Home | History | Annotate | Download | only in docs
      1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
      2                       "http://www.w3.org/TR/html4/strict.dtd">
      3 <html>
      4 <head>
      5   <title>Exception Handling in LLVM</title>
      6   <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
      7   <meta name="description"
      8         content="Exception Handling in LLVM.">
      9   <link rel="stylesheet" href="llvm.css" type="text/css">
     10 </head>
     11 
     12 <body>
     13 
     14 <h1>Exception Handling in LLVM</h1>
     15 
     16 <table class="layout" style="width:100%">
     17   <tr class="layout">
     18     <td class="left">
     19 <ul>
     20   <li><a href="#introduction">Introduction</a>
     21   <ol>
     22     <li><a href="#itanium">Itanium ABI Zero-cost Exception Handling</a></li>
     23     <li><a href="#sjlj">Setjmp/Longjmp Exception Handling</a></li>
     24     <li><a href="#overview">Overview</a></li>
     25   </ol></li>
     26   <li><a href="#codegen">LLVM Code Generation</a>
     27   <ol>
     28     <li><a href="#throw">Throw</a></li>
     29     <li><a href="#try_catch">Try/Catch</a></li>
     30     <li><a href="#cleanups">Cleanups</a></li>
     31     <li><a href="#throw_filters">Throw Filters</a></li>
     32     <li><a href="#restrictions">Restrictions</a></li>
     33   </ol></li>
     34   <li><a href="#format_common_intrinsics">Exception Handling Intrinsics</a>
     35   <ol>
     36   	<li><a href="#llvm_eh_typeid_for"><tt>llvm.eh.typeid.for</tt></a></li>
     37   	<li><a href="#llvm_eh_sjlj_setjmp"><tt>llvm.eh.sjlj.setjmp</tt></a></li>
     38   	<li><a href="#llvm_eh_sjlj_longjmp"><tt>llvm.eh.sjlj.longjmp</tt></a></li>
     39   	<li><a href="#llvm_eh_sjlj_lsda"><tt>llvm.eh.sjlj.lsda</tt></a></li>
     40   	<li><a href="#llvm_eh_sjlj_callsite"><tt>llvm.eh.sjlj.callsite</tt></a></li>
     41   </ol></li>
     42   <li><a href="#asm">Asm Table Formats</a>
     43   <ol>
     44     <li><a href="#unwind_tables">Exception Handling Frame</a></li>
     45     <li><a href="#exception_tables">Exception Tables</a></li>
     46   </ol></li>
     47 </ul>
     48 </td>
     49 </tr></table>
     50 
     51 <div class="doc_author">
     52   <p>Written by the <a href="http://llvm.org/">LLVM Team</a></p>
     53 </div>
     54 
     55 
     56 <!-- *********************************************************************** -->
     57 <h2><a name="introduction">Introduction</a></h2>
     58 <!-- *********************************************************************** -->
     59 
     60 <div>
     61 
     62 <p>This document is the central repository for all information pertaining to
     63    exception handling in LLVM.  It describes the format that LLVM exception
     64    handling information takes, which is useful for those interested in creating
     65    front-ends or dealing directly with the information.  Further, this document
     66    provides specific examples of what exception handling information is used for
     67    in C and C++.</p>
     68 
     69 <!-- ======================================================================= -->
     70 <h3>
     71   <a name="itanium">Itanium ABI Zero-cost Exception Handling</a>
     72 </h3>
     73 
     74 <div>
     75 
     76 <p>Exception handling for most programming languages is designed to recover from
     77    conditions that rarely occur during general use of an application.  To that
     78    end, exception handling should not interfere with the main flow of an
     79    application's algorithm by performing checkpointing tasks, such as saving the
     80    current pc or register state.</p>
     81 
     82 <p>The Itanium ABI Exception Handling Specification defines a methodology for
     83    providing outlying data in the form of exception tables without inlining
     84    speculative exception handling code in the flow of an application's main
     85    algorithm.  Thus, the specification is said to add "zero-cost" to the normal
     86    execution of an application.</p>
     87 
     88 <p>A more complete description of the Itanium ABI exception handling runtime
     89    support of can be found at
     90    <a href="http://www.codesourcery.com/cxx-abi/abi-eh.html">Itanium C++ ABI:
     91    Exception Handling</a>. A description of the exception frame format can be
     92    found at
     93    <a href="http://refspecs.freestandards.org/LSB_3.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html">Exception
     94    Frames</a>, with details of the DWARF 4 specification at
     95    <a href="http://dwarfstd.org/Dwarf4Std.php">DWARF 4 Standard</a>.
