Home | History | Annotate | Download | only in docs
      1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
      2                       "http://www.w3.org/TR/html4/strict.dtd">
      3 <html>
      4 <head>
      5   <title>LLVM Assembly Language Reference Manual</title>
      6   <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
      7   <meta name="author" content="Chris Lattner">
      8   <meta name="description"
      9   content="LLVM Assembly Language Reference Manual.">
     10   <link rel="stylesheet" href="llvm.css" type="text/css">
     11 </head>
     12 
     13 <body>
     14 
     15 <h1>LLVM Language Reference Manual</h1>
     16 <ol>
     17   <li><a href="#abstract">Abstract</a></li>
     18   <li><a href="#introduction">Introduction</a></li>
     19   <li><a href="#identifiers">Identifiers</a></li>
     20   <li><a href="#highlevel">High Level Structure</a>
     21     <ol>
     22       <li><a href="#modulestructure">Module Structure</a></li>
     23       <li><a href="#linkage">Linkage Types</a>
     24         <ol>
     25           <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
     26           <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
     27           <li><a href="#linkage_linker_private_weak">'<tt>linker_private_weak</tt>' Linkage</a></li>
     28           <li><a href="#linkage_linker_private_weak_def_auto">'<tt>linker_private_weak_def_auto</tt>' Linkage</a></li>
     29           <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
     30           <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
     31           <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
     32           <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
     33           <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
     34           <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
     35           <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
     36           <li><a href="#linkage_linkonce_odr">'<tt>linkonce_odr</tt>' Linkage</a></li>
     37           <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
     38           <li><a href="#linkage_external">'<tt>external</tt>' Linkage</a></li>
     39           <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
     40           <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
     41         </ol>
     42       </li>
     43       <li><a href="#callingconv">Calling Conventions</a></li>
     44       <li><a href="#namedtypes">Named Types</a></li>
     45       <li><a href="#globalvars">Global Variables</a></li>
     46       <li><a href="#functionstructure">Functions</a></li>
     47       <li><a href="#aliasstructure">Aliases</a></li>
     48       <li><a href="#namedmetadatastructure">Named Metadata</a></li>
     49       <li><a href="#paramattrs">Parameter Attributes</a></li>
     50       <li><a href="#fnattrs">Function Attributes</a></li>
     51       <li><a href="#gc">Garbage Collector Names</a></li>
     52       <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
     53       <li><a href="#datalayout">Data Layout</a></li>
     54       <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
     55       <li><a href="#volatile">Volatile Memory Accesses</a></li>
     56       <li><a href="#memmodel">Memory Model for Concurrent Operations</a></li>
     57       <li><a href="#ordering">Atomic Memory Ordering Constraints</a></li>
     58     </ol>
     59   </li>
     60   <li><a href="#typesystem">Type System</a>
     61     <ol>
     62       <li><a href="#t_classifications">Type Classifications</a></li>
     63       <li><a href="#t_primitive">Primitive Types</a>
     64         <ol>
     65           <li><a href="#t_integer">Integer Type</a></li>
     66           <li><a href="#t_floating">Floating Point Types</a></li>
     67           <li><a href="#t_x86mmx">X86mmx Type</a></li>
     68           <li><a href="#t_void">Void Type</a></li>
     69           <li><a href="#t_label">Label Type</a></li>
     70           <li><a href="#t_metadata">Metadata Type</a></li>
     71         </ol>
     72       </li>
     73       <li><a href="#t_derived">Derived Types</a>
     74         <ol>
     75           <li><a href="#t_aggregate">Aggregate Types</a>
     76             <ol>
     77               <li><a href="#t_array">Array Type</a></li>
     78               <li><a href="#t_struct">Structure Type</a></li>
     79               <li><a href="#t_opaque">Opaque Structure Types</a></li>
     80               <li><a href="#t_vector">Vector Type</a></li>
     81             </ol>
     82           </li>
     83           <li><a href="#t_function">Function Type</a></li>
     84           <li><a href="#t_pointer">Pointer Type</a></li>
     85         </ol>
     86       </li>
     87     </ol>
     88   </li>
     89   <li><a href="#constants">Constants</a>
     90     <ol>
     91       <li><a href="#simpleconstants">Simple Constants</a></li>
     92       <li><a href="#complexconstants">Complex Constants</a></li>
     93       <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
     94       <li><a href="#undefvalues">Undefined Values</a></li>
     95       <li><a href="#poisonvalues">Poison Values</a></li>
     96       <li><a href="#blockaddress">Addresses of Basic Blocks</a></li>
     97       <li><a href="#constantexprs">Constant Expressions</a></li>
     98     </ol>
     99   </li>
    100   <li><a href="#othervalues">Other Values</a>
    101     <ol>
    102       <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
    103       <li><a href="#metadata">Metadata Nodes and Metadata Strings</a>
    104         <ol>
    105           <li><a href="#tbaa">'<tt>tbaa</tt>' Metadata</a></li>
    106           <li><a href="#fpmath">'<tt>fpmath</tt>' Metadata</a></li>
    107           <li><a href="#range">'<tt>range</tt>' Metadata</a></li>
    108         </ol>
    109       </li>
    110     </ol>
    111   </li>
    112   <li><a href="#module_flags">Module Flags Metadata</a>
    113     <ol>
    114       <li><a href="#objc_gc_flags">Objective-C Garbage Collection Module Flags Metadata</a></li>
    115     </ol>
    116   </li>
    117   <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
    118     <ol>
    119       <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
    120       <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
    121           Global Variable</a></li>
    122       <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
    123          Global Variable</a></li>
    124       <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
    125          Global Variable</a></li>
    126     </ol>
    127   </li>
    128   <li><a href="#instref">Instruction Reference</a>
    129     <ol>
    130       <li><a href="#terminators">Terminator Instructions</a>
    131         <ol>
    132           <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
    133           <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
    134           <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
    135           <li><a href="#i_indirectbr">'<tt>indirectbr</tt>' Instruction</a></li>
    136           <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
    137           <li><a href="#i_resume">'<tt>resume</tt>'  Instruction</a></li>
    138           <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
    139         </ol>
    140       </li>
    141       <li><a href="#binaryops">Binary Operations</a>
    142         <ol>
    143           <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
    144           <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
    145           <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
    146           <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
    147           <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
    148           <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
    149           <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
    150           <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
    151           <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
    152           <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
    153           <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
    154           <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
    155         </ol>
    156       </li>
    157       <li><a href="#bitwiseops">Bitwise Binary Operations</a>
    158         <ol>
    159           <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
    160           <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
    161           <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
    162           <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
    163           <li><a href="#i_or">'<tt>or</tt>'  Instruction</a></li>
    164           <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
    165         </ol>
    166       </li>
    167       <li><a href="#vectorops">Vector Operations</a>
    168         <ol>
    169           <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
    170           <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
    171           <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
    172         </ol>
    173       </li>
    174       <li><a href="#aggregateops">Aggregate Operations</a>
    175         <ol>
    176           <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
    177           <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
    178         </ol>
    179       </li>
    180       <li><a href="#memoryops">Memory Access and Addressing Operations</a>
    181         <ol>
    182           <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
    183          <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
    184          <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
    185          <li><a href="#i_fence">'<tt>fence</tt>' Instruction</a></li>
    186          <li><a href="#i_cmpxchg">'<tt>cmpxchg</tt>' Instruction</a></li>
    187          <li><a href="#i_atomicrmw">'<tt>atomicrmw</tt>' Instruction</a></li>
    188          <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
    189         </ol>
    190       </li>
    191       <li><a href="#convertops">Conversion Operations</a>
    192         <ol>
    193           <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
    194           <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
    195           <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
    196           <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
    197           <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
    198           <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
    199           <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
    200           <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
    201           <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
    202           <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
    203           <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
    204           <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
    205         </ol>
    206       </li>
    207       <li><a href="#otherops">Other Operations</a>
    208         <ol>
    209           <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
    210           <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
    211           <li><a href="#i_phi">'<tt>phi</tt>'   Instruction</a></li>
    212           <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
    213           <li><a href="#i_call">'<tt>call</tt>'  Instruction</a></li>
    214           <li><a href="#i_va_arg">'<tt>va_arg</tt>'  Instruction</a></li>
    215           <li><a href="#i_landingpad">'<tt>landingpad</tt>' Instruction</a></li>
    216         </ol>
    217       </li>
    218     </ol>
    219   </li>
    220   <li><a href="#intrinsics">Intrinsic Functions</a>
    221     <ol>
    222       <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
    223         <ol>
    224           <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
    225           <li><a href="#int_va_end">'<tt>llvm.va_end</tt>'   Intrinsic</a></li>
    226           <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>'  Intrinsic</a></li>
    227         </ol>
    228       </li>
    229       <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
    230         <ol>
    231           <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
    232           <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
    233           <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
    234         </ol>
    235       </li>
    236       <li><a href="#int_codegen">Code Generator Intrinsics</a>
    237         <ol>
    238           <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
    239           <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>'   Intrinsic</a></li>
    240           <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
    241           <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
    242           <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
    243           <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
    244           <li><a href="#int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
    245         </ol>
    246       </li>
    247       <li><a href="#int_libc">Standard C Library Intrinsics</a>
    248         <ol>
    249           <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
    250           <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
    251           <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
    252           <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
    253           <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
    254           <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
    255           <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
    256           <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
    257           <li><a href="#int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a></li>
    258           <li><a href="#int_log">'<tt>llvm.log.*</tt>' Intrinsic</a></li>
    259           <li><a href="#int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a></li>
    260         </ol>
    261       </li>
    262       <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
    263         <ol>
    264           <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
    265           <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
    266           <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
    267           <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
    268         </ol>
    269       </li>
    270       <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
    271         <ol>
    272           <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
    273           <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
    274           <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
    275           <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
    276           <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
    277           <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
    278         </ol>
    279       </li>
    280       <li><a href="#int_fp16">Half Precision Floating Point Intrinsics</a>
    281         <ol>
    282           <li><a href="#int_convert_to_fp16">'<tt>llvm.convert.to.fp16</tt>' Intrinsic</a></li>
    283           <li><a href="#int_convert_from_fp16">'<tt>llvm.convert.from.fp16</tt>' Intrinsic</a></li>
    284         </ol>
    285       </li>
    286       <li><a href="#int_debugger">Debugger intrinsics</a></li>
    287       <li><a href="#int_eh">Exception Handling intrinsics</a></li>
    288       <li><a href="#int_trampoline">Trampoline Intrinsics</a>
    289         <ol>
    290           <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
    291           <li><a href="#int_at">'<tt>llvm.adjust.trampoline</tt>' Intrinsic</a></li>
    292         </ol>
    293       </li>
    294       <li><a href="#int_memorymarkers">Memory Use Markers</a>
    295         <ol>
    296           <li><a href="#int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a></li>
    297           <li><a href="#int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a></li>
    298           <li><a href="#int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a></li>
    299           <li><a href="#int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a></li>
    300         </ol>
    301       </li>
    302       <li><a href="#int_general">General intrinsics</a>
    303         <ol>
    304           <li><a href="#int_var_annotation">
    305             '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
    306           <li><a href="#int_annotation">
    307             '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
    308           <li><a href="#int_trap">
    309             '<tt>llvm.trap</tt>' Intrinsic</a></li>
    310           <li><a href="#int_stackprotector">
    311             '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
    312 	  <li><a href="#int_objectsize">
    313             '<tt>llvm.objectsize</tt>' Intrinsic</a></li>
    314 	  <li><a href="#int_expect">
    315             '<tt>llvm.expect</tt>' Intrinsic</a></li>
    316         </ol>
    317       </li>
    318     </ol>
    319   </li>
    320 </ol>
    321 
    322 <div class="doc_author">
    323   <p>Written by <a href="mailto:sabre (a] nondot.org">Chris Lattner</a>
    324             and <a href="mailto:vadve (a] cs.uiuc.edu">Vikram Adve</a></p>
    325 </div>
    326 
    327 <!-- *********************************************************************** -->
    328 <h2><a name="abstract">Abstract</a></h2>
    329 <!-- *********************************************************************** -->
    330 
    331 <div>
    332 
    333 <p>This document is a reference manual for the LLVM assembly language. LLVM is
    334    a Static Single Assignment (SSA) based representation that provides type
    335    safety, low-level operations, flexibility, and the capability of representing
    336    'all' high-level languages cleanly.  It is the common code representation
    337    used throughout all phases of the LLVM compilation strategy.</p>
    338 
    339 </div>
    340 
    341 <!-- *********************************************************************** -->
    342 <h2><a name="introduction">Introduction</a></h2>
    343 <!-- *********************************************************************** -->
    344 
    345 <div>
    346 
    347 <p>The LLVM code representation is designed to be used in three different forms:
    348    as an in-memory compiler IR, as an on-disk bitcode representation (suitable
    349    for fast loading by a Just-In-Time compiler), and as a human readable
    350    assembly language representation.  This allows LLVM to provide a powerful
    351    intermediate representation for efficient compiler transformations and
    352    analysis, while providing a natural means to debug and visualize the
    353    transformations.  The three different forms of LLVM are all equivalent.  This
    354    document describes the human readable representation and notation.</p>
    355 
    356 <p>The LLVM representation aims to be light-weight and low-level while being
    357    expressive, typed, and extensible at the same time.  It aims to be a
    358    "universal IR" of sorts, by being at a low enough level that high-level ideas
    359    may be cleanly mapped to it (similar to how microprocessors are "universal
    360    IR's", allowing many source languages to be mapped to them).  By providing
    361    type information, LLVM can be used as the target of optimizations: for
    362    example, through pointer analysis, it can be proven that a C automatic
    363    variable is never accessed outside of the current function, allowing it to
    364    be promoted to a simple SSA value instead of a memory location.</p>
    365 
    366 <!-- _______________________________________________________________________ -->
    367 <h4>
    368   <a name="wellformed">Well-Formedness</a>
    369 </h4>
    370 
    371 <div>
    372 
    373 <p>It is important to note that this document describes 'well formed' LLVM
    374    assembly language.  There is a difference between what the parser accepts and
    375    what is considered 'well formed'.  For example, the following instruction is
    376    syntactically okay, but not well formed:</p>
    377 
    378 <pre class="doc_code">
    379 %x = <a href="#i_add">add</a> i32 1, %x
    380 </pre>
    381 
    382 <p>because the definition of <tt>%x</tt> does not dominate all of its uses. The
    383    LLVM infrastructure provides a verification pass that may be used to verify
    384    that an LLVM module is well formed.  This pass is automatically run by the
    385    parser after parsing input assembly and by the optimizer before it outputs
    386    bitcode.  The violations pointed out by the verifier pass indicate bugs in
    387    transformation passes or input to the parser.</p>
    388 
    389 </div>
    390 
    391 </div>
    392 
    393 <!-- Describe the typesetting conventions here. -->
    394 
    395 <!-- *********************************************************************** -->
    396 <h2><a name="identifiers">Identifiers</a></h2>
    397 <!-- *********************************************************************** -->
    398 
    399 <div>
    400 
    401 <p>LLVM identifiers come in two basic types: global and local. Global
    402    identifiers (functions, global variables) begin with the <tt>'@'</tt>
    403    character. Local identifiers (register names, types) begin with
    404    the <tt>'%'</tt> character. Additionally, there are three different formats
    405    for identifiers, for different purposes:</p>
    406 
    407 <ol>
    408   <li>Named values are represented as a string of characters with their prefix.
    409       For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
    410       <tt>%a.really.long.identifier</tt>. The actual regular expression used is
    411       '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.  Identifiers which require
    412       other characters in their names can be surrounded with quotes. Special
    413       characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
    414       ASCII code for the character in hexadecimal.  In this way, any character
    415       can be used in a name value, even quotes themselves.</li>
    416 
    417   <li>Unnamed values are represented as an unsigned numeric value with their
    418       prefix.  For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
    419 
    420   <li>Constants, which are described in a <a href="#constants">section about
    421       constants</a>, below.</li>
    422 </ol>
    423 
    424 <p>LLVM requires that values start with a prefix for two reasons: Compilers
    425    don't need to worry about name clashes with reserved words, and the set of
    426    reserved words may be expanded in the future without penalty.  Additionally,
    427    unnamed identifiers allow a compiler to quickly come up with a temporary
    428    variable without having to avoid symbol table conflicts.</p>
    429 
    430 <p>Reserved words in LLVM are very similar to reserved words in other
    431    languages. There are keywords for different opcodes
    432    ('<tt><a href="#i_add">add</a></tt>',
    433    '<tt><a href="#i_bitcast">bitcast</a></tt>',
    434    '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
    435    ('<tt><a href="#t_void">void</a></tt>',
    436    '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others.  These
    437    reserved words cannot conflict with variable names, because none of them
    438    start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
    439 
    440 <p>Here is an example of LLVM code to multiply the integer variable
    441    '<tt>%X</tt>' by 8:</p>
    442 
    443 <p>The easy way:</p>
    444 
    445 <pre class="doc_code">
    446 %result = <a href="#i_mul">mul</a> i32 %X, 8
    447 </pre>
    448 
    449 <p>After strength reduction:</p>
    450 
    451 <pre class="doc_code">
    452 %result = <a href="#i_shl">shl</a> i32 %X, i8 3
    453 </pre>
    454 
    455 <p>And the hard way:</p>
    456 
    457 <pre class="doc_code">
    458 %0 = <a href="#i_add">add</a> i32 %X, %X           <i>; yields {i32}:%0</i>
    459 %1 = <a href="#i_add">add</a> i32 %0, %0           <i>; yields {i32}:%1</i>
    460 %result = <a href="#i_add">add</a> i32 %1, %1
    461 </pre>
    462 
    463 <p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
    464    lexical features of LLVM:</p>
    465 
    466 <ol>
    467   <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
    468       line.</li>
    469 
    470   <li>Unnamed temporaries are created when the result of a computation is not
    471       assigned to a named value.</li>
    472 
    473   <li>Unnamed temporaries are numbered sequentially</li>
    474 </ol>
    475 
    476 <p>It also shows a convention that we follow in this document.  When
    477    demonstrating instructions, we will follow an instruction with a comment that
    478    defines the type and name of value produced.  Comments are shown in italic
    479    text.</p>
    480 
    481 </div>
    482 
    483 <!-- *********************************************************************** -->
    484 <h2><a name="highlevel">High Level Structure</a></h2>
    485 <!-- *********************************************************************** -->
    486 <div>
    487 <!-- ======================================================================= -->
    488 <h3>
    489   <a name="modulestructure">Module Structure</a>
    490 </h3>
    491 
    492 <div>
    493 
    494 <p>LLVM programs are composed of <tt>Module</tt>s, each of which is a
    495    translation unit of the input programs.  Each module consists of functions,
    496    global variables, and symbol table entries.  Modules may be combined together
    497    with the LLVM linker, which merges function (and global variable)
    498    definitions, resolves forward declarations, and merges symbol table
    499    entries. Here is an example of the "hello world" module:</p>
    500 
    501 <pre class="doc_code">
    502 <i>; Declare the string constant as a global constant.</i>&nbsp;
    503 <a href="#identifiers">@.str</a> = <a href="#linkage_private">private</a>&nbsp;<a href="#globalvars">unnamed_addr</a>&nbsp;<a href="#globalvars">constant</a>&nbsp;<a href="#t_array">[13 x i8]</a> c"hello world\0A\00"&nbsp;
    504 
    505 <i>; External declaration of the puts function</i>&nbsp;
    506 <a href="#functionstructure">declare</a> i32 @puts(i8* <a href="#nocapture">nocapture</a>) <a href="#fnattrs">nounwind</a>&nbsp;
    507 
    508 <i>; Definition of main function</i>
    509 define i32 @main() {   <i>; i32()* </i>&nbsp;
    510   <i>; Convert [13 x i8]* to i8  *...</i>&nbsp;
    511   %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x i8]* @.str, i64 0, i64 0
    512 
    513   <i>; Call puts function to write out the string to stdout.</i>&nbsp;
    514   <a href="#i_call">call</a> i32 @puts(i8* %cast210)
    515   <a href="#i_ret">ret</a> i32 0&nbsp;
    516 }
    517 
    518 <i>; Named metadata</i>
    519 !1 = metadata !{i32 42}
    520 !foo = !{!1, null}
    521 </pre>
    522 
    523 <p>This example is made up of a <a href="#globalvars">global variable</a> named
    524    "<tt>.str</tt>", an external declaration of the "<tt>puts</tt>" function,
    525    a <a href="#functionstructure">function definition</a> for
    526    "<tt>main</tt>" and <a href="#namedmetadatastructure">named metadata</a> 
    527    "<tt>foo</tt>".</p>
    528 
    529 <p>In general, a module is made up of a list of global values (where both
    530    functions and global variables are global values). Global values are
    531    represented by a pointer to a memory location (in this case, a pointer to an
    532    array of char, and a pointer to a function), and have one of the
    533    following <a href="#linkage">linkage types</a>.</p>
    534 
    535 </div>
    536 
    537 <!-- ======================================================================= -->
    538 <h3>
    539   <a name="linkage">Linkage Types</a>
    540 </h3>
    541 
    542 <div>
    543 
    544 <p>All Global Variables and Functions have one of the following types of
    545    linkage:</p>
    546 
    547 <dl>
    548   <dt><tt><b><a name="linkage_private">private</a></b></tt></dt>
    549   <dd>Global values with "<tt>private</tt>" linkage are only directly accessible
    550       by objects in the current module. In particular, linking code into a
    551       module with an private global value may cause the private to be renamed as
    552       necessary to avoid collisions.  Because the symbol is private to the
    553       module, all references can be updated. This doesn't show up in any symbol
    554       table in the object file.</dd>
    555 
    556   <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt></dt>
    557   <dd>Similar to <tt>private</tt>, but the symbol is passed through the
    558       assembler and evaluated by the linker. Unlike normal strong symbols, they
    559       are removed by the linker from the final linked image (executable or
    560       dynamic library).</dd>
    561 
    562   <dt><tt><b><a name="linkage_linker_private_weak">linker_private_weak</a></b></tt></dt>
    563   <dd>Similar to "<tt>linker_private</tt>", but the symbol is weak. Note that
    564       <tt>linker_private_weak</tt> symbols are subject to coalescing by the
    565       linker. The symbols are removed by the linker from the final linked image
    566       (executable or dynamic library).</dd>
    567 
    568   <dt><tt><b><a name="linkage_linker_private_weak_def_auto">linker_private_weak_def_auto</a></b></tt></dt>
    569   <dd>Similar to "<tt>linker_private_weak</tt>", but it's known that the address
    570       of the object is not taken. For instance, functions that had an inline
    571       definition, but the compiler decided not to inline it. Note,
    572       unlike <tt>linker_private</tt> and <tt>linker_private_weak</tt>,
    573       <tt>linker_private_weak_def_auto</tt> may have only <tt>default</tt>
    574       visibility.  The symbols are removed by the linker from the final linked
    575       image (executable or dynamic library).</dd>
    576 
    577   <dt><tt><b><a name="linkage_internal">internal</a></b></tt></dt>
    578   <dd>Similar to private, but the value shows as a local symbol
    579       (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
    580       corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
    581 
    582   <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt></dt>
    583   <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
    584       into the object file corresponding to the LLVM module.  They exist to
    585       allow inlining and other optimizations to take place given knowledge of
    586       the definition of the global, which is known to be somewhere outside the
    587       module.  Globals with <tt>available_externally</tt> linkage are allowed to
    588       be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
    589       This linkage type is only allowed on definitions, not declarations.</dd>
    590 
    591   <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt></dt>
    592   <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
    593       the same name when linkage occurs.  This can be used to implement
    594       some forms of inline functions, templates, or other code which must be
    595       generated in each translation unit that uses it, but where the body may
    596       be overridden with a more definitive definition later.  Unreferenced
    597       <tt>linkonce</tt> globals are allowed to be discarded.  Note that
    598       <tt>linkonce</tt> linkage does not actually allow the optimizer to
    599       inline the body of this function into callers because it doesn't know if
    600       this definition of the function is the definitive definition within the
    601       program or whether it will be overridden by a stronger definition.
    602       To enable inlining and other optimizations, use "<tt>linkonce_odr</tt>"
    603       linkage.</dd>
    604 
    605   <dt><tt><b><a name="linkage_weak">weak</a></b></tt></dt>
    606   <dd>"<tt>weak</tt>" linkage has the same merging semantics as
    607       <tt>linkonce</tt> linkage, except that unreferenced globals with
    608       <tt>weak</tt> linkage may not be discarded.  This is used for globals that
    609       are declared "weak" in C source code.</dd>
    610 
    611   <dt><tt><b><a name="linkage_common">common</a></b></tt></dt>
    612   <dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but
    613       they are used for tentative definitions in C, such as "<tt>int X;</tt>" at
    614       global scope.
    615       Symbols with "<tt>common</tt>" linkage are merged in the same way as
    616       <tt>weak symbols</tt>, and they may not be deleted if unreferenced.
    617       <tt>common</tt> symbols may not have an explicit section,
    618       must have a zero initializer, and may not be marked '<a
    619       href="#globalvars"><tt>constant</tt></a>'.  Functions and aliases may not
    620       have common linkage.</dd>
    621 
    622 
    623   <dt><tt><b><a name="linkage_appending">appending</a></b></tt></dt>
    624   <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
    625       pointer to array type.  When two global variables with appending linkage
    626       are linked together, the two global arrays are appended together.  This is
    627       the LLVM, typesafe, equivalent of having the system linker append together
    628       "sections" with identical names when .o files are linked.</dd>
    629 
    630   <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt></dt>
    631   <dd>The semantics of this linkage follow the ELF object file model: the symbol
    632       is weak until linked, if not linked, the symbol becomes null instead of
    633       being an undefined reference.</dd>
    634 
    635   <dt><tt><b><a name="linkage_linkonce_odr">linkonce_odr</a></b></tt></dt>
    636   <dt><tt><b><a name="linkage_weak_odr">weak_odr</a></b></tt></dt>
    637   <dd>Some languages allow differing globals to be merged, such as two functions
    638       with different semantics.  Other languages, such as <tt>C++</tt>, ensure
    639       that only equivalent globals are ever merged (the "one definition rule"
    640       &mdash; "ODR").  Such languages can use the <tt>linkonce_odr</tt>
    641       and <tt>weak_odr</tt> linkage types to indicate that the global will only
    642       be merged with equivalent globals.  These linkage types are otherwise the
    643       same as their non-<tt>odr</tt> versions.</dd>
    644 
    645   <dt><tt><b><a name="linkage_external">external</a></b></tt></dt>
    646   <dd>If none of the above identifiers are used, the global is externally
    647       visible, meaning that it participates in linkage and can be used to
    648       resolve external symbol references.</dd>
    649 </dl>
    650 
    651 <p>The next two types of linkage are targeted for Microsoft Windows platform
    652    only. They are designed to support importing (exporting) symbols from (to)
    653    DLLs (Dynamic Link Libraries).</p>
    654 
    655 <dl>
    656   <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt></dt>
    657   <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
    658       or variable via a global pointer to a pointer that is set up by the DLL
    659       exporting the symbol. On Microsoft Windows targets, the pointer name is
    660       formed by combining <code>__imp_</code> and the function or variable
    661       name.</dd>
    662 
    663   <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt></dt>
    664   <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
    665       pointer to a pointer in a DLL, so that it can be referenced with the
    666       <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
    667       name is formed by combining <code>__imp_</code> and the function or
    668       variable name.</dd>
    669 </dl>
    670 
    671 <p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
    672    another module defined a "<tt>.LC0</tt>" variable and was linked with this
    673    one, one of the two would be renamed, preventing a collision.  Since
    674    "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
    675    declarations), they are accessible outside of the current module.</p>
    676 
    677 <p>It is illegal for a function <i>declaration</i> to have any linkage type
    678    other than <tt>external</tt>, <tt>dllimport</tt>
    679   or <tt>extern_weak</tt>.</p>
    680 
    681 <p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
    682    or <tt>weak_odr</tt> linkages.</p>
    683 
    684 </div>
    685 
    686 <!-- ======================================================================= -->
    687 <h3>
    688   <a name="callingconv">Calling Conventions</a>
    689 </h3>
    690 
    691 <div>
    692 
    693 <p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
    694    and <a href="#i_invoke">invokes</a> can all have an optional calling
    695    convention specified for the call.  The calling convention of any pair of
    696    dynamic caller/callee must match, or the behavior of the program is
    697    undefined.  The following calling conventions are supported by LLVM, and more
    698    may be added in the future:</p>
    699 
    700 <dl>
    701   <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
    702   <dd>This calling convention (the default if no other calling convention is
    703       specified) matches the target C calling conventions.  This calling
    704       convention supports varargs function calls and tolerates some mismatch in
    705       the declared prototype and implemented declaration of the function (as
    706       does normal C).</dd>
    707 
    708   <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
    709   <dd>This calling convention attempts to make calls as fast as possible
    710       (e.g. by passing things in registers).  This calling convention allows the
    711       target to use whatever tricks it wants to produce fast code for the
    712       target, without having to conform to an externally specified ABI
    713       (Application Binary Interface).
    714       <a href="CodeGenerator.html#tailcallopt">Tail calls can only be optimized
    715       when this or the GHC convention is used.</a>  This calling convention
    716       does not support varargs and requires the prototype of all callees to
    717       exactly match the prototype of the function definition.</dd>
    718 
    719   <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
    720   <dd>This calling convention attempts to make code in the caller as efficient
    721       as possible under the assumption that the call is not commonly executed.
    722       As such, these calls often preserve all registers so that the call does
    723       not break any live ranges in the caller side.  This calling convention
    724       does not support varargs and requires the prototype of all callees to
    725       exactly match the prototype of the function definition.</dd>
    726 
    727   <dt><b>"<tt>cc <em>10</em></tt>" - GHC convention</b>:</dt>
    728   <dd>This calling convention has been implemented specifically for use by the
    729       <a href="http://www.haskell.org/ghc">Glasgow Haskell Compiler (GHC)</a>.
    730       It passes everything in registers, going to extremes to achieve this by
    731       disabling callee save registers. This calling convention should not be
    732       used lightly but only for specific situations such as an alternative to
    733       the <em>register pinning</em> performance technique often used when
    734       implementing functional programming languages.At the moment only X86
    735       supports this convention and it has the following limitations:
    736       <ul>
    737         <li>On <em>X86-32</em> only supports up to 4 bit type parameters. No
    738             floating point types are supported.</li>
    739         <li>On <em>X86-64</em> only supports up to 10 bit type parameters and
    740             6 floating point parameters.</li>
    741       </ul>
    742       This calling convention supports
    743       <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> but
    744       requires both the caller and callee are using it.
    745   </dd>
    746 
    747   <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
    748   <dd>Any calling convention may be specified by number, allowing
    749       target-specific calling conventions to be used.  Target specific calling
    750       conventions start at 64.</dd>
    751 </dl>
    752 
    753 <p>More calling conventions can be added/defined on an as-needed basis, to
    754    support Pascal conventions or any other well-known target-independent
    755    convention.</p>
    756 
    757 </div>
    758 
    759 <!-- ======================================================================= -->
    760 <h3>
    761   <a name="visibility">Visibility Styles</a>
    762 </h3>
    763 
    764 <div>
    765 
    766 <p>All Global Variables and Functions have one of the following visibility
    767    styles:</p>
    768 
    769 <dl>
    770   <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
    771   <dd>On targets that use the ELF object file format, default visibility means
    772       that the declaration is visible to other modules and, in shared libraries,
    773       means that the declared entity may be overridden. On Darwin, default
    774       visibility means that the declaration is visible to other modules. Default
    775       visibility corresponds to "external linkage" in the language.</dd>
    776 
    777   <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
    778   <dd>Two declarations of an object with hidden visibility refer to the same
    779       object if they are in the same shared object. Usually, hidden visibility
    780       indicates that the symbol will not be placed into the dynamic symbol
    781       table, so no other module (executable or shared library) can reference it
    782       directly.</dd>
    783 
    784   <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
    785   <dd>On ELF, protected visibility indicates that the symbol will be placed in
    786       the dynamic symbol table, but that references within the defining module
    787       will bind to the local symbol. That is, the symbol cannot be overridden by
    788       another module.</dd>
    789 </dl>
    790 
    791 </div>
    792 
    793 <!-- ======================================================================= -->
    794 <h3>
    795   <a name="namedtypes">Named Types</a>
    796 </h3>
    797 
    798 <div>
    799 
    800 <p>LLVM IR allows you to specify name aliases for certain types.  This can make
    801    it easier to read the IR and make the IR more condensed (particularly when
    802    recursive types are involved).  An example of a name specification is:</p>
    803 
    804 <pre class="doc_code">
    805 %mytype = type { %mytype*, i32 }
    806 </pre>
    807 
    808 <p>You may give a name to any <a href="#typesystem">type</a> except
    809    "<a href="#t_void">void</a>".  Type name aliases may be used anywhere a type
    810    is expected with the syntax "%mytype".</p>
    811 
    812 <p>Note that type names are aliases for the structural type that they indicate,
    813    and that you can therefore specify multiple names for the same type.  This
    814    often leads to confusing behavior when dumping out a .ll file.  Since LLVM IR
    815    uses structural typing, the name is not part of the type.  When printing out
    816    LLVM IR, the printer will pick <em>one name</em> to render all types of a
    817    particular shape.  This means that if you have code where two different
    818    source types end up having the same LLVM type, that the dumper will sometimes
    819    print the "wrong" or unexpected type.  This is an important design point and
    820    isn't going to change.</p>
    821 
    822 </div>
    823 
    824 <!-- ======================================================================= -->
    825 <h3>
    826   <a name="globalvars">Global Variables</a>
    827 </h3>
    828 
    829 <div>
    830 
    831 <p>Global variables define regions of memory allocated at compilation time
    832    instead of run-time.  Global variables may optionally be initialized, may
    833    have an explicit section to be placed in, and may have an optional explicit
    834    alignment specified.  A variable may be defined as "thread_local", which
    835    means that it will not be shared by threads (each thread will have a
    836    separated copy of the variable).  A variable may be defined as a global
    837    "constant," which indicates that the contents of the variable
    838    will <b>never</b> be modified (enabling better optimization, allowing the
    839    global data to be placed in the read-only section of an executable, etc).
