Home | History | Annotate | Download | only in docs
      1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
      2                       "http://www.w3.org/TR/html4/strict.dtd">
      3 <html>
      4 <head>
      5   <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
      6   <title>LLVM Alias Analysis Infrastructure</title>
      7   <link rel="stylesheet" href="llvm.css" type="text/css">
      8 </head>
      9 <body>
     10 
     11 <h1>
     12   LLVM Alias Analysis Infrastructure
     13 </h1>
     14 
     15 <ol>
     16   <li><a href="#introduction">Introduction</a></li>
     17 
     18   <li><a href="#overview"><tt>AliasAnalysis</tt> Class Overview</a>
     19     <ul>
     20     <li><a href="#pointers">Representation of Pointers</a></li>
     21     <li><a href="#alias">The <tt>alias</tt> method</a></li>
     22     <li><a href="#ModRefInfo">The <tt>getModRefInfo</tt> methods</a></li>
     23     <li><a href="#OtherItfs">Other useful <tt>AliasAnalysis</tt> methods</a></li>
     24     </ul>
     25   </li>
     26 
     27   <li><a href="#writingnew">Writing a new <tt>AliasAnalysis</tt> Implementation</a>
     28     <ul>
     29     <li><a href="#passsubclasses">Different Pass styles</a></li>
     30     <li><a href="#requiredcalls">Required initialization calls</a></li>
     31     <li><a href="#interfaces">Interfaces which may be specified</a></li>
     32     <li><a href="#chaining"><tt>AliasAnalysis</tt> chaining behavior</a></li>
     33     <li><a href="#updating">Updating analysis results for transformations</a></li>
     34     <li><a href="#implefficiency">Efficiency Issues</a></li>
     35     <li><a href="#limitations">Limitations</a></li>
     36     </ul>
     37   </li>
     38 
     39   <li><a href="#using">Using alias analysis results</a>
     40     <ul>
     41     <li><a href="#memdep">Using the <tt>MemoryDependenceAnalysis</tt> Pass</a></li>
     42     <li><a href="#ast">Using the <tt>AliasSetTracker</tt> class</a></li>
     43     <li><a href="#direct">Using the <tt>AliasAnalysis</tt> interface directly</a></li>
     44     </ul>
     45   </li>
     46 
     47   <li><a href="#exist">Existing alias analysis implementations and clients</a>
     48     <ul>
     49     <li><a href="#impls">Available <tt>AliasAnalysis</tt> implementations</a></li>
     50     <li><a href="#aliasanalysis-xforms">Alias analysis driven transformations</a></li>
     51     <li><a href="#aliasanalysis-debug">Clients for debugging and evaluation of
     52     implementations</a></li>
     53     </ul>
     54   </li>
     55   <li><a href="#memdep">Memory Dependence Analysis</a></li>
     56 </ol>
     57 
     58 <div class="doc_author">
     59   <p>Written by <a href="mailto:sabre (a] nondot.org">Chris Lattner</a></p>
     60 </div>
     61 
     62 <!-- *********************************************************************** -->
     63 <h2>
     64   <a name="introduction">Introduction</a>
     65 </h2>
     66 <!-- *********************************************************************** -->
     67 
     68 <div>
     69 
     70 <p>Alias Analysis (aka Pointer Analysis) is a class of techniques which attempt
     71 to determine whether or not two pointers ever can point to the same object in
     72 memory.  There are many different algorithms for alias analysis and many
     73 different ways of classifying them: flow-sensitive vs flow-insensitive,
     74 context-sensitive vs context-insensitive, field-sensitive vs field-insensitive,
     75 unification-based vs subset-based, etc.  Traditionally, alias analyses respond
     76 to a query with a <a href="#MustMayNo">Must, May, or No</a> alias response,
     77 indicating that two pointers always point to the same object, might point to the
     78 same object, or are known to never point to the same object.</p>
     79 
     80 <p>The LLVM <a
     81 href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html"><tt>AliasAnalysis</tt></a>
     82 class is the primary interface used by clients and implementations of alias
     83 analyses in the LLVM system.  This class is the common interface between clients
     84 of alias analysis information and the implementations providing it, and is
     85 designed to support a wide range of implementations and clients (but currently
     86 all clients are assumed to be flow-insensitive).  In addition to simple alias
     87 analysis information, this class exposes Mod/Ref information from those
     88 implementations which can provide it, allowing for powerful analyses and
     89 transformations to work well together.</p>
     90 
     91 <p>This document contains information necessary to successfully implement this
     92 interface, use it, and to test both sides.  It also explains some of the finer
     93 points about what exactly results mean.  If you feel that something is unclear
     94 or should be added, please <a href="mailto:sabre (a] nondot.org">let me
     95 know</a>.</p>
     96 
     97 </div>
     98 
     99 <!-- *********************************************************************** -->
    100 <h2>
    101   <a name="overview"><tt>AliasAnalysis</tt> Class Overview</a>
    102 </h2>
    103 <!-- *********************************************************************** -->
    104 
    105 <div>
    106 
    107 <p>The <a
    108 href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html"><tt>AliasAnalysis</tt></a>
    109 class defines the interface that the various alias analysis implementations
    110 should support.  This class exports two important enums: <tt>AliasResult</tt>
    111 and <tt>ModRefResult</tt> which represent the result of an alias query or a
    112 mod/ref query, respectively.</p>
    113 
    114 <p>The <tt>AliasAnalysis</tt> interface exposes information about memory,
    115 represented in several different ways.  In particular, memory objects are
    116 represented as a starting address and size, and function calls are represented
    117 as the actual <tt>call</tt> or <tt>invoke</tt> instructions that performs the
    118 call.  The <tt>AliasAnalysis</tt> interface also exposes some helper methods
    119 which allow you to get mod/ref information for arbitrary instructions.</p>