     96    A description for the C++ exception table formats can be found at
     97    <a href="http://www.codesourcery.com/cxx-abi/exceptions.pdf">Exception Handling
     98    Tables</a>.</p>
     99 
    100 </div>
    101 
    102 <!-- ======================================================================= -->
    103 <h3>
    104   <a name="sjlj">Setjmp/Longjmp Exception Handling</a>
    105 </h3>
    106 
    107 <div>
    108 
    109 <p>Setjmp/Longjmp (SJLJ) based exception handling uses LLVM intrinsics
    110    <a href="#llvm_eh_sjlj_setjmp"><tt>llvm.eh.sjlj.setjmp</tt></a> and
    111    <a href="#llvm_eh_sjlj_longjmp"><tt>llvm.eh.sjlj.longjmp</tt></a> to
    112    handle control flow for exception handling.</p>
    113 
    114 <p>For each function which does exception processing &mdash; be
    115    it <tt>try</tt>/<tt>catch</tt> blocks or cleanups &mdash; that function
    116    registers itself on a global frame list. When exceptions are unwinding, the
    117    runtime uses this list to identify which functions need processing.<p>
    118 
    119 <p>Landing pad selection is encoded in the call site entry of the function
    120    context. The runtime returns to the function via
    121    <a href="#llvm_eh_sjlj_longjmp"><tt>llvm.eh.sjlj.longjmp</tt></a>, where
    122    a switch table transfers control to the appropriate landing pad based on
    123    the index stored in the function context.</p>
    124 
    125 <p>In contrast to DWARF exception handling, which encodes exception regions
    126    and frame information in out-of-line tables, SJLJ exception handling
    127    builds and removes the unwind frame context at runtime. This results in
    128    faster exception handling at the expense of slower execution when no
    129    exceptions are thrown. As exceptions are, by their nature, intended for
    130    uncommon code paths, DWARF exception handling is generally preferred to
    131    SJLJ.</p>
    132 
    133 </div>
    134 
    135 <!-- ======================================================================= -->
    136 <h3>
    137   <a name="overview">Overview</a>
    138 </h3>
    139 
    140 <div>
    141 
    142 <p>When an exception is thrown in LLVM code, the runtime does its best to find a
    143    handler suited to processing the circumstance.</p>
    144 
    145 <p>The runtime first attempts to find an <i>exception frame</i> corresponding to
    146    the function where the exception was thrown.  If the programming language
    147    supports exception handling (e.g. C++), the exception frame contains a
    148    reference to an exception table describing how to process the exception.  If
    149    the language does not support exception handling (e.g. C), or if the
    150    exception needs to be forwarded to a prior activation, the exception frame
    151    contains information about how to unwind the current activation and restore
    152    the state of the prior activation.  This process is repeated until the
    153    exception is handled. If the exception is not handled and no activations
    154    remain, then the application is terminated with an appropriate error
    155    message.</p>
    156 
    157 <p>Because different programming languages have different behaviors when
    158    handling exceptions, the exception handling ABI provides a mechanism for
    159    supplying <i>personalities</i>. An exception handling personality is defined
    160    by way of a <i>personality function</i> (e.g. <tt>__gxx_personality_v0</tt>
    161    in C++), which receives the context of the exception, an <i>exception
    162    structure</i> containing the exception object type and value, and a reference
    163    to the exception table for the current function.  The personality function
    164    for the current compile unit is specified in a <i>common exception
    165    frame</i>.</p>
    166 
    167 <p>The organization of an exception table is language dependent. For C++, an
    168    exception table is organized as a series of code ranges defining what to do
    169    if an exception occurs in that range. Typically, the information associated
    170    with a range defines which types of exception objects (using C++ <i>type
    171    info</i>) that are handled in that range, and an associated action that
