ====================================================
      5  * Copyright 2004 Sun Microsystems, Inc.  All Rights Reserved.
      6  *
      7  * Permission to use, copy, modify, and distribute this
      8  * software is freely granted, provided that this notice
      9  * is preserved.
     10  * ====================================================
     11  */
     12 
     13 /* INDENT OFF */
     14 /* __kernel_tan( x, y, k )
     15  * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
     16  * Input x is assumed to be bounded by ~pi/4 in magnitude.
     17  * Input y is the tail of x.
     18  * Input k indicates whether ieee_tan (if k = 1) or -1/tan (if k = -1) is returned.
     19  *
     20  * Algorithm
     21  *	1. Since ieee_tan(-x) = -ieee_tan(x), we need only to consider positive x.
     22  *	2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
     23  *	3. ieee_tan(x) is approximated by a odd polynomial of degree 27 on
     24  *	   [0,0.67434]
     25  *		  	         3             27
     26  *	   	tan(x) ~ x + T1*x + ... + T13*x
     27  *	   where
     28  *
     29  * 	        |ieee_tan(x)         2     4            26   |     -59.2
     30  * 	        |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2
     31  * 	        |  x 					|
     32  *
     33  *	   Note: ieee_tan(x+y) = ieee_tan(x) + tan'(x)*y
     34  *		          ~ ieee_tan(x) + (1+x*x)*y
     35  *	   Therefore, for better accuracy in computing ieee_tan(x+y), let
     36  *		     3      2      2       2       2
     37  *		r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
     38  *	   then
     39  *		 		    3    2
     40  *		tan(x+y) = x + (T1*x + (x *(r+y)+y))
     41  *
     42  *      4. For x in [0.67434,pi/4],  let y = pi/4 - x, then
     43  *		tan(x) = ieee_tan(pi/4-y) = (1-ieee_tan(y))/(1+ieee_tan(y))
     44  *		       = 1 - 2*(ieee_tan(y) - (ieee_tan(y)^2)/(1+ieee_tan(y)))
     45  */
     46 
     47 #include "fdlibm.h"
     48 
     49 static const double xxx[] = {
     50 		 3.33333333333334091986e-01,	/* 3FD55555, 55555563 */
     51 		 1.33333333333201242699e-01,	/* 3FC11111, 1110FE7A */
     52 		 5.39682539762260521377e-02,	/* 3FABA1BA, 1BB341FE */
     53 		 2.18694882948595424599e-02,	/* 3F9664F4, 8406D637 */
     54 		 8.86323982359930005737e-03,	/* 3F8226E3, E96E8493 */
     55 		 3.59207910759131235356e-03,	/* 3F6D6D22, C9560328 */
     56 		 1.45620945432529025516e-03,	/* 3F57DBC8, FEE08315 */
     57 		 5.88041240820264096874e-04,	/* 3F4344D8, F2F26501 */
     58 		 2.46463134818469906812e-04,	/* 3F3026F7, 1A8D1068 */
     59 		 7.81794442939557092300e-05,	/* 3F147E88, A03792A6 */
     60 		 7.14072491382608190305e-05,	/* 3F12B80F, 32F0A7E9 */
     61 		-1.85586374855275456654e-05,	/* BEF375CB, DB605373 */
     62 		 2.59073051863633712884e-05,	/* 3EFB2A70, 74BF7AD4 */
     63 /* one */	 1.00000000000000000000e+00,	/* 3FF00000, 00000000 */
     64 /* pio4 */	 7.85398163397448278999e-01,	/* 3FE921FB, 54442D18 */
     65 /* pio4lo */	 3.06161699786838301793e-17	/* 3C81A626, 33145C07 */
     66 };
     67 #define	one	xxx[13]
     68 #define	pio4	xxx[14]
     69 #define	pio4lo	xxx[15]
     70 #define	T	xxx
     71 /* INDENT ON */
     72 
     73 double
     74 __kernel_tan(double x, double y, int iy) {
     75 	double z, r, v, w, s;
     76 	int ix, hx;
     77 
     78 	hx = __HI(x);		/* high word of x */
     79 	ix = hx & 0x7fffffff;			/* high word of |x| */
     80 	if (ix < 0x3e300000) {			/* x < 2**-28 */
     81 		if ((int) x == 0) {		/* generate inexact */
     82 			if (((ix | __LO(x)) | (iy + 1)) == 0)
     83 				return one / ieee_fabs(x);
     84 			else {
     85 				if (iy == 1)
     86 					return x;
     87 				else {	/* compute -1 / (x+y) carefully */
     88 					double a, t;
     89 
     90 					z = w = x + y;
     91 					__LO(z) = 0;
     92 					v = y - (z - x);
     93 					t = a = -one / w;
     94 					__LO(t) = 0;
     95 					s = one + t * z;
     96 					return t + a * (s + t * v);
     97 				}
     98 			}
     99 		}
    100 	}
    101 	if (ix >= 0x3FE59428) {	/* |x| >= 0.6744 */
    102 		if (hx < 0) {
    103 			x = -x;
    104 			y = -y;
    105 		}
    106 		z = pio4 - x;
    107 		w = pio4lo - y;
    108 		x = z + w;
    109 		y = 0.0;
    110 	}
    111 	z = x * x;
    112 	w = z * z;
    113 	/*
    114 	 * Break x^5*(T[1]+x^2*T[2]+...) into
    115 	 * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
    116 	 * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
    117 	 */
    118 	r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] +
    119 		w * T[11]))));
    120 	v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] +
    121 		w * T[12])))));
    122 	s = z * x;
    123 	r = y + z * (s * (r + v) + y);
    124 	r += T[0] * s;
    125 	w = x + r;
    126 	if (ix >= 0x3FE59428) {
    127 		v = (double) iy;
    128 		return (double) (1 - ((hx >> 30) & 2)) *
    129 			(v - 2.0 * (x - (w * w / (w + v) - r)));
    130 	}
    131 	if (iy == 1)
    132 		return w;
    133 	else {
    134 		/*
    135 		 * if allow error up to 2 ulp, simply return
    136 		 * -1.0 / (x+r) here
    137 		 */
    138 		/* compute -1.0 / (x+r) accurately */
    139 		double a, t;
    140 		z = w;
    141 		__LO(z) = 0;
    142 		v = r - (z - x);	/* z+v = r+x */
    143 		t = a = -1.0 / w;	/* a = -1.0/w */
    144 		__LO(t) = 0;
    145 		s = 1.0 + t * z;
    146 		return t + a * (s + t * v);
    147 	}
    148 }
    149