    120 
    121 <p>All <tt>AliasAnalysis</tt> interfaces require that in queries involving
    122 multiple values, values which are not
    123 <a href="LangRef.html#constants">constants</a> are all defined within the
    124 same function.</p>
    125 
    126 <!-- ======================================================================= -->
    127 <h3>
    128   <a name="pointers">Representation of Pointers</a>
    129 </h3>
    130 
    131 <div>
    132 
    133 <p>Most importantly, the <tt>AliasAnalysis</tt> class provides several methods
    134 which are used to query whether or not two memory objects alias, whether
    135 function calls can modify or read a memory object, etc.  For all of these
    136 queries, memory objects are represented as a pair of their starting address (a
    137 symbolic LLVM <tt>Value*</tt>) and a static size.</p>
    138 
    139 <p>Representing memory objects as a starting address and a size is critically
    140 important for correct Alias Analyses.  For example, consider this (silly, but
    141 possible) C code:</p>
    142 
    143 <div class="doc_code">
    144 <pre>
    145 int i;
    146 char C[2];
    147 char A[10]; 
    148 /* ... */
    149 for (i = 0; i != 10; ++i) {
    150   C[0] = A[i];          /* One byte store */
    151   C[1] = A[9-i];        /* One byte store */
    152 }
    153 </pre>
    154 </div>
    155 
    156 <p>In this case, the <tt>basicaa</tt> pass will disambiguate the stores to
    157 <tt>C[0]</tt> and <tt>C[1]</tt> because they are accesses to two distinct
    158 locations one byte apart, and the accesses are each one byte.  In this case, the
    159 LICM pass can use store motion to remove the stores from the loop.  In
    160 constrast, the following code:</p>
    161 
    162 <div class="doc_code">
    163 <pre>
    164 int i;
    165 char C[2];
    166 char A[10]; 
    167 /* ... */
    168 for (i = 0; i != 10; ++i) {
    169   ((short*)C)[0] = A[i];  /* Two byte store! */
    170   C[1] = A[9-i];          /* One byte store */
    171 }
    172 </pre>
    173 </div>
    174 
    175 <p>In this case, the two stores to C do alias each other, because the access to
    176 the <tt>&amp;C[0]</tt> element is a two byte access.  If size information wasn't
    177 available in the query, even the first case would have to conservatively assume
    178 that the accesses alias.</p>
    179 
    180 </div>
    181 
    182 <!-- ======================================================================= -->
    183 <h3>
    184   <a name="alias">The <tt>alias</tt> method</a>
    185 </h3>
    186   
    187 <div>
    188 <p>The <tt>alias</tt> method is the primary interface used to determine whether
    189 or not two memory objects alias each other.  It takes two memory objects as
    190 input and returns MustAlias, PartialAlias, MayAlias, or NoAlias as
    191 appropriate.</p>
    192 
    193 <p>Like all <tt>AliasAnalysis</tt> interfaces, the <tt>alias</tt> method requires
    194 that either the two pointer values be defined within the same function, or at
    195 least one of the values is a <a href="LangRef.html#constants">constant</a>.</p>
    196 
    197 <!-- _______________________________________________________________________ -->
    198 <h4>
    199   <a name="MustMayNo">Must, May, and No Alias Responses</a>
    200 </h4>
    201 
    202 <div>
    203 <p>The NoAlias response may be used when there is never an immediate dependence
    204 between any memory reference <i>based</i> on one pointer and any memory
    205 reference <i>based</i> the other. The most obvious example is when the two
    206 pointers point to non-overlapping memory ranges. Another is when the two
    207 pointers are only ever used for reading memory. Another is when the memory is
    208 freed and reallocated between accesses through one pointer and accesses through
    209 the other -- in this case, there is a dependence, but it's mediated by the free
    210 and reallocation.</p>
    211 
    212 <p>As an exception to this is with the
    213 <a href="LangRef.html#noalias"><tt>noalias</tt></a> keyword; the "irrelevant"
    214 dependencies are ignored.</p>
    215 
    216 <p>The MayAlias response is used whenever the two pointers might refer to the
    217 same object.</p>
    218 
    219 <p>The PartialAlias response is used when the two memory objects are known
    220 to be overlapping in some way, but do not start at the same address.</p>
    221 
    222 <p>The MustAlias response may only be returned if the two memory objects are
    223 guaranteed to always start at exactly the same location. A MustAlias response
    224 implies that the pointers compare equal.</p>
    225 
    226 </div>
    227 
    228 </div>
    229 
    230 <!-- ======================================================================= -->
    231 <h3>
    232   <a name="ModRefInfo">The <tt>getModRefInfo</tt> methods</a>
    233 </h3>
    234 
    235 <div>
    236 
    237 <p>The <tt>getModRefInfo</tt> methods return information about whether the
    238 execution of an instruction can read or modify a memory location.  Mod/Ref
    239 information is always conservative: if an instruction <b>might</b> read or write
    240 a location, ModRef is returned.</p>
    241 
    242 <p>The <tt>AliasAnalysis</tt> class also provides a <tt>getModRefInfo</tt>
    243 method for testing dependencies between function calls.  This method takes two
    244 call sites (CS1 &amp; CS2), returns NoModRef if neither call writes to memory
    245 read or written by the other, Ref if CS1 reads memory written by CS2, Mod if CS1
    246 writes to memory read or written by CS2, or ModRef if CS1 might read or write
    247 memory written to by CS2.  Note that this relation is not commutative.</p>
    248 
    249 </div>
    250 
    251 
    252 <!-- ======================================================================= -->
    253 <h3>
    254   <a name="OtherItfs">Other useful <tt>AliasAnalysis</tt> methods</a>
    255 </h3>
    256 
    257 <div>
    258 
    259 <p>
    260 Several other tidbits of information are often collected by various alias
    261 analysis implementations and can be put to good use by various clients.