    172    should take place. Actions typically pass control to a <i>landing
    173    pad</i>.</p>
    174 
    175 <p>A landing pad corresponds roughly to the code found in the <tt>catch</tt>
    176    portion of a <tt>try</tt>/<tt>catch</tt> sequence. When execution resumes at
    177    a landing pad, it receives an <i>exception structure</i> and a
    178    <i>selector value</i> corresponding to the <i>type</i> of exception
    179    thrown. The selector is then used to determine which <i>catch</i> should
    180    actually process the exception.</p>
    181 
    182 </div>
    183 
    184 </div>
    185 
    186 <!-- ======================================================================= -->
    187 <h2>
    188   <a name="codegen">LLVM Code Generation</a>
    189 </h2>
    190 
    191 <div>
    192 
    193 <p>From a C++ developer's perspective, exceptions are defined in terms of the
    194    <tt>throw</tt> and <tt>try</tt>/<tt>catch</tt> statements. In this section
    195    we will describe the implementation of LLVM exception handling in terms of
    196    C++ examples.</p>
    197 
    198 <!-- ======================================================================= -->
    199 <h3>
    200   <a name="throw">Throw</a>
    201 </h3>
    202 
    203 <div>
    204 
    205 <p>Languages that support exception handling typically provide a <tt>throw</tt>
    206    operation to initiate the exception process. Internally, a <tt>throw</tt>
    207    operation breaks down into two steps.</p>
    208 
    209 <ol>
    210   <li>A request is made to allocate exception space for an exception structure.
    211       This structure needs to survive beyond the current activation. This
    212       structure will contain the type and value of the object being thrown.</li>
    213 
    214   <li>A call is made to the runtime to raise the exception, passing the
    215       exception structure as an argument.</li>
    216 </ol>
    217 
    218 <p>In C++, the allocation of the exception structure is done by the
    219    <tt>__cxa_allocate_exception</tt> runtime function. The exception raising is
    220    handled by <tt>__cxa_throw</tt>. The type of the exception is represented
    221    using a C++ RTTI structure.</p>
    222 
    223 </div>
    224 
    225 <!-- ======================================================================= -->
    226 <h3>
    227   <a name="try_catch">Try/Catch</a>
    228 </h3>
    229 
    230 <div>
    231 
    232 <p>A call within the scope of a <i>try</i> statement can potentially raise an
    233    exception. In those circumstances, the LLVM C++ front-end replaces the call
    234    with an <tt>invoke</tt> instruction. Unlike a call, the <tt>invoke</tt> has
    235    two potential continuation points:</p>
    236 
    237 <ol>
    238   <li>where to continue when the call succeeds as per normal, and</li>
    239 
    240   <li>where to continue if the call raises an exception, either by a throw or
    241       the unwinding of a throw</li>
    242 </ol>
    243 
    244 <p>The term used to define a the place where an <tt>invoke</tt> continues after
    245    an exception is called a <i>landing pad</i>. LLVM landing pads are
    246    conceptually alternative function entry points where an exception structure
    247    reference and a type info index are passed in as arguments. The landing pad
    248    saves the exception structure reference and then proceeds to select the catch
    249    block that corresponds to the type info of the exception object.</p>
    250 
    251 <p>The LLVM <a href="LangRef.html#i_landingpad"><tt>landingpad</tt>
    252    instruction</a> is used to convey information about the landing pad to the
    253    back end. For C++, the <tt>landingpad</tt> instruction returns a pointer and
    254    integer pair corresponding to the pointer to the <i>exception structure</i>
    255    and the <i>selector value</i> respectively.</p>
    256 
    257 <p>The <tt>landingpad</tt> instruction takes a reference to the personality
    258    function to be used for this <tt>try</tt>/<tt>catch</tt> sequence. The
    259    remainder of the instruction is a list of <i>cleanup</i>, <i>catch</i>,
    260    and <i>filter</i> clauses. The exception is tested against the clauses
    261    sequentially from first to last. The selector value is a positive number if