    840    Note that variables that need runtime initialization cannot be marked
    841    "constant" as there is a store to the variable.</p>
    842 
    843 <p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
    844    constant, even if the final definition of the global is not.  This capability
    845    can be used to enable slightly better optimization of the program, but
    846    requires the language definition to guarantee that optimizations based on the
    847    'constantness' are valid for the translation units that do not include the
    848    definition.</p>
    849 
    850 <p>As SSA values, global variables define pointer values that are in scope
    851    (i.e. they dominate) all basic blocks in the program.  Global variables
    852    always define a pointer to their "content" type because they describe a
    853    region of memory, and all memory objects in LLVM are accessed through
    854    pointers.</p>
    855 
    856 <p>Global variables can be marked with <tt>unnamed_addr</tt> which indicates
    857   that the address is not significant, only the content. Constants marked
    858   like this can be merged with other constants if they have the same
    859   initializer. Note that a constant with significant address <em>can</em>
    860   be merged with a <tt>unnamed_addr</tt> constant, the result being a
    861   constant whose address is significant.</p>
    862 
    863 <p>A global variable may be declared to reside in a target-specific numbered
    864    address space. For targets that support them, address spaces may affect how
    865    optimizations are performed and/or what target instructions are used to
    866    access the variable. The default address space is zero. The address space
    867    qualifier must precede any other attributes.</p>
    868 
    869 <p>LLVM allows an explicit section to be specified for globals.  If the target
    870    supports it, it will emit globals to the section specified.</p>
    871 
    872 <p>An explicit alignment may be specified for a global, which must be a power
    873    of 2.  If not present, or if the alignment is set to zero, the alignment of
    874    the global is set by the target to whatever it feels convenient.  If an
    875    explicit alignment is specified, the global is forced to have exactly that
    876    alignment.  Targets and optimizers are not allowed to over-align the global
    877    if the global has an assigned section.  In this case, the extra alignment
    878    could be observable: for example, code could assume that the globals are
    879    densely packed in their section and try to iterate over them as an array,
    880    alignment padding would break this iteration.</p>
    881 
    882 <p>For example, the following defines a global in a numbered address space with
    883    an initializer, section, and alignment:</p>
    884 
    885 <pre class="doc_code">
    886 @G = addrspace(5) constant float 1.0, section "foo", align 4
    887 </pre>
    888 
    889 </div>
    890 
    891 
    892 <!-- ======================================================================= -->
    893 <h3>
    894   <a name="functionstructure">Functions</a>
    895 </h3>
    896 
    897 <div>
    898 
    899 <p>LLVM function definitions consist of the "<tt>define</tt>" keyword, an
    900    optional <a href="#linkage">linkage type</a>, an optional
    901    <a href="#visibility">visibility style</a>, an optional
    902    <a href="#callingconv">calling convention</a>,
    903    an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
    904    <a href="#paramattrs">parameter attribute</a> for the return type, a function
    905    name, a (possibly empty) argument list (each with optional
    906    <a href="#paramattrs">parameter attributes</a>), optional
    907    <a href="#fnattrs">function attributes</a>, an optional section, an optional
    908    alignment, an optional <a href="#gc">garbage collector name</a>, an opening
    909    curly brace, a list of basic blocks, and a closing curly brace.</p>
    910 
    911 <p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
    912    optional <a href="#linkage">linkage type</a>, an optional
    913    <a href="#visibility">visibility style</a>, an optional
    914    <a href="#callingconv">calling convention</a>,
    915    an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
    916    <a href="#paramattrs">parameter attribute</a> for the return type, a function
    917    name, a possibly empty list of arguments, an optional alignment, and an
    918    optional <a href="#gc">garbage collector name</a>.</p>
    919 
    920 <p>A function definition contains a list of basic blocks, forming the CFG
    921    (Control Flow Graph) for the function.  Each basic block may optionally start
    922    with a label (giving the basic block a symbol table entry), contains a list
    923    of instructions, and ends with a <a href="#terminators">terminator</a>
    924    instruction (such as a branch or function return).</p>
    925 
    926 <p>The first basic block in a function is special in two ways: it is immediately
    927    executed on entrance to the function, and it is not allowed to have
    928    predecessor basic blocks (i.e. there can not be any branches to the entry
    929    block of a function).  Because the block can have no predecessors, it also
    930    cannot have any <a href="#i_phi">PHI nodes</a>.</p>
    931 
    932 <p>LLVM allows an explicit section to be specified for functions.  If the target
    933    supports it, it will emit functions to the section specified.</p>
    934 
    935 <p>An explicit alignment may be specified for a function.  If not present, or if
    936    the alignment is set to zero, the alignment of the function is set by the
    937    target to whatever it feels convenient.  If an explicit alignment is
    938    specified, the function is forced to have at least that much alignment.  All
    939    alignments must be a power of 2.</p>
    940 
    941 <p>If the <tt>unnamed_addr</tt> attribute is given, the address is know to not
    942    be significant and two identical functions can be merged.</p>
    943 
    944 <h5>Syntax:</h5>
    945 <pre class="doc_code">
    946 define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
    947        [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
    948        &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
    949        [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
    950        [<a href="#gc">gc</a>] { ... }
    951 </pre>
    952 
    953 </div>
    954 
    955 <!-- ======================================================================= -->
    956 <h3>
    957   <a name="aliasstructure">Aliases</a>
    958 </h3>
    959 
    960 <div>
    961 
    962 <p>Aliases act as "second name" for the aliasee value (which can be either
    963    function, global variable, another alias or bitcast of global value). Aliases
    964    may have an optional <a href="#linkage">linkage type</a>, and an
    965    optional <a href="#visibility">visibility style</a>.</p>
    966 
    967 <h5>Syntax:</h5>
    968 <pre class="doc_code">
    969 @&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
    970 </pre>
    971 
    972 </div>
    973 
    974 <!-- ======================================================================= -->
    975 <h3>
    976   <a name="namedmetadatastructure">Named Metadata</a>
    977 </h3>
    978 
    979 <div>
    980 
    981 <p>Named metadata is a collection of metadata. <a href="#metadata">Metadata
    982    nodes</a> (but not metadata strings) are the only valid operands for
    983    a named metadata.</p>
    984 
    985 <h5>Syntax:</h5>
    986 <pre class="doc_code">
    987 ; Some unnamed metadata nodes, which are referenced by the named metadata.
    988 !0 = metadata !{metadata !"zero"}
    989 !1 = metadata !{metadata !"one"}
    990 !2 = metadata !{metadata !"two"}
    991 ; A named metadata.
    992 !name = !{!0, !1, !2}
    993 </pre>
    994 
    995 </div>
    996 
    997 <!-- ======================================================================= -->
    998 <h3>
    999   <a name="paramattrs">Parameter Attributes</a>
   1000 </h3>
   1001 
   1002 <div>
   1003 
   1004 <p>The return type and each parameter of a function type may have a set of
   1005    <i>parameter attributes</i> associated with them. Parameter attributes are
   1006    used to communicate additional information about the result or parameters of
   1007    a function. Parameter attributes are considered to be part of the function,
   1008    not of the function type, so functions with different parameter attributes
   1009    can have the same function type.</p>
   1010 
   1011 <p>Parameter attributes are simple keywords that follow the type specified. If
   1012    multiple parameter attributes are needed, they are space separated. For
   1013    example:</p>
   1014 
   1015 <pre class="doc_code">
   1016 declare i32 @printf(i8* noalias nocapture, ...)
   1017 declare i32 @atoi(i8 zeroext)
   1018 declare signext i8 @returns_signed_char()
   1019 </pre>
   1020 
   1021 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
   1022    <tt>readonly</tt>) come immediately after the argument list.</p>
   1023 
   1024 <p>Currently, only the following parameter attributes are defined:</p>
   1025 
   1026 <dl>
   1027   <dt><tt><b>zeroext</b></tt></dt>
   1028   <dd>This indicates to the code generator that the parameter or return value
   1029       should be zero-extended to the extent required by the target's ABI (which
   1030       is usually 32-bits, but is 8-bits for a i1 on x86-64) by the caller (for a
   1031       parameter) or the callee (for a return value).</dd>
   1032 
   1033   <dt><tt><b>signext</b></tt></dt>
   1034   <dd>This indicates to the code generator that the parameter or return value
   1035       should be sign-extended to the extent required by the target's ABI (which
   1036       is usually 32-bits) by the caller (for a parameter) or the callee (for a
   1037       return value).</dd>
   1038 
   1039   <dt><tt><b>inreg</b></tt></dt>
   1040   <dd>This indicates that this parameter or return value should be treated in a
   1041       special target-dependent fashion during while emitting code for a function
   1042       call or return (usually, by putting it in a register as opposed to memory,
   1043       though some targets use it to distinguish between two different kinds of
   1044       registers).  Use of this attribute is target-specific.</dd>
   1045 
   1046   <dt><tt><b><a name="byval">byval</a></b></tt></dt>
   1047   <dd><p>This indicates that the pointer parameter should really be passed by
   1048       value to the function.  The attribute implies that a hidden copy of the
   1049       pointee
   1050       is made between the caller and the callee, so the callee is unable to
   1051       modify the value in the callee.  This attribute is only valid on LLVM
   1052       pointer arguments.  It is generally used to pass structs and arrays by
   1053       value, but is also valid on pointers to scalars.  The copy is considered
   1054       to belong to the caller not the callee (for example,
   1055       <tt><a href="#readonly">readonly</a></tt> functions should not write to
   1056       <tt>byval</tt> parameters). This is not a valid attribute for return
   1057       values.</p>
   1058       
   1059       <p>The byval attribute also supports specifying an alignment with
   1060       the align attribute.  It indicates the alignment of the stack slot to
   1061       form and the known alignment of the pointer specified to the call site. If
   1062       the alignment is not specified, then the code generator makes a
   1063       target-specific assumption.</p></dd>
   1064 
   1065   <dt><tt><b><a name="sret">sret</a></b></tt></dt>
   1066   <dd>This indicates that the pointer parameter specifies the address of a
   1067       structure that is the return value of the function in the source program.
   1068       This pointer must be guaranteed by the caller to be valid: loads and
   1069       stores to the structure may be assumed by the callee to not to trap.  This
   1070       may only be applied to the first parameter. This is not a valid attribute
   1071       for return values. </dd>
   1072 
   1073   <dt><tt><b><a name="noalias">noalias</a></b></tt></dt>
   1074   <dd>This indicates that pointer values
   1075       <a href="#pointeraliasing"><i>based</i></a> on the argument or return
   1076       value do not alias pointer values which are not <i>based</i> on it,
   1077       ignoring certain "irrelevant" dependencies.
   1078       For a call to the parent function, dependencies between memory
   1079       references from before or after the call and from those during the call
   1080       are "irrelevant" to the <tt>noalias</tt> keyword for the arguments and
   1081       return value used in that call.
   1082       The caller shares the responsibility with the callee for ensuring that
   1083       these requirements are met.
   1084       For further details, please see the discussion of the NoAlias response in
   1085       <a href="AliasAnalysis.html#MustMayNo">alias analysis</a>.<br>
   1086 <br>
   1087       Note that this definition of <tt>noalias</tt> is intentionally
   1088       similar to the definition of <tt>restrict</tt> in C99 for function
   1089       arguments, though it is slightly weaker.
   1090 <br>
   1091       For function return values, C99's <tt>restrict</tt> is not meaningful,
   1092       while LLVM's <tt>noalias</tt> is.
   1093       </dd>
   1094 
   1095   <dt><tt><b><a name="nocapture">nocapture</a></b></tt></dt>
   1096   <dd>This indicates that the callee does not make any copies of the pointer
   1097       that outlive the callee itself. This is not a valid attribute for return
   1098       values.</dd>
   1099 
   1100   <dt><tt><b><a name="nest">nest</a></b></tt></dt>
   1101   <dd>This indicates that the pointer parameter can be excised using the
   1102       <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
   1103       attribute for return values.</dd>
   1104 </dl>
   1105 
   1106 </div>
   1107 
   1108 <!-- ======================================================================= -->
   1109 <h3>
   1110   <a name="gc">Garbage Collector Names</a>
   1111 </h3>
   1112 
   1113 <div>
   1114 
   1115 <p>Each function may specify a garbage collector name, which is simply a
   1116    string:</p>
   1117 
   1118 <pre class="doc_code">
   1119 define void @f() gc "name" { ... }
   1120 </pre>
   1121 
   1122 <p>The compiler declares the supported values of <i>name</i>. Specifying a
   1123    collector which will cause the compiler to alter its output in order to
   1124    support the named garbage collection algorithm.</p>
   1125 
   1126 </div>
   1127 
   1128 <!-- ======================================================================= -->
   1129 <h3>
   1130   <a name="fnattrs">Function Attributes</a>
   1131 </h3>
   1132 
   1133 <div>
   1134 
   1135 <p>Function attributes are set to communicate additional information about a
   1136    function. Function attributes are considered to be part of the function, not
   1137    of the function type, so functions with different parameter attributes can
   1138    have the same function type.</p>
   1139 
   1140 <p>Function attributes are simple keywords that follow the type specified. If
   1141    multiple attributes are needed, they are space separated. For example:</p>
   1142 
   1143 <pre class="doc_code">
   1144 define void @f() noinline { ... }
   1145 define void @f() alwaysinline { ... }
   1146 define void @f() alwaysinline optsize { ... }
   1147 define void @f() optsize { ... }
   1148 </pre>
   1149 
   1150 <dl>
   1151   <dt><tt><b>address_safety</b></tt></dt>
   1152   <dd>This attribute indicates that the address safety analysis
   1153   is enabled for this function.  </dd>
   1154 
   1155   <dt><tt><b>alignstack(&lt;<em>n</em>&gt;)</b></tt></dt>
   1156   <dd>This attribute indicates that, when emitting the prologue and epilogue,
   1157       the backend should forcibly align the stack pointer. Specify the
   1158       desired alignment, which must be a power of two, in parentheses.
   1159 
   1160   <dt><tt><b>alwaysinline</b></tt></dt>
   1161   <dd>This attribute indicates that the inliner should attempt to inline this
   1162       function into callers whenever possible, ignoring any active inlining size
   1163       threshold for this caller.</dd>
   1164 
   1165   <dt><tt><b>nonlazybind</b></tt></dt>
   1166   <dd>This attribute suppresses lazy symbol binding for the function. This
   1167       may make calls to the function faster, at the cost of extra program
   1168       startup time if the function is not called during program startup.</dd>
   1169 
   1170   <dt><tt><b>inlinehint</b></tt></dt>
   1171   <dd>This attribute indicates that the source code contained a hint that inlining
   1172       this function is desirable (such as the "inline" keyword in C/C++).  It
   1173       is just a hint; it imposes no requirements on the inliner.</dd>
   1174 
   1175   <dt><tt><b>naked</b></tt></dt>
   1176   <dd>This attribute disables prologue / epilogue emission for the function.
   1177       This can have very system-specific consequences.</dd>
   1178 
   1179   <dt><tt><b>noimplicitfloat</b></tt></dt>
   1180   <dd>This attributes disables implicit floating point instructions.</dd>
   1181 
   1182   <dt><tt><b>noinline</b></tt></dt>
   1183   <dd>This attribute indicates that the inliner should never inline this
   1184       function in any situation. This attribute may not be used together with
   1185       the <tt>alwaysinline</tt> attribute.</dd>
   1186 
   1187   <dt><tt><b>noredzone</b></tt></dt>
   1188   <dd>This attribute indicates that the code generator should not use a red
   1189       zone, even if the target-specific ABI normally permits it.</dd>
   1190 
   1191   <dt><tt><b>noreturn</b></tt></dt>
   1192   <dd>This function attribute indicates that the function never returns
   1193       normally.  This produces undefined behavior at runtime if the function
   1194       ever does dynamically return.</dd>
   1195 
   1196   <dt><tt><b>nounwind</b></tt></dt>
   1197   <dd>This function attribute indicates that the function never returns with an
   1198       unwind or exceptional control flow.  If the function does unwind, its
   1199       runtime behavior is undefined.</dd>
   1200 
   1201   <dt><tt><b>optsize</b></tt></dt>
   1202   <dd>This attribute suggests that optimization passes and code generator passes
   1203       make choices that keep the code size of this function low, and otherwise
   1204       do optimizations specifically to reduce code size.</dd>
   1205 
   1206   <dt><tt><b>readnone</b></tt></dt>
   1207   <dd>This attribute indicates that the function computes its result (or decides
   1208       to unwind an exception) based strictly on its arguments, without
   1209       dereferencing any pointer arguments or otherwise accessing any mutable
   1210       state (e.g. memory, control registers, etc) visible to caller functions.
   1211       It does not write through any pointer arguments
   1212       (including <tt><a href="#byval">byval</a></tt> arguments) and never
   1213       changes any state visible to callers.  This means that it cannot unwind
   1214       exceptions by calling the <tt>C++</tt> exception throwing methods.</dd>
   1215 
   1216   <dt><tt><b><a name="readonly">readonly</a></b></tt></dt>
   1217   <dd>This attribute indicates that the function does not write through any
   1218       pointer arguments (including <tt><a href="#byval">byval</a></tt>
   1219       arguments) or otherwise modify any state (e.g. memory, control registers,
   1220       etc) visible to caller functions.  It may dereference pointer arguments
   1221       and read state that may be set in the caller.  A readonly function always
   1222       returns the same value (or unwinds an exception identically) when called
   1223       with the same set of arguments and global state.  It cannot unwind an
   1224       exception by calling the <tt>C++</tt> exception throwing methods.</dd>
   1225 
   1226   <dt><tt><b><a name="returns_twice">returns_twice</a></b></tt></dt>
   1227   <dd>This attribute indicates that this function can return twice. The
   1228       C <code>setjmp</code> is an example of such a function.  The compiler
   1229       disables some optimizations (like tail calls) in the caller of these
   1230       functions.</dd>
   1231 
   1232   <dt><tt><b><a name="ssp">ssp</a></b></tt></dt>
   1233   <dd>This attribute indicates that the function should emit a stack smashing
   1234       protector. It is in the form of a "canary"&mdash;a random value placed on
   1235       the stack before the local variables that's checked upon return from the
   1236       function to see if it has been overwritten. A heuristic is used to
   1237       determine if a function needs stack protectors or not.<br>
   1238 <br>
   1239       If a function that has an <tt>ssp</tt> attribute is inlined into a
   1240       function that doesn't have an <tt>ssp</tt> attribute, then the resulting
   1241       function will have an <tt>ssp</tt> attribute.</dd>
   1242 
   1243   <dt><tt><b>sspreq</b></tt></dt>
   1244   <dd>This attribute indicates that the function should <em>always</em> emit a
   1245       stack smashing protector. This overrides
   1246       the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
   1247 <br>
   1248       If a function that has an <tt>sspreq</tt> attribute is inlined into a
   1249       function that doesn't have an <tt>sspreq</tt> attribute or which has
   1250       an <tt>ssp</tt> attribute, then the resulting function will have
   1251       an <tt>sspreq</tt> attribute.</dd>
   1252 
   1253   <dt><tt><b><a name="uwtable">uwtable</a></b></tt></dt>
   1254   <dd>This attribute indicates that the ABI being targeted requires that
   1255       an unwind table entry be produce for this function even if we can
   1256       show that no exceptions passes by it. This is normally the case for
   1257       the ELF x86-64 abi, but it can be disabled for some compilation
   1258       units.</dd>
   1259 </dl>
   1260 
   1261 </div>
   1262 
   1263 <!-- ======================================================================= -->
   1264 <h3>
   1265   <a name="moduleasm">Module-Level Inline Assembly</a>
   1266 </h3>
   1267 
   1268 <div>
   1269 
   1270 <p>Modules may contain "module-level inline asm" blocks, which corresponds to
   1271    the GCC "file scope inline asm" blocks.  These blocks are internally
   1272    concatenated by LLVM and treated as a single unit, but may be separated in
   1273    the <tt>.ll</tt> file if desired.  The syntax is very simple:</p>
   1274 
   1275 <pre class="doc_code">
   1276 module asm "inline asm code goes here"
   1277 module asm "more can go here"
   1278 </pre>
   1279 
   1280 <p>The strings can contain any character by escaping non-printable characters.
   1281    The escape sequence used is simply "\xx" where "xx" is the two digit hex code
   1282    for the number.</p>
   1283 
   1284 <p>The inline asm code is simply printed to the machine code .s file when
   1285    assembly code is generated.</p>
   1286 
   1287 </div>
   1288 
   1289 <!-- ======================================================================= -->
   1290 <h3>
   1291   <a name="datalayout">Data Layout</a>
   1292 </h3>
   1293 
   1294 <div>
   1295 
   1296 <p>A module may specify a target specific data layout string that specifies how
   1297    data is to be laid out in memory. The syntax for the data layout is
   1298    simply:</p>
   1299 
   1300 <pre class="doc_code">
   1301 target datalayout = "<i>layout specification</i>"
   1302 </pre>
   1303 
   1304 <p>The <i>layout specification</i> consists of a list of specifications
   1305    separated by the minus sign character ('-').  Each specification starts with
   1306    a letter and may include other information after the letter to define some
   1307    aspect of the data layout.  The specifications accepted are as follows:</p>
   1308 
   1309 <dl>
   1310   <dt><tt>E</tt></dt>
   1311   <dd>Specifies that the target lays out data in big-endian form. That is, the
   1312       bits with the most significance have the lowest address location.</dd>
   1313 
   1314   <dt><tt>e</tt></dt>
   1315   <dd>Specifies that the target lays out data in little-endian form. That is,
   1316       the bits with the least significance have the lowest address
   1317       location.</dd>
   1318 
   1319   <dt><tt>S<i>size</i></tt></dt>
   1320   <dd>Specifies the natural alignment of the stack in bits. Alignment promotion
   1321       of stack variables is limited to the natural stack alignment to avoid
   1322       dynamic stack realignment. The stack alignment must be a multiple of
   1323       8-bits. If omitted, the natural stack alignment defaults to "unspecified",
   1324       which does not prevent any alignment promotions.</dd>
   1325 
   1326   <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
   1327   <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
   1328       <i>preferred</i> alignments. All sizes are in bits. Specifying
   1329       the <i>pref</i> alignment is optional. If omitted, the
   1330       preceding <tt>:</tt> should be omitted too.</dd>
   1331 
   1332   <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
   1333   <dd>This specifies the alignment for an integer type of a given bit
   1334       <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
   1335 
   1336   <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
   1337   <dd>This specifies the alignment for a vector type of a given bit
   1338       <i>size</i>.</dd>
   1339 
   1340   <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
   1341   <dd>This specifies the alignment for a floating point type of a given bit
   1342       <i>size</i>. Only values of <i>size</i> that are supported by the target
   1343       will work.  32 (float) and 64 (double) are supported on all targets;
   1344       80 or 128 (different flavors of long double) are also supported on some
   1345       targets.
   1346 
   1347   <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
   1348   <dd>This specifies the alignment for an aggregate type of a given bit
   1349       <i>size</i>.</dd>
   1350 
   1351   <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
   1352   <dd>This specifies the alignment for a stack object of a given bit
   1353       <i>size</i>.</dd>
   1354 
   1355   <dt><tt>n<i>size1</i>:<i>size2</i>:<i>size3</i>...</tt></dt>
   1356   <dd>This specifies a set of native integer widths for the target CPU
   1357       in bits.  For example, it might contain "n32" for 32-bit PowerPC,
   1358       "n32:64" for PowerPC 64, or "n8:16:32:64" for X86-64.  Elements of
   1359       this set are considered to support most general arithmetic
   1360       operations efficiently.</dd>
   1361 </dl>
   1362 
   1363 <p>When constructing the data layout for a given target, LLVM starts with a
   1364    default set of specifications which are then (possibly) overridden by the
   1365    specifications in the <tt>datalayout</tt> keyword. The default specifications
   1366    are given in this list:</p>
   1367 
   1368 <ul>
   1369   <li><tt>E</tt> - big endian</li>
   1370   <li><tt>p:64:64:64</tt> - 64-bit pointers with 64-bit alignment</li>
   1371   <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
   1372   <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
   1373   <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
   1374   <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
   1375   <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
   1376   alignment of 64-bits</li>
   1377   <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
   1378   <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
   1379   <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
   1380   <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
   1381   <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
   1382   <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
   1383 </ul>
   1384 
   1385 <p>When LLVM is determining the alignment for a given type, it uses the
   1386    following rules:</p>
   1387 
   1388 <ol>
   1389   <li>If the type sought is an exact match for one of the specifications, that
   1390       specification is used.</li>
   1391 
   1392   <li>If no match is found, and the type sought is an integer type, then the
   1393       smallest integer type that is larger than the bitwidth of the sought type
   1394       is used. If none of the specifications are larger than the bitwidth then
   1395       the the largest integer type is used. For example, given the default
   1396       specifications above, the i7 type will use the alignment of i8 (next
   1397       largest) while both i65 and i256 will use the alignment of i64 (largest
   1398       specified).</li>
   1399 
   1400   <li>If no match is found, and the type sought is a vector type, then the
   1401       largest vector type that is smaller than the sought vector type will be
   1402       used as a fall back.  This happens because &lt;128 x double&gt; can be
   1403       implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
   1404 </ol>
   1405 
   1406 <p>The function of the data layout string may not be what you expect.  Notably,
   1407    this is not a specification from the frontend of what alignment the code
   1408    generator should use.</p>
   1409 
   1410 <p>Instead, if specified, the target data layout is required to match what the 
   1411    ultimate <em>code generator</em> expects.  This string is used by the 
   1412    mid-level optimizers to
   1413    improve code, and this only works if it matches what the ultimate code 
   1414    generator uses.  If you would like to generate IR that does not embed this
   1415    target-specific detail into the IR, then you don't have to specify the 
   1416    string.  This will disable some optimizations that require precise layout
   1417    information, but this also prevents those optimizations from introducing
   1418    target specificity into the IR.</p>
   1419 
   1420 
   1421 
   1422 </div>
   1423 
   1424 <!-- ======================================================================= -->
   1425 <h3>
   1426   <a name="pointeraliasing">Pointer Aliasing Rules</a>
   1427 </h3>
   1428 
   1429 <div>
   1430 
   1431 <p>Any memory access must be done through a pointer value associated
   1432 with an address range of the memory access, otherwise the behavior
   1433 is undefined. Pointer values are associated with address ranges
   1434 according to the following rules:</p>
   1435 
   1436 <ul>
   1437   <li>A pointer value is associated with the addresses associated with
   1438       any value it is <i>based</i> on.
   1439   <li>An address of a global variable is associated with the address
   1440       range of the variable's storage.</li>
   1441   <li>The result value of an allocation instruction is associated with
   1442       the address range of the allocated storage.</li>
   1443   <li>A null pointer in the default address-space is associated with
   1444       no address.</li>
   1445   <li>An integer constant other than zero or a pointer value returned
   1446       from a function not defined within LLVM may be associated with address
   1447       ranges allocated through mechanisms other than those provided by
   1448       LLVM. Such ranges shall not overlap with any ranges of addresses
   1449       allocated by mechanisms provided by LLVM.</li>
   1450 </ul>
   1451 
   1452 <p>A pointer value is <i>based</i> on another pointer value according
   1453    to the following rules:</p>
   1454 
   1455 <ul>
   1456   <li>A pointer value formed from a
   1457       <tt><a href="#i_getelementptr">getelementptr</a></tt> operation
   1458       is <i>based</i> on the first operand of the <tt>getelementptr</tt>.</li>
   1459   <li>The result value of a
   1460       <tt><a href="#i_bitcast">bitcast</a></tt> is <i>based</i> on the operand
   1461       of the <tt>bitcast</tt>.</li>
   1462   <li>A pointer value formed by an
   1463       <tt><a href="#i_inttoptr">inttoptr</a></tt> is <i>based</i> on all
   1464       pointer values that contribute (directly or indirectly) to the
   1465       computation of the pointer's value.</li>
   1466   <li>The "<i>based</i> on" relationship is transitive.</li>
   1467 </ul>
   1468 
   1469 <p>Note that this definition of <i>"based"</i> is intentionally
   1470    similar to the definition of <i>"based"</i> in C99, though it is
   1471    slightly weaker.</p>
   1472 
   1473 <p>LLVM IR does not associate types with memory. The result type of a
   1474 <tt><a href="#i_load">load</a></tt> merely indicates the size and
   1475 alignment of the memory from which to load, as well as the
   1476 interpretation of the value. The first operand type of a
   1477 <tt><a href="#i_store">store</a></tt> similarly only indicates the size
   1478 and alignment of the store.</p>
   1479 
   1480 <p>Consequently, type-based alias analysis, aka TBAA, aka
   1481 <tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
   1482 LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
   1483 additional information which specialized optimization passes may use
   1484 to implement type-based alias analysis.</p>
   1485 
   1486 </div>
   1487 
   1488 <!-- ======================================================================= -->
   1489 <h3>
   1490   <a name="volatile">Volatile Memory Accesses</a>
   1491 </h3>
   1492 
   1493 <div>
   1494 
   1495 <p>Certain memory accesses, such as <a href="#i_load"><tt>load</tt></a>s, <a
   1496 href="#i_store"><tt>store</tt></a>s, and <a
   1497 href="#int_memcpy"><tt>llvm.memcpy</tt></a>s may be marked <tt>volatile</tt>.
   1498 The optimizers must not change the number of volatile operations or change their
   1499 order of execution relative to other volatile operations.  The optimizers
   1500 <i>may</i> change the order of volatile operations relative to non-volatile
   1501 operations.  This is not Java's "volatile" and has no cross-thread
   1502 synchronization behavior.</p>
   1503 
   1504 </div>
   1505 
   1506 <!-- ======================================================================= -->
   1507 <h3>
   1508   <a name="memmodel">Memory Model for Concurrent Operations</a>
   1509 </h3>
   1510 
   1511 <div>
   1512 
   1513 <p>The LLVM IR does not define any way to start parallel threads of execution
   1514 or to register signal handlers. Nonetheless, there are platform-specific
   1515 ways to create them, and we define LLVM IR's behavior in their presence. This
   1516 model is inspired by the C++0x memory model.</p>
   1517 
   1518 <p>For a more informal introduction to this model, see the
   1519 <a href="Atomics.html">LLVM Atomic Instructions and Concurrency Guide</a>.
   1520 
   1521 <p>We define a <i>happens-before</i> partial order as the least partial order
   1522 that</p>
   1523 <ul>
   1524   <li>Is a superset of single-thread program order, and</li>
   1525   <li>When a <i>synchronizes-with</i> <tt>b</tt>, includes an edge from
   1526       <tt>a</tt> to <tt>b</tt>. <i>Synchronizes-with</i> pairs are introduced
   1527       by platform-specific techniques, like pthread locks, thread
   1528       creation, thread joining, etc., and by atomic instructions.
   1529       (See also <a href="#ordering">Atomic Memory Ordering Constraints</a>).
   1530       </li>
   1531 </ul>
   1532 
   1533 <p>Note that program order does not introduce <i>happens-before</i> edges
   1534 between a thread and signals executing inside that thread.</p>
   1535 
   1536 <p>Every (defined) read operation (load instructions, memcpy, atomic
   1537 loads/read-modify-writes, etc.) <var>R</var> reads a series of bytes written by
   1538 (defined) write operations (store instructions, atomic
   1539 stores/read-modify-writes, memcpy, etc.). For the purposes of this section,
   1540 initialized globals are considered to have a write of the initializer which is
   1541 atomic and happens before any other read or write of the memory in question.
   1542 For each byte of a read <var>R</var>, <var>R<sub>byte</sub></var> may see
   1543 any write to the same byte, except:</p>
   1544 
   1545 <ul>
   1546   <li>If <var>write<sub>1</sub></var> happens before
   1547       <var>write<sub>2</sub></var>, and <var>write<sub>2</sub></var> happens
   1548       before <var>R<sub>byte</sub></var>, then <var>R<sub>byte</sub></var>
   1549       does not see <var>write<sub>1</sub></var>.
   1550   <li>If <var>R<sub>byte</sub></var> happens before
   1551       <var>write<sub>3</sub></var>, then <var>R<sub>byte</sub></var> does not
   1552       see <var>write<sub>3</sub></var>.
   1553 </ul>
   1554 
   1555 <p>Given that definition, <var>R<sub>byte</sub></var> is defined as follows:
   1556 <ul>
   1557   <li>If <var>R</var> is volatile, the result is target-dependent. (Volatile
   1558       is supposed to give guarantees which can support
   1559       <code>sig_atomic_t</code> in C/C++, and may be used for accesses to
   1560       addresses which do not behave like normal memory.  It does not generally
   1561       provide cross-thread synchronization.)
   1562   <li>Otherwise, if there is no write to the same byte that happens before
   1563     <var>R<sub>byte</sub></var>, <var>R<sub>byte</sub></var> returns 
   1564     <tt>undef</tt> for that byte.
   1565   <li>Otherwise, if <var>R<sub>byte</sub></var> may see exactly one write,
   1566       <var>R<sub>byte</sub></var> returns the value written by that
   1567       write.</li>
   1568   <li>Otherwise, if <var>R</var> is atomic, and all the writes
   1569       <var>R<sub>byte</sub></var> may see are atomic, it chooses one of the
   1570       values written.  See the <a href="#ordering">Atomic Memory Ordering
   1571       Constraints</a> section for additional constraints on how the choice
   1572       is made.
   1573   <li>Otherwise <var>R<sub>byte</sub></var> returns <tt>undef</tt>.</li>
   1574 </ul>
   1575 
   1576 <p><var>R</var> returns the value composed of the series of bytes it read.
   1577 This implies that some bytes within the value may be <tt>undef</tt>
   1578 <b>without</b> the entire value being <tt>undef</tt>. Note that this only
   1579 defines the semantics of the operation; it doesn't mean that targets will
   1580 emit more than one instruction to read the series of bytes.</p>
   1581 
   1582 <p>Note that in cases where none of the atomic intrinsics are used, this model
   1583 places only one restriction on IR transformations on top of what is required
   1584 for single-threaded execution: introducing a store to a byte which might not
   1585 otherwise be stored is not allowed in general.  (Specifically, in the case
   1586 where another thread might write to and read from an address, introducing a
   1587 store can change a load that may see exactly one write into a load that may
   1588 see multiple writes.)</p>
   1589 
   1590 <!-- FIXME: This model assumes all targets where concurrency is relevant have
   1591 a byte-size store which doesn't affect adjacent bytes.  As far as I can tell,
   1592 none of the backends currently in the tree fall into this category; however,
   1593 there might be targets which care.  If there are, we want a paragraph
   1594 like the following:
   1595 
   1596 Targets may specify that stores narrower than a certain width are not
   1597 available; on such a target, for the purposes of this model, treat any
   1598 non-atomic write with an alignment or width less than the minimum width
   1599 as if it writes to the relevant surrounding bytes.
   1600 -->
   1601 
   1602 </div>
   1603 
   1604 <!-- ======================================================================= -->
   1605 <h3>
   1606       <a name="ordering">Atomic Memory Ordering Constraints</a>
   1607 </h3>
   1608 
   1609 <div>
   1610 
   1611 <p>Atomic instructions (<a href="#i_cmpxchg"><code>cmpxchg</code></a>,
   1612 <a href="#i_atomicrmw"><code>atomicrmw</code></a>,
   1613 <a href="#i_fence"><code>fence</code></a>,
   1614 <a href="#i_load"><code>atomic load</code></a>, and
   1615 <a href="#i_store"><code>atomic store</code></a>) take an ordering parameter
   1616 that determines which other atomic instructions on the same address they
   1617 <i>synchronize with</i>.  These semantics are borrowed from Java and C++0x,
   1618 but are somewhat more colloquial. If these descriptions aren't precise enough,
   1619 check those specs (see spec references in the
   1620 <a href="Atomics.html#introduction">atomics guide</a>).
   1621 <a href="#i_fence"><code>fence</code></a> instructions
   1622 treat these orderings somewhat differently since they don't take an address.
   1623 See that instruction's documentation for details.</p>
   1624 
   1625 <p>For a simpler introduction to the ordering constraints, see the
   1626 <a href="Atomics.html">LLVM Atomic Instructions and Concurrency Guide</a>.</p>
   1627 
   1628 <dl>
   1629 <dt><code>unordered</code></dt>
   1630 <dd>The set of values that can be read is governed by the happens-before
   1631 partial order. A value cannot be read unless some operation wrote it.
   1632 This is intended to provide a guarantee strong enough to model Java's
   1633 non-volatile shared variables.  This ordering cannot be specified for
   1634 read-modify-write operations; it is not strong enough to make them atomic
   1635 in any interesting way.</dd>
   1636 <dt><code>monotonic</code></dt>
   1637 <dd>In addition to the guarantees of <code>unordered</code>, there is a single
   1638 total order for modifications by <code>monotonic</code> operations on each
   1639 address. All modification orders must be compatible with the happens-before
   1640 order. There is no guarantee that the modification orders can be combined to
   1641 a global total order for the whole program (and this often will not be
   1642 possible). The read in an atomic read-modify-write operation
   1643 (<a href="#i_cmpxchg"><code>cmpxchg</code></a> and
   1644 <a href="#i_atomicrmw"><code>atomicrmw</code></a>)
   1645 reads the value in the modification order immediately before the value it
   1646 writes. If one atomic read happens before another atomic read of the same
   1647 address, the later read must see the same value or a later value in the
   1648 address's modification order. This disallows reordering of
   1649 <code>monotonic</code> (or stronger) operations on the same address. If an
   1650 address is written <code>monotonic</code>ally by one thread, and other threads
   1651 <code>monotonic</code>ally read that address repeatedly, the other threads must
   1652 eventually see the write. This corresponds to the C++0x/C1x
   1653 <code>memory_order_relaxed</code>.</dd>
   1654 <dt><code>acquire</code></dt>
   1655 <dd>In addition to the guarantees of <code>monotonic</code>,
   1656 a <i>synchronizes-with</i> edge may be formed with a <code>release</code>
   1657 operation. This is intended to model C++'s <code>memory_order_acquire</code>.</dd>
   1658 <dt><code>release</code></dt>
   1659 <dd>In addition to the guarantees of <code>monotonic</code>, if this operation
   1660 writes a value which is subsequently read by an <code>acquire</code> operation,
   1661 it <i>synchronizes-with</i> that operation.  (This isn't a complete
   1662 description; see the C++0x definition of a release sequence.) This corresponds
   1663 to the C++0x/C1x <code>memory_order_release</code>.</dd>
   1664 <dt><code>acq_rel</code> (acquire+release)</dt><dd>Acts as both an
   1665 <code>acquire</code> and <code>release</code> operation on its address.