    262 </p>
    263 
    264 <!-- _______________________________________________________________________ -->
    265 <h4>
    266   The <tt>pointsToConstantMemory</tt> method
    267 </h4>
    268 
    269 <div>
    270 
    271 <p>The <tt>pointsToConstantMemory</tt> method returns true if and only if the
    272 analysis can prove that the pointer only points to unchanging memory locations
    273 (functions, constant global variables, and the null pointer).  This information
    274 can be used to refine mod/ref information: it is impossible for an unchanging
    275 memory location to be modified.</p>
    276 
    277 </div>
    278 
    279 <!-- _______________________________________________________________________ -->
    280 <h4>
    281   <a name="simplemodref">The <tt>doesNotAccessMemory</tt> and
    282   <tt>onlyReadsMemory</tt> methods</a>
    283 </h4>
    284 
    285 <div>
    286 
    287 <p>These methods are used to provide very simple mod/ref information for
    288 function calls.  The <tt>doesNotAccessMemory</tt> method returns true for a
    289 function if the analysis can prove that the function never reads or writes to
    290 memory, or if the function only reads from constant memory.  Functions with this
    291 property are side-effect free and only depend on their input arguments, allowing
    292 them to be eliminated if they form common subexpressions or be hoisted out of
    293 loops.  Many common functions behave this way (e.g., <tt>sin</tt> and
    294 <tt>cos</tt>) but many others do not (e.g., <tt>acos</tt>, which modifies the
    295 <tt>errno</tt> variable).</p>
    296 
    297 <p>The <tt>onlyReadsMemory</tt> method returns true for a function if analysis
    298 can prove that (at most) the function only reads from non-volatile memory.
    299 Functions with this property are side-effect free, only depending on their input
    300 arguments and the state of memory when they are called.  This property allows
    301 calls to these functions to be eliminated and moved around, as long as there is
    302 no store instruction that changes the contents of memory.  Note that all
    303 functions that satisfy the <tt>doesNotAccessMemory</tt> method also satisfies
    304 <tt>onlyReadsMemory</tt>.</p>
    305 
    306 </div>
    307 
    308 </div>
    309 
    310 </div>
    311 
    312 <!-- *********************************************************************** -->
    313 <h2>
    314   <a name="writingnew">Writing a new <tt>AliasAnalysis</tt> Implementation</a>
    315 </h2>
    316 <!-- *********************************************************************** -->
    317 
    318 <div>
    319 
    320 <p>Writing a new alias analysis implementation for LLVM is quite
    321 straight-forward.  There are already several implementations that you can use
    322 for examples, and the following information should help fill in any details.
    323 For a examples, take a look at the <a href="#impls">various alias analysis
    324 implementations</a> included with LLVM.</p>
    325 
    326 <!-- ======================================================================= -->
    327 <h3>
    328   <a name="passsubclasses">Different Pass styles</a>
    329 </h3>
    330 
    331 <div>
    332 
    333 <p>The first step to determining what type of <a
    334 href="WritingAnLLVMPass.html">LLVM pass</a> you need to use for your Alias
    335 Analysis.  As is the case with most other analyses and transformations, the
    336 answer should be fairly obvious from what type of problem you are trying to
    337 solve:</p>
    338 
    339 <ol>
    340   <li>If you require interprocedural analysis, it should be a
    341       <tt>Pass</tt>.</li>
    342   <li>If you are a function-local analysis, subclass <tt>FunctionPass</tt>.</li>
    343   <li>If you don't need to look at the program at all, subclass 
    344       <tt>ImmutablePass</tt>.</li>
    345 </ol>
    346 
    347 <p>In addition to the pass that you subclass, you should also inherit from the
    348 <tt>AliasAnalysis</tt> interface, of course, and use the
    349 <tt>RegisterAnalysisGroup</tt> template to register as an implementation of
    350 <tt>AliasAnalysis</tt>.</p>
    351 
    352 </div>
    353 
    354 <!-- ======================================================================= -->
    355 <h3>
    356   <a name="requiredcalls">Required initialization calls</a>
    357 </h3>
    358 
    359 <div>
    360 
    361 <p>Your subclass of <tt>AliasAnalysis</tt> is required to invoke two methods on
    362 the <tt>AliasAnalysis</tt> base class: <tt>getAnalysisUsage</tt> and
    363 <tt>InitializeAliasAnalysis</tt>.  In particular, your implementation of
    364 <tt>getAnalysisUsage</tt> should explicitly call into the
    365 <tt>AliasAnalysis::getAnalysisUsage</tt> method in addition to doing any
    366 declaring any pass dependencies your pass has.  Thus you should have something
    367 like this:</p>
    368 
    369 <div class="doc_code">
    370 <pre>
    371 void getAnalysisUsage(AnalysisUsage &amp;AU) const {
    372   AliasAnalysis::getAnalysisUsage(AU);
    373   <i>// declare your dependencies here.</i>
    374 }
    375 </pre>
    376 </div>
    377 
    378 <p>Additionally, your must invoke the <tt>InitializeAliasAnalysis</tt> method
    379 from your analysis run method (<tt>run</tt> for a <tt>Pass</tt>,
    380 <tt>runOnFunction</tt> for a <tt>FunctionPass</tt>, or <tt>InitializePass</tt>
    381 for an <tt>ImmutablePass</tt>).  For example (as part of a <tt>Pass</tt>):</p>
    382 
    383 <div class="doc_code">
    384 <pre>
    385 bool run(Module &amp;M) {
    386   InitializeAliasAnalysis(this);