    262    the exception matched a type info, a negative number if it matched a filter,
    263    and zero if it matched a cleanup. If nothing is matched, the behavior of
    264    the program is <a href="#restrictions">undefined</a>. If a type info matched,
    265    then the selector value is the index of the type info in the exception table,
    266    which can be obtained using the
    267    <a href="#llvm_eh_typeid_for"><tt>llvm.eh.typeid.for</tt></a> intrinsic.</p>
    268 
    269 <p>Once the landing pad has the type info selector, the code branches to the
    270    code for the first catch. The catch then checks the value of the type info
    271    selector against the index of type info for that catch.  Since the type info
    272    index is not known until all the type infos have been gathered in the
    273    backend, the catch code must call the
    274    <a href="#llvm_eh_typeid_for"><tt>llvm.eh.typeid.for</tt></a> intrinsic to
    275    determine the index for a given type info. If the catch fails to match the
    276    selector then control is passed on to the next catch.</p>
    277 
    278 <p>Finally, the entry and exit of catch code is bracketed with calls to
    279    <tt>__cxa_begin_catch</tt> and <tt>__cxa_end_catch</tt>.</p>
    280 
    281 <ul>
    282   <li><tt>__cxa_begin_catch</tt> takes an exception structure reference as an
    283       argument and returns the value of the exception object.</li>
    284 
    285   <li><tt>__cxa_end_catch</tt> takes no arguments. This function:<br><br>
    286     <ol>
    287       <li>Locates the most recently caught exception and decrements its handler
    288           count,</li>
    289       <li>Removes the exception from the <i>caught</i> stack if the handler
    290           count goes to zero, and</li>
    291       <li>Destroys the exception if the handler count goes to zero and the
    292           exception was not re-thrown by throw.</li>
    293     </ol>
    294     <p><b>Note:</b> a rethrow from within the catch may replace this call with
    295        a <tt>__cxa_rethrow</tt>.</p></li>
    296 </ul>
    297 
    298 </div>
    299 
    300 <!-- ======================================================================= -->
    301 <h3>
    302   <a name="cleanups">Cleanups</a>
    303 </h3>
    304 
    305 <div>
    306 
    307 <p>A cleanup is extra code which needs to be run as part of unwinding a scope.
    308    C++ destructors are a typical example, but other languages and language
    309    extensions provide a variety of different kinds of cleanups. In general, a
    310    landing pad may need to run arbitrary amounts of cleanup code before actually
    311    entering a catch block. To indicate the presence of cleanups, a
    312    <a href="LangRef.html#i_landingpad"><tt>landingpad</tt> instruction</a>
    313    should have a <i>cleanup</i> clause. Otherwise, the unwinder will not stop at
    314    the landing pad if there are no catches or filters that require it to.</p>
    315 
    316 <p><b>Note:</b> Do not allow a new exception to propagate out of the execution
    317    of a cleanup. This can corrupt the internal state of the unwinder.
    318    Different languages describe different high-level semantics for these
    319    situations: for example, C++ requires that the process be terminated, whereas
    320    Ada cancels both exceptions and throws a third.</p>
    321 
    322 <p>When all cleanups are finished, if the exception is not handled by the
    323    current function, resume unwinding by calling the
    324    <a href="LangRef.html#i_resume"><tt>resume</tt> instruction</a>, passing in
    325    the result of the <tt>landingpad</tt> instruction for the original landing
    326    pad.</p>
    327 
    328 </div>
    329 
    330 <!-- ======================================================================= -->
    331 <h3>
    332   <a name="throw_filters">Throw Filters</a>
    333 </h3>
    334 
    335 <div>
    336 
    337 <p>C++ allows the specification of which exception types may be thrown from a
    338    function. To represent this, a top level landing pad may exist to filter out
    339    invalid types. To express this in LLVM code the
    340    <a href="LangRef.html#i_landingpad"><tt>landingpad</tt> instruction</a> will
    341    have a filter clause. The clause consists of an array of type infos.