   1666 This corresponds to the C++0x/C1x <code>memory_order_acq_rel</code>.</dd>
   1667 <dt><code>seq_cst</code> (sequentially consistent)</dt><dd>
   1668 <dd>In addition to the guarantees of <code>acq_rel</code>
   1669 (<code>acquire</code> for an operation which only reads, <code>release</code>
   1670 for an operation which only writes), there is a global total order on all
   1671 sequentially-consistent operations on all addresses, which is consistent with
   1672 the <i>happens-before</i> partial order and with the modification orders of
   1673 all the affected addresses. Each sequentially-consistent read sees the last
   1674 preceding write to the same address in this global order. This corresponds
   1675 to the C++0x/C1x <code>memory_order_seq_cst</code> and Java volatile.</dd>
   1676 </dl>
   1677 
   1678 <p id="singlethread">If an atomic operation is marked <code>singlethread</code>,
   1679 it only <i>synchronizes with</i> or participates in modification and seq_cst
   1680 total orderings with other operations running in the same thread (for example,
   1681 in signal handlers).</p>
   1682 
   1683 </div>
   1684 
   1685 </div>
   1686 
   1687 <!-- *********************************************************************** -->
   1688 <h2><a name="typesystem">Type System</a></h2>
   1689 <!-- *********************************************************************** -->
   1690 
   1691 <div>
   1692 
   1693 <p>The LLVM type system is one of the most important features of the
   1694    intermediate representation.  Being typed enables a number of optimizations
   1695    to be performed on the intermediate representation directly, without having
   1696    to do extra analyses on the side before the transformation.  A strong type
   1697    system makes it easier to read the generated code and enables novel analyses
   1698    and transformations that are not feasible to perform on normal three address
   1699    code representations.</p>
   1700 
   1701 <!-- ======================================================================= -->
   1702 <h3>
   1703   <a name="t_classifications">Type Classifications</a>
   1704 </h3>
   1705 
   1706 <div>
   1707 
   1708 <p>The types fall into a few useful classifications:</p>
   1709 
   1710 <table border="1" cellspacing="0" cellpadding="4">
   1711   <tbody>
   1712     <tr><th>Classification</th><th>Types</th></tr>
   1713     <tr>
   1714       <td><a href="#t_integer">integer</a></td>
   1715       <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
   1716     </tr>
   1717     <tr>
   1718       <td><a href="#t_floating">floating point</a></td>
   1719       <td><tt>half, float, double, x86_fp80, fp128, ppc_fp128</tt></td>
   1720     </tr>
   1721     <tr>
   1722       <td><a name="t_firstclass">first class</a></td>
   1723       <td><a href="#t_integer">integer</a>,
   1724           <a href="#t_floating">floating point</a>,
   1725           <a href="#t_pointer">pointer</a>,
   1726           <a href="#t_vector">vector</a>,
   1727           <a href="#t_struct">structure</a>,
   1728           <a href="#t_array">array</a>,
   1729           <a href="#t_label">label</a>,
   1730           <a href="#t_metadata">metadata</a>.
   1731       </td>
   1732     </tr>
   1733     <tr>
   1734       <td><a href="#t_primitive">primitive</a></td>
   1735       <td><a href="#t_label">label</a>,
   1736           <a href="#t_void">void</a>,
   1737           <a href="#t_integer">integer</a>,
   1738           <a href="#t_floating">floating point</a>,
   1739           <a href="#t_x86mmx">x86mmx</a>,
   1740           <a href="#t_metadata">metadata</a>.</td>
   1741     </tr>
   1742     <tr>
   1743       <td><a href="#t_derived">derived</a></td>
   1744       <td><a href="#t_array">array</a>,
   1745           <a href="#t_function">function</a>,
   1746           <a href="#t_pointer">pointer</a>,
   1747           <a href="#t_struct">structure</a>,
   1748           <a href="#t_vector">vector</a>,
   1749           <a href="#t_opaque">opaque</a>.
   1750       </td>
   1751     </tr>
   1752   </tbody>
   1753 </table>
   1754 
   1755 <p>The <a href="#t_firstclass">first class</a> types are perhaps the most
   1756    important.  Values of these types are the only ones which can be produced by
   1757    instructions.</p>
   1758 
   1759 </div>
   1760 
   1761 <!-- ======================================================================= -->
   1762 <h3>
   1763   <a name="t_primitive">Primitive Types</a>
   1764 </h3>
   1765 
   1766 <div>
   1767 
   1768 <p>The primitive types are the fundamental building blocks of the LLVM
   1769    system.</p>
   1770 
   1771 <!-- _______________________________________________________________________ -->
   1772 <h4>
   1773   <a name="t_integer">Integer Type</a>
   1774 </h4>
   1775 
   1776 <div>
   1777 
   1778 <h5>Overview:</h5>
   1779 <p>The integer type is a very simple type that simply specifies an arbitrary
   1780    bit width for the integer type desired. Any bit width from 1 bit to
   1781    2<sup>23</sup>-1 (about 8 million) can be specified.</p>
   1782 
   1783 <h5>Syntax:</h5>
   1784 <pre>
   1785   iN
   1786 </pre>
   1787 
   1788 <p>The number of bits the integer will occupy is specified by the <tt>N</tt>
   1789    value.</p>
   1790 
   1791 <h5>Examples:</h5>
   1792 <table class="layout">
   1793   <tr class="layout">
   1794     <td class="left"><tt>i1</tt></td>
   1795     <td class="left">a single-bit integer.</td>
   1796   </tr>
   1797   <tr class="layout">
   1798     <td class="left"><tt>i32</tt></td>
   1799     <td class="left">a 32-bit integer.</td>
   1800   </tr>
   1801   <tr class="layout">
   1802     <td class="left"><tt>i1942652</tt></td>
   1803     <td class="left">a really big integer of over 1 million bits.</td>
   1804   </tr>
   1805 </table>
   1806 
   1807 </div>
   1808 
   1809 <!-- _______________________________________________________________________ -->
   1810 <h4>
   1811   <a name="t_floating">Floating Point Types</a>
   1812 </h4>
   1813 
   1814 <div>
   1815 
   1816 <table>
   1817   <tbody>
   1818     <tr><th>Type</th><th>Description</th></tr>
   1819     <tr><td><tt>half</tt></td><td>16-bit floating point value</td></tr>
   1820     <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
   1821     <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
   1822     <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
   1823     <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
   1824     <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
   1825   </tbody>
   1826 </table>
   1827 
   1828 </div>
   1829 
   1830 <!-- _______________________________________________________________________ -->
   1831 <h4>
   1832   <a name="t_x86mmx">X86mmx Type</a>
   1833 </h4>
   1834 
   1835 <div>
   1836 
   1837 <h5>Overview:</h5>
   1838 <p>The x86mmx type represents a value held in an MMX register on an x86 machine.  The operations allowed on it are quite limited:  parameters and return values, load and store, and bitcast.  User-specified MMX instructions are represented as intrinsic or asm calls with arguments and/or results of this type.  There are no arrays, vectors or constants of this type.</p>
   1839 
   1840 <h5>Syntax:</h5>
   1841 <pre>
   1842   x86mmx
   1843 </pre>
   1844 
   1845 </div>
   1846 
   1847 <!-- _______________________________________________________________________ -->
   1848 <h4>
   1849   <a name="t_void">Void Type</a>
   1850 </h4>
   1851 
   1852 <div>
   1853 
   1854 <h5>Overview:</h5>
   1855 <p>The void type does not represent any value and has no size.</p>
   1856 
   1857 <h5>Syntax:</h5>
   1858 <pre>
   1859   void
   1860 </pre>
   1861 
   1862 </div>
   1863 
   1864 <!-- _______________________________________________________________________ -->
   1865 <h4>
   1866   <a name="t_label">Label Type</a>
   1867 </h4>
   1868 
   1869 <div>
   1870 
   1871 <h5>Overview:</h5>
   1872 <p>The label type represents code labels.</p>
   1873 
   1874 <h5>Syntax:</h5>
   1875 <pre>
   1876   label
   1877 </pre>
   1878 
   1879 </div>
   1880 
   1881 <!-- _______________________________________________________________________ -->
   1882 <h4>
   1883   <a name="t_metadata">Metadata Type</a>
   1884 </h4>
   1885 
   1886 <div>
   1887 
   1888 <h5>Overview:</h5>
   1889 <p>The metadata type represents embedded metadata. No derived types may be
   1890    created from metadata except for <a href="#t_function">function</a>
   1891    arguments.
   1892 
   1893 <h5>Syntax:</h5>
   1894 <pre>
   1895   metadata
   1896 </pre>
   1897 
   1898 </div>
   1899 
   1900 </div>
   1901 
   1902 <!-- ======================================================================= -->
   1903 <h3>
   1904   <a name="t_derived">Derived Types</a>
   1905 </h3>
   1906 
   1907 <div>
   1908 
   1909 <p>The real power in LLVM comes from the derived types in the system.  This is
   1910    what allows a programmer to represent arrays, functions, pointers, and other
   1911    useful types.  Each of these types contain one or more element types which
   1912    may be a primitive type, or another derived type.  For example, it is
   1913    possible to have a two dimensional array, using an array as the element type
   1914    of another array.</p>
   1915 
   1916 <!-- _______________________________________________________________________ -->
   1917 <h4>
   1918   <a name="t_aggregate">Aggregate Types</a>
   1919 </h4>
   1920 
   1921 <div>
   1922 
   1923 <p>Aggregate Types are a subset of derived types that can contain multiple
   1924   member types. <a href="#t_array">Arrays</a> and
   1925   <a href="#t_struct">structs</a> are aggregate types.
   1926   <a href="#t_vector">Vectors</a> are not considered to be aggregate types.</p>
   1927 
   1928 </div>
   1929 
   1930 <!-- _______________________________________________________________________ -->
   1931 <h4>
   1932   <a name="t_array">Array Type</a>
   1933 </h4>
   1934 
   1935 <div>
   1936 
   1937 <h5>Overview:</h5>
   1938 <p>The array type is a very simple derived type that arranges elements
   1939    sequentially in memory.  The array type requires a size (number of elements)
   1940    and an underlying data type.</p>
   1941 
   1942 <h5>Syntax:</h5>
   1943 <pre>
   1944   [&lt;# elements&gt; x &lt;elementtype&gt;]
   1945 </pre>
   1946 
   1947 <p>The number of elements is a constant integer value; <tt>elementtype</tt> may
   1948    be any type with a size.</p>
   1949 
   1950 <h5>Examples:</h5>
   1951 <table class="layout">
   1952   <tr class="layout">
   1953     <td class="left"><tt>[40 x i32]</tt></td>
   1954     <td class="left">Array of 40 32-bit integer values.</td>
   1955   </tr>
   1956   <tr class="layout">
   1957     <td class="left"><tt>[41 x i32]</tt></td>
   1958     <td class="left">Array of 41 32-bit integer values.</td>
   1959   </tr>
   1960   <tr class="layout">
   1961     <td class="left"><tt>[4 x i8]</tt></td>
   1962     <td class="left">Array of 4 8-bit integer values.</td>
   1963   </tr>
   1964 </table>
   1965 <p>Here are some examples of multidimensional arrays:</p>
   1966 <table class="layout">
   1967   <tr class="layout">
   1968     <td class="left"><tt>[3 x [4 x i32]]</tt></td>
   1969     <td class="left">3x4 array of 32-bit integer values.</td>
   1970   </tr>
   1971   <tr class="layout">
   1972     <td class="left"><tt>[12 x [10 x float]]</tt></td>
   1973     <td class="left">12x10 array of single precision floating point values.</td>
   1974   </tr>
   1975   <tr class="layout">
   1976     <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
   1977     <td class="left">2x3x4 array of 16-bit integer  values.</td>
   1978   </tr>
   1979 </table>
   1980 
   1981 <p>There is no restriction on indexing beyond the end of the array implied by
   1982    a static type (though there are restrictions on indexing beyond the bounds
   1983    of an allocated object in some cases). This means that single-dimension
   1984    'variable sized array' addressing can be implemented in LLVM with a zero
   1985    length array type. An implementation of 'pascal style arrays' in LLVM could
   1986    use the type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
   1987 
   1988 </div>
   1989 
   1990 <!-- _______________________________________________________________________ -->
   1991 <h4>
   1992   <a name="t_function">Function Type</a>
   1993 </h4>
   1994 
   1995 <div>
   1996 
   1997 <h5>Overview:</h5>
   1998 <p>The function type can be thought of as a function signature.  It consists of
   1999    a return type and a list of formal parameter types. The return type of a
   2000    function type is a first class type or a void type.</p>
   2001 
   2002 <h5>Syntax:</h5>
   2003 <pre>
   2004   &lt;returntype&gt; (&lt;parameter list&gt;)
   2005 </pre>
   2006 
   2007 <p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
   2008    specifiers.  Optionally, the parameter list may include a type <tt>...</tt>,
   2009    which indicates that the function takes a variable number of arguments.
   2010    Variable argument functions can access their arguments with
   2011    the <a href="#int_varargs">variable argument handling intrinsic</a>
   2012    functions.  '<tt>&lt;returntype&gt;</tt>' is any type except
   2013    <a href="#t_label">label</a>.</p>
   2014 
   2015 <h5>Examples:</h5>
   2016 <table class="layout">
   2017   <tr class="layout">
   2018     <td class="left"><tt>i32 (i32)</tt></td>
   2019     <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
   2020     </td>
   2021   </tr><tr class="layout">
   2022     <td class="left"><tt>float&nbsp;(i16,&nbsp;i32&nbsp;*)&nbsp;*
   2023     </tt></td>
   2024     <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
   2025       an <tt>i16</tt> and a <a href="#t_pointer">pointer</a> to <tt>i32</tt>,
   2026       returning <tt>float</tt>.
   2027     </td>
   2028   </tr><tr class="layout">
   2029     <td class="left"><tt>i32 (i8*, ...)</tt></td>
   2030     <td class="left">A vararg function that takes at least one
   2031       <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
   2032       which returns an integer.  This is the signature for <tt>printf</tt> in
   2033       LLVM.
   2034     </td>
   2035   </tr><tr class="layout">
   2036     <td class="left"><tt>{i32, i32} (i32)</tt></td>
   2037     <td class="left">A function taking an <tt>i32</tt>, returning a
   2038         <a href="#t_struct">structure</a> containing two <tt>i32</tt> values
   2039     </td>
   2040   </tr>
   2041 </table>
   2042 
   2043 </div>
   2044 
   2045 <!-- _______________________________________________________________________ -->
   2046 <h4>
   2047   <a name="t_struct">Structure Type</a>
   2048 </h4>
   2049 
   2050 <div>
   2051 
   2052 <h5>Overview:</h5>
   2053 <p>The structure type is used to represent a collection of data members together
   2054   in memory.  The elements of a structure may be any type that has a size.</p>
   2055 
   2056 <p>Structures in memory are accessed using '<tt><a href="#i_load">load</a></tt>'
   2057    and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field
   2058    with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
   2059    Structures in registers are accessed using the
   2060    '<tt><a href="#i_extractvalue">extractvalue</a></tt>' and
   2061    '<tt><a href="#i_insertvalue">insertvalue</a></tt>' instructions.</p>
   2062   
   2063 <p>Structures may optionally be "packed" structures, which indicate that the 
   2064   alignment of the struct is one byte, and that there is no padding between
   2065   the elements.  In non-packed structs, padding between field types is inserted
   2066   as defined by the TargetData string in the module, which is required to match
   2067   what the underlying code generator expects.</p>
   2068 
   2069 <p>Structures can either be "literal" or "identified".  A literal structure is
   2070   defined inline with other types (e.g. <tt>{i32, i32}*</tt>) whereas identified
   2071   types are always defined at the top level with a name.  Literal types are
   2072   uniqued by their contents and can never be recursive or opaque since there is
   2073   no way to write one.  Identified types can be recursive, can be opaqued, and are
   2074   never uniqued.
   2075 </p>
   2076   
   2077 <h5>Syntax:</h5>
   2078 <pre>
   2079   %T1 = type { &lt;type list&gt; }     <i>; Identified normal struct type</i>
   2080   %T2 = type &lt;{ &lt;type list&gt; }&gt;   <i>; Identified packed struct type</i>
   2081 </pre>
   2082   
   2083 <h5>Examples:</h5>
   2084 <table class="layout">
   2085   <tr class="layout">
   2086     <td class="left"><tt>{ i32, i32, i32 }</tt></td>
   2087     <td class="left">A triple of three <tt>i32</tt> values</td>
   2088   </tr>
   2089   <tr class="layout">
   2090     <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
   2091     <td class="left">A pair, where the first element is a <tt>float</tt> and the
   2092       second element is a <a href="#t_pointer">pointer</a> to a
   2093       <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
   2094       an <tt>i32</tt>.</td>
   2095   </tr>
   2096   <tr class="layout">
   2097     <td class="left"><tt>&lt;{ i8, i32 }&gt;</tt></td>
   2098     <td class="left">A packed struct known to be 5 bytes in size.</td>
   2099   </tr>
   2100 </table>
   2101 
   2102 </div>
   2103   
   2104 <!-- _______________________________________________________________________ -->
   2105 <h4>
   2106   <a name="t_opaque">Opaque Structure Types</a>
   2107 </h4>
   2108 
   2109 <div>
   2110 
   2111 <h5>Overview:</h5>
   2112 <p>Opaque structure types are used to represent named structure types that do
   2113    not have a body specified.  This corresponds (for example) to the C notion of
   2114    a forward declared structure.</p>
   2115 
   2116 <h5>Syntax:</h5>
   2117 <pre>
   2118   %X = type opaque
   2119   %52 = type opaque
   2120 </pre>
   2121 
   2122 <h5>Examples:</h5>
   2123 <table class="layout">
   2124   <tr class="layout">
   2125     <td class="left"><tt>opaque</tt></td>
   2126     <td class="left">An opaque type.</td>
   2127   </tr>
   2128 </table>
   2129 
   2130 </div>
   2131 
   2132 
   2133 
   2134 <!-- _______________________________________________________________________ -->
   2135 <h4>
   2136   <a name="t_pointer">Pointer Type</a>
   2137 </h4>
   2138 
   2139 <div>
   2140 
   2141 <h5>Overview:</h5>
   2142 <p>The pointer type is used to specify memory locations.
   2143    Pointers are commonly used to reference objects in memory.</p>
   2144    
   2145 <p>Pointer types may have an optional address space attribute defining the
   2146    numbered address space where the pointed-to object resides. The default
   2147    address space is number zero. The semantics of non-zero address
   2148    spaces are target-specific.</p>
   2149 
   2150 <p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
   2151    permit pointers to labels (<tt>label*</tt>).  Use <tt>i8*</tt> instead.</p>
   2152 
   2153 <h5>Syntax:</h5>
   2154 <pre>
   2155   &lt;type&gt; *
   2156 </pre>
   2157 
   2158 <h5>Examples:</h5>
   2159 <table class="layout">
   2160   <tr class="layout">
   2161     <td class="left"><tt>[4 x i32]*</tt></td>
   2162     <td class="left">A <a href="#t_pointer">pointer</a> to <a
   2163                     href="#t_array">array</a> of four <tt>i32</tt> values.</td>
   2164   </tr>
   2165   <tr class="layout">
   2166     <td class="left"><tt>i32 (i32*) *</tt></td>
   2167     <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
   2168       href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
   2169       <tt>i32</tt>.</td>
   2170   </tr>
   2171   <tr class="layout">
   2172     <td class="left"><tt>i32 addrspace(5)*</tt></td>
   2173     <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
   2174      that resides in address space #5.</td>
   2175   </tr>
   2176 </table>
   2177 
   2178 </div>
   2179 
   2180 <!-- _______________________________________________________________________ -->
   2181 <h4>
   2182   <a name="t_vector">Vector Type</a>
   2183 </h4>
   2184 
   2185 <div>
   2186 
   2187 <h5>Overview:</h5>
   2188 <p>A vector type is a simple derived type that represents a vector of elements.
   2189    Vector types are used when multiple primitive data are operated in parallel
   2190    using a single instruction (SIMD).  A vector type requires a size (number of
   2191    elements) and an underlying primitive data type.  Vector types are considered
   2192    <a href="#t_firstclass">first class</a>.</p>
   2193 
   2194 <h5>Syntax:</h5>
   2195 <pre>
   2196   &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
   2197 </pre>
   2198 
   2199 <p>The number of elements is a constant integer value larger than 0; elementtype
   2200    may be any integer or floating point type, or a pointer to these types.
   2201    Vectors of size zero are not allowed. </p>
   2202 
   2203 <h5>Examples:</h5>
   2204 <table class="layout">
   2205   <tr class="layout">
   2206     <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
   2207     <td class="left">Vector of 4 32-bit integer values.</td>
   2208   </tr>
   2209   <tr class="layout">
   2210     <td class="left"><tt>&lt;8 x float&gt;</tt></td>
   2211     <td class="left">Vector of 8 32-bit floating-point values.</td>
   2212   </tr>
   2213   <tr class="layout">
   2214     <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
   2215     <td class="left">Vector of 2 64-bit integer values.</td>
   2216   </tr>
   2217   <tr class="layout">
   2218     <td class="left"><tt>&lt;4 x i64*&gt;</tt></td>
   2219     <td class="left">Vector of 4 pointers to 64-bit integer values.</td>
   2220   </tr>
   2221 </table>
   2222 
   2223 </div>
   2224 
   2225 </div>
   2226 
   2227 </div>
   2228 
   2229 <!-- *********************************************************************** -->
   2230 <h2><a name="constants">Constants</a></h2>
   2231 <!-- *********************************************************************** -->
   2232 
   2233 <div>
   2234 
   2235 <p>LLVM has several different basic types of constants.  This section describes
   2236    them all and their syntax.</p>
   2237 
   2238 <!-- ======================================================================= -->
   2239 <h3>
   2240   <a name="simpleconstants">Simple Constants</a>
   2241 </h3>
   2242 
   2243 <div>
   2244 
   2245 <dl>
   2246   <dt><b>Boolean constants</b></dt>
   2247   <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
   2248       constants of the <tt><a href="#t_integer">i1</a></tt> type.</dd>
   2249 
   2250   <dt><b>Integer constants</b></dt>
   2251   <dd>Standard integers (such as '4') are constants of
   2252       the <a href="#t_integer">integer</a> type.  Negative numbers may be used
   2253       with integer types.</dd>
   2254 
   2255   <dt><b>Floating point constants</b></dt>
   2256   <dd>Floating point constants use standard decimal notation (e.g. 123.421),
   2257       exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
   2258       notation (see below).  The assembler requires the exact decimal value of a
   2259       floating-point constant.  For example, the assembler accepts 1.25 but
   2260       rejects 1.3 because 1.3 is a repeating decimal in binary.  Floating point
   2261       constants must have a <a href="#t_floating">floating point</a> type. </dd>
   2262 
   2263   <dt><b>Null pointer constants</b></dt>
   2264   <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
   2265       and must be of <a href="#t_pointer">pointer type</a>.</dd>
   2266 </dl>
   2267 
   2268 <p>The one non-intuitive notation for constants is the hexadecimal form of
   2269    floating point constants.  For example, the form '<tt>double
   2270    0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
   2271    '<tt>double 4.5e+15</tt>'.  The only time hexadecimal floating point
   2272    constants are required (and the only time that they are generated by the
   2273    disassembler) is when a floating point constant must be emitted but it cannot
   2274    be represented as a decimal floating point number in a reasonable number of
   2275    digits.  For example, NaN's, infinities, and other special values are
   2276    represented in their IEEE hexadecimal format so that assembly and disassembly
   2277    do not cause any bits to change in the constants.</p>
   2278 
   2279 <p>When using the hexadecimal form, constants of types half, float, and double are
   2280    represented using the 16-digit form shown above (which matches the IEEE754
   2281    representation for double); half and float values must, however, be exactly
   2282    representable as IEE754 half and single precision, respectively.
   2283    Hexadecimal format is always used
   2284    for long double, and there are three forms of long double.  The 80-bit format
   2285    used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
   2286    The 128-bit format used by PowerPC (two adjacent doubles) is represented
   2287    by <tt>0xM</tt> followed by 32 hexadecimal digits.  The IEEE 128-bit format
   2288    is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
   2289    currently supported target uses this format.  Long doubles will only work if
   2290    they match the long double format on your target.  All hexadecimal formats
   2291    are big-endian (sign bit at the left).</p>
   2292 
   2293 <p>There are no constants of type x86mmx.</p>
   2294 </div>
   2295 
   2296 <!-- ======================================================================= -->
   2297 <h3>
   2298 <a name="aggregateconstants"></a> <!-- old anchor -->
   2299 <a name="complexconstants">Complex Constants</a>
   2300 </h3>
   2301 
   2302 <div>
   2303 
   2304 <p>Complex constants are a (potentially recursive) combination of simple
   2305    constants and smaller complex constants.</p>
   2306 
   2307 <dl>
   2308   <dt><b>Structure constants</b></dt>
   2309   <dd>Structure constants are represented with notation similar to structure
   2310       type definitions (a comma separated list of elements, surrounded by braces
   2311       (<tt>{}</tt>)).  For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
   2312       where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
   2313       Structure constants must have <a href="#t_struct">structure type</a>, and
   2314       the number and types of elements must match those specified by the
   2315       type.</dd>
   2316 
   2317   <dt><b>Array constants</b></dt>
   2318   <dd>Array constants are represented with notation similar to array type
   2319      definitions (a comma separated list of elements, surrounded by square
   2320      brackets (<tt>[]</tt>)).  For example: "<tt>[ i32 42, i32 11, i32 74
   2321      ]</tt>".  Array constants must have <a href="#t_array">array type</a>, and
   2322      the number and types of elements must match those specified by the
   2323      type.</dd>
   2324 
   2325   <dt><b>Vector constants</b></dt>
   2326   <dd>Vector constants are represented with notation similar to vector type
   2327       definitions (a comma separated list of elements, surrounded by
   2328       less-than/greater-than's (<tt>&lt;&gt;</tt>)).  For example: "<tt>&lt; i32
   2329       42, i32 11, i32 74, i32 100 &gt;</tt>".  Vector constants must
   2330       have <a href="#t_vector">vector type</a>, and the number and types of
   2331       elements must match those specified by the type.</dd>
   2332 
   2333   <dt><b>Zero initialization</b></dt>
   2334   <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
   2335       value to zero of <em>any</em> type, including scalar and
   2336       <a href="#t_aggregate">aggregate</a> types.
   2337       This is often used to avoid having to print large zero initializers
   2338       (e.g. for large arrays) and is always exactly equivalent to using explicit
   2339       zero initializers.</dd>
   2340 
   2341   <dt><b>Metadata node</b></dt>
   2342   <dd>A metadata node is a structure-like constant with
   2343       <a href="#t_metadata">metadata type</a>.  For example: "<tt>metadata !{
   2344       i32 0, metadata !"test" }</tt>".  Unlike other constants that are meant to
   2345       be interpreted as part of the instruction stream, metadata is a place to
   2346       attach additional information such as debug info.</dd>
   2347 </dl>
   2348 
   2349 </div>
   2350 
   2351 <!-- ======================================================================= -->
   2352 <h3>
   2353   <a name="globalconstants">Global Variable and Function Addresses</a>
   2354 </h3>
   2355 
   2356 <div>
   2357 
   2358 <p>The addresses of <a href="#globalvars">global variables</a>
   2359    and <a href="#functionstructure">functions</a> are always implicitly valid
   2360    (link-time) constants.  These constants are explicitly referenced when
   2361    the <a href="#identifiers">identifier for the global</a> is used and always
   2362    have <a href="#t_pointer">pointer</a> type. For example, the following is a
   2363    legal LLVM file:</p>
   2364 
   2365 <pre class="doc_code">
   2366 @X = global i32 17
   2367 @Y = global i32 42
   2368 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
   2369 </pre>
   2370 
   2371 </div>
   2372 
   2373 <!-- ======================================================================= -->
   2374 <h3>
   2375   <a name="undefvalues">Undefined Values</a>
   2376 </h3>
   2377 
   2378 <div>
   2379 
   2380 <p>The string '<tt>undef</tt>' can be used anywhere a constant is expected, and
   2381    indicates that the user of the value may receive an unspecified bit-pattern.
   2382    Undefined values may be of any type (other than '<tt>label</tt>'
   2383    or '<tt>void</tt>') and be used anywhere a constant is permitted.</p>
   2384 
   2385 <p>Undefined values are useful because they indicate to the compiler that the
   2386    program is well defined no matter what value is used.  This gives the
   2387    compiler more freedom to optimize.  Here are some examples of (potentially
   2388    surprising) transformations that are valid (in pseudo IR):</p>
   2389 
   2390 
   2391 <pre class="doc_code">
   2392   %A = add %X, undef
   2393   %B = sub %X, undef
   2394   %C = xor %X, undef
   2395 Safe:
   2396   %A = undef
   2397   %B = undef
   2398   %C = undef
   2399 </pre>
   2400 
   2401 <p>This is safe because all of the output bits are affected by the undef bits.
   2402    Any output bit can have a zero or one depending on the input bits.</p>
   2403 
   2404 <pre class="doc_code">
   2405   %A = or %X, undef
   2406   %B = and %X, undef
   2407 Safe:
   2408   %A = -1
   2409   %B = 0
   2410 Unsafe:
   2411   %A = undef
   2412   %B = undef
   2413 </pre>
   2414 
   2415 <p>These logical operations have bits that are not always affected by the input.
   2416    For example, if <tt>%X</tt> has a zero bit, then the output of the
   2417    '<tt>and</tt>' operation will always be a zero for that bit, no matter what
   2418    the corresponding bit from the '<tt>undef</tt>' is. As such, it is unsafe to
   2419    optimize or assume that the result of the '<tt>and</tt>' is '<tt>undef</tt>'.
   2420    However, it is safe to assume that all bits of the '<tt>undef</tt>' could be
   2421    0, and optimize the '<tt>and</tt>' to 0. Likewise, it is safe to assume that
   2422    all the bits of the '<tt>undef</tt>' operand to the '<tt>or</tt>' could be
   2423    set, allowing the '<tt>or</tt>' to be folded to -1.</p>
   2424 
   2425 <pre class="doc_code">
   2426   %A = select undef, %X, %Y
   2427   %B = select undef, 42, %Y
   2428   %C = select %X, %Y, undef
   2429 Safe:
   2430   %A = %X     (or %Y)
   2431   %B = 42     (or %Y)
   2432   %C = %Y
   2433 Unsafe:
   2434   %A = undef
   2435   %B = undef
   2436   %C = undef
   2437 </pre>
   2438 
   2439 <p>This set of examples shows that undefined '<tt>select</tt>' (and conditional
   2440    branch) conditions can go <em>either way</em>, but they have to come from one
   2441    of the two operands.  In the <tt>%A</tt> example, if <tt>%X</tt> and
   2442    <tt>%Y</tt> were both known to have a clear low bit, then <tt>%A</tt> would
   2443    have to have a cleared low bit. However, in the <tt>%C</tt> example, the
   2444    optimizer is allowed to assume that the '<tt>undef</tt>' operand could be the
   2445    same as <tt>%Y</tt>, allowing the whole '<tt>select</tt>' to be
   2446    eliminated.</p>
   2447 
   2448 <pre class="doc_code">
   2449   %A = xor undef, undef
   2450 
   2451   %B = undef
   2452   %C = xor %B, %B
   2453 
   2454   %D = undef
   2455   %E = icmp lt %D, 4
   2456   %F = icmp gte %D, 4
   2457 
   2458 Safe:
   2459   %A = undef
   2460   %B = undef
   2461   %C = undef
   2462   %D = undef
   2463   %E = undef
   2464   %F = undef
   2465 </pre>
   2466 
   2467 <p>This example points out that two '<tt>undef</tt>' operands are not
   2468    necessarily the same. This can be surprising to people (and also matches C
   2469    semantics) where they assume that "<tt>X^X</tt>" is always zero, even
   2470    if <tt>X</tt> is undefined. This isn't true for a number of reasons, but the
   2471    short answer is that an '<tt>undef</tt>' "variable" can arbitrarily change
   2472    its value over its "live range".  This is true because the variable doesn't
   2473    actually <em>have a live range</em>. Instead, the value is logically read
   2474    from arbitrary registers that happen to be around when needed, so the value
   2475    is not necessarily consistent over time. In fact, <tt>%A</tt> and <tt>%C</tt>
   2476    need to have the same semantics or the core LLVM "replace all uses with"
   2477    concept would not hold.</p>
   2478 
   2479 <pre class="doc_code">
   2480   %A = fdiv undef, %X
   2481   %B = fdiv %X, undef
   2482 Safe:
   2483   %A = undef
   2484 b: unreachable
   2485 </pre>
   2486 
   2487 <p>These examples show the crucial difference between an <em>undefined
   2488   value</em> and <em>undefined behavior</em>. An undefined value (like
   2489   '<tt>undef</tt>') is allowed to have an arbitrary bit-pattern. This means that
   2490   the <tt>%A</tt> operation can be constant folded to '<tt>undef</tt>', because
   2491   the '<tt>undef</tt>' could be an SNaN, and <tt>fdiv</tt> is not (currently)
   2492   defined on SNaN's. However, in the second example, we can make a more
   2493   aggressive assumption: because the <tt>undef</tt> is allowed to be an
   2494   arbitrary value, we are allowed to assume that it could be zero. Since a
   2495   divide by zero has <em>undefined behavior</em>, we are allowed to assume that
   2496   the operation does not execute at all. This allows us to delete the divide and
   2497   all code after it. Because the undefined operation "can't happen", the
   2498   optimizer can assume that it occurs in dead code.</p>
   2499 
   2500 <pre class="doc_code">
   2501 a:  store undef -> %X
   2502 b:  store %X -> undef
   2503 Safe:
   2504 a: &lt;deleted&gt;
   2505 b: unreachable
   2506 </pre>
   2507 
   2508 <p>These examples reiterate the <tt>fdiv</tt> example: a store <em>of</em> an
   2509    undefined value can be assumed to not have any effect; we can assume that the
   2510    value is overwritten with bits that happen to match what was already there.
   2511    However, a store <em>to</em> an undefined location could clobber arbitrary
   2512    memory, therefore, it has undefined behavior.</p>
   2513 
   2514 </div>
   2515 
   2516 <!-- ======================================================================= -->
   2517 <h3>
   2518   <a name="poisonvalues">Poison Values</a>
   2519 </h3>
   2520 
   2521 <div>
   2522 
   2523 <p>Poison values are similar to <a href="#undefvalues">undef values</a>, however
   2524    they also represent the fact that an instruction or constant expression which
   2525    cannot evoke side effects has nevertheless detected a condition which results
   2526    in undefined behavior.</p>
   2527 
   2528 <p>There is currently no way of representing a poison value in the IR; they
   2529    only exist when produced by operations such as
   2530    <a href="#i_add"><tt>add</tt></a> with the <tt>nsw</tt> flag.</p>
   2531 
   2532 <p>Poison value behavior is defined in terms of value <i>dependence</i>:</p>
   2533 
   2534 <ul>
   2535 <li>Values other than <a href="#i_phi"><tt>phi</tt></a> nodes depend on
   2536     their operands.</li>
   2537 
   2538 <li><a href="#i_phi"><tt>Phi</tt></a> nodes depend on the operand corresponding
   2539     to their dynamic predecessor basic block.</li>
   2540 
   2541 <li>Function arguments depend on the corresponding actual argument values in
   2542     the dynamic callers of their functions.</li>
   2543 
   2544 <li><a href="#i_call"><tt>Call</tt></a> instructions depend on the
   2545     <a href="#i_ret"><tt>ret</tt></a> instructions that dynamically transfer
   2546     control back to them.</li>
   2547 
   2548 <li><a href="#i_invoke"><tt>Invoke</tt></a> instructions depend on the
   2549     <a href="#i_ret"><tt>ret</tt></a>, <a href="#i_resume"><tt>resume</tt></a>,
   2550     or exception-throwing call instructions that dynamically transfer control
   2551     back to them.</li>
   2552 
   2553 <li>Non-volatile loads and stores depend on the most recent stores to all of the
   2554     referenced memory addresses, following the order in the IR
   2555     (including loads and stores implied by intrinsics such as
   2556     <a href="#int_memcpy"><tt>@llvm.memcpy</tt></a>.)</li>
   2557 
   2558 <!-- TODO: In the case of multiple threads, this only applies if the store
   2559      "happens-before" the load or store. -->
   2560 
   2561 <!-- TODO: floating-point exception state -->
   2562 
   2563 <li>An instruction with externally visible side effects depends on the most
   2564     recent preceding instruction with externally visible side effects, following
   2565     the order in the IR. (This includes
   2566     <a href="#volatile">volatile operations</a>.)</li>
   2567 
   2568 <li>An instruction <i>control-depends</i> on a
   2569     <a href="#terminators">terminator instruction</a>
   2570     if the terminator instruction has multiple successors and the instruction
   2571     is always executed when control transfers to one of the successors, and
   2572     may not be executed when control is transferred to another.</li>
   2573 
   2574 <li>Additionally, an instruction also <i>control-depends</i> on a terminator
   2575     instruction if the set of instructions it otherwise depends on would be
   2576     different if the terminator had transferred control to a different
   2577     successor.</li>
   2578 
   2579 <li>Dependence is transitive.</li>
   2580 
   2581 </ul>
   2582 
   2583 <p>Poison Values have the same behavior as <a href="#undefvalues">undef values</a>,
   2584    with the additional affect that any instruction which has a <i>dependence</i>
   2585    on a poison value has undefined behavior.</p>
   2586 
   2587 <p>Here are some examples:</p>
   2588 
   2589 <pre class="doc_code">
   2590 entry:
   2591   %poison = sub nuw i32 0, 1           ; Results in a poison value.