    387   <i>// Perform analysis here...</i>
    388   return false;
    389 }
    390 </pre>
    391 </div>
    392 
    393 </div>
    394 
    395 <!-- ======================================================================= -->
    396 <h3>
    397   <a name="interfaces">Interfaces which may be specified</a>
    398 </h3>
    399 
    400 <div>
    401 
    402 <p>All of the <a
    403 href="/doxygen/classllvm_1_1AliasAnalysis.html"><tt>AliasAnalysis</tt></a>
    404 virtual methods default to providing <a href="#chaining">chaining</a> to another
    405 alias analysis implementation, which ends up returning conservatively correct
    406 information (returning "May" Alias and "Mod/Ref" for alias and mod/ref queries
    407 respectively).  Depending on the capabilities of the analysis you are
    408 implementing, you just override the interfaces you can improve.</p>
    409 
    410 </div>
    411 
    412 
    413 
    414 <!-- ======================================================================= -->
    415 <h3>
    416   <a name="chaining"><tt>AliasAnalysis</tt> chaining behavior</a>
    417 </h3>
    418 
    419 <div>
    420 
    421 <p>With only one special exception (the <a href="#no-aa"><tt>no-aa</tt></a>
    422 pass) every alias analysis pass chains to another alias analysis
    423 implementation (for example, the user can specify "<tt>-basicaa -ds-aa
    424 -licm</tt>" to get the maximum benefit from both alias
    425 analyses).  The alias analysis class automatically takes care of most of this
    426 for methods that you don't override.  For methods that you do override, in code
    427 paths that return a conservative MayAlias or Mod/Ref result, simply return
    428 whatever the superclass computes.  For example:</p>
    429 
    430 <div class="doc_code">
    431 <pre>
    432 AliasAnalysis::AliasResult alias(const Value *V1, unsigned V1Size,
    433                                  const Value *V2, unsigned V2Size) {
    434   if (...)
    435     return NoAlias;
    436   ...
    437 
    438   <i>// Couldn't determine a must or no-alias result.</i>
    439   return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
    440 }
    441 </pre>
    442 </div>
    443 
    444 <p>In addition to analysis queries, you must make sure to unconditionally pass
    445 LLVM <a href="#updating">update notification</a> methods to the superclass as
    446 well if you override them, which allows all alias analyses in a change to be
    447 updated.</p>
    448 
    449 </div>
    450 
    451 
    452 <!-- ======================================================================= -->
    453 <h3>
    454   <a name="updating">Updating analysis results for transformations</a>
    455 </h3>
    456 
    457 <div>
    458 <p>
    459 Alias analysis information is initially computed for a static snapshot of the
    460 program, but clients will use this information to make transformations to the
    461 code.  All but the most trivial forms of alias analysis will need to have their
    462 analysis results updated to reflect the changes made by these transformations.
    463 </p>
    464 
    465 <p>
    466 The <tt>AliasAnalysis</tt> interface exposes four methods which are used to
    467 communicate program changes from the clients to the analysis implementations.
    468 Various alias analysis implementations should use these methods to ensure that
    469 their internal data structures are kept up-to-date as the program changes (for
    470 example, when an instruction is deleted), and clients of alias analysis must be
    471 sure to call these interfaces appropriately.
    472 </p>
    473 
    474 <!-- _______________________________________________________________________ -->
    475 <h4>The <tt>deleteValue</tt> method</h4>
    476 
    477 <div>
    478 The <tt>deleteValue</tt> method is called by transformations when they remove an
    479 instruction or any other value from the program (including values that do not
    480 use pointers).  Typically alias analyses keep data structures that have entries
    481 for each value in the program.  When this method is called, they should remove
    482 any entries for the specified value, if they exist.
    483 </div>
    484 
    485 <!-- _______________________________________________________________________ -->
    486 <h4>The <tt>copyValue</tt> method</h4>
    487 
    488 <div>
    489 The <tt>copyValue</tt> method is used when a new value is introduced into the
    490 program.  There is no way to introduce a value into the program that did not
    491 exist before (this doesn't make sense for a safe compiler transformation), so
    492 this is the only way to introduce a new value.  This method indicates that the
    493 new value has exactly the same properties as the value being copied.
    494 </div>
    495 
    496 <!-- _______________________________________________________________________ -->
    497 <h4>The <tt>replaceWithNewValue</tt> method</h4>
    498 
    499 <div>
    500 This method is a simple helper method that is provided to make clients easier to
    501 use.  It is implemented by copying the old analysis information to the new
    502 value, then deleting the old value.  This method cannot be overridden by alias
    503 analysis implementations.
    504 </div>
    505 
    506 <!-- _______________________________________________________________________ -->
    507 <h4>The <tt>addEscapingUse</tt> method</h4>
    508 
    509 <div>
    510 <p>The <tt>addEscapingUse</tt> method is used when the uses of a pointer
    511 value have changed in ways that may invalidate precomputed analysis information. 