    342    <tt>landingpad</tt> will return a negative value if the exception does not
    343    match any of the type infos. If no match is found then a call
    344    to <tt>__cxa_call_unexpected</tt> should be made, otherwise
    345    <tt>_Unwind_Resume</tt>.  Each of these functions requires a reference to the
    346    exception structure.  Note that the most general form of a
    347    <a href="LangRef.html#i_landingpad"><tt>landingpad</tt> instruction</a> can
    348    have any number of catch, cleanup, and filter clauses (though having more
    349    than one cleanup is pointless). The LLVM C++ front-end can generate such
    350    <a href="LangRef.html#i_landingpad"><tt>landingpad</tt> instructions</a> due
    351    to inlining creating nested exception handling scopes.</p>
    352 
    353 </div>
    354 
    355 <!-- ======================================================================= -->
    356 <h3>
    357   <a name="restrictions">Restrictions</a>
    358 </h3>
    359 
    360 <div>
    361 
    362 <p>The unwinder delegates the decision of whether to stop in a call frame to
    363    that call frame's language-specific personality function. Not all unwinders
    364    guarantee that they will stop to perform cleanups. For example, the GNU C++
    365    unwinder doesn't do so unless the exception is actually caught somewhere
    366    further up the stack.</p>
    367 
    368 <p>In order for inlining to behave correctly, landing pads must be prepared to
    369    handle selector results that they did not originally advertise. Suppose that
    370    a function catches exceptions of type <tt>A</tt>, and it's inlined into a
    371    function that catches exceptions of type <tt>B</tt>. The inliner will update
    372    the <tt>landingpad</tt> instruction for the inlined landing pad to include
    373    the fact that <tt>B</tt> is also caught. If that landing pad assumes that it
    374    will only be entered to catch an <tt>A</tt>, it's in for a rude awakening.
    375    Consequently, landing pads must test for the selector results they understand
    376    and then resume exception propagation with the
    377    <a href="LangRef.html#i_resume"><tt>resume</tt> instruction</a> if none of
    378    the conditions match.</p>
    379 
    380 </div>
    381 
    382 </div>
    383 
    384 <!-- ======================================================================= -->
    385 <h2>
    386   <a name="format_common_intrinsics">Exception Handling Intrinsics</a>
    387 </h2>
    388 
    389 <div>
    390 
    391 <p>In addition to the
    392    <a href="LangRef.html#i_landingpad"><tt>landingpad</tt></a> and
    393    <a href="LangRef.html#i_resume"><tt>resume</tt></a> instructions, LLVM uses
    394    several intrinsic functions (name prefixed with <i><tt>llvm.eh</tt></i>) to
    395    provide exception handling information at various points in generated
    396    code.</p>
    397 
    398 <!-- ======================================================================= -->
    399 <h4>
    400   <a name="llvm_eh_typeid_for">llvm.eh.typeid.for</a>
    401 </h4>
    402 
    403 <div>
    404 
    405 <pre>
    406   i32 @llvm.eh.typeid.for(i8* %type_info)
    407 </pre>
    408 
    409 <p>This intrinsic returns the type info index in the exception table of the
    410    current function.  This value can be used to compare against the result
    411    of <a href="LangRef.html#i_landingpad"><tt>landingpad</tt> instruction</a>.
    412    The single argument is a reference to a type info.</p>
    413 
    414 </div>
    415 
    416 <!-- ======================================================================= -->
    417 <h4>
    418   <a name="llvm_eh_sjlj_setjmp">llvm.eh.sjlj.setjmp</a>
    419 </h4>
    420 
    421 <div>
    422 
    423 <pre>
    424   i32 @llvm.eh.sjlj.setjmp(i8* %setjmp_buf)
    425 </pre>
    426 
    427 <p>For SJLJ based exception handling, this intrinsic forces register saving for
    428    the current function and stores the address of the following instruction for
    429    use as a destination address
    430    by <a href="#llvm_eh_sjlj_longjmp"><tt>llvm.eh.sjlj.longjmp</tt></a>. The
    431    buffer format and the overall functioning of this intrinsic is compatible
    432    with the GCC <tt>__builtin_setjmp</tt> implementation allowing code built
    433    with the clang and GCC to interoperate.</p>
    434 
    435 <p>The single parameter is a pointer to a five word buffer in which the calling
    436    context is saved. The front end places the frame pointer in the first word,
    437    and the target implementation of this intrinsic should place the destination