   2592   %still_poison = and i32 %poison, 0   ; 0, but also poison.
   2593   %poison_yet_again = getelementptr i32* @h, i32 %still_poison
   2594   store i32 0, i32* %poison_yet_again  ; memory at @h[0] is poisoned
   2595 
   2596   store i32 %poison, i32* @g           ; Poison value stored to memory.
   2597   %poison2 = load i32* @g              ; Poison value loaded back from memory.
   2598 
   2599   store volatile i32 %poison, i32* @g  ; External observation; undefined behavior.
   2600 
   2601   %narrowaddr = bitcast i32* @g to i16*
   2602   %wideaddr = bitcast i32* @g to i64*
   2603   %poison3 = load i16* %narrowaddr     ; Returns a poison value.
   2604   %poison4 = load i64* %wideaddr       ; Returns a poison value.
   2605 
   2606   %cmp = icmp slt i32 %poison, 0       ; Returns a poison value.
   2607   br i1 %cmp, label %true, label %end  ; Branch to either destination.
   2608 
   2609 true:
   2610   store volatile i32 0, i32* @g        ; This is control-dependent on %cmp, so
   2611                                        ; it has undefined behavior.
   2612   br label %end
   2613 
   2614 end:
   2615   %p = phi i32 [ 0, %entry ], [ 1, %true ]
   2616                                        ; Both edges into this PHI are
   2617                                        ; control-dependent on %cmp, so this
   2618                                        ; always results in a poison value.
   2619 
   2620   store volatile i32 0, i32* @g        ; This would depend on the store in %true
   2621                                        ; if %cmp is true, or the store in %entry
   2622                                        ; otherwise, so this is undefined behavior.
   2623 
   2624   br i1 %cmp, label %second_true, label %second_end
   2625                                        ; The same branch again, but this time the
   2626                                        ; true block doesn't have side effects.
   2627 
   2628 second_true:
   2629   ; No side effects!
   2630   ret void
   2631 
   2632 second_end:
   2633   store volatile i32 0, i32* @g        ; This time, the instruction always depends
   2634                                        ; on the store in %end. Also, it is
   2635                                        ; control-equivalent to %end, so this is
   2636                                        ; well-defined (ignoring earlier undefined
   2637                                        ; behavior in this example).
   2638 </pre>
   2639 
   2640 </div>
   2641 
   2642 <!-- ======================================================================= -->
   2643 <h3>
   2644   <a name="blockaddress">Addresses of Basic Blocks</a>
   2645 </h3>
   2646 
   2647 <div>
   2648 
   2649 <p><b><tt>blockaddress(@function, %block)</tt></b></p>
   2650 
   2651 <p>The '<tt>blockaddress</tt>' constant computes the address of the specified
   2652    basic block in the specified function, and always has an i8* type.  Taking
   2653    the address of the entry block is illegal.</p>
   2654 
   2655 <p>This value only has defined behavior when used as an operand to the
   2656    '<a href="#i_indirectbr"><tt>indirectbr</tt></a>' instruction, or for
   2657    comparisons against null. Pointer equality tests between labels addresses
   2658    results in undefined behavior &mdash; though, again, comparison against null
   2659    is ok, and no label is equal to the null pointer. This may be passed around
   2660    as an opaque pointer sized value as long as the bits are not inspected. This
   2661    allows <tt>ptrtoint</tt> and arithmetic to be performed on these values so
   2662    long as the original value is reconstituted before the <tt>indirectbr</tt>
   2663    instruction.</p>
   2664 
   2665 <p>Finally, some targets may provide defined semantics when using the value as
   2666    the operand to an inline assembly, but that is target specific.</p>
   2667 
   2668 </div>
   2669 
   2670 
   2671 <!-- ======================================================================= -->
   2672 <h3>
   2673   <a name="constantexprs">Constant Expressions</a>
   2674 </h3>
   2675 
   2676 <div>
   2677 
   2678 <p>Constant expressions are used to allow expressions involving other constants
   2679    to be used as constants.  Constant expressions may be of
   2680    any <a href="#t_firstclass">first class</a> type and may involve any LLVM
   2681    operation that does not have side effects (e.g. load and call are not
   2682    supported). The following is the syntax for constant expressions:</p>
   2683 
   2684 <dl>
   2685   <dt><b><tt>trunc (CST to TYPE)</tt></b></dt>
   2686   <dd>Truncate a constant to another type. The bit size of CST must be larger
   2687       than the bit size of TYPE. Both types must be integers.</dd>
   2688 
   2689   <dt><b><tt>zext (CST to TYPE)</tt></b></dt>
   2690   <dd>Zero extend a constant to another type. The bit size of CST must be
   2691       smaller than the bit size of TYPE.  Both types must be integers.</dd>
   2692 
   2693   <dt><b><tt>sext (CST to TYPE)</tt></b></dt>
   2694   <dd>Sign extend a constant to another type. The bit size of CST must be
   2695       smaller than the bit size of TYPE.  Both types must be integers.</dd>
   2696 
   2697   <dt><b><tt>fptrunc (CST to TYPE)</tt></b></dt>
   2698   <dd>Truncate a floating point constant to another floating point type. The
   2699       size of CST must be larger than the size of TYPE. Both types must be
   2700       floating point.</dd>
   2701 
   2702   <dt><b><tt>fpext (CST to TYPE)</tt></b></dt>
   2703   <dd>Floating point extend a constant to another type. The size of CST must be
   2704       smaller or equal to the size of TYPE. Both types must be floating
   2705       point.</dd>
   2706 
   2707   <dt><b><tt>fptoui (CST to TYPE)</tt></b></dt>
   2708   <dd>Convert a floating point constant to the corresponding unsigned integer
   2709       constant. TYPE must be a scalar or vector integer type. CST must be of
   2710       scalar or vector floating point type. Both CST and TYPE must be scalars,
   2711       or vectors of the same number of elements. If the value won't fit in the
   2712       integer type, the results are undefined.</dd>
   2713 
   2714   <dt><b><tt>fptosi (CST to TYPE)</tt></b></dt>
   2715   <dd>Convert a floating point constant to the corresponding signed integer
   2716       constant.  TYPE must be a scalar or vector integer type. CST must be of
   2717       scalar or vector floating point type. Both CST and TYPE must be scalars,
   2718       or vectors of the same number of elements. If the value won't fit in the
   2719       integer type, the results are undefined.</dd>
   2720 
   2721   <dt><b><tt>uitofp (CST to TYPE)</tt></b></dt>
   2722   <dd>Convert an unsigned integer constant to the corresponding floating point
   2723       constant. TYPE must be a scalar or vector floating point type. CST must be
   2724       of scalar or vector integer type. Both CST and TYPE must be scalars, or
   2725       vectors of the same number of elements. If the value won't fit in the
   2726       floating point type, the results are undefined.</dd>
   2727 
   2728   <dt><b><tt>sitofp (CST to TYPE)</tt></b></dt>
   2729   <dd>Convert a signed integer constant to the corresponding floating point
   2730       constant. TYPE must be a scalar or vector floating point type. CST must be
   2731       of scalar or vector integer type. Both CST and TYPE must be scalars, or
   2732       vectors of the same number of elements. If the value won't fit in the
   2733       floating point type, the results are undefined.</dd>
   2734 
   2735   <dt><b><tt>ptrtoint (CST to TYPE)</tt></b></dt>
   2736   <dd>Convert a pointer typed constant to the corresponding integer constant
   2737       <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
   2738       type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
   2739       make it fit in <tt>TYPE</tt>.</dd>
   2740 
   2741   <dt><b><tt>inttoptr (CST to TYPE)</tt></b></dt>
   2742   <dd>Convert a integer constant to a pointer constant.  TYPE must be a pointer
   2743       type.  CST must be of integer type. The CST value is zero extended,
   2744       truncated, or unchanged to make it fit in a pointer size. This one is
   2745       <i>really</i> dangerous!</dd>
   2746 
   2747   <dt><b><tt>bitcast (CST to TYPE)</tt></b></dt>
   2748   <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
   2749       are the same as those for the <a href="#i_bitcast">bitcast
   2750       instruction</a>.</dd>
   2751 
   2752   <dt><b><tt>getelementptr (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
   2753   <dt><b><tt>getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
   2754   <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
   2755       constants.  As with the <a href="#i_getelementptr">getelementptr</a>
   2756       instruction, the index list may have zero or more indexes, which are
   2757       required to make sense for the type of "CSTPTR".</dd>
   2758 
   2759   <dt><b><tt>select (COND, VAL1, VAL2)</tt></b></dt>
   2760   <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
   2761 
   2762   <dt><b><tt>icmp COND (VAL1, VAL2)</tt></b></dt>
   2763   <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
   2764 
   2765   <dt><b><tt>fcmp COND (VAL1, VAL2)</tt></b></dt>
   2766   <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
   2767 
   2768   <dt><b><tt>extractelement (VAL, IDX)</tt></b></dt>
   2769   <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
   2770       constants.</dd>
   2771 
   2772   <dt><b><tt>insertelement (VAL, ELT, IDX)</tt></b></dt>
   2773   <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
   2774     constants.</dd>
   2775 
   2776   <dt><b><tt>shufflevector (VEC1, VEC2, IDXMASK)</tt></b></dt>
   2777   <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
   2778       constants.</dd>
   2779 
   2780   <dt><b><tt>extractvalue (VAL, IDX0, IDX1, ...)</tt></b></dt>
   2781   <dd>Perform the <a href="#i_extractvalue">extractvalue operation</a> on
   2782     constants. The index list is interpreted in a similar manner as indices in
   2783     a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
   2784     index value must be specified.</dd>
   2785 
   2786   <dt><b><tt>insertvalue (VAL, ELT, IDX0, IDX1, ...)</tt></b></dt>
   2787   <dd>Perform the <a href="#i_insertvalue">insertvalue operation</a> on
   2788     constants. The index list is interpreted in a similar manner as indices in
   2789     a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
   2790     index value must be specified.</dd>
   2791 
   2792   <dt><b><tt>OPCODE (LHS, RHS)</tt></b></dt>
   2793   <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
   2794       be any of the <a href="#binaryops">binary</a>
   2795       or <a href="#bitwiseops">bitwise binary</a> operations.  The constraints
   2796       on operands are the same as those for the corresponding instruction
   2797       (e.g. no bitwise operations on floating point values are allowed).</dd>
   2798 </dl>
   2799 
   2800 </div>
   2801 
   2802 </div>
   2803 
   2804 <!-- *********************************************************************** -->
   2805 <h2><a name="othervalues">Other Values</a></h2>
   2806 <!-- *********************************************************************** -->
   2807 <div>
   2808 <!-- ======================================================================= -->
   2809 <h3>
   2810 <a name="inlineasm">Inline Assembler Expressions</a>
   2811 </h3>
   2812 
   2813 <div>
   2814 
   2815 <p>LLVM supports inline assembler expressions (as opposed
   2816    to <a href="#moduleasm">Module-Level Inline Assembly</a>) through the use of
   2817    a special value.  This value represents the inline assembler as a string
   2818    (containing the instructions to emit), a list of operand constraints (stored
   2819    as a string), a flag that indicates whether or not the inline asm
   2820    expression has side effects, and a flag indicating whether the function
   2821    containing the asm needs to align its stack conservatively.  An example
   2822    inline assembler expression is:</p>
   2823 
   2824 <pre class="doc_code">
   2825 i32 (i32) asm "bswap $0", "=r,r"
   2826 </pre>
   2827 
   2828 <p>Inline assembler expressions may <b>only</b> be used as the callee operand of
   2829    a <a href="#i_call"><tt>call</tt> instruction</a>.  Thus, typically we
   2830    have:</p>
   2831 
   2832 <pre class="doc_code">
   2833 %X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
   2834 </pre>
   2835 
   2836 <p>Inline asms with side effects not visible in the constraint list must be
   2837    marked as having side effects.  This is done through the use of the
   2838    '<tt>sideeffect</tt>' keyword, like so:</p>
   2839 
   2840 <pre class="doc_code">
   2841 call void asm sideeffect "eieio", ""()
   2842 </pre>
   2843 
   2844 <p>In some cases inline asms will contain code that will not work unless the
   2845    stack is aligned in some way, such as calls or SSE instructions on x86,
   2846    yet will not contain code that does that alignment within the asm.
   2847    The compiler should make conservative assumptions about what the asm might
   2848    contain and should generate its usual stack alignment code in the prologue
   2849    if the '<tt>alignstack</tt>' keyword is present:</p>
   2850 
   2851 <pre class="doc_code">
   2852 call void asm alignstack "eieio", ""()
   2853 </pre>
   2854 
   2855 <p>If both keywords appear the '<tt>sideeffect</tt>' keyword must come
   2856    first.</p>
   2857 
   2858 <!--
   2859 <p>TODO: The format of the asm and constraints string still need to be
   2860    documented here.  Constraints on what can be done (e.g. duplication, moving,
   2861    etc need to be documented).  This is probably best done by reference to
   2862    another document that covers inline asm from a holistic perspective.</p>
   2863   -->
   2864 
   2865 <!-- _______________________________________________________________________ -->
   2866 <h4>
   2867   <a name="inlineasm_md">Inline Asm Metadata</a>
   2868 </h4>
   2869 
   2870 <div>
   2871 
   2872 <p>The call instructions that wrap inline asm nodes may have a
   2873    "<tt>!srcloc</tt>" MDNode attached to it that contains a list of constant
   2874    integers.  If present, the code generator will use the integer as the
   2875    location cookie value when report errors through the <tt>LLVMContext</tt>
   2876    error reporting mechanisms.  This allows a front-end to correlate backend
   2877    errors that occur with inline asm back to the source code that produced it.
   2878    For example:</p>
   2879 
   2880 <pre class="doc_code">
   2881 call void asm sideeffect "something bad", ""()<b>, !srcloc !42</b>
   2882 ...
   2883 !42 = !{ i32 1234567 }
   2884 </pre>
   2885 
   2886 <p>It is up to the front-end to make sense of the magic numbers it places in the
   2887    IR. If the MDNode contains multiple constants, the code generator will use
   2888    the one that corresponds to the line of the asm that the error occurs on.</p>
   2889 
   2890 </div>
   2891 
   2892 </div>
   2893 
   2894 <!-- ======================================================================= -->
   2895 <h3>
   2896   <a name="metadata">Metadata Nodes and Metadata Strings</a>
   2897 </h3>
   2898 
   2899 <div>
   2900 
   2901 <p>LLVM IR allows metadata to be attached to instructions in the program that
   2902    can convey extra information about the code to the optimizers and code
   2903    generator.  One example application of metadata is source-level debug
   2904    information.  There are two metadata primitives: strings and nodes. All
   2905    metadata has the <tt>metadata</tt> type and is identified in syntax by a
   2906    preceding exclamation point ('<tt>!</tt>').</p>
   2907 
   2908 <p>A metadata string is a string surrounded by double quotes.  It can contain
   2909    any character by escaping non-printable characters with "<tt>\xx</tt>" where
   2910    "<tt>xx</tt>" is the two digit hex code.  For example:
   2911    "<tt>!"test\00"</tt>".</p>
   2912 
   2913 <p>Metadata nodes are represented with notation similar to structure constants
   2914    (a comma separated list of elements, surrounded by braces and preceded by an
   2915    exclamation point). Metadata nodes can have any values as their operand. For
   2916    example:</p>
   2917 
   2918 <div class="doc_code">
   2919 <pre>
   2920 !{ metadata !"test\00", i32 10}
   2921 </pre>
   2922 </div>
   2923 
   2924 <p>A <a href="#namedmetadatastructure">named metadata</a> is a collection of 
   2925    metadata nodes, which can be looked up in the module symbol table. For
   2926    example:</p>
   2927 
   2928 <div class="doc_code">
   2929 <pre>
   2930 !foo =  metadata !{!4, !3}
   2931 </pre>
   2932 </div>
   2933 
   2934 <p>Metadata can be used as function arguments. Here <tt>llvm.dbg.value</tt> 
   2935    function is using two metadata arguments:</p>
   2936 
   2937 <div class="doc_code">
   2938 <pre>
   2939 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
   2940 </pre>
   2941 </div>
   2942 
   2943 <p>Metadata can be attached with an instruction. Here metadata <tt>!21</tt> is
   2944    attached to the <tt>add</tt> instruction using the <tt>!dbg</tt>
   2945    identifier:</p>
   2946 
   2947 <div class="doc_code">
   2948 <pre>
   2949 %indvar.next = add i64 %indvar, 1, !dbg !21
   2950 </pre>
   2951 </div>
   2952 
   2953 <p>More information about specific metadata nodes recognized by the optimizers
   2954    and code generator is found below.</p>
   2955 
   2956 <!-- _______________________________________________________________________ -->
   2957 <h4>
   2958   <a name="tbaa">'<tt>tbaa</tt>' Metadata</a>
   2959 </h4>
   2960 
   2961 <div>
   2962 
   2963 <p>In LLVM IR, memory does not have types, so LLVM's own type system is not
   2964    suitable for doing TBAA. Instead, metadata is added to the IR to describe
   2965    a type system of a higher level language. This can be used to implement
   2966    typical C/C++ TBAA, but it can also be used to implement custom alias
   2967    analysis behavior for other languages.</p>
   2968 
   2969 <p>The current metadata format is very simple. TBAA metadata nodes have up to
   2970    three fields, e.g.:</p>
   2971 
   2972 <div class="doc_code">
   2973 <pre>
   2974 !0 = metadata !{ metadata !"an example type tree" }
   2975 !1 = metadata !{ metadata !"int", metadata !0 }
   2976 !2 = metadata !{ metadata !"float", metadata !0 }
   2977 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
   2978 </pre>
   2979 </div>
   2980 
   2981 <p>The first field is an identity field. It can be any value, usually
   2982    a metadata string, which uniquely identifies the type. The most important
   2983    name in the tree is the name of the root node. Two trees with
   2984    different root node names are entirely disjoint, even if they
   2985    have leaves with common names.</p>
   2986 
   2987 <p>The second field identifies the type's parent node in the tree, or
   2988    is null or omitted for a root node. A type is considered to alias
   2989    all of its descendants and all of its ancestors in the tree. Also,
   2990    a type is considered to alias all types in other trees, so that
   2991    bitcode produced from multiple front-ends is handled conservatively.</p>
   2992 
   2993 <p>If the third field is present, it's an integer which if equal to 1
   2994    indicates that the type is "constant" (meaning
   2995    <tt>pointsToConstantMemory</tt> should return true; see
   2996    <a href="AliasAnalysis.html#OtherItfs">other useful
   2997    <tt>AliasAnalysis</tt> methods</a>).</p>
   2998 
   2999 </div>
   3000 
   3001 <!-- _______________________________________________________________________ -->
   3002 <h4>
   3003   <a name="fpmath">'<tt>fpmath</tt>' Metadata</a>
   3004 </h4>
   3005  
   3006 <div>
   3007 
   3008 <p><tt>fpmath</tt> metadata may be attached to any instruction of floating point
   3009   type.  It can be used to express the maximum acceptable error in the result of
   3010   that instruction, in ULPs, thus potentially allowing the compiler to use a
   3011   more efficient but less accurate method of computing it.  ULP is defined as
   3012   follows:</p>
   3013 
   3014 <blockquote>
   3015 
   3016 <p>If <tt>x</tt> is a real number that lies between two finite consecutive
   3017    floating-point numbers <tt>a</tt> and <tt>b</tt>, without being equal to one
   3018    of them, then <tt>ulp(x) = |b - a|</tt>, otherwise <tt>ulp(x)</tt> is the
   3019    distance between the two non-equal finite floating-point numbers nearest
   3020    <tt>x</tt>. Moreover, <tt>ulp(NaN)</tt> is <tt>NaN</tt>.</p>
   3021 
   3022 </blockquote>
   3023 
   3024 <p>The metadata node shall consist of a single positive floating point number
   3025    representing the maximum relative error, for example:</p>
   3026 
   3027 <div class="doc_code">
   3028 <pre>
   3029 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
   3030 </pre>
   3031 </div>
   3032 
   3033 </div>
   3034 
   3035 <!-- _______________________________________________________________________ -->
   3036 <h4>
   3037   <a name="range">'<tt>range</tt>' Metadata</a>
   3038 </h4>
   3039 
   3040 <div>
   3041 <p><tt>range</tt> metadata may be attached only to loads of integer types. It
   3042    expresses the possible ranges the loaded value is in. The ranges are
   3043    represented with a flattened list of integers. The loaded value is known to
   3044    be in the union of the ranges defined by each consecutive pair. Each pair
   3045    has the following properties:</p>
   3046 <ul>
   3047    <li>The type must match the type loaded by the instruction.</li>
   3048    <li>The pair <tt>a,b</tt> represents the range <tt>[a,b)</tt>.</li>
   3049    <li>Both <tt>a</tt> and <tt>b</tt> are constants.</li>
   3050    <li>The range is allowed to wrap.</li>
   3051    <li>The range should not represent the full or empty set. That is,
   3052        <tt>a!=b</tt>. </li>
   3053 </ul>
   3054 
   3055 <p>Examples:</p>
   3056 <div class="doc_code">
   3057 <pre>
   3058   %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
   3059   %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
   3060   %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
   3061 ...
   3062 !0 = metadata !{ i8 0, i8 2 }
   3063 !1 = metadata !{ i8 255, i8 2 }
   3064 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
   3065 </pre>
   3066 </div>
   3067 </div>
   3068 </div>
   3069 
   3070 </div>
   3071 
   3072 <!-- *********************************************************************** -->
   3073 <h2>
   3074   <a name="module_flags">Module Flags Metadata</a>
   3075 </h2>
   3076 <!-- *********************************************************************** -->
   3077 
   3078 <div>
   3079 
   3080 <p>Information about the module as a whole is difficult to convey to LLVM's
   3081    subsystems. The LLVM IR isn't sufficient to transmit this
   3082    information. The <tt>llvm.module.flags</tt> named metadata exists in order to
   3083    facilitate this. These flags are in the form of key / value pairs &mdash;
   3084    much like a dictionary &mdash; making it easy for any subsystem who cares
   3085    about a flag to look it up.</p>
   3086 
   3087 <p>The <tt>llvm.module.flags</tt> metadata contains a list of metadata
   3088    triplets. Each triplet has the following form:</p>
   3089 
   3090 <ul>
   3091   <li>The first element is a <i>behavior</i> flag, which specifies the behavior
   3092       when two (or more) modules are merged together, and it encounters two (or
   3093       more) metadata with the same ID. The supported behaviors are described
   3094       below.</li>
   3095 
   3096   <li>The second element is a metadata string that is a unique ID for the
   3097       metadata. How each ID is interpreted is documented below.</li>
   3098 
   3099   <li>The third element is the value of the flag.</li>
   3100 </ul>
   3101 
   3102 <p>When two (or more) modules are merged together, the resulting
   3103    <tt>llvm.module.flags</tt> metadata is the union of the
   3104    modules' <tt>llvm.module.flags</tt> metadata. The only exception being a flag
   3105    with the <i>Override</i> behavior, which may override another flag's value
   3106    (see below).</p>
   3107 
   3108 <p>The following behaviors are supported:</p>
   3109 
   3110 <table border="1" cellspacing="0" cellpadding="4">
   3111   <tbody>
   3112     <tr>
   3113       <th>Value</th>
   3114       <th>Behavior</th>
   3115     </tr>
   3116     <tr>
   3117       <td>1</td>
   3118       <td align="left">
   3119         <dl>
   3120           <dt><b>Error</b></dt>
   3121           <dd>Emits an error if two values disagree. It is an error to have an ID
   3122               with both an Error and a Warning behavior.</dd>
   3123         </dl>
   3124       </td>
   3125     </tr>
   3126     <tr>
   3127       <td>2</td>
   3128       <td align="left">
   3129         <dl>
   3130           <dt><b>Warning</b></dt>
   3131           <dd>Emits a warning if two values disagree.</dd>
   3132         </dl>
   3133       </td>
   3134     </tr>
   3135     <tr>
   3136       <td>3</td>
   3137       <td align="left">
   3138         <dl>
   3139           <dt><b>Require</b></dt>
   3140           <dd>Emits an error when the specified value is not present or doesn't
   3141               have the specified value. It is an error for two (or more)
   3142               <tt>llvm.module.flags</tt> with the same ID to have the Require
   3143               behavior but different values. There may be multiple Require flags
   3144               per ID.</dd>
   3145         </dl>
   3146       </td>
   3147     </tr>
   3148     <tr>
   3149       <td>4</td>
   3150       <td align="left">
   3151         <dl>
   3152           <dt><b>Override</b></dt>
   3153           <dd>Uses the specified value if the two values disagree. It is an
   3154               error for two (or more) <tt>llvm.module.flags</tt> with the same
   3155               ID to have the Override behavior but different values.</dd>
   3156         </dl>
   3157       </td>
   3158     </tr>
   3159   </tbody>
   3160 </table>
   3161 
   3162 <p>An example of module flags:</p>
   3163 
   3164 <pre class="doc_code">
   3165 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
   3166 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
   3167 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
   3168 !3 = metadata !{ i32 3, metadata !"qux",
   3169   metadata !{
   3170     metadata !"foo", i32 1
   3171   }
   3172 }
   3173 !llvm.module.flags = !{ !0, !1, !2, !3 }
   3174 </pre>
   3175 
   3176 <ul>
   3177   <li><p>Metadata <tt>!0</tt> has the ID <tt>!"foo"</tt> and the value '1'. The
   3178          behavior if two or more <tt>!"foo"</tt> flags are seen is to emit an
   3179          error if their values are not equal.</p></li>
   3180 
   3181   <li><p>Metadata <tt>!1</tt> has the ID <tt>!"bar"</tt> and the value '37'. The
   3182          behavior if two or more <tt>!"bar"</tt> flags are seen is to use the
   3183          value '37' if their values are not equal.</p></li>
   3184 
   3185   <li><p>Metadata <tt>!2</tt> has the ID <tt>!"qux"</tt> and the value '42'. The
   3186          behavior if two or more <tt>!"qux"</tt> flags are seen is to emit a
   3187          warning if their values are not equal.</p></li>
   3188 
   3189   <li><p>Metadata <tt>!3</tt> has the ID <tt>!"qux"</tt> and the value:</p>
   3190 
   3191 <pre class="doc_code">
   3192 metadata !{ metadata !"foo", i32 1 }
   3193 </pre>
   3194 
   3195       <p>The behavior is to emit an error if the <tt>llvm.module.flags</tt> does
   3196          not contain a flag with the ID <tt>!"foo"</tt> that has the value
   3197          '1'. If two or more <tt>!"qux"</tt> flags exist, then they must have
   3198          the same value or an error will be issued.</p></li>
   3199 </ul>
   3200 
   3201 
   3202 <!-- ======================================================================= -->
   3203 <h3>
   3204 <a name="objc_gc_flags">Objective-C Garbage Collection Module Flags Metadata</a>
   3205 </h3>
   3206 
   3207 <div>
   3208 
   3209 <p>On the Mach-O platform, Objective-C stores metadata about garbage collection
   3210    in a special section called "image info". The metadata consists of a version
   3211    number and a bitmask specifying what types of garbage collection are
   3212    supported (if any) by the file. If two or more modules are linked together
   3213    their garbage collection metadata needs to be merged rather than appended
   3214    together.</p>
   3215 
   3216 <p>The Objective-C garbage collection module flags metadata consists of the
   3217    following key-value pairs:</p>
   3218 
   3219 <table border="1" cellspacing="0" cellpadding="4">
   3220   <col width="30%">
   3221   <tbody>
   3222     <tr>
   3223       <th>Key</th>
   3224       <th>Value</th>
   3225     </tr>
   3226     <tr>
   3227       <td><tt>Objective-C&nbsp;Version</tt></td>
   3228       <td align="left"><b>[Required]</b> &mdash; The Objective-C ABI
   3229          version. Valid values are 1 and 2.</td>
   3230     </tr>
   3231     <tr>
   3232       <td><tt>Objective-C&nbsp;Image&nbsp;Info&nbsp;Version</tt></td>
   3233       <td align="left"><b>[Required]</b> &mdash; The version of the image info
   3234          section. Currently always 0.</td>
   3235     </tr>
   3236     <tr>
   3237       <td><tt>Objective-C&nbsp;Image&nbsp;Info&nbsp;Section</tt></td>
   3238       <td align="left"><b>[Required]</b> &mdash; The section to place the
   3239          metadata. Valid values are <tt>"__OBJC, __image_info, regular"</tt> for
   3240          Objective-C ABI version 1, and <tt>"__DATA,__objc_imageinfo, regular,
   3241          no_dead_strip"</tt> for Objective-C ABI version 2.</td>
   3242     </tr>
   3243     <tr>
   3244       <td><tt>Objective-C&nbsp;Garbage&nbsp;Collection</tt></td>
   3245       <td align="left"><b>[Required]</b> &mdash; Specifies whether garbage
   3246           collection is supported or not. Valid values are 0, for no garbage
   3247           collection, and 2, for garbage collection supported.</td>
   3248     </tr>
   3249     <tr>
   3250       <td><tt>Objective-C&nbsp;GC&nbsp;Only</tt></td>
   3251       <td align="left"><b>[Optional]</b> &mdash; Specifies that only garbage
   3252          collection is supported. If present, its value must be 6. This flag
   3253          requires that the <tt>Objective-C Garbage Collection</tt> flag have the
   3254          value 2.</td>
   3255     </tr>
   3256   </tbody>
   3257 </table>
   3258 
   3259 <p>Some important flag interactions:</p>
   3260 
   3261 <ul>
   3262   <li>If a module with <tt>Objective-C Garbage Collection</tt> set to 0 is
   3263       merged with a module with <tt>Objective-C Garbage Collection</tt> set to
   3264       2, then the resulting module has the <tt>Objective-C Garbage
   3265       Collection</tt> flag set to 0.</li>
   3266 
   3267   <li>A module with <tt>Objective-C Garbage Collection</tt> set to 0 cannot be
   3268       merged with a module with <tt>Objective-C GC Only</tt> set to 6.</li>
   3269 </ul>
   3270 
   3271 </div>
   3272 
   3273 </div>
   3274 
   3275 <!-- *********************************************************************** -->
   3276 <h2>
   3277   <a name="intrinsic_globals">Intrinsic Global Variables</a>
   3278 </h2>
   3279 <!-- *********************************************************************** -->
   3280 <div>
   3281 <p>LLVM has a number of "magic" global variables that contain data that affect
   3282 code generation or other IR semantics.  These are documented here.  All globals
   3283 of this sort should have a section specified as "<tt>llvm.metadata</tt>".  This
   3284 section and all globals that start with "<tt>llvm.</tt>" are reserved for use
   3285 by LLVM.</p>
   3286 
   3287 <!-- ======================================================================= -->
   3288 <h3>
   3289 <a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
   3290 </h3>
   3291 
   3292 <div>
   3293 
   3294 <p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
   3295 href="#linkage_appending">appending linkage</a>.  This array contains a list of
   3296 pointers to global variables and functions which may optionally have a pointer
   3297 cast formed of bitcast or getelementptr.  For example, a legal use of it is:</p>
   3298 
   3299 <div class="doc_code">
   3300 <pre>
   3301 @X = global i8 4
   3302 @Y = global i32 123
   3303 
   3304 @llvm.used = appending global [2 x i8*] [
   3305    i8* @X,
   3306    i8* bitcast (i32* @Y to i8*)
   3307 ], section "llvm.metadata"
   3308 </pre>
   3309 </div>
   3310 
   3311 <p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
   3312    compiler, assembler, and linker are required to treat the symbol as if there
   3313    is a reference to the global that it cannot see.  For example, if a variable
   3314    has internal linkage and no references other than that from
   3315    the <tt>@llvm.used</tt> list, it cannot be deleted.  This is commonly used to
   3316    represent references from inline asms and other things the compiler cannot
   3317    "see", and corresponds to "<tt>attribute((used))</tt>" in GNU C.</p>
   3318 
   3319 <p>On some targets, the code generator must emit a directive to the assembler or
   3320    object file to prevent the assembler and linker from molesting the
   3321    symbol.</p>
   3322 
   3323 </div>
   3324 
   3325 <!-- ======================================================================= -->
   3326 <h3>
   3327   <a name="intg_compiler_used">
   3328     The '<tt>llvm.compiler.used</tt>' Global Variable
   3329   </a>
   3330 </h3>
   3331 
   3332 <div>
   3333 
   3334 <p>The <tt>@llvm.compiler.used</tt> directive is the same as the
   3335    <tt>@llvm.used</tt> directive, except that it only prevents the compiler from
   3336    touching the symbol.  On targets that support it, this allows an intelligent
   3337    linker to optimize references to the symbol without being impeded as it would
   3338    be by <tt>@llvm.used</tt>.</p>
   3339 
   3340 <p>This is a rare construct that should only be used in rare circumstances, and
   3341    should not be exposed to source languages.</p>
   3342 
   3343 </div>
   3344 
   3345 <!-- ======================================================================= -->
   3346 <h3>
   3347 <a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
   3348 </h3>
   3349 
   3350 <div>
   3351 
   3352 <div class="doc_code">
   3353 <pre>
   3354 %0 = type { i32, void ()* }
   3355 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
   3356 </pre>
   3357 </div>
   3358 
   3359 <p>The <tt>@llvm.global_ctors</tt> array contains a list of constructor
   3360    functions and associated priorities.  The functions referenced by this array
   3361    will be called in ascending order of priority (i.e. lowest first) when the
   3362    module is loaded.  The order of functions with the same priority is not
   3363    defined.</p>
   3364 
   3365 </div>
   3366 
   3367 <!-- ======================================================================= -->
   3368 <h3>
   3369 <a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
   3370 </h3>
   3371 
   3372 <div>
   3373 
   3374 <div class="doc_code">
   3375 <pre>
   3376 %0 = type { i32, void ()* }
   3377 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
   3378 </pre>
   3379 </div>
   3380 
   3381 <p>The <tt>@llvm.global_dtors</tt> array contains a list of destructor functions
   3382    and associated priorities.  The functions referenced by this array will be
   3383    called in descending order of priority (i.e. highest first) when the module
   3384    is loaded.  The order of functions with the same priority is not defined.</p>
   3385 
   3386 </div>
   3387 
   3388 </div>
   3389 
   3390 <!-- *********************************************************************** -->
   3391 <h2><a name="instref">Instruction Reference</a></h2>
   3392 <!-- *********************************************************************** -->
   3393 
   3394 <div>
   3395 
   3396 <p>The LLVM instruction set consists of several different classifications of
   3397    instructions: <a href="#terminators">terminator
   3398    instructions</a>, <a href="#binaryops">binary instructions</a>,
   3399    <a href="#bitwiseops">bitwise binary instructions</a>,
   3400    <a href="#memoryops">memory instructions</a>, and
   3401    <a href="#otherops">other instructions</a>.</p>
   3402 
   3403 <!-- ======================================================================= -->
   3404 <h3>
   3405   <a name="terminators">Terminator Instructions</a>
   3406 </h3>
   3407 
   3408 <div>
   3409 
   3410 <p>As mentioned <a href="#functionstructure">previously</a>, every basic block
   3411    in a program ends with a "Terminator" instruction, which indicates which
   3412    block should be executed after the current block is finished. These
   3413    terminator instructions typically yield a '<tt>void</tt>' value: they produce
   3414    control flow, not values (the one exception being the
   3415    '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
   3416 
   3417 <p>The terminator instructions are: 
   3418    '<a href="#i_ret"><tt>ret</tt></a>', 
   3419    '<a href="#i_br"><tt>br</tt></a>',
   3420    '<a href="#i_switch"><tt>switch</tt></a>', 
   3421    '<a href="#i_indirectbr"><tt>indirectbr</tt></a>',
   3422    '<a href="#i_invoke"><tt>invoke</tt></a>', 
   3423    '<a href="#i_resume"><tt>resume</tt></a>', and 
   3424    '<a href="#i_unreachable"><tt>unreachable</tt></a>'.</p>
   3425 
   3426 <!-- _______________________________________________________________________ -->
   3427 <h4>
   3428   <a name="i_ret">'<tt>ret</tt>' Instruction</a>
   3429 </h4>
   3430 
   3431 <div>
   3432 
   3433 <h5>Syntax:</h5>
   3434 <pre>
   3435   ret &lt;type&gt; &lt;value&gt;       <i>; Return a value from a non-void function</i>
   3436   ret void                 <i>; Return from void function</i>
   3437 </pre>
   3438 
   3439 <h5>Overview:</h5>
   3440 <p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
   3441    a value) from a function back to the caller.</p>
   3442 
   3443 <p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
   3444    value and then causes control flow, and one that just causes control flow to
   3445    occur.</p>
   3446 
   3447 <h5>Arguments:</h5>
   3448 <p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
   3449    return value. The type of the return value must be a
   3450    '<a href="#t_firstclass">first class</a>' type.</p>
   3451 
   3452 <p>A function is not <a href="#wellformed">well formed</a> if it it has a
   3453    non-void return type and contains a '<tt>ret</tt>' instruction with no return
   3454    value or a return value with a type that does not match its type, or if it
   3455    has a void return type and contains a '<tt>ret</tt>' instruction with a
   3456    return value.</p>
   3457 
   3458 <h5>Semantics:</h5>
   3459 <p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
   3460    the calling function's context.  If the caller is a
   3461    "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
   3462    instruction after the call.  If the caller was an
   3463    "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
   3464    the beginning of the "normal" destination block.  If the instruction returns
   3465    a value, that value shall set the call or invoke instruction's return
   3466    value.</p>
   3467 
   3468 <h5>Example:</h5>
   3469 <pre>
   3470   ret i32 5                       <i>; Return an integer value of 5</i>
   3471   ret void                        <i>; Return from a void function</i>
   3472   ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
   3473 </pre>
   3474 
   3475 </div>
   3476 <!-- _______________________________________________________________________ -->
   3477 <h4>
   3478   <a name="i_br">'<tt>br</tt>' Instruction</a>
   3479 </h4>
   3480 
   3481 <div>
   3482 
   3483 <h5>Syntax:</h5>
   3484 <pre>
   3485   br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;
   3486   br label &lt;dest&gt;          <i>; Unconditional branch</i>
   3487 </pre>
   3488 
   3489 <h5>Overview:</h5>
   3490 <p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
   3491    different basic block in the current function.  There are two forms of this
   3492    instruction, corresponding to a conditional branch and an unconditional
   3493    branch.</p>
   3494 
   3495 <h5>Arguments:</h5>
   3496 <p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
   3497    '<tt>i1</tt>' value and two '<tt>label</tt>' values.  The unconditional form
   3498    of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
   3499    target.</p>
   3500 
   3501 <h5>Semantics:</h5>
   3502 <p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
   3503    argument is evaluated.  If the value is <tt>true</tt>, control flows to the
   3504    '<tt>iftrue</tt>' <tt>label</tt> argument.  If "cond" is <tt>false</tt>,
   3505    control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
   3506 
   3507 <h5>Example:</h5>
   3508 <pre>
   3509 Test:
   3510   %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
   3511   br i1 %cond, label %IfEqual, label %IfUnequal
   3512 IfEqual:
   3513   <a href="#i_ret">ret</a> i32 1
   3514 IfUnequal:
   3515   <a href="#i_ret">ret</a> i32 0
   3516 </pre>
   3517 
   3518 </div>
   3519 
   3520 <!-- _______________________________________________________________________ -->
   3521 <h4>
   3522    <a name="i_switch">'<tt>switch</tt>' Instruction</a>
   3523 </h4>
   3524 
   3525 <div>
   3526 
   3527 <h5>Syntax:</h5>
   3528 <pre>
   3529   switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
   3530 </pre>
   3531 
   3532 <h5>Overview:</h5>
   3533 <p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
   3534    several different places.  It is a generalization of the '<tt>br</tt>'
   3535    instruction, allowing a branch to occur to one of many possible
   3536    destinations.</p>
   3537 
   3538 <h5>Arguments:</h5>
   3539 <p>The '<tt>switch</tt>' instruction uses three parameters: an integer
   3540    comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
   3541    and an array of pairs of comparison value constants and '<tt>label</tt>'s.