    512 Implementations may either use this callback to provide conservative responses
    513 for points whose uses have change since analysis time, or may recompute some
    514 or all of their internal state to continue providing accurate responses.</p>
    515 
    516 <p>In general, any new use of a pointer value is considered an escaping use,
    517 and must be reported through this callback, <em>except</em> for the
    518 uses below:</p>
    519 
    520 <ul>
    521   <li>A <tt>bitcast</tt> or <tt>getelementptr</tt> of the pointer</li>
    522   <li>A <tt>store</tt> through the pointer (but not a <tt>store</tt>
    523       <em>of</em> the pointer)</li>
    524   <li>A <tt>load</tt> through the pointer</li>
    525 </ul>
    526 </div>
    527 
    528 </div>
    529 
    530 <!-- ======================================================================= -->
    531 <h3>
    532   <a name="implefficiency">Efficiency Issues</a>
    533 </h3>
    534 
    535 <div>
    536 
    537 <p>From the LLVM perspective, the only thing you need to do to provide an
    538 efficient alias analysis is to make sure that alias analysis <b>queries</b> are
    539 serviced quickly.  The actual calculation of the alias analysis results (the
    540 "run" method) is only performed once, but many (perhaps duplicate) queries may
    541 be performed.  Because of this, try to move as much computation to the run
    542 method as possible (within reason).</p>
    543 
    544 </div>
    545 
    546 <!-- ======================================================================= -->
    547 <h3>
    548   <a name="limitations">Limitations</a>
    549 </h3>
    550 
    551 <div>
    552 
    553 <p>The AliasAnalysis infrastructure has several limitations which make
    554 writing a new <tt>AliasAnalysis</tt> implementation difficult.</p>
    555 
    556 <p>There is no way to override the default alias analysis. It would
    557 be very useful to be able to do something like "opt -my-aa -O2" and
    558 have it use -my-aa for all passes which need AliasAnalysis, but there
    559 is currently no support for that, short of changing the source code
    560 and recompiling. Similarly, there is also no way of setting a chain
    561 of analyses as the default.</p>
    562 
    563 <p>There is no way for transform passes to declare that they preserve
    564 <tt>AliasAnalysis</tt> implementations. The <tt>AliasAnalysis</tt>
    565 interface includes <tt>deleteValue</tt> and <tt>copyValue</tt> methods
    566 which are intended to allow a pass to keep an AliasAnalysis consistent,
    567 however there's no way for a pass to declare in its
    568 <tt>getAnalysisUsage</tt> that it does so. Some passes attempt to use
    569 <tt>AU.addPreserved&lt;AliasAnalysis&gt;</tt>, however this doesn't
    570 actually have any effect.</p>
    571 
    572 <p><tt>AliasAnalysisCounter</tt> (<tt>-count-aa</tt>) and <tt>AliasDebugger</tt>
    573 (<tt>-debug-aa</tt>) are implemented as <tt>ModulePass</tt> classes, so if your
    574 alias analysis uses <tt>FunctionPass</tt>, it won't be able to use
    575 these utilities. If you try to use them, the pass manager will
    576 silently route alias analysis queries directly to
    577 <tt>BasicAliasAnalysis</tt> instead.</p>
    578 
    579 <p>Similarly, the <tt>opt -p</tt> option introduces <tt>ModulePass</tt>
    580 passes between each pass, which prevents the use of <tt>FunctionPass</tt>
    581 alias analysis passes.</p>
    582 
    583 <p>The <tt>AliasAnalysis</tt> API does have functions for notifying
    584 implementations when values are deleted or copied, however these
    585 aren't sufficient. There are many other ways that LLVM IR can be
    586 modified which could be relevant to <tt>AliasAnalysis</tt>
    587 implementations which can not be expressed.</p>
    588 
    589 <p>The <tt>AliasAnalysisDebugger</tt> utility seems to suggest that
    590 <tt>AliasAnalysis</tt> implementations can expect that they will be
    591 informed of any relevant <tt>Value</tt> before it appears in an
    592 alias query. However, popular clients such as <tt>GVN</tt> don't
    593 support this, and are known to trigger errors when run with the
    594 <tt>AliasAnalysisDebugger</tt>.</p>
    595 
    596 <p>Due to several of the above limitations, the most obvious use for
    597 the <tt>AliasAnalysisCounter</tt> utility, collecting stats on all
    598 alias queries in a compilation, doesn't work, even if the
    599 <tt>AliasAnalysis</tt> implementations don't use <tt>FunctionPass</tt>.
    600 There's no way to set a default, much less a default sequence,
    601 and there's no way to preserve it.</p>
    602 
    603 <p>The <tt>AliasSetTracker</tt> class (which is used by <tt>LICM</tt>
    604 makes a non-deterministic number of alias queries. This can cause stats
    605 collected by <tt>AliasAnalysisCounter</tt> to have fluctuations among
    606 identical runs, for example. Another consequence is that debugging
    607 techniques involving pausing execution after a predetermined number
    608 of queries can be unreliable.</p>
    609 
    610 <p>Many alias queries can be reformulated in terms of other alias
    611 queries. When multiple <tt>AliasAnalysis</tt> queries are chained together,
    612 it would make sense to start those queries from the beginning of the chain,
    613 with care taken to avoid infinite looping, however currently an
    614 implementation which wants to do this can only start such queries
    615 from itself.</p>
    616 
    617 </div>
    618 
    619 </div>
    620 
    621 <!-- *********************************************************************** -->
    622 <h2>
    623   <a name="using">Using alias analysis results</a>
    624 </h2>
    625 <!-- *********************************************************************** -->
    626 
    627 <div>
    628 
    629 <p>There are several different ways to use alias analysis results.  In order of
    630 preference, these are...</p>
    631 
    632 <!-- ======================================================================= -->
    633 <h3>
    634   <a name="memdep">Using the <tt>MemoryDependenceAnalysis</tt> Pass</a>
    635 </h3>
    636 
    637 <div>
    638 
    639 <p>The <tt>memdep</tt> pass uses alias analysis to provide high-level dependence
    640 information about memory-using instructions.  This will tell you which store
    641 feeds into a load, for example.  It uses caching and other techniques to be
    642 efficient, and is used by Dead Store Elimination, GVN, and memcpy optimizations.