    438    address for a
    439    <a href="#llvm_eh_sjlj_longjmp"><tt>llvm.eh.sjlj.longjmp</tt></a> in the
    440    second word. The following three words are available for use in a
    441    target-specific manner.</p>
    442 
    443 </div>
    444 
    445 <!-- ======================================================================= -->
    446 <h4>
    447   <a name="llvm_eh_sjlj_longjmp">llvm.eh.sjlj.longjmp</a>
    448 </h4>
    449 
    450 <div>
    451 
    452 <pre>
    453   void @llvm.eh.sjlj.longjmp(i8* %setjmp_buf)
    454 </pre>
    455 
    456 <p>For SJLJ based exception handling, the <tt>llvm.eh.sjlj.longjmp</tt>
    457    intrinsic is used to implement <tt>__builtin_longjmp()</tt>. The single
    458    parameter is a pointer to a buffer populated
    459    by <a href="#llvm_eh_sjlj_setjmp"><tt>llvm.eh.sjlj.setjmp</tt></a>. The frame
    460    pointer and stack pointer are restored from the buffer, then control is
    461    transferred to the destination address.</p>
    462 
    463 </div>
    464 <!-- ======================================================================= -->
    465 <h4>
    466   <a name="llvm_eh_sjlj_lsda">llvm.eh.sjlj.lsda</a>
    467 </h4>
    468 
    469 <div>
    470 
    471 <pre>
    472   i8* @llvm.eh.sjlj.lsda()
    473 </pre>
    474 
    475 <p>For SJLJ based exception handling, the <tt>llvm.eh.sjlj.lsda</tt> intrinsic
    476    returns the address of the Language Specific Data Area (LSDA) for the current
    477    function. The SJLJ front-end code stores this address in the exception
    478    handling function context for use by the runtime.</p>
    479 
    480 </div>
    481 
    482 <!-- ======================================================================= -->
    483 <h4>
    484   <a name="llvm_eh_sjlj_callsite">llvm.eh.sjlj.callsite</a>
    485 </h4>
    486 
    487 <div>
    488 
    489 <pre>
    490   void @llvm.eh.sjlj.callsite(i32 %call_site_num)
    491 </pre>
    492 
    493 <p>For SJLJ based exception handling, the <tt>llvm.eh.sjlj.callsite</tt>
    494    intrinsic identifies the callsite value associated with the
    495    following <tt>invoke</tt> instruction. This is used to ensure that landing
    496    pad entries in the LSDA are generated in matching order.</p>
    497 
    498 </div>
    499 
    500 </div>
    501 
    502 <!-- ======================================================================= -->
    503 <h2>
    504   <a name="asm">Asm Table Formats</a>
    505 </h2>
    506 
    507 <div>
    508 
    509 <p>There are two tables that are used by the exception handling runtime to
    510    determine which actions should be taken when an exception is thrown.</p>
    511 
    512 <!-- ======================================================================= -->
    513 <h3>
    514   <a name="unwind_tables">Exception Handling Frame</a>
    515 </h3>
    516 
    517 <div>
    518 
    519 <p>An exception handling frame <tt>eh_frame</tt> is very similar to the unwind
    520    frame used by DWARF debug info. The frame contains all the information
    521    necessary to tear down the current frame and restore the state of the prior
    522    frame. There is an exception handling frame for each function in a compile
    523    unit, plus a common exception handling frame that defines information common
    524    to all functions in the unit.</p>
    525 
    526 <!-- Todo - Table details here. -->
    527 
    528 </div>
    529 
    530 <!-- ======================================================================= -->
    531 <h3>
    532   <a name="exception_tables">Exception Tables</a>
    533 </h3>
    534 
    535 <div>
    536 
    537 <p>An exception table contains information about what actions to take when an
    538    exception is thrown in a particular part of a function's code. There is one
    539    exception table per function, except leaf functions and functions that have
    540    calls only to non-throwing functions. They do not need an exception
    541    table.</p>
    542 
    543 <!-- Todo - Table details here. -->
    544 
    545 </div>
    546 
    547 </div>
    548 
    549 <!-- *********************************************************************** -->
    550 
    551 <hr>
    552 <address>
    553   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
    554   src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
    555   <a href="http://validator.w3.org/check/referer"><img
    556   src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
    557 
    558   <a href="http://llvm.org/">LLVM Compiler Infrastructure</a><br>
    559   Last modified: $Date$
    560 </address>
    561 
    562 </body>
    563 </html>
    564