   3542    The table is not allowed to contain duplicate constant entries.</p>
   3543 
   3544 <h5>Semantics:</h5>
   3545 <p>The <tt>switch</tt> instruction specifies a table of values and
   3546    destinations. When the '<tt>switch</tt>' instruction is executed, this table
   3547    is searched for the given value.  If the value is found, control flow is
   3548    transferred to the corresponding destination; otherwise, control flow is
   3549    transferred to the default destination.</p>
   3550 
   3551 <h5>Implementation:</h5>
   3552 <p>Depending on properties of the target machine and the particular
   3553    <tt>switch</tt> instruction, this instruction may be code generated in
   3554    different ways.  For example, it could be generated as a series of chained
   3555    conditional branches or with a lookup table.</p>
   3556 
   3557 <h5>Example:</h5>
   3558 <pre>
   3559  <i>; Emulate a conditional br instruction</i>
   3560  %Val = <a href="#i_zext">zext</a> i1 %value to i32
   3561  switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
   3562 
   3563  <i>; Emulate an unconditional br instruction</i>
   3564  switch i32 0, label %dest [ ]
   3565 
   3566  <i>; Implement a jump table:</i>
   3567  switch i32 %val, label %otherwise [ i32 0, label %onzero
   3568                                      i32 1, label %onone
   3569                                      i32 2, label %ontwo ]
   3570 </pre>
   3571 
   3572 </div>
   3573 
   3574 
   3575 <!-- _______________________________________________________________________ -->
   3576 <h4>
   3577    <a name="i_indirectbr">'<tt>indirectbr</tt>' Instruction</a>
   3578 </h4>
   3579 
   3580 <div>
   3581 
   3582 <h5>Syntax:</h5>
   3583 <pre>
   3584   indirectbr &lt;somety&gt;* &lt;address&gt;, [ label &lt;dest1&gt;, label &lt;dest2&gt;, ... ]
   3585 </pre>
   3586 
   3587 <h5>Overview:</h5>
   3588 
   3589 <p>The '<tt>indirectbr</tt>' instruction implements an indirect branch to a label
   3590    within the current function, whose address is specified by
   3591    "<tt>address</tt>".  Address must be derived from a <a
   3592    href="#blockaddress">blockaddress</a> constant.</p>
   3593 
   3594 <h5>Arguments:</h5>
   3595 
   3596 <p>The '<tt>address</tt>' argument is the address of the label to jump to.  The
   3597    rest of the arguments indicate the full set of possible destinations that the
   3598    address may point to.  Blocks are allowed to occur multiple times in the
   3599    destination list, though this isn't particularly useful.</p>
   3600 
   3601 <p>This destination list is required so that dataflow analysis has an accurate
   3602    understanding of the CFG.</p>
   3603 
   3604 <h5>Semantics:</h5>
   3605 
   3606 <p>Control transfers to the block specified in the address argument.  All
   3607    possible destination blocks must be listed in the label list, otherwise this
   3608    instruction has undefined behavior.  This implies that jumps to labels
   3609    defined in other functions have undefined behavior as well.</p>
   3610 
   3611 <h5>Implementation:</h5>
   3612 
   3613 <p>This is typically implemented with a jump through a register.</p>
   3614 
   3615 <h5>Example:</h5>
   3616 <pre>
   3617  indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
   3618 </pre>
   3619 
   3620 </div>
   3621 
   3622 
   3623 <!-- _______________________________________________________________________ -->
   3624 <h4>
   3625   <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
   3626 </h4>
   3627 
   3628 <div>
   3629 
   3630 <h5>Syntax:</h5>
   3631 <pre>
   3632   &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
   3633                 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
   3634 </pre>
   3635 
   3636 <h5>Overview:</h5>
   3637 <p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
   3638    function, with the possibility of control flow transfer to either the
   3639    '<tt>normal</tt>' label or the '<tt>exception</tt>' label.  If the callee
   3640    function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
   3641    control flow will return to the "normal" label.  If the callee (or any
   3642    indirect callees) returns via the "<a href="#i_resume"><tt>resume</tt></a>"
   3643    instruction or other exception handling mechanism, control is interrupted and
   3644    continued at the dynamically nearest "exception" label.</p>
   3645 
   3646 <p>The '<tt>exception</tt>' label is a
   3647    <i><a href="ExceptionHandling.html#overview">landing pad</a></i> for the
   3648    exception. As such, '<tt>exception</tt>' label is required to have the
   3649    "<a href="#i_landingpad"><tt>landingpad</tt></a>" instruction, which contains
   3650    the information about the behavior of the program after unwinding
   3651    happens, as its first non-PHI instruction. The restrictions on the
   3652    "<tt>landingpad</tt>" instruction's tightly couples it to the
   3653    "<tt>invoke</tt>" instruction, so that the important information contained
   3654    within the "<tt>landingpad</tt>" instruction can't be lost through normal
   3655    code motion.</p>
   3656 
   3657 <h5>Arguments:</h5>
   3658 <p>This instruction requires several arguments:</p>
   3659 
   3660 <ol>
   3661   <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
   3662       convention</a> the call should use.  If none is specified, the call
   3663       defaults to using C calling conventions.</li>
   3664 
   3665   <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
   3666       return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
   3667       '<tt>inreg</tt>' attributes are valid here.</li>
   3668 
   3669   <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
   3670       function value being invoked.  In most cases, this is a direct function
   3671       invocation, but indirect <tt>invoke</tt>s are just as possible, branching
   3672       off an arbitrary pointer to function value.</li>
   3673 
   3674   <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
   3675       function to be invoked. </li>
   3676 
   3677   <li>'<tt>function args</tt>': argument list whose types match the function
   3678       signature argument types and parameter attributes. All arguments must be
   3679       of <a href="#t_firstclass">first class</a> type. If the function
   3680       signature indicates the function accepts a variable number of arguments,
   3681       the extra arguments can be specified.</li>
   3682 
   3683   <li>'<tt>normal label</tt>': the label reached when the called function
   3684       executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
   3685 
   3686   <li>'<tt>exception label</tt>': the label reached when a callee returns via
   3687       the <a href="#i_resume"><tt>resume</tt></a> instruction or other exception
   3688       handling mechanism.</li>
   3689 
   3690   <li>The optional <a href="#fnattrs">function attributes</a> list. Only
   3691       '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
   3692       '<tt>readnone</tt>' attributes are valid here.</li>
   3693 </ol>
   3694 
   3695 <h5>Semantics:</h5>
   3696 <p>This instruction is designed to operate as a standard
   3697    '<tt><a href="#i_call">call</a></tt>' instruction in most regards.  The
   3698    primary difference is that it establishes an association with a label, which
   3699    is used by the runtime library to unwind the stack.</p>
   3700 
   3701 <p>This instruction is used in languages with destructors to ensure that proper
   3702    cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
   3703    exception.  Additionally, this is important for implementation of
   3704    '<tt>catch</tt>' clauses in high-level languages that support them.</p>
   3705 
   3706 <p>For the purposes of the SSA form, the definition of the value returned by the
   3707    '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
   3708    block to the "normal" label. If the callee unwinds then no return value is
   3709    available.</p>
   3710 
   3711 <h5>Example:</h5>
   3712 <pre>
   3713   %retval = invoke i32 @Test(i32 15) to label %Continue
   3714               unwind label %TestCleanup              <i>; {i32}:retval set</i>
   3715   %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
   3716               unwind label %TestCleanup              <i>; {i32}:retval set</i>
   3717 </pre>
   3718 
   3719 </div>
   3720 
   3721  <!-- _______________________________________________________________________ -->
   3722  
   3723 <h4>
   3724   <a name="i_resume">'<tt>resume</tt>' Instruction</a>
   3725 </h4>
   3726 
   3727 <div>
   3728 
   3729 <h5>Syntax:</h5>
   3730 <pre>
   3731   resume &lt;type&gt; &lt;value&gt;
   3732 </pre>
   3733 
   3734 <h5>Overview:</h5>
   3735 <p>The '<tt>resume</tt>' instruction is a terminator instruction that has no
   3736    successors.</p>
   3737 
   3738 <h5>Arguments:</h5>
   3739 <p>The '<tt>resume</tt>' instruction requires one argument, which must have the
   3740    same type as the result of any '<tt>landingpad</tt>' instruction in the same
   3741    function.</p>
   3742 
   3743 <h5>Semantics:</h5>
   3744 <p>The '<tt>resume</tt>' instruction resumes propagation of an existing
   3745    (in-flight) exception whose unwinding was interrupted with
   3746    a <a href="#i_landingpad"><tt>landingpad</tt></a> instruction.</p>
   3747 
   3748 <h5>Example:</h5>
   3749 <pre>
   3750   resume { i8*, i32 } %exn
   3751 </pre>
   3752 
   3753 </div>
   3754 
   3755 <!-- _______________________________________________________________________ -->
   3756 
   3757 <h4>
   3758   <a name="i_unreachable">'<tt>unreachable</tt>' Instruction</a>
   3759 </h4>
   3760 
   3761 <div>
   3762 
   3763 <h5>Syntax:</h5>
   3764 <pre>
   3765   unreachable
   3766 </pre>
   3767 
   3768 <h5>Overview:</h5>
   3769 <p>The '<tt>unreachable</tt>' instruction has no defined semantics.  This
   3770    instruction is used to inform the optimizer that a particular portion of the
   3771    code is not reachable.  This can be used to indicate that the code after a
   3772    no-return function cannot be reached, and other facts.</p>
   3773 
   3774 <h5>Semantics:</h5>
   3775 <p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
   3776 
   3777 </div>
   3778 
   3779 </div>
   3780 
   3781 <!-- ======================================================================= -->
   3782 <h3>
   3783   <a name="binaryops">Binary Operations</a>
   3784 </h3>
   3785 
   3786 <div>
   3787 
   3788 <p>Binary operators are used to do most of the computation in a program.  They
   3789    require two operands of the same type, execute an operation on them, and
   3790    produce a single value.  The operands might represent multiple data, as is
   3791    the case with the <a href="#t_vector">vector</a> data type.  The result value
   3792    has the same type as its operands.</p>
   3793 
   3794 <p>There are several different binary operators:</p>
   3795 
   3796 <!-- _______________________________________________________________________ -->
   3797 <h4>
   3798   <a name="i_add">'<tt>add</tt>' Instruction</a>
   3799 </h4>
   3800 
   3801 <div>
   3802 
   3803 <h5>Syntax:</h5>
   3804 <pre>
   3805   &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;          <i>; yields {ty}:result</i>
   3806   &lt;result&gt; = add nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
   3807   &lt;result&gt; = add nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
   3808   &lt;result&gt; = add nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;  <i>; yields {ty}:result</i>
   3809 </pre>
   3810 
   3811 <h5>Overview:</h5>
   3812 <p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
   3813 
   3814 <h5>Arguments:</h5>
   3815 <p>The two arguments to the '<tt>add</tt>' instruction must
   3816    be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
   3817    integer values. Both arguments must have identical types.</p>
   3818 
   3819 <h5>Semantics:</h5>
   3820 <p>The value produced is the integer sum of the two operands.</p>
   3821 
   3822 <p>If the sum has unsigned overflow, the result returned is the mathematical
   3823    result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
   3824 
   3825 <p>Because LLVM integers use a two's complement representation, this instruction
   3826    is appropriate for both signed and unsigned integers.</p>
   3827 
   3828 <p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
   3829    and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
   3830    <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
   3831    is a <a href="#poisonvalues">poison value</a> if unsigned and/or signed overflow,
   3832    respectively, occurs.</p>
   3833 
   3834 <h5>Example:</h5>
   3835 <pre>
   3836   &lt;result&gt; = add i32 4, %var          <i>; yields {i32}:result = 4 + %var</i>
   3837 </pre>
   3838 
   3839 </div>
   3840 
   3841 <!-- _______________________________________________________________________ -->
   3842 <h4>
   3843   <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
   3844 </h4>
   3845 
   3846 <div>
   3847 
   3848 <h5>Syntax:</h5>
   3849 <pre>
   3850   &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3851 </pre>
   3852 
   3853 <h5>Overview:</h5>
   3854 <p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
   3855 
   3856 <h5>Arguments:</h5>
   3857 <p>The two arguments to the '<tt>fadd</tt>' instruction must be
   3858    <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
   3859    floating point values. Both arguments must have identical types.</p>
   3860 
   3861 <h5>Semantics:</h5>
   3862 <p>The value produced is the floating point sum of the two operands.</p>
   3863 
   3864 <h5>Example:</h5>
   3865 <pre>
   3866   &lt;result&gt; = fadd float 4.0, %var          <i>; yields {float}:result = 4.0 + %var</i>
   3867 </pre>
   3868 
   3869 </div>
   3870 
   3871 <!-- _______________________________________________________________________ -->
   3872 <h4>
   3873    <a name="i_sub">'<tt>sub</tt>' Instruction</a>
   3874 </h4>
   3875 
   3876 <div>
   3877 
   3878 <h5>Syntax:</h5>
   3879 <pre>
   3880   &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;          <i>; yields {ty}:result</i>
   3881   &lt;result&gt; = sub nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
   3882   &lt;result&gt; = sub nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
   3883   &lt;result&gt; = sub nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;  <i>; yields {ty}:result</i>
   3884 </pre>
   3885 
   3886 <h5>Overview:</h5>
   3887 <p>The '<tt>sub</tt>' instruction returns the difference of its two
   3888    operands.</p>
   3889 
   3890 <p>Note that the '<tt>sub</tt>' instruction is used to represent the
   3891    '<tt>neg</tt>' instruction present in most other intermediate
   3892    representations.</p>
   3893 
   3894 <h5>Arguments:</h5>
   3895 <p>The two arguments to the '<tt>sub</tt>' instruction must
   3896    be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
   3897    integer values.  Both arguments must have identical types.</p>
   3898 
   3899 <h5>Semantics:</h5>
   3900 <p>The value produced is the integer difference of the two operands.</p>
   3901 
   3902 <p>If the difference has unsigned overflow, the result returned is the
   3903    mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
   3904    result.</p>
   3905 
   3906 <p>Because LLVM integers use a two's complement representation, this instruction
   3907    is appropriate for both signed and unsigned integers.</p>
   3908 
   3909 <p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
   3910    and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
   3911    <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
   3912    is a <a href="#poisonvalues">poison value</a> if unsigned and/or signed overflow,
   3913    respectively, occurs.</p>
   3914 
   3915 <h5>Example:</h5>
   3916 <pre>
   3917   &lt;result&gt; = sub i32 4, %var          <i>; yields {i32}:result = 4 - %var</i>
   3918   &lt;result&gt; = sub i32 0, %val          <i>; yields {i32}:result = -%var</i>
   3919 </pre>
   3920 
   3921 </div>
   3922 
   3923 <!-- _______________________________________________________________________ -->
   3924 <h4>
   3925    <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
   3926 </h4>
   3927 
   3928 <div>
   3929 
   3930 <h5>Syntax:</h5>
   3931 <pre>
   3932   &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3933 </pre>
   3934 
   3935 <h5>Overview:</h5>
   3936 <p>The '<tt>fsub</tt>' instruction returns the difference of its two
   3937    operands.</p>
   3938 
   3939 <p>Note that the '<tt>fsub</tt>' instruction is used to represent the
   3940    '<tt>fneg</tt>' instruction present in most other intermediate
   3941    representations.</p>
   3942 
   3943 <h5>Arguments:</h5>
   3944 <p>The two arguments to the '<tt>fsub</tt>' instruction must be
   3945    <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
   3946    floating point values.  Both arguments must have identical types.</p>
   3947 
   3948 <h5>Semantics:</h5>
   3949 <p>The value produced is the floating point difference of the two operands.</p>
   3950 
   3951 <h5>Example:</h5>
   3952 <pre>
   3953   &lt;result&gt; = fsub float 4.0, %var           <i>; yields {float}:result = 4.0 - %var</i>
   3954   &lt;result&gt; = fsub float -0.0, %val          <i>; yields {float}:result = -%var</i>
   3955 </pre>
   3956 
   3957 </div>
   3958 
   3959 <!-- _______________________________________________________________________ -->
   3960 <h4>
   3961   <a name="i_mul">'<tt>mul</tt>' Instruction</a>
   3962 </h4>
   3963 
   3964 <div>
   3965 
   3966 <h5>Syntax:</h5>
   3967 <pre>
   3968   &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;          <i>; yields {ty}:result</i>
   3969   &lt;result&gt; = mul nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
   3970   &lt;result&gt; = mul nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
   3971   &lt;result&gt; = mul nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;  <i>; yields {ty}:result</i>
   3972 </pre>
   3973 
   3974 <h5>Overview:</h5>
   3975 <p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
   3976 
   3977 <h5>Arguments:</h5>
   3978 <p>The two arguments to the '<tt>mul</tt>' instruction must
   3979    be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
   3980    integer values.  Both arguments must have identical types.</p>
   3981 
   3982 <h5>Semantics:</h5>
   3983 <p>The value produced is the integer product of the two operands.</p>
   3984 
   3985 <p>If the result of the multiplication has unsigned overflow, the result
   3986    returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
   3987    width of the result.</p>
   3988 
   3989 <p>Because LLVM integers use a two's complement representation, and the result
   3990    is the same width as the operands, this instruction returns the correct
   3991    result for both signed and unsigned integers.  If a full product
   3992    (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
   3993    be sign-extended or zero-extended as appropriate to the width of the full
   3994    product.</p>
   3995 
   3996 <p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
   3997    and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
   3998    <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
   3999    is a <a href="#poisonvalues">poison value</a> if unsigned and/or signed overflow,
   4000    respectively, occurs.</p>
   4001 
   4002 <h5>Example:</h5>
   4003 <pre>
   4004   &lt;result&gt; = mul i32 4, %var          <i>; yields {i32}:result = 4 * %var</i>
   4005 </pre>
   4006 
   4007 </div>
   4008 
   4009 <!-- _______________________________________________________________________ -->
   4010 <h4>
   4011   <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
   4012 </h4>
   4013 
   4014 <div>
   4015 
   4016 <h5>Syntax:</h5>
   4017 <pre>
   4018   &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4019 </pre>
   4020 
   4021 <h5>Overview:</h5>
   4022 <p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
   4023 
   4024 <h5>Arguments:</h5>
   4025 <p>The two arguments to the '<tt>fmul</tt>' instruction must be
   4026    <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
   4027    floating point values.  Both arguments must have identical types.</p>
   4028 
   4029 <h5>Semantics:</h5>
   4030 <p>The value produced is the floating point product of the two operands.</p>
   4031 
   4032 <h5>Example:</h5>
   4033 <pre>
   4034   &lt;result&gt; = fmul float 4.0, %var          <i>; yields {float}:result = 4.0 * %var</i>
   4035 </pre>
   4036 
   4037 </div>
   4038 
   4039 <!-- _______________________________________________________________________ -->
   4040 <h4>
   4041   <a name="i_udiv">'<tt>udiv</tt>' Instruction</a>
   4042 </h4>
   4043 
   4044 <div>
   4045 
   4046 <h5>Syntax:</h5>
   4047 <pre>
   4048   &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;         <i>; yields {ty}:result</i>
   4049   &lt;result&gt; = udiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4050 </pre>
   4051 
   4052 <h5>Overview:</h5>
   4053 <p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
   4054 
   4055 <h5>Arguments:</h5>
   4056 <p>The two arguments to the '<tt>udiv</tt>' instruction must be
   4057    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   4058    values.  Both arguments must have identical types.</p>
   4059 
   4060 <h5>Semantics:</h5>
   4061 <p>The value produced is the unsigned integer quotient of the two operands.</p>
   4062 
   4063 <p>Note that unsigned integer division and signed integer division are distinct
   4064    operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
   4065 
   4066 <p>Division by zero leads to undefined behavior.</p>
   4067 
   4068 <p>If the <tt>exact</tt> keyword is present, the result value of the
   4069    <tt>udiv</tt> is a <a href="#poisonvalues">poison value</a> if %op1 is not a
   4070   multiple of %op2 (as such, "((a udiv exact b) mul b) == a").</p>
   4071 
   4072 
   4073 <h5>Example:</h5>
   4074 <pre>
   4075   &lt;result&gt; = udiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i>
   4076 </pre>
   4077 
   4078 </div>
   4079 
   4080 <!-- _______________________________________________________________________ -->
   4081 <h4>
   4082   <a name="i_sdiv">'<tt>sdiv</tt>' Instruction</a>
   4083 </h4>
   4084 
   4085 <div>
   4086 
   4087 <h5>Syntax:</h5>
   4088 <pre>
   4089   &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;         <i>; yields {ty}:result</i>
   4090   &lt;result&gt; = sdiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4091 </pre>
   4092 
   4093 <h5>Overview:</h5>
   4094 <p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
   4095 
   4096 <h5>Arguments:</h5>
   4097 <p>The two arguments to the '<tt>sdiv</tt>' instruction must be
   4098    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   4099    values.  Both arguments must have identical types.</p>
   4100 
   4101 <h5>Semantics:</h5>
   4102 <p>The value produced is the signed integer quotient of the two operands rounded
   4103    towards zero.</p>
   4104 
   4105 <p>Note that signed integer division and unsigned integer division are distinct
   4106    operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
   4107 
   4108 <p>Division by zero leads to undefined behavior. Overflow also leads to
   4109    undefined behavior; this is a rare case, but can occur, for example, by doing
   4110    a 32-bit division of -2147483648 by -1.</p>
   4111 
   4112 <p>If the <tt>exact</tt> keyword is present, the result value of the
   4113    <tt>sdiv</tt> is a <a href="#poisonvalues">poison value</a> if the result would
   4114    be rounded.</p>
   4115 
   4116 <h5>Example:</h5>
   4117 <pre>
   4118   &lt;result&gt; = sdiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i>
   4119 </pre>
   4120 
   4121 </div>
   4122 
   4123 <!-- _______________________________________________________________________ -->
   4124 <h4>
   4125   <a name="i_fdiv">'<tt>fdiv</tt>' Instruction</a>
   4126 </h4>
   4127 
   4128 <div>
   4129 
   4130 <h5>Syntax:</h5>
   4131 <pre>
   4132   &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4133 </pre>
   4134 
   4135 <h5>Overview:</h5>
   4136 <p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
   4137 
   4138 <h5>Arguments:</h5>
   4139 <p>The two arguments to the '<tt>fdiv</tt>' instruction must be
   4140    <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
   4141    floating point values.  Both arguments must have identical types.</p>
   4142 
   4143 <h5>Semantics:</h5>
   4144 <p>The value produced is the floating point quotient of the two operands.</p>
   4145 
   4146 <h5>Example:</h5>
   4147 <pre>
   4148   &lt;result&gt; = fdiv float 4.0, %var          <i>; yields {float}:result = 4.0 / %var</i>
   4149 </pre>
   4150 
   4151 </div>
   4152 
   4153 <!-- _______________________________________________________________________ -->
   4154 <h4>
   4155   <a name="i_urem">'<tt>urem</tt>' Instruction</a>
   4156 </h4>
   4157 
   4158 <div>
   4159 
   4160 <h5>Syntax:</h5>
   4161 <pre>
   4162   &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4163 </pre>
   4164 
   4165 <h5>Overview:</h5>
   4166 <p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
   4167    division of its two arguments.</p>
   4168 
   4169 <h5>Arguments:</h5>
   4170 <p>The two arguments to the '<tt>urem</tt>' instruction must be
   4171    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   4172    values.  Both arguments must have identical types.</p>
   4173 
   4174 <h5>Semantics:</h5>
   4175 <p>This instruction returns the unsigned integer <i>remainder</i> of a division.
   4176    This instruction always performs an unsigned division to get the
   4177    remainder.</p>
   4178 
   4179 <p>Note that unsigned integer remainder and signed integer remainder are
   4180    distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
   4181 
   4182 <p>Taking the remainder of a division by zero leads to undefined behavior.</p>
   4183 
   4184 <h5>Example:</h5>
   4185 <pre>
   4186   &lt;result&gt; = urem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i>
   4187 </pre>
   4188 
   4189 </div>
   4190 
   4191 <!-- _______________________________________________________________________ -->
   4192 <h4>
   4193   <a name="i_srem">'<tt>srem</tt>' Instruction</a>
   4194 </h4>
   4195 
   4196 <div>
   4197 
   4198 <h5>Syntax:</h5>
   4199 <pre>
   4200   &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4201 </pre>
   4202 
   4203 <h5>Overview:</h5>
   4204 <p>The '<tt>srem</tt>' instruction returns the remainder from the signed
   4205    division of its two operands. This instruction can also take
   4206    <a href="#t_vector">vector</a> versions of the values in which case the
   4207    elements must be integers.</p>
   4208 
   4209 <h5>Arguments:</h5>
   4210 <p>The two arguments to the '<tt>srem</tt>' instruction must be
   4211    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   4212    values.  Both arguments must have identical types.</p>
   4213 
   4214 <h5>Semantics:</h5>
   4215 <p>This instruction returns the <i>remainder</i> of a division (where the result
   4216    is either zero or has the same sign as the dividend, <tt>op1</tt>), not the
   4217    <i>modulo</i> operator (where the result is either zero or has the same sign
   4218    as the divisor, <tt>op2</tt>) of a value.
   4219    For more information about the difference,
   4220    see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
   4221    Math Forum</a>. For a table of how this is implemented in various languages,
   4222    please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
   4223    Wikipedia: modulo operation</a>.</p>
   4224 
   4225 <p>Note that signed integer remainder and unsigned integer remainder are
   4226    distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
   4227 
   4228 <p>Taking the remainder of a division by zero leads to undefined behavior.
   4229    Overflow also leads to undefined behavior; this is a rare case, but can
   4230    occur, for example, by taking the remainder of a 32-bit division of
   4231    -2147483648 by -1.  (The remainder doesn't actually overflow, but this rule
   4232    lets srem be implemented using instructions that return both the result of
   4233    the division and the remainder.)</p>
   4234 
   4235 <h5>Example:</h5>
   4236 <pre>
   4237   &lt;result&gt; = srem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i>
   4238 </pre>
   4239 
   4240 </div>
   4241 
   4242 <!-- _______________________________________________________________________ -->
   4243 <h4>
   4244   <a name="i_frem">'<tt>frem</tt>' Instruction</a>
   4245 </h4>
   4246 
   4247 <div>
   4248 
   4249 <h5>Syntax:</h5>
   4250 <pre>
   4251   &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4252 </pre>
   4253 
   4254 <h5>Overview:</h5>
   4255 <p>The '<tt>frem</tt>' instruction returns the remainder from the division of
   4256    its two operands.</p>
   4257 
   4258 <h5>Arguments:</h5>
   4259 <p>The two arguments to the '<tt>frem</tt>' instruction must be
   4260    <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
   4261    floating point values.  Both arguments must have identical types.</p>
   4262 
   4263 <h5>Semantics:</h5>
   4264 <p>This instruction returns the <i>remainder</i> of a division.  The remainder
   4265    has the same sign as the dividend.</p>
   4266 
   4267 <h5>Example:</h5>
   4268 <pre>
   4269   &lt;result&gt; = frem float 4.0, %var          <i>; yields {float}:result = 4.0 % %var</i>
   4270 </pre>
   4271 
   4272 </div>
   4273 
   4274 </div>
   4275 
   4276 <!-- ======================================================================= -->
   4277 <h3>
   4278   <a name="bitwiseops">Bitwise Binary Operations</a>
   4279 </h3>
   4280 
   4281 <div>
   4282 
   4283 <p>Bitwise binary operators are used to do various forms of bit-twiddling in a
   4284    program.  They are generally very efficient instructions and can commonly be
   4285    strength reduced from other instructions.  They require two operands of the
   4286    same type, execute an operation on them, and produce a single value.  The
   4287    resulting value is the same type as its operands.</p>
   4288 
   4289 <!-- _______________________________________________________________________ -->
   4290 <h4>
   4291   <a name="i_shl">'<tt>shl</tt>' Instruction</a>
   4292 </h4>
   4293 
   4294 <div>
   4295 
   4296 <h5>Syntax:</h5>
   4297 <pre>
   4298   &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;           <i>; yields {ty}:result</i>
   4299   &lt;result&gt; = shl nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;       <i>; yields {ty}:result</i>
   4300   &lt;result&gt; = shl nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;       <i>; yields {ty}:result</i>
   4301   &lt;result&gt; = shl nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4302 </pre>
   4303 
   4304 <h5>Overview:</h5>
   4305 <p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
   4306    a specified number of bits.</p>
   4307 
   4308 <h5>Arguments:</h5>
   4309 <p>Both arguments to the '<tt>shl</tt>' instruction must be the
   4310     same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
   4311     integer type.  '<tt>op2</tt>' is treated as an unsigned value.</p>
   4312 
   4313 <h5>Semantics:</h5>
   4314 <p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
   4315    2<sup>n</sup>, where <tt>n</tt> is the width of the result.  If <tt>op2</tt>
   4316    is (statically or dynamically) negative or equal to or larger than the number
   4317    of bits in <tt>op1</tt>, the result is undefined.  If the arguments are
   4318    vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
   4319    shift amount in <tt>op2</tt>.</p>
   4320 
   4321 <p>If the <tt>nuw</tt> keyword is present, then the shift produces a 
   4322    <a href="#poisonvalues">poison value</a> if it shifts out any non-zero bits.  If
   4323    the <tt>nsw</tt> keyword is present, then the shift produces a
   4324    <a href="#poisonvalues">poison value</a> if it shifts out any bits that disagree
   4325    with the resultant sign bit.  As such, NUW/NSW have the same semantics as
   4326    they would if the shift were expressed as a mul instruction with the same
   4327    nsw/nuw bits in (mul %op1, (shl 1, %op2)).</p>
   4328 
   4329 <h5>Example:</h5>
   4330 <pre>
   4331   &lt;result&gt; = shl i32 4, %var   <i>; yields {i32}: 4 &lt;&lt; %var</i>
   4332   &lt;result&gt; = shl i32 4, 2      <i>; yields {i32}: 16</i>
   4333   &lt;result&gt; = shl i32 1, 10     <i>; yields {i32}: 1024</i>
   4334   &lt;result&gt; = shl i32 1, 32     <i>; undefined</i>
   4335   &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt;   <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
   4336 </pre>
   4337 
   4338 </div>
   4339 
   4340 <!-- _______________________________________________________________________ -->
   4341 <h4>
   4342   <a name="i_lshr">'<tt>lshr</tt>' Instruction</a>
   4343 </h4>
   4344 
   4345 <div>
   4346 
   4347 <h5>Syntax:</h5>
   4348 <pre>
   4349   &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;         <i>; yields {ty}:result</i>
   4350   &lt;result&gt; = lshr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4351 </pre>
   4352 
   4353 <h5>Overview:</h5>
   4354 <p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
   4355    operand shifted to the right a specified number of bits with zero fill.</p>
   4356 
   4357 <h5>Arguments:</h5>
   4358 <p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
   4359    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   4360    type. '<tt>op2</tt>' is treated as an unsigned value.</p>
   4361 
   4362 <h5>Semantics:</h5>
   4363 <p>This instruction always performs a logical shift right operation. The most
   4364    significant bits of the result will be filled with zero bits after the shift.