    643 </p>
    644 
    645 </div>
    646 
    647 <!-- ======================================================================= -->
    648 <h3>
    649   <a name="ast">Using the <tt>AliasSetTracker</tt> class</a>
    650 </h3>
    651 
    652 <div>
    653 
    654 <p>Many transformations need information about alias <b>sets</b> that are active
    655 in some scope, rather than information about pairwise aliasing.  The <tt><a
    656 href="/doxygen/classllvm_1_1AliasSetTracker.html">AliasSetTracker</a></tt> class
    657 is used to efficiently build these Alias Sets from the pairwise alias analysis
    658 information provided by the <tt>AliasAnalysis</tt> interface.</p>
    659 
    660 <p>First you initialize the AliasSetTracker by using the "<tt>add</tt>" methods
    661 to add information about various potentially aliasing instructions in the scope
    662 you are interested in.  Once all of the alias sets are completed, your pass
    663 should simply iterate through the constructed alias sets, using the
    664 <tt>AliasSetTracker</tt> <tt>begin()</tt>/<tt>end()</tt> methods.</p>
    665 
    666 <p>The <tt>AliasSet</tt>s formed by the <tt>AliasSetTracker</tt> are guaranteed
    667 to be disjoint, calculate mod/ref information and volatility for the set, and
    668 keep track of whether or not all of the pointers in the set are Must aliases.
    669 The AliasSetTracker also makes sure that sets are properly folded due to call
    670 instructions, and can provide a list of pointers in each set.</p>
    671 
    672 <p>As an example user of this, the <a href="/doxygen/structLICM.html">Loop
    673 Invariant Code Motion</a> pass uses <tt>AliasSetTracker</tt>s to calculate alias
    674 sets for each loop nest.  If an <tt>AliasSet</tt> in a loop is not modified,
    675 then all load instructions from that set may be hoisted out of the loop.  If any
    676 alias sets are stored to <b>and</b> are must alias sets, then the stores may be
    677 sunk to outside of the loop, promoting the memory location to a register for the
    678 duration of the loop nest.  Both of these transformations only apply if the
    679 pointer argument is loop-invariant.</p>
    680 
    681 <!-- _______________________________________________________________________ -->
    682 <h4>
    683   The AliasSetTracker implementation
    684 </h4>
    685 
    686 <div>
    687 
    688 <p>The AliasSetTracker class is implemented to be as efficient as possible.  It
    689 uses the union-find algorithm to efficiently merge AliasSets when a pointer is
    690 inserted into the AliasSetTracker that aliases multiple sets.  The primary data
    691 structure is a hash table mapping pointers to the AliasSet they are in.</p>
    692 
    693 <p>The AliasSetTracker class must maintain a list of all of the LLVM Value*'s
    694 that are in each AliasSet.  Since the hash table already has entries for each
    695 LLVM Value* of interest, the AliasesSets thread the linked list through these
    696 hash-table nodes to avoid having to allocate memory unnecessarily, and to make
    697 merging alias sets extremely efficient (the linked list merge is constant time).
    698 </p>
    699 
    700 <p>You shouldn't need to understand these details if you are just a client of
    701 the AliasSetTracker, but if you look at the code, hopefully this brief
    702 description will help make sense of why things are designed the way they
    703 are.</p>
    704 
    705 </div>
    706 
    707 </div>
    708 
    709 <!-- ======================================================================= -->
    710 <h3>
    711   <a name="direct">Using the <tt>AliasAnalysis</tt> interface directly</a>
    712 </h3>
    713 
    714 <div>
    715 
    716 <p>If neither of these utility class are what your pass needs, you should use
    717 the interfaces exposed by the <tt>AliasAnalysis</tt> class directly.  Try to use
    718 the higher-level methods when possible (e.g., use mod/ref information instead of
    719 the <a href="#alias"><tt>alias</tt></a> method directly if possible) to get the
    720 best precision and efficiency.</p>
    721 
    722 </div>
    723 
    724 </div>
    725 
    726 <!-- *********************************************************************** -->
    727 <h2>
    728   <a name="exist">Existing alias analysis implementations and clients</a>
    729 </h2>
    730 <!-- *********************************************************************** -->
    731 
    732 <div>
    733 
    734 <p>If you're going to be working with the LLVM alias analysis infrastructure,
    735 you should know what clients and implementations of alias analysis are
    736 available.  In particular, if you are implementing an alias analysis, you should
    737 be aware of the <a href="#aliasanalysis-debug">the clients</a> that are useful
    738 for monitoring and evaluating different implementations.</p>
    739 
    740 <!-- ======================================================================= -->
    741 <h3>
    742   <a name="impls">Available <tt>AliasAnalysis</tt> implementations</a>
    743 </h3>
    744 
    745 <div>
    746 
    747 <p>This section lists the various implementations of the <tt>AliasAnalysis</tt>
    748 interface.  With the exception of the <a href="#no-aa"><tt>-no-aa</tt></a>
    749 implementation, all of these <a href="#chaining">chain</a> to other alias
    750 analysis implementations.</p>
    751 
    752 <!-- _______________________________________________________________________ -->
    753 <h4>
    754   <a name="no-aa">The <tt>-no-aa</tt> pass</a>
    755 </h4>
    756 
    757 <div>
    758 
    759 <p>The <tt>-no-aa</tt> pass is just like what it sounds: an alias analysis that
    760 never returns any useful information.  This pass can be useful if you think that
    761 alias analysis is doing something wrong and are trying to narrow down a
    762 problem.</p>
    763 
    764 </div>
    765 
    766 <!-- _______________________________________________________________________ -->
    767 <h4>
    768   <a name="basic-aa">The <tt>-basicaa</tt> pass</a>
    769 </h4>
    770 
    771 <div>
    772 
    773 <p>The <tt>-basicaa</tt> pass is an aggressive local analysis that "knows"
    774 many important facts:</p>
    775 
    776 <ul>
    777 <li>Distinct globals, stack allocations, and heap allocations can never
    778     alias.</li>
    779 <li>Globals, stack allocations, and heap allocations never alias the null
    780     pointer.</li>
    781 <li>Different fields of a structure do not alias.</li>
    782 <li>Indexes into arrays with statically differing subscripts cannot alias.</li>
    783 <li>Many common standard C library functions <a
    784     href="#simplemodref">never access memory or only read memory</a>.</li>
    785 <li>Pointers that obviously point to constant globals
    786     "<tt>pointToConstantMemory</tt>".</li>
    787 <li>Function calls can not modify or references stack allocations if they never
    788     escape from the function that allocates them (a common case for automatic
    789     arrays).</li>
    790 </ul>
    791 
    792 </div>
    793 
    794 <!-- _______________________________________________________________________ -->
    795 <h4>
    796   <a name="globalsmodref">The <tt>-globalsmodref-aa</tt> pass</a>
    797 </h4>
    798 
    799 <div>
    800 
    801 <p>This pass implements a simple context-sensitive mod/ref and alias analysis
    802 for internal global variables that don't "have their address taken".  If a
    803 global does not have its address taken, the pass knows that no pointers alias
    804 the global.  This pass also keeps track of functions that it knows never access
    805 memory or never read memory.  This allows certain optimizations (e.g. GVN) to
    806 eliminate call instructions entirely.
    807 </p>
    808 
    809 <p>The real power of this pass is that it provides context-sensitive mod/ref 
    810 information for call instructions.  This allows the optimizer to know that 
    811 calls to a function do not clobber or read the value of the global, allowing 
    812 loads and stores to be eliminated.</p>
    813 
    814 <p>Note that this pass is somewhat limited in its scope (only support 
    815 non-address taken globals), but is very quick analysis.</p>
    816 </div>
    817 
    818 <!-- _______________________________________________________________________ -->
    819 <h4>
    820   <a name="steens-aa">The <tt>-steens-aa</tt> pass</a>
    821 </h4>
    822 
    823 <div>
    824 
    825 <p>The <tt>-steens-aa</tt> pass implements a variation on the well-known
    826 "Steensgaard's algorithm" for interprocedural alias analysis.  Steensgaard's
    827 algorithm is a unification-based, flow-insensitive, context-insensitive, and
    828 field-insensitive alias analysis that is also very scalable (effectively linear
    829 time).</p>
    830 
    831 <p>The LLVM <tt>-steens-aa</tt> pass implements a "speculatively
    832 field-<b>sensitive</b>" version of Steensgaard's algorithm using the Data
    833 Structure Analysis framework.  This gives it substantially more precision than
    834 the standard algorithm while maintaining excellent analysis scalability.</p>
    835 
    836 <p>Note that <tt>-steens-aa</tt> is available in the optional "poolalloc"
    837 module, it is not part of the LLVM core.</p>
    838 
    839 </div>
    840 
    841 <!-- _______________________________________________________________________ -->
    842 <h4>
    843   <a name="ds-aa">The <tt>-ds-aa</tt> pass</a>
    844 </h4>
    845 
    846 <div>
    847 
    848 <p>The <tt>-ds-aa</tt> pass implements the full Data Structure Analysis
    849 algorithm.  Data Structure Analysis is a modular unification-based,
    850 flow-insensitive, context-<b>sensitive</b>, and speculatively
    851 field-<b>sensitive</b> alias analysis that is also quite scalable, usually at
    852 O(n*log(n)).</p>
    853 
    854 <p>This algorithm is capable of responding to a full variety of alias analysis
    855 queries, and can provide context-sensitive mod/ref information as well.  The
    856 only major facility not implemented so far is support for must-alias
    857 information.</p>
    858 
    859 <p>Note that <tt>-ds-aa</tt> is available in the optional "poolalloc"
    860 module, it is not part of the LLVM core.</p>
    861 
    862 </div>
    863 
    864 <!-- _______________________________________________________________________ -->
    865 <h4>
    866   <a name="scev-aa">The <tt>-scev-aa</tt> pass</a>
    867 </h4>
    868 
    869 <div>
    870 
    871 <p>The <tt>-scev-aa</tt> pass implements AliasAnalysis queries by
    872 translating them into ScalarEvolution queries. This gives it a
    873 more complete understanding of <tt>getelementptr</tt> instructions
    874 and loop induction variables than other alias analyses have.</p>
    875 
    876 </div>
    877 
    878 </div>
    879 
    880 <!-- ======================================================================= -->
    881 <h3>
    882   <a name="aliasanalysis-xforms">Alias analysis driven transformations</a>
    883 </h3>
    884 
    885 <div>
    886 LLVM includes several alias-analysis driven transformations which can be used
    887 with any of the implementations above.