   4365    If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
   4366    number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
   4367    vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
   4368    shift amount in <tt>op2</tt>.</p>
   4369 
   4370 <p>If the <tt>exact</tt> keyword is present, the result value of the
   4371    <tt>lshr</tt> is a <a href="#poisonvalues">poison value</a> if any of the bits
   4372    shifted out are non-zero.</p>
   4373 
   4374 
   4375 <h5>Example:</h5>
   4376 <pre>
   4377   &lt;result&gt; = lshr i32 4, 1   <i>; yields {i32}:result = 2</i>
   4378   &lt;result&gt; = lshr i32 4, 2   <i>; yields {i32}:result = 1</i>
   4379   &lt;result&gt; = lshr i8  4, 3   <i>; yields {i8}:result = 0</i>
   4380   &lt;result&gt; = lshr i8 -2, 1   <i>; yields {i8}:result = 0x7FFFFFFF </i>
   4381   &lt;result&gt; = lshr i32 1, 32  <i>; undefined</i>
   4382   &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt;   <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
   4383 </pre>
   4384 
   4385 </div>
   4386 
   4387 <!-- _______________________________________________________________________ -->
   4388 <h4>
   4389   <a name="i_ashr">'<tt>ashr</tt>' Instruction</a>
   4390 </h4>
   4391 
   4392 <div>
   4393 
   4394 <h5>Syntax:</h5>
   4395 <pre>
   4396   &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;         <i>; yields {ty}:result</i>
   4397   &lt;result&gt; = ashr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4398 </pre>
   4399 
   4400 <h5>Overview:</h5>
   4401 <p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
   4402    operand shifted to the right a specified number of bits with sign
   4403    extension.</p>
   4404 
   4405 <h5>Arguments:</h5>
   4406 <p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
   4407    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   4408    type.  '<tt>op2</tt>' is treated as an unsigned value.</p>
   4409 
   4410 <h5>Semantics:</h5>
   4411 <p>This instruction always performs an arithmetic shift right operation, The
   4412    most significant bits of the result will be filled with the sign bit
   4413    of <tt>op1</tt>.  If <tt>op2</tt> is (statically or dynamically) equal to or
   4414    larger than the number of bits in <tt>op1</tt>, the result is undefined. If
   4415    the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
   4416    the corresponding shift amount in <tt>op2</tt>.</p>
   4417 
   4418 <p>If the <tt>exact</tt> keyword is present, the result value of the
   4419    <tt>ashr</tt> is a <a href="#poisonvalues">poison value</a> if any of the bits
   4420    shifted out are non-zero.</p>
   4421 
   4422 <h5>Example:</h5>
   4423 <pre>
   4424   &lt;result&gt; = ashr i32 4, 1   <i>; yields {i32}:result = 2</i>
   4425   &lt;result&gt; = ashr i32 4, 2   <i>; yields {i32}:result = 1</i>
   4426   &lt;result&gt; = ashr i8  4, 3   <i>; yields {i8}:result = 0</i>
   4427   &lt;result&gt; = ashr i8 -2, 1   <i>; yields {i8}:result = -1</i>
   4428   &lt;result&gt; = ashr i32 1, 32  <i>; undefined</i>
   4429   &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt;   <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
   4430 </pre>
   4431 
   4432 </div>
   4433 
   4434 <!-- _______________________________________________________________________ -->
   4435 <h4>
   4436   <a name="i_and">'<tt>and</tt>' Instruction</a>
   4437 </h4>
   4438 
   4439 <div>
   4440 
   4441 <h5>Syntax:</h5>
   4442 <pre>
   4443   &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4444 </pre>
   4445 
   4446 <h5>Overview:</h5>
   4447 <p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
   4448    operands.</p>
   4449 
   4450 <h5>Arguments:</h5>
   4451 <p>The two arguments to the '<tt>and</tt>' instruction must be
   4452    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   4453    values.  Both arguments must have identical types.</p>
   4454 
   4455 <h5>Semantics:</h5>
   4456 <p>The truth table used for the '<tt>and</tt>' instruction is:</p>
   4457 
   4458 <table border="1" cellspacing="0" cellpadding="4">
   4459   <tbody>
   4460     <tr>
   4461       <th>In0</th>
   4462       <th>In1</th>
   4463       <th>Out</th>
   4464     </tr>
   4465     <tr>
   4466       <td>0</td>
   4467       <td>0</td>
   4468       <td>0</td>
   4469     </tr>
   4470     <tr>
   4471       <td>0</td>
   4472       <td>1</td>
   4473       <td>0</td>
   4474     </tr>
   4475     <tr>
   4476       <td>1</td>
   4477       <td>0</td>
   4478       <td>0</td>
   4479     </tr>
   4480     <tr>
   4481       <td>1</td>
   4482       <td>1</td>
   4483       <td>1</td>
   4484     </tr>
   4485   </tbody>
   4486 </table>
   4487 
   4488 <h5>Example:</h5>
   4489 <pre>
   4490   &lt;result&gt; = and i32 4, %var         <i>; yields {i32}:result = 4 &amp; %var</i>
   4491   &lt;result&gt; = and i32 15, 40          <i>; yields {i32}:result = 8</i>
   4492   &lt;result&gt; = and i32 4, 8            <i>; yields {i32}:result = 0</i>
   4493 </pre>
   4494 </div>
   4495 <!-- _______________________________________________________________________ -->
   4496 <h4>
   4497   <a name="i_or">'<tt>or</tt>' Instruction</a>
   4498 </h4>
   4499 
   4500 <div>
   4501 
   4502 <h5>Syntax:</h5>
   4503 <pre>
   4504   &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4505 </pre>
   4506 
   4507 <h5>Overview:</h5>
   4508 <p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
   4509    two operands.</p>
   4510 
   4511 <h5>Arguments:</h5>
   4512 <p>The two arguments to the '<tt>or</tt>' instruction must be
   4513    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   4514    values.  Both arguments must have identical types.</p>
   4515 
   4516 <h5>Semantics:</h5>
   4517 <p>The truth table used for the '<tt>or</tt>' instruction is:</p>
   4518 
   4519 <table border="1" cellspacing="0" cellpadding="4">
   4520   <tbody>
   4521     <tr>
   4522       <th>In0</th>
   4523       <th>In1</th>
   4524       <th>Out</th>
   4525     </tr>
   4526     <tr>
   4527       <td>0</td>
   4528       <td>0</td>
   4529       <td>0</td>
   4530     </tr>
   4531     <tr>
   4532       <td>0</td>
   4533       <td>1</td>
   4534       <td>1</td>
   4535     </tr>
   4536     <tr>
   4537       <td>1</td>
   4538       <td>0</td>
   4539       <td>1</td>
   4540     </tr>
   4541     <tr>
   4542       <td>1</td>
   4543       <td>1</td>
   4544       <td>1</td>
   4545     </tr>
   4546   </tbody>
   4547 </table>
   4548 
   4549 <h5>Example:</h5>
   4550 <pre>
   4551   &lt;result&gt; = or i32 4, %var         <i>; yields {i32}:result = 4 | %var</i>
   4552   &lt;result&gt; = or i32 15, 40          <i>; yields {i32}:result = 47</i>
   4553   &lt;result&gt; = or i32 4, 8            <i>; yields {i32}:result = 12</i>
   4554 </pre>
   4555 
   4556 </div>
   4557 
   4558 <!-- _______________________________________________________________________ -->
   4559 <h4>
   4560   <a name="i_xor">'<tt>xor</tt>' Instruction</a>
   4561 </h4>
   4562 
   4563 <div>
   4564 
   4565 <h5>Syntax:</h5>
   4566 <pre>
   4567   &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4568 </pre>
   4569 
   4570 <h5>Overview:</h5>
   4571 <p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
   4572    its two operands.  The <tt>xor</tt> is used to implement the "one's
   4573    complement" operation, which is the "~" operator in C.</p>
   4574 
   4575 <h5>Arguments:</h5>
   4576 <p>The two arguments to the '<tt>xor</tt>' instruction must be
   4577    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   4578    values.  Both arguments must have identical types.</p>
   4579 
   4580 <h5>Semantics:</h5>
   4581 <p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
   4582 
   4583 <table border="1" cellspacing="0" cellpadding="4">
   4584   <tbody>
   4585     <tr>
   4586       <th>In0</th>
   4587       <th>In1</th>
   4588       <th>Out</th>
   4589     </tr>
   4590     <tr>
   4591       <td>0</td>
   4592       <td>0</td>
   4593       <td>0</td>
   4594     </tr>
   4595     <tr>
   4596       <td>0</td>
   4597       <td>1</td>
   4598       <td>1</td>
   4599     </tr>
   4600     <tr>
   4601       <td>1</td>
   4602       <td>0</td>
   4603       <td>1</td>
   4604     </tr>
   4605     <tr>
   4606       <td>1</td>
   4607       <td>1</td>
   4608       <td>0</td>
   4609     </tr>
   4610   </tbody>
   4611 </table>
   4612 
   4613 <h5>Example:</h5>
   4614 <pre>
   4615   &lt;result&gt; = xor i32 4, %var         <i>; yields {i32}:result = 4 ^ %var</i>
   4616   &lt;result&gt; = xor i32 15, 40          <i>; yields {i32}:result = 39</i>
   4617   &lt;result&gt; = xor i32 4, 8            <i>; yields {i32}:result = 12</i>
   4618   &lt;result&gt; = xor i32 %V, -1          <i>; yields {i32}:result = ~%V</i>
   4619 </pre>
   4620 
   4621 </div>
   4622 
   4623 </div>
   4624 
   4625 <!-- ======================================================================= -->
   4626 <h3>
   4627   <a name="vectorops">Vector Operations</a>
   4628 </h3>
   4629 
   4630 <div>
   4631 
   4632 <p>LLVM supports several instructions to represent vector operations in a
   4633    target-independent manner.  These instructions cover the element-access and
   4634    vector-specific operations needed to process vectors effectively.  While LLVM
   4635    does directly support these vector operations, many sophisticated algorithms
   4636    will want to use target-specific intrinsics to take full advantage of a
   4637    specific target.</p>
   4638 
   4639 <!-- _______________________________________________________________________ -->
   4640 <h4>
   4641    <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
   4642 </h4>
   4643 
   4644 <div>
   4645 
   4646 <h5>Syntax:</h5>
   4647 <pre>
   4648   &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt;    <i>; yields &lt;ty&gt;</i>
   4649 </pre>
   4650 
   4651 <h5>Overview:</h5>
   4652 <p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
   4653    from a vector at a specified index.</p>
   4654 
   4655 
   4656 <h5>Arguments:</h5>
   4657 <p>The first operand of an '<tt>extractelement</tt>' instruction is a value
   4658    of <a href="#t_vector">vector</a> type.  The second operand is an index
   4659    indicating the position from which to extract the element.  The index may be
   4660    a variable.</p>
   4661 
   4662 <h5>Semantics:</h5>
   4663 <p>The result is a scalar of the same type as the element type of
   4664    <tt>val</tt>.  Its value is the value at position <tt>idx</tt> of
   4665    <tt>val</tt>.  If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
   4666    results are undefined.</p>
   4667 
   4668 <h5>Example:</h5>
   4669 <pre>
   4670   &lt;result&gt; = extractelement &lt;4 x i32&gt; %vec, i32 0    <i>; yields i32</i>
   4671 </pre>
   4672 
   4673 </div>
   4674 
   4675 <!-- _______________________________________________________________________ -->
   4676 <h4>
   4677    <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
   4678 </h4>
   4679 
   4680 <div>
   4681 
   4682 <h5>Syntax:</h5>
   4683 <pre>
   4684   &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt;    <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
   4685 </pre>
   4686 
   4687 <h5>Overview:</h5>
   4688 <p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
   4689    vector at a specified index.</p>
   4690 
   4691 <h5>Arguments:</h5>
   4692 <p>The first operand of an '<tt>insertelement</tt>' instruction is a value
   4693    of <a href="#t_vector">vector</a> type.  The second operand is a scalar value
   4694    whose type must equal the element type of the first operand.  The third
   4695    operand is an index indicating the position at which to insert the value.
   4696    The index may be a variable.</p>
   4697 
   4698 <h5>Semantics:</h5>
   4699 <p>The result is a vector of the same type as <tt>val</tt>.  Its element values
   4700    are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
   4701    value <tt>elt</tt>.  If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
   4702    results are undefined.</p>
   4703 
   4704 <h5>Example:</h5>
   4705 <pre>
   4706   &lt;result&gt; = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0    <i>; yields &lt;4 x i32&gt;</i>
   4707 </pre>
   4708 
   4709 </div>
   4710 
   4711 <!-- _______________________________________________________________________ -->
   4712 <h4>
   4713    <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
   4714 </h4>
   4715 
   4716 <div>
   4717 
   4718 <h5>Syntax:</h5>
   4719 <pre>
   4720   &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt;    <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
   4721 </pre>
   4722 
   4723 <h5>Overview:</h5>
   4724 <p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
   4725    from two input vectors, returning a vector with the same element type as the
   4726    input and length that is the same as the shuffle mask.</p>
   4727 
   4728 <h5>Arguments:</h5>
   4729 <p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
   4730    with types that match each other. The third argument is a shuffle mask whose
   4731    element type is always 'i32'.  The result of the instruction is a vector
   4732    whose length is the same as the shuffle mask and whose element type is the
   4733    same as the element type of the first two operands.</p>
   4734 
   4735 <p>The shuffle mask operand is required to be a constant vector with either
   4736    constant integer or undef values.</p>
   4737 
   4738 <h5>Semantics:</h5>
   4739 <p>The elements of the two input vectors are numbered from left to right across
   4740    both of the vectors.  The shuffle mask operand specifies, for each element of
   4741    the result vector, which element of the two input vectors the result element
   4742    gets.  The element selector may be undef (meaning "don't care") and the
   4743    second operand may be undef if performing a shuffle from only one vector.</p>
   4744 
   4745 <h5>Example:</h5>
   4746 <pre>
   4747   &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
   4748                           &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt;  <i>; yields &lt;4 x i32&gt;</i>
   4749   &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
   4750                           &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt;  <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
   4751   &lt;result&gt; = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
   4752                           &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt;  <i>; yields &lt;4 x i32&gt;</i>
   4753   &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
   4754                           &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt;  <i>; yields &lt;8 x i32&gt;</i>
   4755 </pre>
   4756 
   4757 </div>
   4758 
   4759 </div>
   4760 
   4761 <!-- ======================================================================= -->
   4762 <h3>
   4763   <a name="aggregateops">Aggregate Operations</a>
   4764 </h3>
   4765 
   4766 <div>
   4767 
   4768 <p>LLVM supports several instructions for working with
   4769   <a href="#t_aggregate">aggregate</a> values.</p>
   4770 
   4771 <!-- _______________________________________________________________________ -->
   4772 <h4>
   4773    <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
   4774 </h4>
   4775 
   4776 <div>
   4777 
   4778 <h5>Syntax:</h5>
   4779 <pre>
   4780   &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
   4781 </pre>
   4782 
   4783 <h5>Overview:</h5>
   4784 <p>The '<tt>extractvalue</tt>' instruction extracts the value of a member field
   4785    from an <a href="#t_aggregate">aggregate</a> value.</p>
   4786 
   4787 <h5>Arguments:</h5>
   4788 <p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
   4789    of <a href="#t_struct">struct</a> or
   4790    <a href="#t_array">array</a> type.  The operands are constant indices to
   4791    specify which value to extract in a similar manner as indices in a
   4792    '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
   4793    <p>The major differences to <tt>getelementptr</tt> indexing are:</p>
   4794      <ul>
   4795        <li>Since the value being indexed is not a pointer, the first index is
   4796            omitted and assumed to be zero.</li>
   4797        <li>At least one index must be specified.</li>
   4798        <li>Not only struct indices but also array indices must be in
   4799            bounds.</li>
   4800      </ul>
   4801 
   4802 <h5>Semantics:</h5>
   4803 <p>The result is the value at the position in the aggregate specified by the
   4804    index operands.</p>
   4805 
   4806 <h5>Example:</h5>
   4807 <pre>
   4808   &lt;result&gt; = extractvalue {i32, float} %agg, 0    <i>; yields i32</i>
   4809 </pre>
   4810 
   4811 </div>
   4812 
   4813 <!-- _______________________________________________________________________ -->
   4814 <h4>
   4815    <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
   4816 </h4>
   4817 
   4818 <div>
   4819 
   4820 <h5>Syntax:</h5>
   4821 <pre>
   4822   &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, &lt;idx&gt;{, &lt;idx&gt;}*    <i>; yields &lt;aggregate type&gt;</i>
   4823 </pre>
   4824 
   4825 <h5>Overview:</h5>
   4826 <p>The '<tt>insertvalue</tt>' instruction inserts a value into a member field
   4827    in an <a href="#t_aggregate">aggregate</a> value.</p>
   4828 
   4829 <h5>Arguments:</h5>
   4830 <p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
   4831    of <a href="#t_struct">struct</a> or
   4832    <a href="#t_array">array</a> type.  The second operand is a first-class
   4833    value to insert.  The following operands are constant indices indicating
   4834    the position at which to insert the value in a similar manner as indices in a
   4835    '<tt><a href="#i_extractvalue">extractvalue</a></tt>' instruction.  The
   4836    value to insert must have the same type as the value identified by the
   4837    indices.</p>
   4838 
   4839 <h5>Semantics:</h5>
   4840 <p>The result is an aggregate of the same type as <tt>val</tt>.  Its value is
   4841    that of <tt>val</tt> except that the value at the position specified by the
   4842    indices is that of <tt>elt</tt>.</p>
   4843 
   4844 <h5>Example:</h5>
   4845 <pre>
   4846   %agg1 = insertvalue {i32, float} undef, i32 1, 0              <i>; yields {i32 1, float undef}</i>
   4847   %agg2 = insertvalue {i32, float} %agg1, float %val, 1         <i>; yields {i32 1, float %val}</i>
   4848   %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0    <i>; yields {i32 1, float %val}</i>
   4849 </pre>
   4850 
   4851 </div>
   4852 
   4853 </div>
   4854 
   4855 <!-- ======================================================================= -->
   4856 <h3>
   4857   <a name="memoryops">Memory Access and Addressing Operations</a>
   4858 </h3>
   4859 
   4860 <div>
   4861 
   4862 <p>A key design point of an SSA-based representation is how it represents
   4863    memory.  In LLVM, no memory locations are in SSA form, which makes things
   4864    very simple.  This section describes how to read, write, and allocate
   4865    memory in LLVM.</p>
   4866 
   4867 <!-- _______________________________________________________________________ -->
   4868 <h4>
   4869   <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
   4870 </h4>
   4871 
   4872 <div>
   4873 
   4874 <h5>Syntax:</h5>
   4875 <pre>
   4876   &lt;result&gt; = alloca &lt;type&gt;[, &lt;ty&gt; &lt;NumElements&gt;][, align &lt;alignment&gt;]     <i>; yields {type*}:result</i>
   4877 </pre>
   4878 
   4879 <h5>Overview:</h5>
   4880 <p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
   4881    currently executing function, to be automatically released when this function
   4882    returns to its caller. The object is always allocated in the generic address
   4883    space (address space zero).</p>
   4884 
   4885 <h5>Arguments:</h5>
   4886 <p>The '<tt>alloca</tt>' instruction
   4887    allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
   4888    runtime stack, returning a pointer of the appropriate type to the program.
   4889    If "NumElements" is specified, it is the number of elements allocated,
   4890    otherwise "NumElements" is defaulted to be one.  If a constant alignment is
   4891    specified, the value result of the allocation is guaranteed to be aligned to
   4892    at least that boundary.  If not specified, or if zero, the target can choose
   4893    to align the allocation on any convenient boundary compatible with the
   4894    type.</p>
   4895 
   4896 <p>'<tt>type</tt>' may be any sized type.</p>
   4897 
   4898 <h5>Semantics:</h5>
   4899 <p>Memory is allocated; a pointer is returned.  The operation is undefined if
   4900    there is insufficient stack space for the allocation.  '<tt>alloca</tt>'d
   4901    memory is automatically released when the function returns.  The
   4902    '<tt>alloca</tt>' instruction is commonly used to represent automatic
   4903    variables that must have an address available.  When the function returns
   4904    (either with the <tt><a href="#i_ret">ret</a></tt>
   4905    or <tt><a href="#i_resume">resume</a></tt> instructions), the memory is
   4906    reclaimed.  Allocating zero bytes is legal, but the result is undefined.
   4907    The order in which memory is allocated (ie., which way the stack grows) is
   4908    not specified.</p>
   4909 
   4910 <p>
   4911 
   4912 <h5>Example:</h5>
   4913 <pre>
   4914   %ptr = alloca i32                             <i>; yields {i32*}:ptr</i>
   4915   %ptr = alloca i32, i32 4                      <i>; yields {i32*}:ptr</i>
   4916   %ptr = alloca i32, i32 4, align 1024          <i>; yields {i32*}:ptr</i>
   4917   %ptr = alloca i32, align 1024                 <i>; yields {i32*}:ptr</i>
   4918 </pre>
   4919 
   4920 </div>
   4921 
   4922 <!-- _______________________________________________________________________ -->
   4923 <h4>
   4924   <a name="i_load">'<tt>load</tt>' Instruction</a>
   4925 </h4>
   4926 
   4927 <div>
   4928 
   4929 <h5>Syntax:</h5>
   4930 <pre>
   4931   &lt;result&gt; = load [volatile] &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;][, !invariant.load !&lt;index&gt;]
   4932   &lt;result&gt; = load atomic [volatile] &lt;ty&gt;* &lt;pointer&gt; [singlethread] &lt;ordering&gt;, align &lt;alignment&gt;
   4933   !&lt;index&gt; = !{ i32 1 }
   4934 </pre>
   4935 
   4936 <h5>Overview:</h5>
   4937 <p>The '<tt>load</tt>' instruction is used to read from memory.</p>
   4938 
   4939 <h5>Arguments:</h5>
   4940 <p>The argument to the '<tt>load</tt>' instruction specifies the memory address
   4941    from which to load.  The pointer must point to
   4942    a <a href="#t_firstclass">first class</a> type.  If the <tt>load</tt> is
   4943    marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
   4944    number or order of execution of this <tt>load</tt> with other <a
   4945    href="#volatile">volatile operations</a>.</p>
   4946 
   4947 <p>If the <code>load</code> is marked as <code>atomic</code>, it takes an extra
   4948    <a href="#ordering">ordering</a> and optional <code>singlethread</code>
   4949    argument.  The <code>release</code> and <code>acq_rel</code> orderings are
   4950    not valid on <code>load</code> instructions.  Atomic loads produce <a
   4951    href="#memorymodel">defined</a> results when they may see multiple atomic
   4952    stores.  The type of the pointee must be an integer type whose bit width
   4953    is a power of two greater than or equal to eight and less than or equal
   4954    to a target-specific size limit. <code>align</code> must be explicitly 
   4955    specified on atomic loads, and the load has undefined behavior if the
   4956    alignment is not set to a value which is at least the size in bytes of
   4957    the pointee. <code>!nontemporal</code> does not have any defined semantics
   4958    for atomic loads.</p>
   4959 
   4960 <p>The optional constant <tt>align</tt> argument specifies the alignment of the
   4961    operation (that is, the alignment of the memory address). A value of 0 or an
   4962    omitted <tt>align</tt> argument means that the operation has the preferential
   4963    alignment for the target. It is the responsibility of the code emitter to
   4964    ensure that the alignment information is correct. Overestimating the
   4965    alignment results in undefined behavior. Underestimating the alignment may
   4966    produce less efficient code. An alignment of 1 is always safe.</p>
   4967 
   4968 <p>The optional <tt>!nontemporal</tt> metadata must reference a single
   4969    metatadata name &lt;index&gt; corresponding to a metadata node with
   4970    one <tt>i32</tt> entry of value 1.  The existence of
   4971    the <tt>!nontemporal</tt> metatadata on the instruction tells the optimizer
   4972    and code generator that this load is not expected to be reused in the cache.
   4973    The code generator may select special instructions to save cache bandwidth,
   4974    such as the <tt>MOVNT</tt> instruction on x86.</p>
   4975 
   4976 <p>The optional <tt>!invariant.load</tt> metadata must reference a single
   4977    metatadata name &lt;index&gt; corresponding to a metadata node with no
   4978    entries.  The existence of the <tt>!invariant.load</tt> metatadata on the
   4979    instruction tells the optimizer and code generator that this load address
   4980    points to memory which does not change value during program execution.
   4981    The optimizer may then move this load around, for example, by hoisting it
   4982    out of loops using loop invariant code motion.</p>
   4983 
   4984 <h5>Semantics:</h5>
   4985 <p>The location of memory pointed to is loaded.  If the value being loaded is of
   4986    scalar type then the number of bytes read does not exceed the minimum number
   4987    of bytes needed to hold all bits of the type.  For example, loading an
   4988    <tt>i24</tt> reads at most three bytes.  When loading a value of a type like
   4989    <tt>i20</tt> with a size that is not an integral number of bytes, the result
   4990    is undefined if the value was not originally written using a store of the
   4991    same type.</p>
   4992 
   4993 <h5>Examples:</h5>
   4994 <pre>
   4995   %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i>
   4996   <a href="#i_store">store</a> i32 3, i32* %ptr                          <i>; yields {void}</i>
   4997   %val = load i32* %ptr                           <i>; yields {i32}:val = i32 3</i>
   4998 </pre>
   4999 
   5000 </div>
   5001 
   5002 <!-- _______________________________________________________________________ -->
   5003 <h4>
   5004   <a name="i_store">'<tt>store</tt>' Instruction</a>
   5005 </h4>
   5006 
   5007 <div>
   5008 
   5009 <h5>Syntax:</h5>
   5010 <pre>
   5011   store [volatile] &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]        <i>; yields {void}</i>
   5012   store atomic [volatile] &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt; [singlethread] &lt;ordering&gt;, align &lt;alignment&gt;  <i>; yields {void}</i>
   5013 </pre>
   5014 
   5015 <h5>Overview:</h5>
   5016 <p>The '<tt>store</tt>' instruction is used to write to memory.</p>
   5017 
   5018 <h5>Arguments:</h5>
   5019 <p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
   5020    and an address at which to store it.  The type of the
   5021    '<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
   5022    the <a href="#t_firstclass">first class</a> type of the
   5023    '<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked as
   5024    <tt>volatile</tt>, then the optimizer is not allowed to modify the number or
   5025    order of execution of this <tt>store</tt> with other <a
   5026    href="#volatile">volatile operations</a>.</p>
   5027 
   5028 <p>If the <code>store</code> is marked as <code>atomic</code>, it takes an extra
   5029    <a href="#ordering">ordering</a> and optional <code>singlethread</code>
   5030    argument.  The <code>acquire</code> and <code>acq_rel</code> orderings aren't
   5031    valid on <code>store</code> instructions.  Atomic loads produce <a
   5032    href="#memorymodel">defined</a> results when they may see multiple atomic
   5033    stores. The type of the pointee must be an integer type whose bit width
   5034    is a power of two greater than or equal to eight and less than or equal
   5035    to a target-specific size limit. <code>align</code> must be explicitly 
   5036    specified on atomic stores, and the store has undefined behavior if the
   5037    alignment is not set to a value which is at least the size in bytes of
   5038    the pointee. <code>!nontemporal</code> does not have any defined semantics
   5039    for atomic stores.</p>
   5040 
   5041 <p>The optional constant "align" argument specifies the alignment of the
   5042    operation (that is, the alignment of the memory address). A value of 0 or an
   5043    omitted "align" argument means that the operation has the preferential
   5044    alignment for the target. It is the responsibility of the code emitter to
   5045    ensure that the alignment information is correct. Overestimating the
   5046    alignment results in an undefined behavior. Underestimating the alignment may
   5047    produce less efficient code. An alignment of 1 is always safe.</p>
   5048 
   5049 <p>The optional !nontemporal metadata must reference a single metatadata
   5050    name &lt;index&gt; corresponding to a metadata node with one i32 entry of
   5051    value 1.  The existence of the !nontemporal metatadata on the
   5052    instruction tells the optimizer and code generator that this load is
   5053    not expected to be reused in the cache.  The code generator may
   5054    select special instructions to save cache bandwidth, such as the
   5055    MOVNT instruction on x86.</p>
   5056 
   5057 
   5058 <h5>Semantics:</h5>
   5059 <p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
   5060    location specified by the '<tt>&lt;pointer&gt;</tt>' operand.  If
   5061    '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
   5062    does not exceed the minimum number of bytes needed to hold all bits of the
   5063    type.  For example, storing an <tt>i24</tt> writes at most three bytes.  When
   5064    writing a value of a type like <tt>i20</tt> with a size that is not an
   5065    integral number of bytes, it is unspecified what happens to the extra bits
   5066    that do not belong to the type, but they will typically be overwritten.</p>
   5067 
   5068 <h5>Example:</h5>
   5069 <pre>
   5070   %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i>
   5071   store i32 3, i32* %ptr                          <i>; yields {void}</i>
   5072   %val = <a href="#i_load">load</a> i32* %ptr                           <i>; yields {i32}:val = i32 3</i>
   5073 </pre>
   5074 
   5075 </div>
   5076 
   5077 <!-- _______________________________________________________________________ -->
   5078 <h4>
   5079 <a name="i_fence">'<tt>fence</tt>' Instruction</a>
   5080 </h4>
   5081 
   5082 <div>
   5083 
   5084 <h5>Syntax:</h5>
   5085 <pre>
   5086   fence [singlethread] &lt;ordering&gt;                   <i>; yields {void}</i>
   5087 </pre>
   5088 
   5089 <h5>Overview:</h5>
   5090 <p>The '<tt>fence</tt>' instruction is used to introduce happens-before edges
   5091 between operations.</p>
   5092 
   5093 <h5>Arguments:</h5> <p>'<code>fence</code>' instructions take an <a
   5094 href="#ordering">ordering</a> argument which defines what
   5095 <i>synchronizes-with</i> edges they add.  They can only be given
   5096 <code>acquire</code>, <code>release</code>, <code>acq_rel</code>, and
   5097 <code>seq_cst</code> orderings.</p>
   5098 
   5099 <h5>Semantics:</h5>
   5100 <p>A fence <var>A</var> which has (at least) <code>release</code> ordering
   5101 semantics <i>synchronizes with</i> a fence <var>B</var> with (at least)
   5102 <code>acquire</code> ordering semantics if and only if there exist atomic
   5103 operations <var>X</var> and <var>Y</var>, both operating on some atomic object
   5104 <var>M</var>, such that <var>A</var> is sequenced before <var>X</var>,
   5105 <var>X</var> modifies <var>M</var> (either directly or through some side effect
   5106 of a sequence headed by <var>X</var>), <var>Y</var> is sequenced before
   5107 <var>B</var>, and <var>Y</var> observes <var>M</var>. This provides a
   5108 <i>happens-before</i> dependency between <var>A</var> and <var>B</var>. Rather
   5109 than an explicit <code>fence</code>, one (but not both) of the atomic operations
   5110 <var>X</var> or <var>Y</var> might provide a <code>release</code> or
   5111 <code>acquire</code> (resp.) ordering constraint and still
   5112 <i>synchronize-with</i> the explicit <code>fence</code> and establish the
   5113 <i>happens-before</i> edge.</p>
   5114 
   5115 <p>A <code>fence</code> which has <code>seq_cst</code> ordering, in addition to
   5116 having both <code>acquire</code> and <code>release</code> semantics specified
   5117 above, participates in the global program order of other <code>seq_cst</code>
   5118 operations and/or fences.</p>
   5119 
   5120 <p>The optional "<a href="#singlethread"><code>singlethread</code></a>" argument
   5121 specifies that the fence only synchronizes with other fences in the same
   5122 thread.  (This is useful for interacting with signal handlers.)</p>
   5123 
   5124 <h5>Example:</h5>
   5125 <pre>
   5126   fence acquire                          <i>; yields {void}</i>
   5127   fence singlethread seq_cst             <i>; yields {void}</i>
   5128 </pre>
   5129 
   5130 </div>
   5131 
   5132 <!-- _______________________________________________________________________ -->
   5133 <h4>
   5134 <a name="i_cmpxchg">'<tt>cmpxchg</tt>' Instruction</a>
   5135 </h4>
   5136 
   5137 <div>
   5138 
   5139 <h5>Syntax:</h5>
   5140 <pre>
   5141   cmpxchg [volatile] &lt;ty&gt;* &lt;pointer&gt;, &lt;ty&gt; &lt;cmp&gt;, &lt;ty&gt; &lt;new&gt; [singlethread] &lt;ordering&gt;  <i>; yields {ty}</i>
   5142 </pre>
   5143 
   5144 <h5>Overview:</h5>
   5145 <p>The '<tt>cmpxchg</tt>' instruction is used to atomically modify memory.
   5146 It loads a value in memory and compares it to a given value. If they are
   5147 equal, it stores a new value into the memory.</p>
   5148 
   5149 <h5>Arguments:</h5>
   5150 <p>There are three arguments to the '<code>cmpxchg</code>' instruction: an
   5151 address to operate on, a value to compare to the value currently be at that
   5152 address, and a new value to place at that address if the compared values are
   5153 equal.  The type of '<var>&lt;cmp&gt;</var>' must be an integer type whose
   5154 bit width is a power of two greater than or equal to eight and less than
   5155 or equal to a target-specific size limit. '<var>&lt;cmp&gt;</var>' and
   5156 '<var>&lt;new&gt;</var>' must have the same type, and the type of
   5157 '<var>&lt;pointer&gt;</var>' must be a pointer to that type. If the
   5158 <code>cmpxchg</code> is marked as <code>volatile</code>, then the
   5159 optimizer is not allowed to modify the number or order of execution
   5160 of this <code>cmpxchg</code> with other <a href="#volatile">volatile
   5161 operations</a>.</p>
   5162 
   5163 <!-- FIXME: Extend allowed types. -->
   5164 
   5165 <p>The <a href="#ordering"><var>ordering</var></a> argument specifies how this
   5166 <code>cmpxchg</code> synchronizes with other atomic operations.</p>
   5167 
   5168 <p>The optional "<code>singlethread</code>" argument declares that the
   5169 <code>cmpxchg</code> is only atomic with respect to code (usually signal
   5170 handlers) running in the same thread as the <code>cmpxchg</code>.  Otherwise the
   5171 cmpxchg is atomic with respect to all other code in the system.</p>
   5172 
   5173 <p>The pointer passed into cmpxchg must have alignment greater than or equal to
   5174 the size in memory of the operand.
   5175 
   5176 <h5>Semantics:</h5>
   5177 <p>The contents of memory at the location specified by the
   5178 '<tt>&lt;pointer&gt;</tt>' operand is read and compared to
   5179 '<tt>&lt;cmp&gt;</tt>'; if the read value is the equal,
   5180 '<tt>&lt;new&gt;</tt>' is written.  The original value at the location
   5181 is returned.
   5182 
   5183 <p>A successful <code>cmpxchg</code> is a read-modify-write instruction for the
   5184 purpose of identifying <a href="#release_sequence">release sequences</a>.  A
   5185 failed <code>cmpxchg</code> is equivalent to an atomic load with an ordering
   5186 parameter determined by dropping any <code>release</code> part of the
   5187 <code>cmpxchg</code>'s ordering.</p>
   5188 
   5189 <!--
   5190 FIXME: Is compare_exchange_weak() necessary?  (Consider after we've done
   5191 optimization work on ARM.)
   5192 
   5193 FIXME: Is a weaker ordering constraint on failure helpful in practice?
   5194 -->
   5195 
   5196 <h5>Example:</h5>
   5197 <pre>
   5198 entry:
   5199   %orig = atomic <a href="#i_load">load</a> i32* %ptr unordered                   <i>; yields {i32}</i>
   5200   <a href="#i_br">br</a> label %loop
   5201 
   5202 loop:
   5203   %cmp = <a href="#i_phi">phi</a> i32 [ %orig, %entry ], [%old, %loop]
   5204   %squared = <a href="#i_mul">mul</a> i32 %cmp, %cmp
   5205   %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared          <i>; yields {i32}</i>
   5206   %success = <a href="#i_icmp">icmp</a> eq i32 %cmp, %old
   5207   <a href="#i_br">br</a> i1 %success, label %done, label %loop
   5208 
   5209 done:
   5210   ...
   5211 </pre>
   5212 
   5213 </div>
   5214 
   5215 <!-- _______________________________________________________________________ -->
   5216 <h4>
   5217 <a name="i_atomicrmw">'<tt>atomicrmw</tt>' Instruction</a>
   5218 </h4>
   5219 
   5220 <div>
   5221 
   5222 <h5>Syntax:</h5>
   5223 <pre>
   5224   atomicrmw [volatile] &lt;operation&gt; &lt;ty&gt;* &lt;pointer&gt;, &lt;ty&gt; &lt;value&gt; [singlethread] &lt;ordering&gt;                   <i>; yields {ty}</i>
   5225 </pre>
   5226 
   5227 <h5>Overview:</h5>
   5228 <p>The '<tt>atomicrmw</tt>' instruction is used to atomically modify memory.</p>
   5229 
   5230 <h5>Arguments:</h5>
   5231 <p>There are three arguments to the '<code>atomicrmw</code>' instruction: an
   5232 operation to apply, an address whose value to modify, an argument to the
   5233 operation.  The operation must be one of the following keywords:</p>
   5234 <ul>
   5235   <li>xchg</li>
   5236   <li>add</li>
   5237   <li>sub</li>
   5238   <li>and</li>
   5239   <li>nand</li>
   5240   <li>or</li>
   5241   <li>xor</li>
   5242   <li>max</li>
   5243   <li>min</li>
   5244   <li>umax</li>
   5245   <li>umin</li>
   5246 </ul>
   5247 
   5248 <p>The type of '<var>&lt;value&gt;</var>' must be an integer type whose
   5249 bit width is a power of two greater than or equal to eight and less than
   5250 or equal to a target-specific size limit.  The type of the
   5251 '<code>&lt;pointer&gt;</code>' operand must be a pointer to that type.
   5252 If the <code>atomicrmw</code> is marked as <code>volatile</code>, then the
   5253 optimizer is not allowed to modify the number or order of execution of this
   5254 <code>atomicrmw</code> with other <a href="#volatile">volatile
   5255   operations</a>.</p>
   5256 
   5257 <!-- FIXME: Extend allowed types. -->
   5258 
   5259 <h5>Semantics:</h5>
   5260 <p>The contents of memory at the location specified by the
   5261 '<tt>&lt;pointer&gt;</tt>' operand are atomically read, modified, and written
   5262 back.  The original value at the location is returned.  The modification is
   5263 specified by the <var>operation</var> argument:</p>
   5264 
   5265 <ul>
   5266   <li>xchg: <code>*ptr = val</code></li>
   5267   <li>add: <code>*ptr = *ptr + val</code></li>
   5268   <li>sub: <code>*ptr = *ptr - val</code></li>
   5269   <li>and: <code>*ptr = *ptr &amp; val</code></li>
   5270   <li>nand: <code>*ptr = ~(*ptr &amp; val)</code></li>
   5271   <li>or: <code>*ptr = *ptr | val</code></li>
   5272   <li>xor: <code>*ptr = *ptr ^ val</code></li>
   5273   <li>max: <code>*ptr = *ptr &gt; val ? *ptr : val</code> (using a signed comparison)</li>
   5274   <li>min: <code>*ptr = *ptr &lt; val ? *ptr : val</code> (using a signed comparison)</li>
   5275   <li>umax: <code>*ptr = *ptr &gt; val ? *ptr : val</code> (using an unsigned comparison)</li>
   5276   <li>umin: <code>*ptr = *ptr &lt; val ? *ptr : val</code> (using an unsigned comparison)</li>
   5277 </ul>
   5278 
   5279 <h5>Example:</h5>
   5280 <pre>
   5281   %old = atomicrmw add i32* %ptr, i32 1 acquire                        <i>; yields {i32}</i>
   5282 </pre>
   5283 
   5284 </div>
   5285 
   5286 <!-- _______________________________________________________________________ -->
   5287 <h4>
   5288    <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
   5289 </h4>
   5290 
   5291 <div>
   5292 
   5293 <h5>Syntax:</h5>
   5294 <pre>
   5295   &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
   5296   &lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
   5297   &lt;result&gt; = getelementptr &lt;ptr vector&gt; ptrval, &lt;vector index type&gt; idx 
   5298 </pre>
   5299 
   5300 <h5>Overview:</h5>
   5301 <p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
   5302    subelement of an <a href="#t_aggregate">aggregate</a> data structure.
   5303    It performs address calculation only and does not access memory.</p>
   5304 
   5305 <h5>Arguments:</h5>
   5306 <p>The first argument is always a pointer or a vector of pointers,
   5307    and forms the basis of the
   5308    calculation. The remaining arguments are indices that indicate which of the
   5309    elements of the aggregate object are indexed. The interpretation of each
   5310    index is dependent on the type being indexed into. The first index always
   5311    indexes the pointer value given as the first argument, the second index
   5312    indexes a value of the type pointed to (not necessarily the value directly
   5313    pointed to, since the first index can be non-zero), etc. The first type
   5314    indexed into must be a pointer value, subsequent types can be arrays,
   5315    vectors, and structs. Note that subsequent types being indexed into
   5316    can never be pointers, since that would require loading the pointer before
   5317    continuing calculation.</p>
   5318 
   5319 <p>The type of each index argument depends on the type it is indexing into.
   5320    When indexing into a (optionally packed) structure, only <tt>i32</tt>
   5321    integer <b>constants</b> are allowed.  When indexing into an array, pointer
   5322    or vector, integers of any width are allowed, and they are not required to be
   5323    constant.  These integers are treated as signed values where relevant.</p>
   5324 
   5325 <p>For example, let's consider a C code fragment and how it gets compiled to
   5326    LLVM:</p>
   5327 
   5328 <pre class="doc_code">
   5329 struct RT {
   5330   char A;
   5331   int B[10][20];
   5332   char C;
   5333 };
   5334 struct ST {
   5335   int X;
   5336   double Y;
   5337   struct RT Z;
   5338 };
   5339 
   5340 int *foo(struct ST *s) {
   5341   return &amp;s[1].Z.B[5][13];
   5342 }
   5343 </pre>
   5344 
   5345 <p>The LLVM code generated by Clang is:</p>
   5346 
   5347 <pre class="doc_code">
   5348 %struct.RT = <a href="#namedtypes">type</a> { i8, [10 x [20 x i32]], i8 }
   5349 %struct.ST = <a href="#namedtypes">type</a> { i32, double, %struct.RT }
   5350 
   5351 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
   5352 entry:
   5353   %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
   5354   ret i32* %arrayidx
   5355 }
   5356 </pre>
   5357 
   5358 <h5>Semantics:</h5>
   5359 <p>In the example above, the first index is indexing into the
   5360    '<tt>%struct.ST*</tt>' type, which is a pointer, yielding a
   5361    '<tt>%struct.ST</tt>' = '<tt>{ i32, double, %struct.RT }</tt>' type, a
   5362    structure. The second index indexes into the third element of the structure,
   5363    yielding a '<tt>%struct.RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]], i8 }</tt>'
   5364    type, another structure. The third index indexes into the second element of
   5365    the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an array. The
   5366    two dimensions of the array are subscripted into, yielding an '<tt>i32</tt>'
   5367    type. The '<tt>getelementptr</tt>' instruction returns a pointer to this
   5368    element, thus computing a value of '<tt>i32*</tt>' type.</p>
   5369 
   5370 <p>Note that it is perfectly legal to index partially through a structure,
   5371    returning a pointer to an inner element.  Because of this, the LLVM code for
   5372    the given testcase is equivalent to:</p>
   5373 
   5374 <pre class="doc_code">
   5375 define i32* @foo(%struct.ST* %s) {
   5376   %t1 = getelementptr %struct.ST* %s, i32 1                 <i>; yields %struct.ST*:%t1</i>
   5377   %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2         <i>; yields %struct.RT*:%t2</i>
   5378   %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1         <i>; yields [10 x [20 x i32]]*:%t3</i>
   5379   %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5  <i>; yields [20 x i32]*:%t4</i>
   5380   %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13        <i>; yields i32*:%t5</i>
   5381   ret i32* %t5
   5382 }
   5383 </pre>
   5384 
   5385 <p>If the <tt>inbounds</tt> keyword is present, the result value of the
   5386    <tt>getelementptr</tt> is a <a href="#poisonvalues">poison value</a> if the
   5387    base pointer is not an <i>in bounds</i> address of an allocated object,
   5388    or if any of the addresses that would be formed by successive addition of
   5389    the offsets implied by the indices to the base address with infinitely
   5390    precise signed arithmetic are not an <i>in bounds</i> address of that
   5391    allocated object. The <i>in bounds</i> addresses for an allocated object
   5392    are all the addresses that point into the object, plus the address one
   5393    byte past the end.
   5394    In cases where the base is a vector of pointers the <tt>inbounds</tt> keyword
   5395    applies to each of the computations element-wise. </p>
   5396 
   5397 <p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
   5398    the base address with silently-wrapping two's complement arithmetic. If the
   5399    offsets have a different width from the pointer, they are sign-extended or
   5400    truncated to the width of the pointer. The result value of the
   5401    <tt>getelementptr</tt> may be outside the object pointed to by the base
   5402    pointer. The result value may not necessarily be used to access memory
   5403    though, even if it happens to point into allocated storage. See the
   5404    <a href="#pointeraliasing">Pointer Aliasing Rules</a> section for more
   5405    information.</p>
   5406 
   5407 <p>The getelementptr instruction is often confusing.  For some more insight into
   5408    how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
   5409 
   5410 <h5>Example:</h5>
   5411 <pre>
   5412     <i>; yields [12 x i8]*:aptr</i>
   5413     %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
   5414     <i>; yields i8*:vptr</i>
   5415     %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
   5416     <i>; yields i8*:eptr</i>
   5417     %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
   5418     <i>; yields i32*:iptr</i>
   5419     %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
   5420 </pre>
   5421 
   5422 <p>In cases where the pointer argument is a vector of pointers, only a
   5423    single index may be used, and the number of vector elements has to be
   5424    the same.  For example: </p>
   5425 <pre class="doc_code">
   5426  %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
   5427 </pre>
   5428 
   5429 </div>
   5430 
   5431 </div>
   5432 
   5433 <!-- ======================================================================= -->
   5434 <h3>
   5435   <a name="convertops">Conversion Operations</a>
   5436 </h3>
   5437 
   5438 <div>
   5439 
   5440 <p>The instructions in this category are the conversion instructions (casting)
   5441    which all take a single operand and a type. They perform various bit
   5442    conversions on the operand.</p>
   5443 
   5444 <!-- _______________________________________________________________________ -->
   5445 <h4>
   5446    <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
   5447 </h4>
   5448 
   5449 <div>
   5450 
   5451 <h5>Syntax:</h5>
   5452 <pre>
   5453   &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5454 </pre>
   5455 
   5456 <h5>Overview:</h5>
   5457 <p>The '<tt>trunc</tt>' instruction truncates its operand to the
   5458    type <tt>ty2</tt>.</p>
   5459 
   5460 <h5>Arguments:</h5>
   5461 <p>The '<tt>trunc</tt>' instruction takes a value to trunc, and a type to trunc it to.
   5462    Both types must be of <a href="#t_integer">integer</a> types, or vectors
   5463    of the same number of integers.
   5464    The bit size of the <tt>value</tt> must be larger than
   5465    the bit size of the destination type, <tt>ty2</tt>.
   5466    Equal sized types are not allowed.</p>
   5467 
   5468 <h5>Semantics:</h5>
   5469 <p>The '<tt>trunc</tt>' instruction truncates the high order bits
   5470    in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
   5471    source size must be larger than the destination size, <tt>trunc</tt> cannot
   5472    be a <i>no-op cast</i>.  It will always truncate bits.</p>
   5473 
   5474 <h5>Example:</h5>
   5475 <pre>
   5476   %X = trunc i32 257 to i8                        <i>; yields i8:1</i>
   5477   %Y = trunc i32 123 to i1                        <i>; yields i1:true</i>
   5478   %Z = trunc i32 122 to i1                        <i>; yields i1:false</i>
   5479   %W = trunc &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i8&gt; <i>; yields &lt;i8 8, i8 7&gt;</i>
   5480 </pre>
   5481 
   5482 </div>
   5483 
   5484 <!-- _______________________________________________________________________ -->
   5485 <h4>
   5486    <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
   5487 </h4>
   5488 
   5489 <div>
   5490 
   5491 <h5>Syntax:</h5>
   5492 <pre>
   5493   &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5494 </pre>
   5495 
   5496 <h5>Overview:</h5>
   5497 <p>The '<tt>zext</tt>' instruction zero extends its operand to type
   5498    <tt>ty2</tt>.</p>
   5499 
   5500 
   5501 <h5>Arguments:</h5>
   5502 <p>The '<tt>zext</tt>' instruction takes a value to cast, and a type to cast it to.
   5503    Both types must be of <a href="#t_integer">integer</a> types, or vectors
   5504    of the same number of integers.
   5505    The bit size of the <tt>value</tt> must be smaller than
   5506    the bit size of the destination type,
   5507    <tt>ty2</tt>.</p>
   5508 
   5509 <h5>Semantics:</h5>
   5510 <p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
   5511    bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
   5512 
   5513 <p>When zero extending from i1, the result will always be either 0 or 1.</p>
   5514 
   5515 <h5>Example:</h5>
   5516 <pre>
   5517   %X = zext i32 257 to i64              <i>; yields i64:257</i>
   5518   %Y = zext i1 true to i32              <i>; yields i32:1</i>
   5519   %Z = zext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
   5520 </pre>
   5521 
   5522 </div>
   5523 
   5524 <!-- _______________________________________________________________________ -->
   5525 <h4>
   5526    <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
   5527 </h4>
   5528 
   5529 <div>
   5530 
   5531 <h5>Syntax:</h5>
   5532 <pre>
   5533   &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5534 </pre>
   5535 
   5536 <h5>Overview:</h5>
   5537 <p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
   5538 
   5539 <h5>Arguments:</h5>
   5540 <p>The '<tt>sext</tt>' instruction takes a value to cast, and a type to cast it to.
   5541    Both types must be of <a href="#t_integer">integer</a> types, or vectors
   5542    of the same number of integers.
   5543    The bit size of the <tt>value</tt> must be smaller than
   5544    the bit size of the destination type,
   5545    <tt>ty2</tt>.</p>
   5546 
   5547 <h5>Semantics:</h5>
   5548 <p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
   5549    bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
   5550    of the type <tt>ty2</tt>.</p>
   5551 
   5552 <p>When sign extending from i1, the extension always results in -1 or 0.</p>
   5553 
   5554 <h5>Example:</h5>
   5555 <pre>
   5556   %X = sext i8  -1 to i16              <i>; yields i16   :65535</i>
   5557   %Y = sext i1 true to i32             <i>; yields i32:-1</i>
   5558   %Z = sext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
   5559 </pre>
   5560 
   5561 </div>
   5562 
   5563 <!-- _______________________________________________________________________ -->
   5564 <h4>
   5565    <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
   5566 </h4>
   5567 
   5568 <div>
   5569 
   5570 <h5>Syntax:</h5>
   5571 <pre>
   5572   &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5573 </pre>
   5574 
   5575 <h5>Overview:</h5>
   5576 <p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
   5577    <tt>ty2</tt>.</p>
   5578 
   5579 <h5>Arguments:</h5>
   5580 <p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
   5581    point</a> value to cast and a <a href="#t_floating">floating point</a> type
   5582    to cast it to. The size of <tt>value</tt> must be larger than the size of
   5583    <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
   5584    <i>no-op cast</i>.</p>
   5585 
   5586 <h5>Semantics:</h5>
   5587 <p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
   5588    <a href="#t_floating">floating point</a> type to a smaller
   5589    <a href="#t_floating">floating point</a> type.  If the value cannot fit
   5590    within the destination type, <tt>ty2</tt>, then the results are
   5591    undefined.</p>
   5592 
   5593 <h5>Example:</h5>
   5594 <pre>
   5595   %X = fptrunc double 123.0 to float         <i>; yields float:123.0</i>
   5596   %Y = fptrunc double 1.0E+300 to float      <i>; yields undefined</i>
   5597 </pre>
   5598 
   5599 </div>
   5600 
   5601 <!-- _______________________________________________________________________ -->
   5602 <h4>
   5603    <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
   5604 </h4>
   5605 
   5606 <div>
   5607 
   5608 <h5>Syntax:</h5>
   5609 <pre>
   5610   &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5611 </pre>
   5612 
   5613 <h5>Overview:</h5>
   5614 <p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
   5615    floating point value.</p>
   5616 
   5617 <h5>Arguments:</h5>
   5618 <p>The '<tt>fpext</tt>' instruction takes a
   5619    <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
   5620    a <a href="#t_floating">floating point</a> type to cast it to. The source
   5621    type must be smaller than the destination type.</p>
   5622 
   5623 <h5>Semantics:</h5>
   5624 <p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
   5625    <a href="#t_floating">floating point</a> type to a larger
   5626    <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
   5627    used to make a <i>no-op cast</i> because it always changes bits. Use
   5628    <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
   5629 
   5630 <h5>Example:</h5>
   5631 <pre>
   5632   %X = fpext float 3.125 to double         <i>; yields double:3.125000e+00</i>
   5633   %Y = fpext double %X to fp128            <i>; yields fp128:0xL00000000000000004000900000000000</i>
   5634 </pre>
   5635 
   5636 </div>
   5637 
   5638 <!-- _______________________________________________________________________ -->
   5639 <h4>
   5640    <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
   5641 </h4>
   5642 
   5643 <div>
   5644 
   5645 <h5>Syntax:</h5>
   5646 <pre>
   5647   &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5648 </pre>
   5649 
   5650 <h5>Overview:</h5>
   5651 <p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
   5652    unsigned integer equivalent of type <tt>ty2</tt>.</p>
   5653 
   5654 <h5>Arguments:</h5>
   5655 <p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
   5656    scalar or vector <a href="#t_floating">floating point</a> value, and a type
   5657    to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
   5658    type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
   5659    vector integer type with the same number of elements as <tt>ty</tt></p>
   5660 
   5661 <h5>Semantics:</h5>
   5662 <p>The '<tt>fptoui</tt>' instruction converts its
   5663    <a href="#t_floating">floating point</a> operand into the nearest (rounding
   5664    towards zero) unsigned integer value. If the value cannot fit
   5665    in <tt>ty2</tt>, the results are undefined.</p>
   5666 
   5667 <h5>Example:</h5>
   5668 <pre>
   5669   %X = fptoui double 123.0 to i32      <i>; yields i32:123</i>
   5670   %Y = fptoui float 1.0E+300 to i1     <i>; yields undefined:1</i>
   5671   %Z = fptoui float 1.04E+17 to i8     <i>; yields undefined:1</i>
   5672 </pre>
   5673 
   5674 </div>
   5675 
   5676 <!-- _______________________________________________________________________ -->
   5677 <h4>
   5678    <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
   5679 </h4>
   5680 
   5681 <div>
   5682 
   5683 <h5>Syntax:</h5>
   5684 <pre>
   5685   &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5686 </pre>
   5687 
   5688 <h5>Overview:</h5>
   5689 <p>The '<tt>fptosi</tt>' instruction converts
   5690    <a href="#t_floating">floating point</a> <tt>value</tt> to
   5691    type <tt>ty2</tt>.</p>
   5692 
   5693 <h5>Arguments:</h5>
   5694 <p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
   5695    scalar or vector <a href="#t_floating">floating point</a> value, and a type
   5696    to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
   5697    type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
   5698    vector integer type with the same number of elements as <tt>ty</tt></p>
   5699 
   5700 <h5>Semantics:</h5>
   5701 <p>The '<tt>fptosi</tt>' instruction converts its
   5702    <a href="#t_floating">floating point</a> operand into the nearest (rounding
   5703    towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
   5704    the results are undefined.</p>
   5705 
   5706 <h5>Example:</h5>
   5707 <pre>
   5708   %X = fptosi double -123.0 to i32      <i>; yields i32:-123</i>
   5709   %Y = fptosi float 1.0E-247 to i1      <i>; yields undefined:1</i>
   5710   %Z = fptosi float 1.04E+17 to i8      <i>; yields undefined:1</i>
   5711 </pre>
   5712 
   5713 </div>
   5714 
   5715 <!-- _______________________________________________________________________ -->
   5716 <h4>
   5717    <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
   5718 </h4>
   5719 
   5720 <div>
   5721 
   5722 <h5>Syntax:</h5>
   5723 <pre>
   5724   &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5725 </pre>
   5726 
   5727 <h5>Overview:</h5>
   5728 <p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
   5729    integer and converts that value to the <tt>ty2</tt> type.</p>
   5730 
   5731 <h5>Arguments:</h5>
   5732 <p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
   5733    scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
   5734    it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
   5735    type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
   5736    floating point type with the same number of elements as <tt>ty</tt></p>
   5737 
   5738 <h5>Semantics:</h5>
   5739 <p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
   5740    integer quantity and converts it to the corresponding floating point
   5741    value. If the value cannot fit in the floating point value, the results are
   5742    undefined.</p>
   5743 
   5744 <h5>Example:</h5>
   5745 <pre>
   5746   %X = uitofp i32 257 to float         <i>; yields float:257.0</i>
   5747   %Y = uitofp i8 -1 to double          <i>; yields double:255.0</i>
   5748 </pre>
   5749 
   5750 </div>
   5751 
   5752 <!-- _______________________________________________________________________ -->
   5753 <h4>
   5754    <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
   5755 </h4>
   5756 
   5757 <div>
   5758 
   5759 <h5>Syntax:</h5>
   5760 <pre>
   5761   &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5762 </pre>
   5763 
   5764 <h5>Overview:</h5>
   5765 <p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
   5766    and converts that value to the <tt>ty2</tt> type.</p>
   5767 
   5768 <h5>Arguments:</h5>
   5769 <p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
   5770    scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
   5771    it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
   5772    type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
   5773    floating point type with the same number of elements as <tt>ty</tt></p>
   5774 
   5775 <h5>Semantics:</h5>
   5776 <p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
   5777    quantity and converts it to the corresponding floating point value. If the
   5778    value cannot fit in the floating point value, the results are undefined.</p>
   5779 
   5780 <h5>Example:</h5>
   5781 <pre>
   5782   %X = sitofp i32 257 to float         <i>; yields float:257.0</i>
   5783   %Y = sitofp i8 -1 to double          <i>; yields double:-1.0</i>
   5784 </pre>
   5785 
   5786 </div>
   5787 
   5788 <!-- _______________________________________________________________________ -->
   5789 <h4>
   5790    <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
   5791 </h4>
   5792 
   5793 <div>
   5794 
   5795 <h5>Syntax:</h5>
   5796 <pre>
   5797   &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5798 </pre>
   5799 
   5800 <h5>Overview:</h5>
   5801 <p>The '<tt>ptrtoint</tt>' instruction converts the pointer or a vector of
   5802    pointers <tt>value</tt> to
   5803    the integer (or vector of integers) type <tt>ty2</tt>.</p>
   5804 
   5805 <h5>Arguments:</h5>
   5806 <p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
   5807    must be a a value of type <a href="#t_pointer">pointer</a> or a vector of
   5808     pointers, and a type to cast it to
   5809    <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> or a vector
   5810    of integers type.</p>
   5811 
   5812 <h5>Semantics:</h5>
   5813 <p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
   5814    <tt>ty2</tt> by interpreting the pointer value as an integer and either
   5815    truncating or zero extending that value to the size of the integer type. If
   5816    <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
   5817    <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
   5818    are the same size, then nothing is done (<i>no-op cast</i>) other than a type
   5819    change.</p>
   5820 
   5821 <h5>Example:</h5>
   5822 <pre>
   5823   %X = ptrtoint i32* %P to i8                         <i>; yields truncation on 32-bit architecture</i>
   5824   %Y = ptrtoint i32* %P to i64                        <i>; yields zero extension on 32-bit architecture</i>
   5825   %Z = ptrtoint &lt;4 x i32*&gt; %P to &lt;4 x i64&gt;<i>; yields vector zero extension for a vector of addresses on 32-bit architecture</i>
   5826 </pre>
   5827 
   5828 </div>
   5829 
   5830 <!-- _______________________________________________________________________ -->
   5831 <h4>
   5832    <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
   5833 </h4>
   5834 
   5835 <div>
   5836 
   5837 <h5>Syntax:</h5>
   5838 <pre>
   5839   &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5840 </pre>
   5841 
   5842 <h5>Overview:</h5>
   5843 <p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
   5844    pointer type, <tt>ty2</tt>.</p>
   5845 
   5846 <h5>Arguments:</h5>
   5847 <p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
   5848    value to cast, and a type to cast it to, which must be a
   5849    <a href="#t_pointer">pointer</a> type.</p>
   5850 
   5851 <h5>Semantics:</h5>
   5852 <p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
   5853    <tt>ty2</tt> by applying either a zero extension or a truncation depending on
   5854    the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
   5855    size of a pointer then a truncation is done. If <tt>value</tt> is smaller
   5856    than the size of a pointer then a zero extension is done. If they are the
   5857    same size, nothing is done (<i>no-op cast</i>).</p>
   5858 
   5859 <h5>Example:</h5>
   5860 <pre>
   5861   %X = inttoptr i32 255 to i32*          <i>; yields zero extension on 64-bit architecture</i>
   5862   %Y = inttoptr i32 255 to i32*          <i>; yields no-op on 32-bit architecture</i>
   5863   %Z = inttoptr i64 0 to i32*            <i>; yields truncation on 32-bit architecture</i>
   5864   %Z = inttoptr &lt;4 x i32&gt; %G to &lt;4 x i8*&gt;<i>; yields truncation of vector G to four pointers</i>
   5865 </pre>
   5866 
   5867 </div>
   5868 
   5869 <!-- _______________________________________________________________________ -->
   5870 <h4>
   5871    <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
   5872 </h4>
   5873 
   5874 <div>
   5875 
   5876 <h5>Syntax:</h5>
   5877 <pre>
   5878   &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5879 </pre>
   5880 
   5881 <h5>Overview:</h5>
   5882 <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
   5883    <tt>ty2</tt> without changing any bits.</p>
   5884 
   5885 <h5>Arguments:</h5>
   5886 <p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
   5887    non-aggregate first class value, and a type to cast it to, which must also be
   5888    a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
   5889    of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
   5890    identical. If the source type is a pointer, the destination type must also be
   5891    a pointer.  This instruction supports bitwise conversion of vectors to
   5892    integers and to vectors of other types (as long as they have the same
   5893    size).</p>
   5894 
   5895 <h5>Semantics:</h5>
   5896 <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
   5897    <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
   5898    this conversion.  The conversion is done as if the <tt>value</tt> had been
   5899    stored to memory and read back as type <tt>ty2</tt>.
   5900    Pointer (or vector of pointers) types may only be converted to other pointer
   5901    (or vector of pointers) types with this instruction. To convert
   5902    pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
   5903    <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
   5904 
   5905 <h5>Example:</h5>
   5906 <pre>
   5907   %X = bitcast i8 255 to i8              <i>; yields i8 :-1</i>
   5908   %Y = bitcast i32* %x to sint*          <i>; yields sint*:%x</i>
   5909   %Z = bitcast &lt;2 x int&gt; %V to i64;        <i>; yields i64: %V</i>
   5910   %Z = bitcast &lt;2 x i32*&gt; %V to &lt;2 x i64*&gt; <i>; yields &lt;2 x i64*&gt;</i>
   5911 </pre>
   5912 
   5913 </div>
   5914 
   5915 </div>
   5916 
   5917 <!-- ======================================================================= -->
   5918 <h3>
   5919   <a name="otherops">Other Operations</a>
   5920 </h3>
   5921 
   5922 <div>
   5923 
   5924 <p>The instructions in this category are the "miscellaneous" instructions, which
   5925    defy better classification.</p>
   5926 
   5927 <!-- _______________________________________________________________________ -->
   5928 <h4>
   5929   <a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
   5930 </h4>
   5931 
   5932 <div>
   5933 
   5934 <h5>Syntax:</h5>
   5935 <pre>
   5936   &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
   5937 </pre>
   5938 
   5939 <h5>Overview:</h5>
   5940 <p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
   5941    boolean values based on comparison of its two integer, integer vector,
   5942    pointer, or pointer vector operands.</p>
   5943 
   5944 <h5>Arguments:</h5>
   5945 <p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
   5946    the condition code indicating the kind of comparison to perform. It is not a
   5947    value, just a keyword. The possible condition code are:</p>
   5948 
   5949 <ol>
   5950   <li><tt>eq</tt>: equal</li>
   5951   <li><tt>ne</tt>: not equal </li>
   5952   <li><tt>ugt</tt>: unsigned greater than</li>
   5953   <li><tt>uge</tt>: unsigned greater or equal</li>
   5954   <li><tt>ult</tt>: unsigned less than</li>
   5955   <li><tt>ule</tt>: unsigned less or equal</li>
   5956   <li><tt>sgt</tt>: signed greater than</li>
   5957   <li><tt>sge</tt>: signed greater or equal</li>
   5958   <li><tt>slt</tt>: signed less than</li>
   5959   <li><tt>sle</tt>: signed less or equal</li>
   5960 </ol>
   5961 
   5962 <p>The remaining two arguments must be <a href="#t_integer">integer</a> or
   5963    <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
   5964    typed.  They must also be identical types.</p>
   5965 
   5966 <h5>Semantics:</h5>
   5967 <p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
   5968    condition code given as <tt>cond</tt>. The comparison performed always yields
   5969    either an <a href="#t_integer"><tt>i1</tt></a> or vector of <tt>i1</tt>
   5970    result, as follows:</p>
   5971 
   5972 <ol>
   5973   <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
   5974       <tt>false</tt> otherwise. No sign interpretation is necessary or
   5975       performed.</li>
   5976 
   5977   <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
   5978       <tt>false</tt> otherwise. No sign interpretation is necessary or
   5979       performed.</li>
   5980 
   5981   <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
   5982       <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
   5983 
   5984   <li><tt>uge</tt>: interprets the operands as unsigned values and yields
   5985       <tt>true</tt> if <tt>op1</tt> is greater than or equal
   5986       to <tt>op2</tt>.</li>
   5987 
   5988   <li><tt>ult</tt>: interprets the operands as unsigned values and yields
   5989       <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
   5990 
   5991   <li><tt>ule</tt>: interprets the operands as unsigned values and yields
   5992       <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
   5993 
   5994   <li><tt>sgt</tt>: interprets the operands as signed values and yields
   5995       <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
   5996 
   5997   <li><tt>sge</tt>: interprets the operands as signed values and yields
   5998       <tt>true</tt> if <tt>op1</tt> is greater than or equal
   5999       to <tt>op2</tt>.</li>
   6000 
   6001   <li><tt>slt</tt>: interprets the operands as signed values and yields
   6002       <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
   6003 
   6004   <li><tt>sle</tt>: interprets the operands as signed values and yields
   6005       <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
   6006 </ol>
   6007 
   6008 <p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
   6009    values are compared as if they were integers.</p>
   6010 
   6011 <p>If the operands are integer vectors, then they are compared element by
   6012    element. The result is an <tt>i1</tt> vector with the same number of elements
   6013    as the values being compared.  Otherwise, the result is an <tt>i1</tt>.</p>
   6014 
   6015 <h5>Example:</h5>
   6016 <pre>
   6017   &lt;result&gt; = icmp eq i32 4, 5          <i>; yields: result=false</i>
   6018   &lt;result&gt; = icmp ne float* %X, %X     <i>; yields: result=false</i>
   6019   &lt;result&gt; = icmp ult i16  4, 5        <i>; yields: result=true</i>
   6020   &lt;result&gt; = icmp sgt i16  4, 5        <i>; yields: result=false</i>
   6021   &lt;result&gt; = icmp ule i16 -4, 5        <i>; yields: result=false</i>
   6022   &lt;result&gt; = icmp sge i16  4, 5        <i>; yields: result=false</i>
   6023 </pre>
   6024 
   6025 <p>Note that the code generator does not yet support vector types with
   6026    the <tt>icmp</tt> instruction.</p>
   6027 
   6028 </div>
   6029 
   6030 <!-- _______________________________________________________________________ -->
   6031 <h4>
   6032   <a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
   6033 </h4>
   6034 
   6035 <div>
   6036 
   6037 <h5>Syntax:</h5>
   6038 <pre>
   6039   &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;     <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
   6040 </pre>
   6041 
   6042 <h5>Overview:</h5>
   6043 <p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
   6044    values based on comparison of its operands.</p>
   6045 
   6046 <p>If the operands are floating point scalars, then the result type is a boolean
   6047 (<a href="#t_integer"><tt>i1</tt></a>).</p>
   6048 
   6049 <p>If the operands are floating point vectors, then the result type is a vector
   6050    of boolean with the same number of elements as the operands being
   6051    compared.</p>
   6052 
   6053 <h5>Arguments:</h5>
   6054 <p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
   6055    the condition code indicating the kind of comparison to perform. It is not a
   6056    value, just a keyword. The possible condition code are:</p>
   6057 
   6058 <ol>
   6059   <li><tt>false</tt>: no comparison, always returns false</li>
   6060   <li><tt>oeq</tt>: ordered and equal</li>
   6061   <li><tt>ogt</tt>: ordered and greater than </li>
   6062   <li><tt>oge</tt>: ordered and greater than or equal</li>
   6063   <li><tt>olt</tt>: ordered and less than </li>
   6064   <li><tt>ole</tt>: ordered and less than or equal</li>
   6065   <li><tt>one</tt>: ordered and not equal</li>
   6066   <li><tt>ord</tt>: ordered (no nans)</li>
   6067   <li><tt>ueq</tt>: unordered or equal</li>
   6068   <li><tt>ugt</tt>: unordered or greater than </li>
   6069   <li><tt>uge</tt>: unordered or greater than or equal</li>
   6070   <li><tt>ult</tt>: unordered or less than </li>
   6071   <li><tt>ule</tt>: unordered or less than or equal</li>
   6072   <li><tt>une</tt>: unordered or not equal</li>
   6073   <li><tt>uno</tt>: unordered (either nans)</li>
   6074   <li><tt>true</tt>: no comparison, always returns true</li>
   6075 </ol>
   6076 
   6077 <p><i>Ordered</i> means that neither operand is a QNAN while
   6078    <i>unordered</i> means that either operand may be a QNAN.</p>
   6079 
   6080 <p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
   6081    a <a href="#t_floating">floating point</a> type or
   6082    a <a href="#t_vector">vector</a> of floating point type.  They must have
   6083    identical types.</p>
   6084 
   6085 <h5>Semantics:</h5>
   6086 <p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
   6087    according to the condition code given as <tt>cond</tt>.  If the operands are
   6088    vectors, then the vectors are compared element by element.  Each comparison
   6089    performed always yields an <a href="#t_integer">i1</a> result, as
   6090    follows:</p>
   6091 
   6092 <ol>
   6093   <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
   6094 
   6095   <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
   6096       <tt>op1</tt> is equal to <tt>op2</tt>.</li>
   6097 
   6098   <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
   6099       <tt>op1</tt> is greater than <tt>op2</tt>.</li>
   6100 
   6101   <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
   6102       <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
   6103 
   6104   <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
   6105       <tt>op1</tt> is less than <tt>op2</tt>.</li>
   6106 
   6107   <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
   6108       <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
   6109 
   6110   <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
   6111       <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
   6112 
   6113   <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
   6114 
   6115   <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
   6116       <tt>op1</tt> is equal to <tt>op2</tt>.</li>
   6117 
   6118   <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
   6119       <tt>op1</tt> is greater than <tt>op2</tt>.</li>
   6120 
   6121   <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
   6122       <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
   6123 
   6124   <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
   6125       <tt>op1</tt> is less than <tt>op2</tt>.</li>
   6126 
   6127   <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
   6128       <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
   6129 
   6130   <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
   6131       <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
   6132 
   6133   <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
   6134 
   6135   <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
   6136 </ol>
   6137 
   6138 <h5>Example:</h5>
   6139 <pre>
   6140   &lt;result&gt; = fcmp oeq float 4.0, 5.0    <i>; yields: result=false</i>
   6141   &lt;result&gt; = fcmp one float 4.0, 5.0    <i>; yields: result=true</i>
   6142   &lt;result&gt; = fcmp olt float 4.0, 5.0    <i>; yields: result=true</i>
   6143   &lt;result&gt; = fcmp ueq double 1.0, 2.0   <i>; yields: result=false</i>
   6144 </pre>
   6145 
   6146 <p>Note that the code generator does not yet support vector types with
   6147    the <tt>fcmp</tt> instruction.</p>
   6148 
   6149 </div>
   6150 
   6151 <!-- _______________________________________________________________________ -->
   6152 <h4>
   6153   <a name="i_phi">'<tt>phi</tt>' Instruction</a>
   6154 </h4>
   6155 
   6156 <div>
   6157 
   6158 <h5>Syntax:</h5>
   6159 <pre>
   6160   &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
   6161 </pre>
   6162 
   6163 <h5>Overview:</h5>
   6164 <p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
   6165    SSA graph representing the function.</p>
   6166 
   6167 <h5>Arguments:</h5>
   6168 <p>The type of the incoming values is specified with the first type field. After
   6169    this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
   6170    one pair for each predecessor basic block of the current block.  Only values
   6171    of <a href="#t_firstclass">first class</a> type may be used as the value
   6172    arguments to the PHI node.  Only labels may be used as the label
   6173    arguments.</p>
   6174 
   6175 <p>There must be no non-phi instructions between the start of a basic block and
   6176    the PHI instructions: i.e. PHI instructions must be first in a basic
   6177    block.</p>
   6178 
   6179 <p>For the purposes of the SSA form, the use of each incoming value is deemed to
   6180    occur on the edge from the corresponding predecessor block to the current
   6181    block (but after any definition of an '<tt>invoke</tt>' instruction's return