    888 
    889 <!-- _______________________________________________________________________ -->
    890 <h4>
    891   <a name="adce">The <tt>-adce</tt> pass</a>
    892 </h4>
    893 
    894 <div>
    895 
    896 <p>The <tt>-adce</tt> pass, which implements Aggressive Dead Code Elimination
    897 uses the <tt>AliasAnalysis</tt> interface to delete calls to functions that do
    898 not have side-effects and are not used.</p>
    899 
    900 </div>
    901 
    902 
    903 <!-- _______________________________________________________________________ -->
    904 <h4>
    905   <a name="licm">The <tt>-licm</tt> pass</a>
    906 </h4>
    907 
    908 <div>
    909 
    910 <p>The <tt>-licm</tt> pass implements various Loop Invariant Code Motion related
    911 transformations.  It uses the <tt>AliasAnalysis</tt> interface for several
    912 different transformations:</p>
    913 
    914 <ul>
    915 <li>It uses mod/ref information to hoist or sink load instructions out of loops
    916 if there are no instructions in the loop that modifies the memory loaded.</li>
    917 
    918 <li>It uses mod/ref information to hoist function calls out of loops that do not
    919 write to memory and are loop-invariant.</li>
    920 
    921 <li>If uses alias information to promote memory objects that are loaded and
    922 stored to in loops to live in a register instead.  It can do this if there are
    923 no may aliases to the loaded/stored memory location.</li>
    924 </ul>
    925 
    926 </div>
    927 
    928 <!-- _______________________________________________________________________ -->
    929 <h4>
    930   <a name="argpromotion">The <tt>-argpromotion</tt> pass</a>
    931 </h4>
    932 
    933 <div>
    934 <p>
    935 The <tt>-argpromotion</tt> pass promotes by-reference arguments to be passed in
    936 by-value instead.  In particular, if pointer arguments are only loaded from it
    937 passes in the value loaded instead of the address to the function.  This pass
    938 uses alias information to make sure that the value loaded from the argument
    939 pointer is not modified between the entry of the function and any load of the
    940 pointer.</p>
    941 </div>
    942 
    943 <!-- _______________________________________________________________________ -->
    944 <h4>
    945   <a name="gvn">The <tt>-gvn</tt>, <tt>-memcpyopt</tt>, and <tt>-dse</tt>
    946      passes</a>
    947 </h4>
    948 
    949 <div>
    950 
    951 <p>These passes use AliasAnalysis information to reason about loads and stores.
    952 </p>
    953 
    954 </div>
    955 
    956 </div>
    957 
    958 <!-- ======================================================================= -->
    959 <h3>
    960   <a name="aliasanalysis-debug">Clients for debugging and evaluation of
    961   implementations</a>
    962 </h3>
    963 
    964 <div>
    965 
    966 <p>These passes are useful for evaluating the various alias analysis
    967 implementations.  You can use them with commands like '<tt>opt -ds-aa
    968 -aa-eval foo.bc -disable-output -stats</tt>'.</p>
    969 
    970 <!-- _______________________________________________________________________ -->
    971 <h4>
    972   <a name="print-alias-sets">The <tt>-print-alias-sets</tt> pass</a>
    973 </h4>
    974 
    975 <div>
    976 
    977 <p>The <tt>-print-alias-sets</tt> pass is exposed as part of the
    978 <tt>opt</tt> tool to print out the Alias Sets formed by the <a
    979 href="#ast"><tt>AliasSetTracker</tt></a> class.  This is useful if you're using
    980 the <tt>AliasSetTracker</tt> class.  To use it, use something like:</p>
    981 
    982 <div class="doc_code">
    983 <pre>
    984 % opt -ds-aa -print-alias-sets -disable-output
    985 </pre>
    986 </div>
    987 
    988 </div>
    989 
    990 
    991 <!-- _______________________________________________________________________ -->
    992 <h4>
    993   <a name="count-aa">The <tt>-count-aa</tt> pass</a>
    994 </h4>
    995 
    996 <div>
    997 
    998 <p>The <tt>-count-aa</tt> pass is useful to see how many queries a particular
    999 pass is making and what responses are returned by the alias analysis.  As an
   1000 example,</p>
   1001 
   1002 <div class="doc_code">
   1003 <pre>
   1004 % opt -basicaa -count-aa -ds-aa -count-aa -licm
   1005 </pre>
   1006 </div>
   1007 
   1008 <p>will print out how many queries (and what responses are returned) by the
   1009 <tt>-licm</tt> pass (of the <tt>-ds-aa</tt> pass) and how many queries are made
   1010 of the <tt>-basicaa</tt> pass by the <tt>-ds-aa</tt> pass.  This can be useful
   1011 when debugging a transformation or an alias analysis implementation.</p>
   1012 
   1013 </div>
   1014 
   1015 <!-- _______________________________________________________________________ -->
   1016 <h4>
   1017   <a name="aa-eval">The <tt>-aa-eval</tt> pass</a>
   1018 </h4>
   1019 
   1020 <div>
   1021 
   1022 <p>The <tt>-aa-eval</tt> pass simply iterates through all pairs of pointers in a
   1023 function and asks an alias analysis whether or not the pointers alias.  This
   1024 gives an indication of the precision of the alias analysis.  Statistics are
   1025 printed indicating the percent of no/may/must aliases found (a more precise
   1026 algorithm will have a lower number of may aliases).</p>
   1027 
   1028 </div>
   1029 
   1030 </div>
   1031 
   1032 </div>
   1033 
   1034 <!-- *********************************************************************** -->
   1035 <h2>
   1036   <a name="memdep">Memory Dependence Analysis</a>
   1037 </h2>
   1038 <!-- *********************************************************************** -->
   1039 
   1040 <div>
   1041 
   1042 <p>If you're just looking to be a client of alias analysis information, consider
   1043 using the Memory Dependence Analysis interface instead.  MemDep is a lazy, 
   1044 caching layer on top of alias analysis that is able to answer the question of
   1045 what preceding memory operations a given instruction depends on, either at an
   1046 intra- or inter-block level.  Because of its laziness and caching 
   1047 policy, using MemDep can be a significant performance win over accessing alias
   1048 analysis directly.</p>
   1049 
   1050 </div>
   1051 
   1052 <!-- *********************************************************************** -->
   1053 
   1054 <hr>
   1055 <address>
   1056   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
   1057   src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
   1058   <a href="http://validator.w3.org/check/referer"><img
   1059   src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
   1060 
   1061   <a href="mailto:sabre (a] nondot.org">Chris Lattner</a><br>
   1062   <a href="http://llvm.org/">LLVM Compiler Infrastructure</a><br>
   1063   Last modified: $Date$
   1064 </address>
   1065 
   1066 </body>
   1067 </html>
   1068