   6182    value on the same edge).</p>
   6183 
   6184 <h5>Semantics:</h5>
   6185 <p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
   6186    specified by the pair corresponding to the predecessor basic block that
   6187    executed just prior to the current block.</p>
   6188 
   6189 <h5>Example:</h5>
   6190 <pre>
   6191 Loop:       ; Infinite loop that counts from 0 on up...
   6192   %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
   6193   %nextindvar = add i32 %indvar, 1
   6194   br label %Loop
   6195 </pre>
   6196 
   6197 </div>
   6198 
   6199 <!-- _______________________________________________________________________ -->
   6200 <h4>
   6201    <a name="i_select">'<tt>select</tt>' Instruction</a>
   6202 </h4>
   6203 
   6204 <div>
   6205 
   6206 <h5>Syntax:</h5>
   6207 <pre>
   6208   &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt;             <i>; yields ty</i>
   6209 
   6210   <i>selty</i> is either i1 or {&lt;N x i1&gt;}
   6211 </pre>
   6212 
   6213 <h5>Overview:</h5>
   6214 <p>The '<tt>select</tt>' instruction is used to choose one value based on a
   6215    condition, without branching.</p>
   6216 
   6217 
   6218 <h5>Arguments:</h5>
   6219 <p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
   6220    values indicating the condition, and two values of the
   6221    same <a href="#t_firstclass">first class</a> type.  If the val1/val2 are
   6222    vectors and the condition is a scalar, then entire vectors are selected, not
   6223    individual elements.</p>
   6224 
   6225 <h5>Semantics:</h5>
   6226 <p>If the condition is an i1 and it evaluates to 1, the instruction returns the
   6227    first value argument; otherwise, it returns the second value argument.</p>
   6228 
   6229 <p>If the condition is a vector of i1, then the value arguments must be vectors
   6230    of the same size, and the selection is done element by element.</p>
   6231 
   6232 <h5>Example:</h5>
   6233 <pre>
   6234   %X = select i1 true, i8 17, i8 42          <i>; yields i8:17</i>
   6235 </pre>
   6236 
   6237 </div>
   6238 
   6239 <!-- _______________________________________________________________________ -->
   6240 <h4>
   6241   <a name="i_call">'<tt>call</tt>' Instruction</a>
   6242 </h4>
   6243 
   6244 <div>
   6245 
   6246 <h5>Syntax:</h5>
   6247 <pre>
   6248   &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
   6249 </pre>
   6250 
   6251 <h5>Overview:</h5>
   6252 <p>The '<tt>call</tt>' instruction represents a simple function call.</p>
   6253 
   6254 <h5>Arguments:</h5>
   6255 <p>This instruction requires several arguments:</p>
   6256 
   6257 <ol>
   6258   <li>The optional "tail" marker indicates that the callee function does not
   6259       access any allocas or varargs in the caller.  Note that calls may be
   6260       marked "tail" even if they do not occur before
   6261       a <a href="#i_ret"><tt>ret</tt></a> instruction.  If the "tail" marker is
   6262       present, the function call is eligible for tail call optimization,
   6263       but <a href="CodeGenerator.html#tailcallopt">might not in fact be
   6264       optimized into a jump</a>.  The code generator may optimize calls marked
   6265       "tail" with either 1) automatic <a href="CodeGenerator.html#sibcallopt">
   6266       sibling call optimization</a> when the caller and callee have
   6267       matching signatures, or 2) forced tail call optimization when the
   6268       following extra requirements are met:
   6269       <ul>
   6270         <li>Caller and callee both have the calling
   6271             convention <tt>fastcc</tt>.</li>
   6272         <li>The call is in tail position (ret immediately follows call and ret
   6273             uses value of call or is void).</li>
   6274         <li>Option <tt>-tailcallopt</tt> is enabled,
   6275             or <code>llvm::GuaranteedTailCallOpt</code> is <code>true</code>.</li>
   6276         <li><a href="CodeGenerator.html#tailcallopt">Platform specific
   6277             constraints are met.</a></li>
   6278       </ul>
   6279   </li>
   6280 
   6281   <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
   6282       convention</a> the call should use.  If none is specified, the call
   6283       defaults to using C calling conventions.  The calling convention of the
   6284       call must match the calling convention of the target function, or else the
   6285       behavior is undefined.</li>
   6286 
   6287   <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
   6288       return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
   6289       '<tt>inreg</tt>' attributes are valid here.</li>
   6290 
   6291   <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
   6292       type of the return value.  Functions that return no value are marked
   6293       <tt><a href="#t_void">void</a></tt>.</li>
   6294 
   6295   <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
   6296       being invoked.  The argument types must match the types implied by this
   6297       signature.  This type can be omitted if the function is not varargs and if
   6298       the function type does not return a pointer to a function.</li>
   6299 
   6300   <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
   6301       be invoked. In most cases, this is a direct function invocation, but
   6302       indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
   6303       to function value.</li>
   6304 
   6305   <li>'<tt>function args</tt>': argument list whose types match the function
   6306       signature argument types and parameter attributes. All arguments must be
   6307       of <a href="#t_firstclass">first class</a> type. If the function
   6308       signature indicates the function accepts a variable number of arguments,
   6309       the extra arguments can be specified.</li>
   6310 
   6311   <li>The optional <a href="#fnattrs">function attributes</a> list. Only
   6312       '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
   6313       '<tt>readnone</tt>' attributes are valid here.</li>
   6314 </ol>
   6315 
   6316 <h5>Semantics:</h5>
   6317 <p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
   6318    a specified function, with its incoming arguments bound to the specified
   6319    values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
   6320    function, control flow continues with the instruction after the function
   6321    call, and the return value of the function is bound to the result
   6322    argument.</p>
   6323 
   6324 <h5>Example:</h5>
   6325 <pre>
   6326   %retval = call i32 @test(i32 %argc)
   6327   call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42)        <i>; yields i32</i>
   6328   %X = tail call i32 @foo()                                    <i>; yields i32</i>
   6329   %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo()  <i>; yields i32</i>
   6330   call void %foo(i8 97 signext)
   6331 
   6332   %struct.A = type { i32, i8 }
   6333   %r = call %struct.A @foo()                        <i>; yields { 32, i8 }</i>
   6334   %gr = extractvalue %struct.A %r, 0                <i>; yields i32</i>
   6335   %gr1 = extractvalue %struct.A %r, 1               <i>; yields i8</i>
   6336   %Z = call void @foo() noreturn                    <i>; indicates that %foo never returns normally</i>
   6337   %ZZ = call zeroext i32 @bar()                     <i>; Return value is %zero extended</i>
   6338 </pre>
   6339 
   6340 <p>llvm treats calls to some functions with names and arguments that match the
   6341 standard C99 library as being the C99 library functions, and may perform
   6342 optimizations or generate code for them under that assumption.  This is
   6343 something we'd like to change in the future to provide better support for
   6344 freestanding environments and non-C-based languages.</p>
   6345 
   6346 </div>
   6347 
   6348 <!-- _______________________________________________________________________ -->
   6349 <h4>
   6350   <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
   6351 </h4>
   6352 
   6353 <div>
   6354 
   6355 <h5>Syntax:</h5>
   6356 <pre>
   6357   &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
   6358 </pre>
   6359 
   6360 <h5>Overview:</h5>
   6361 <p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
   6362    the "variable argument" area of a function call.  It is used to implement the
   6363    <tt>va_arg</tt> macro in C.</p>
   6364 
   6365 <h5>Arguments:</h5>
   6366 <p>This instruction takes a <tt>va_list*</tt> value and the type of the
   6367    argument. It returns a value of the specified argument type and increments
   6368    the <tt>va_list</tt> to point to the next argument.  The actual type
   6369    of <tt>va_list</tt> is target specific.</p>
   6370 
   6371 <h5>Semantics:</h5>
   6372 <p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
   6373    from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
   6374    to the next argument.  For more information, see the variable argument
   6375    handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
   6376 
   6377 <p>It is legal for this instruction to be called in a function which does not
   6378    take a variable number of arguments, for example, the <tt>vfprintf</tt>
   6379    function.</p>
   6380 
   6381 <p><tt>va_arg</tt> is an LLVM instruction instead of
   6382    an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
   6383    argument.</p>
   6384 
   6385 <h5>Example:</h5>
   6386 <p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
   6387 
   6388 <p>Note that the code generator does not yet fully support va_arg on many
   6389    targets. Also, it does not currently support va_arg with aggregate types on
   6390    any target.</p>
   6391 
   6392 </div>
   6393 
   6394 <!-- _______________________________________________________________________ -->
   6395 <h4>
   6396   <a name="i_landingpad">'<tt>landingpad</tt>' Instruction</a>
   6397 </h4>
   6398 
   6399 <div>
   6400 
   6401 <h5>Syntax:</h5>
   6402 <pre>
   6403   &lt;resultval&gt; = landingpad &lt;resultty&gt; personality &lt;type&gt; &lt;pers_fn&gt; &lt;clause&gt;+
   6404   &lt;resultval&gt; = landingpad &lt;resultty&gt; personality &lt;type&gt; &lt;pers_fn&gt; cleanup &lt;clause&gt;*
   6405 
   6406   &lt;clause&gt; := catch &lt;type&gt; &lt;value&gt;
   6407   &lt;clause&gt; := filter &lt;array constant type&gt; &lt;array constant&gt;
   6408 </pre>
   6409 
   6410 <h5>Overview:</h5>
   6411 <p>The '<tt>landingpad</tt>' instruction is used by
   6412    <a href="ExceptionHandling.html#overview">LLVM's exception handling
   6413    system</a> to specify that a basic block is a landing pad &mdash; one where
   6414    the exception lands, and corresponds to the code found in the
   6415    <i><tt>catch</tt></i> portion of a <i><tt>try/catch</tt></i> sequence. It
   6416    defines values supplied by the personality function (<tt>pers_fn</tt>) upon
   6417    re-entry to the function. The <tt>resultval</tt> has the
   6418    type <tt>resultty</tt>.</p>
   6419 
   6420 <h5>Arguments:</h5>
   6421 <p>This instruction takes a <tt>pers_fn</tt> value. This is the personality
   6422    function associated with the unwinding mechanism. The optional
   6423    <tt>cleanup</tt> flag indicates that the landing pad block is a cleanup.</p>
   6424 
   6425 <p>A <tt>clause</tt> begins with the clause type &mdash; <tt>catch</tt>
   6426    or <tt>filter</tt> &mdash; and contains the global variable representing the
   6427    "type" that may be caught or filtered respectively. Unlike the
   6428    <tt>catch</tt> clause, the <tt>filter</tt> clause takes an array constant as
   6429    its argument. Use "<tt>[0 x i8**] undef</tt>" for a filter which cannot
   6430    throw. The '<tt>landingpad</tt>' instruction must contain <em>at least</em>
   6431    one <tt>clause</tt> or the <tt>cleanup</tt> flag.</p>
   6432 
   6433 <h5>Semantics:</h5>
   6434 <p>The '<tt>landingpad</tt>' instruction defines the values which are set by the
   6435    personality function (<tt>pers_fn</tt>) upon re-entry to the function, and
   6436    therefore the "result type" of the <tt>landingpad</tt> instruction. As with
   6437    calling conventions, how the personality function results are represented in
   6438    LLVM IR is target specific.</p>
   6439 
   6440 <p>The clauses are applied in order from top to bottom. If two
   6441    <tt>landingpad</tt> instructions are merged together through inlining, the
   6442    clauses from the calling function are appended to the list of clauses.
   6443    When the call stack is being unwound due to an exception being thrown, the
   6444    exception is compared against each <tt>clause</tt> in turn.  If it doesn't
   6445    match any of the clauses, and the <tt>cleanup</tt> flag is not set, then
   6446    unwinding continues further up the call stack.</p>
   6447 
   6448 <p>The <tt>landingpad</tt> instruction has several restrictions:</p>
   6449 
   6450 <ul>
   6451   <li>A landing pad block is a basic block which is the unwind destination of an
   6452       '<tt>invoke</tt>' instruction.</li>
   6453   <li>A landing pad block must have a '<tt>landingpad</tt>' instruction as its
   6454       first non-PHI instruction.</li>
   6455   <li>There can be only one '<tt>landingpad</tt>' instruction within the landing
   6456       pad block.</li>
   6457   <li>A basic block that is not a landing pad block may not include a
   6458       '<tt>landingpad</tt>' instruction.</li>
   6459   <li>All '<tt>landingpad</tt>' instructions in a function must have the same
   6460       personality function.</li>
   6461 </ul>
   6462 
   6463 <h5>Example:</h5>
   6464 <pre>
   6465   ;; A landing pad which can catch an integer.
   6466   %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
   6467            catch i8** @_ZTIi
   6468   ;; A landing pad that is a cleanup.
   6469   %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
   6470            cleanup
   6471   ;; A landing pad which can catch an integer and can only throw a double.
   6472   %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
   6473            catch i8** @_ZTIi
   6474            filter [1 x i8**] [@_ZTId]
   6475 </pre>
   6476 
   6477 </div>
   6478 
   6479 </div>
   6480 
   6481 </div>
   6482 
   6483 <!-- *********************************************************************** -->
   6484 <h2><a name="intrinsics">Intrinsic Functions</a></h2>
   6485 <!-- *********************************************************************** -->
   6486 
   6487 <div>
   6488 
   6489 <p>LLVM supports the notion of an "intrinsic function".  These functions have
   6490    well known names and semantics and are required to follow certain
   6491    restrictions.  Overall, these intrinsics represent an extension mechanism for
   6492    the LLVM language that does not require changing all of the transformations
   6493    in LLVM when adding to the language (or the bitcode reader/writer, the
   6494    parser, etc...).</p>
   6495 
   6496 <p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
   6497    prefix is reserved in LLVM for intrinsic names; thus, function names may not
   6498    begin with this prefix.  Intrinsic functions must always be external
   6499    functions: you cannot define the body of intrinsic functions.  Intrinsic
   6500    functions may only be used in call or invoke instructions: it is illegal to
   6501    take the address of an intrinsic function.  Additionally, because intrinsic
   6502    functions are part of the LLVM language, it is required if any are added that
   6503    they be documented here.</p>
   6504 
   6505 <p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
   6506    family of functions that perform the same operation but on different data
   6507    types. Because LLVM can represent over 8 million different integer types,
   6508    overloading is used commonly to allow an intrinsic function to operate on any
   6509    integer type. One or more of the argument types or the result type can be
   6510    overloaded to accept any integer type. Argument types may also be defined as
   6511    exactly matching a previous argument's type or the result type. This allows
   6512    an intrinsic function which accepts multiple arguments, but needs all of them
   6513    to be of the same type, to only be overloaded with respect to a single
   6514    argument or the result.</p>
   6515 
   6516 <p>Overloaded intrinsics will have the names of its overloaded argument types
   6517    encoded into its function name, each preceded by a period. Only those types
   6518    which are overloaded result in a name suffix. Arguments whose type is matched
   6519    against another type do not. For example, the <tt>llvm.ctpop</tt> function
   6520    can take an integer of any width and returns an integer of exactly the same
   6521    integer width. This leads to a family of functions such as
   6522    <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
   6523    %val)</tt>.  Only one type, the return type, is overloaded, and only one type
   6524    suffix is required. Because the argument's type is matched against the return
   6525    type, it does not require its own name suffix.</p>
   6526 
   6527 <p>To learn how to add an intrinsic function, please see the
   6528    <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
   6529 
   6530 <!-- ======================================================================= -->
   6531 <h3>
   6532   <a name="int_varargs">Variable Argument Handling Intrinsics</a>
   6533 </h3>
   6534 
   6535 <div>
   6536 
   6537 <p>Variable argument support is defined in LLVM with
   6538    the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
   6539    intrinsic functions.  These functions are related to the similarly named
   6540    macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
   6541 
   6542 <p>All of these functions operate on arguments that use a target-specific value
   6543    type "<tt>va_list</tt>".  The LLVM assembly language reference manual does
   6544    not define what this type is, so all transformations should be prepared to
   6545    handle these functions regardless of the type used.</p>
   6546 
   6547 <p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
   6548    instruction and the variable argument handling intrinsic functions are
   6549    used.</p>
   6550 
   6551 <pre class="doc_code">
   6552 define i32 @test(i32 %X, ...) {
   6553   ; Initialize variable argument processing
   6554   %ap = alloca i8*
   6555   %ap2 = bitcast i8** %ap to i8*
   6556   call void @llvm.va_start(i8* %ap2)
   6557 
   6558   ; Read a single integer argument
   6559   %tmp = va_arg i8** %ap, i32
   6560 
   6561   ; Demonstrate usage of llvm.va_copy and llvm.va_end
   6562   %aq = alloca i8*
   6563   %aq2 = bitcast i8** %aq to i8*
   6564   call void @llvm.va_copy(i8* %aq2, i8* %ap2)
   6565   call void @llvm.va_end(i8* %aq2)
   6566 
   6567   ; Stop processing of arguments.
   6568   call void @llvm.va_end(i8* %ap2)
   6569   ret i32 %tmp
   6570 }
   6571 
   6572 declare void @llvm.va_start(i8*)
   6573 declare void @llvm.va_copy(i8*, i8*)
   6574 declare void @llvm.va_end(i8*)
   6575 </pre>
   6576 
   6577 <!-- _______________________________________________________________________ -->
   6578 <h4>
   6579   <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
   6580 </h4>
   6581 
   6582 
   6583 <div>
   6584 
   6585 <h5>Syntax:</h5>
   6586 <pre>
   6587   declare void %llvm.va_start(i8* &lt;arglist&gt;)
   6588 </pre>
   6589 
   6590 <h5>Overview:</h5>
   6591 <p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
   6592    for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
   6593 
   6594 <h5>Arguments:</h5>
   6595 <p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
   6596 
   6597 <h5>Semantics:</h5>
   6598 <p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
   6599    macro available in C.  In a target-dependent way, it initializes
   6600    the <tt>va_list</tt> element to which the argument points, so that the next
   6601    call to <tt>va_arg</tt> will produce the first variable argument passed to
   6602    the function.  Unlike the C <tt>va_start</tt> macro, this intrinsic does not
   6603    need to know the last argument of the function as the compiler can figure
   6604    that out.</p>
   6605 
   6606 </div>
   6607 
   6608 <!-- _______________________________________________________________________ -->
   6609 <h4>
   6610  <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
   6611 </h4>
   6612 
   6613 <div>
   6614 
   6615 <h5>Syntax:</h5>
   6616 <pre>
   6617   declare void @llvm.va_end(i8* &lt;arglist&gt;)
   6618 </pre>
   6619 
   6620 <h5>Overview:</h5>
   6621 <p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
   6622    which has been initialized previously
   6623    with <tt><a href="#int_va_start">llvm.va_start</a></tt>
   6624    or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
   6625 
   6626 <h5>Arguments:</h5>
   6627 <p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
   6628 
   6629 <h5>Semantics:</h5>
   6630 <p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
   6631    macro available in C.  In a target-dependent way, it destroys
   6632    the <tt>va_list</tt> element to which the argument points.  Calls
   6633    to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
   6634    and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
   6635    with calls to <tt>llvm.va_end</tt>.</p>
   6636 
   6637 </div>
   6638 
   6639 <!-- _______________________________________________________________________ -->
   6640 <h4>
   6641   <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
   6642 </h4>
   6643 
   6644 <div>
   6645 
   6646 <h5>Syntax:</h5>
   6647 <pre>
   6648   declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
   6649 </pre>
   6650 
   6651 <h5>Overview:</h5>
   6652 <p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
   6653    from the source argument list to the destination argument list.</p>
   6654 
   6655 <h5>Arguments:</h5>
   6656 <p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
   6657    The second argument is a pointer to a <tt>va_list</tt> element to copy
   6658    from.</p>
   6659 
   6660 <h5>Semantics:</h5>
   6661 <p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
   6662    macro available in C.  In a target-dependent way, it copies the
   6663    source <tt>va_list</tt> element into the destination <tt>va_list</tt>
   6664    element.  This intrinsic is necessary because
   6665    the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
   6666    arbitrarily complex and require, for example, memory allocation.</p>
   6667 
   6668 </div>
   6669 
   6670 </div>
   6671 
   6672 <!-- ======================================================================= -->
   6673 <h3>
   6674   <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
   6675 </h3>
   6676 
   6677 <div>
   6678 
   6679 <p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
   6680 Collection</a> (GC) requires the implementation and generation of these
   6681 intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
   6682 roots on the stack</a>, as well as garbage collector implementations that
   6683 require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
   6684 barriers.  Front-ends for type-safe garbage collected languages should generate
   6685 these intrinsics to make use of the LLVM garbage collectors.  For more details,
   6686 see <a href="GarbageCollection.html">Accurate Garbage Collection with
   6687 LLVM</a>.</p>
   6688 
   6689 <p>The garbage collection intrinsics only operate on objects in the generic
   6690    address space (address space zero).</p>
   6691 
   6692 <!-- _______________________________________________________________________ -->
   6693 <h4>
   6694   <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
   6695 </h4>
   6696 
   6697 <div>
   6698 
   6699 <h5>Syntax:</h5>
   6700 <pre>
   6701   declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
   6702 </pre>
   6703 
   6704 <h5>Overview:</h5>
   6705 <p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
   6706    the code generator, and allows some metadata to be associated with it.</p>
   6707 
   6708 <h5>Arguments:</h5>
   6709 <p>The first argument specifies the address of a stack object that contains the
   6710    root pointer.  The second pointer (which must be either a constant or a
   6711    global value address) contains the meta-data to be associated with the
   6712    root.</p>
   6713 
   6714 <h5>Semantics:</h5>
   6715 <p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
   6716    location.  At compile-time, the code generator generates information to allow
   6717    the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
   6718    intrinsic may only be used in a function which <a href="#gc">specifies a GC
   6719    algorithm</a>.</p>
   6720 
   6721 </div>
   6722 
   6723 <!-- _______________________________________________________________________ -->
   6724 <h4>
   6725   <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
   6726 </h4>
   6727 
   6728 <div>
   6729 
   6730 <h5>Syntax:</h5>
   6731 <pre>
   6732   declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
   6733 </pre>
   6734 
   6735 <h5>Overview:</h5>
   6736 <p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
   6737    locations, allowing garbage collector implementations that require read
   6738    barriers.</p>
   6739 
   6740 <h5>Arguments:</h5>
   6741 <p>The second argument is the address to read from, which should be an address
   6742    allocated from the garbage collector.  The first object is a pointer to the
   6743    start of the referenced object, if needed by the language runtime (otherwise
   6744    null).</p>
   6745 
   6746 <h5>Semantics:</h5>
   6747 <p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
   6748    instruction, but may be replaced with substantially more complex code by the
   6749    garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
   6750    may only be used in a function which <a href="#gc">specifies a GC
   6751    algorithm</a>.</p>
   6752 
   6753 </div>
   6754 
   6755 <!-- _______________________________________________________________________ -->
   6756 <h4>
   6757   <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
   6758 </h4>
   6759 
   6760 <div>
   6761 
   6762 <h5>Syntax:</h5>
   6763 <pre>
   6764   declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
   6765 </pre>
   6766 
   6767 <h5>Overview:</h5>
   6768 <p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
   6769    locations, allowing garbage collector implementations that require write
   6770    barriers (such as generational or reference counting collectors).</p>
   6771 
   6772 <h5>Arguments:</h5>
   6773 <p>The first argument is the reference to store, the second is the start of the
   6774    object to store it to, and the third is the address of the field of Obj to
   6775    store to.  If the runtime does not require a pointer to the object, Obj may
   6776    be null.</p>
   6777 
   6778 <h5>Semantics:</h5>
   6779 <p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
   6780    instruction, but may be replaced with substantially more complex code by the
   6781    garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
   6782    may only be used in a function which <a href="#gc">specifies a GC
   6783    algorithm</a>.</p>
   6784 
   6785 </div>
   6786 
   6787 </div>
   6788 
   6789 <!-- ======================================================================= -->
   6790 <h3>
   6791   <a name="int_codegen">Code Generator Intrinsics</a>
   6792 </h3>
   6793 
   6794 <div>
   6795 
   6796 <p>These intrinsics are provided by LLVM to expose special features that may
   6797    only be implemented with code generator support.</p>
   6798 
   6799 <!-- _______________________________________________________________________ -->
   6800 <h4>
   6801   <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
   6802 </h4>
   6803 
   6804 <div>
   6805 
   6806 <h5>Syntax:</h5>
   6807 <pre>
   6808   declare i8  *@llvm.returnaddress(i32 &lt;level&gt;)
   6809 </pre>
   6810 
   6811 <h5>Overview:</h5>
   6812 <p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
   6813    target-specific value indicating the return address of the current function
   6814    or one of its callers.</p>
   6815 
   6816 <h5>Arguments:</h5>
   6817 <p>The argument to this intrinsic indicates which function to return the address
   6818    for.  Zero indicates the calling function, one indicates its caller, etc.
   6819    The argument is <b>required</b> to be a constant integer value.</p>
   6820 
   6821 <h5>Semantics:</h5>
   6822 <p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
   6823    indicating the return address of the specified call frame, or zero if it
   6824    cannot be identified.  The value returned by this intrinsic is likely to be
   6825    incorrect or 0 for arguments other than zero, so it should only be used for
   6826    debugging purposes.</p>
   6827 
   6828 <p>Note that calling this intrinsic does not prevent function inlining or other
   6829    aggressive transformations, so the value returned may not be that of the
   6830    obvious source-language caller.</p>
   6831 
   6832 </div>
   6833 
   6834 <!-- _______________________________________________________________________ -->
   6835 <h4>
   6836   <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
   6837 </h4>
   6838 
   6839 <div>
   6840 
   6841 <h5>Syntax:</h5>
   6842 <pre>
   6843   declare i8* @llvm.frameaddress(i32 &lt;level&gt;)
   6844 </pre>
   6845 
   6846 <h5>Overview:</h5>
   6847 <p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
   6848    target-specific frame pointer value for the specified stack frame.</p>
   6849 
   6850 <h5>Arguments:</h5>
   6851 <p>The argument to this intrinsic indicates which function to return the frame
   6852    pointer for.  Zero indicates the calling function, one indicates its caller,
   6853    etc.  The argument is <b>required</b> to be a constant integer value.</p>
   6854 
   6855 <h5>Semantics:</h5>
   6856 <p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
   6857    indicating the frame address of the specified call frame, or zero if it
   6858    cannot be identified.  The value returned by this intrinsic is likely to be
   6859    incorrect or 0 for arguments other than zero, so it should only be used for
   6860    debugging purposes.</p>
   6861 
   6862 <p>Note that calling this intrinsic does not prevent function inlining or other
   6863    aggressive transformations, so the value returned may not be that of the
   6864    obvious source-language caller.</p>
   6865 
   6866 </div>
   6867 
   6868 <!-- _______________________________________________________________________ -->
   6869 <h4>
   6870   <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
   6871 </h4>
   6872 
   6873 <div>
   6874 
   6875 <h5>Syntax:</h5>
   6876 <pre>
   6877   declare i8* @llvm.stacksave()
   6878 </pre>
   6879 
   6880 <h5>Overview:</h5>
   6881 <p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
   6882    of the function stack, for use
   6883    with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>.  This is
   6884    useful for implementing language features like scoped automatic variable
   6885    sized arrays in C99.</p>
   6886 
   6887 <h5>Semantics:</h5>
   6888 <p>This intrinsic returns a opaque pointer value that can be passed
   6889    to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>.  When
   6890    an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
   6891    from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
   6892    to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
   6893    In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
   6894    stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
   6895 
   6896 </div>
   6897 
   6898 <!-- _______________________________________________________________________ -->
   6899 <h4>
   6900   <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
   6901 </h4>
   6902 
   6903 <div>
   6904 
   6905 <h5>Syntax:</h5>
   6906 <pre>
   6907   declare void @llvm.stackrestore(i8* %ptr)
   6908 </pre>
   6909 
   6910 <h5>Overview:</h5>
   6911 <p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
   6912    the function stack to the state it was in when the
   6913    corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
   6914    executed.  This is useful for implementing language features like scoped
   6915    automatic variable sized arrays in C99.</p>
   6916 
   6917 <h5>Semantics:</h5>
   6918 <p>See the description
   6919    for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
   6920 
   6921 </div>
   6922 
   6923 <!-- _______________________________________________________________________ -->
   6924 <h4>
   6925   <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
   6926 </h4>
   6927 
   6928 <div>
   6929 
   6930 <h5>Syntax:</h5>
   6931 <pre>
   6932   declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;, i32 &lt;cache type&gt;)
   6933 </pre>
   6934 
   6935 <h5>Overview:</h5>
   6936 <p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
   6937    insert a prefetch instruction if supported; otherwise, it is a noop.
   6938    Prefetches have no effect on the behavior of the program but can change its
   6939    performance characteristics.</p>
   6940 
   6941 <h5>Arguments:</h5>
   6942 <p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
   6943    specifier determining if the fetch should be for a read (0) or write (1),
   6944    and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
   6945    locality, to (3) - extremely local keep in cache. The <tt>cache type</tt>
   6946    specifies whether the prefetch is performed on the data (1) or instruction (0)
   6947    cache. The <tt>rw</tt>, <tt>locality</tt> and <tt>cache type</tt> arguments
   6948    must be constant integers.</p>
   6949 
   6950 <h5>Semantics:</h5>
   6951 <p>This intrinsic does not modify the behavior of the program.  In particular,
   6952    prefetches cannot trap and do not produce a value.  On targets that support
   6953    this intrinsic, the prefetch can provide hints to the processor cache for
   6954    better performance.</p>
   6955 
   6956 </div>
   6957 
   6958 <!-- _______________________________________________________________________ -->
   6959 <h4>
   6960   <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
   6961 </h4>
   6962 
   6963 <div>
   6964 
   6965 <h5>Syntax:</h5>
   6966 <pre>
   6967   declare void @llvm.pcmarker(i32 &lt;id&gt;)
   6968 </pre>
   6969 
   6970 <h5>Overview:</h5>
   6971 <p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
   6972    Counter (PC) in a region of code to simulators and other tools.  The method
   6973    is target specific, but it is expected that the marker will use exported
   6974    symbols to transmit the PC of the marker.  The marker makes no guarantees
   6975    that it will remain with any specific instruction after optimizations.  It is
   6976    possible that the presence of a marker will inhibit optimizations.  The
   6977    intended use is to be inserted after optimizations to allow correlations of
   6978    simulation runs.</p>
   6979 
   6980 <h5>Arguments:</h5>
   6981 <p><tt>id</tt> is a numerical id identifying the marker.</p>
   6982 
   6983 <h5>Semantics:</h5>
   6984 <p>This intrinsic does not modify the behavior of the program.  Backends that do
   6985    not support this intrinsic may ignore it.</p>
   6986 
   6987 </div>
   6988 
   6989 <!-- _______________________________________________________________________ -->
   6990 <h4>
   6991   <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
   6992 </h4>
   6993 
   6994 <div>
   6995 
   6996 <h5>Syntax:</h5>
   6997 <pre>
   6998   declare i64 @llvm.readcyclecounter()
   6999 </pre>
   7000 
   7001 <h5>Overview:</h5>
   7002 <p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
   7003    counter register (or similar low latency, high accuracy clocks) on those
   7004    targets that support it.  On X86, it should map to RDTSC.  On Alpha, it
   7005    should map to RPCC.  As the backing counters overflow quickly (on the order
   7006    of 9 seconds on alpha), this should only be used for small timings.</p>
   7007 
   7008 <h5>Semantics:</h5>
   7009 <p>When directly supported, reading the cycle counter should not modify any
   7010    memory.  Implementations are allowed to either return a application specific
   7011    value or a system wide value.  On backends without support, this is lowered
   7012    to a constant 0.</p>
   7013 
   7014 </div>
   7015 
   7016 </div>
   7017 
   7018 <!-- ======================================================================= -->
   7019 <h3>
   7020   <a name="int_libc">Standard C Library Intrinsics</a>
   7021 </h3>
   7022 
   7023 <div>
   7024 
   7025 <p>LLVM provides intrinsics for a few important standard C library functions.
   7026    These intrinsics allow source-language front-ends to pass information about
   7027    the alignment of the pointer arguments to the code generator, providing
   7028    opportunity for more efficient code generation.</p>
   7029 
   7030 <!-- _______________________________________________________________________ -->
   7031 <h4>
   7032   <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
   7033 </h4>
   7034 
   7035 <div>
   7036 
   7037 <h5>Syntax:</h5>
   7038 <p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
   7039    integer bit width and for different address spaces. Not all targets support
   7040    all bit widths however.</p>
   7041 
   7042 <pre>
   7043   declare void @llvm.memcpy.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
   7044                                           i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
   7045   declare void @llvm.memcpy.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
   7046                                           i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
   7047 </pre>
   7048 
   7049 <h5>Overview:</h5>
   7050 <p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
   7051    source location to the destination location.</p>
   7052 
   7053 <p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
   7054    intrinsics do not return a value, takes extra alignment/isvolatile arguments
   7055    and the pointers can be in specified address spaces.</p>
   7056 
   7057 <h5>Arguments:</h5>
   7058 
   7059 <p>The first argument is a pointer to the destination, the second is a pointer
   7060    to the source.  The third argument is an integer argument specifying the
   7061    number of bytes to copy, the fourth argument is the alignment of the
   7062    source and destination locations, and the fifth is a boolean indicating a
   7063    volatile access.</p>
   7064 
   7065 <p>If the call to this intrinsic has an alignment value that is not 0 or 1,
   7066    then the caller guarantees that both the source and destination pointers are
   7067    aligned to that boundary.</p>
   7068 
   7069 <p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
   7070    <tt>llvm.memcpy</tt> call is a <a href="#volatile">volatile operation</a>.
   7071    The detailed access behavior is not very cleanly specified and it is unwise
   7072    to depend on it.</p>
   7073 
   7074 <h5>Semantics:</h5>
   7075 
   7076 <p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
   7077    source location to the destination location, which are not allowed to
   7078    overlap.  It copies "len" bytes of memory over.  If the argument is known to
   7079    be aligned to some boundary, this can be specified as the fourth argument,
   7080    otherwise it should be set to 0 or 1.</p>
   7081 
   7082 </div>
   7083 
   7084 <!-- _______________________________________________________________________ -->
   7085 <h4>
   7086   <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
   7087 </h4>
   7088 
   7089 <div>
   7090 
   7091 <h5>Syntax:</h5>
   7092 <p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
   7093    width and for different address space. Not all targets support all bit
   7094    widths however.</p>
   7095 
   7096 <pre>
   7097   declare void @llvm.memmove.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
   7098                                            i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
   7099   declare void @llvm.memmove.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
   7100                                            i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
   7101 </pre>
   7102 
   7103 <h5>Overview:</h5>
   7104 <p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
   7105    source location to the destination location. It is similar to the
   7106    '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
   7107    overlap.</p>
   7108 
   7109 <p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
   7110    intrinsics do not return a value, takes extra alignment/isvolatile arguments
   7111    and the pointers can be in specified address spaces.</p>
   7112 
   7113 <h5>Arguments:</h5>
   7114 
   7115 <p>The first argument is a pointer to the destination, the second is a pointer
   7116    to the source.  The third argument is an integer argument specifying the
   7117    number of bytes to copy, the fourth argument is the alignment of the
   7118    source and destination locations, and the fifth is a boolean indicating a
   7119    volatile access.</p>
   7120 
   7121 <p>If the call to this intrinsic has an alignment value that is not 0 or 1,
   7122    then the caller guarantees that the source and destination pointers are
   7123    aligned to that boundary.</p>
   7124 
   7125 <p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
   7126    <tt>llvm.memmove</tt> call is a <a href="#volatile">volatile operation</a>.
   7127    The detailed access behavior is not very cleanly specified and it is unwise
   7128    to depend on it.</p>
   7129 
   7130 <h5>Semantics:</h5>
   7131 
   7132 <p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
   7133    source location to the destination location, which may overlap.  It copies
   7134    "len" bytes of memory over.  If the argument is known to be aligned to some
   7135    boundary, this can be specified as the fourth argument, otherwise it should
   7136    be set to 0 or 1.</p>
   7137 
   7138 </div>
   7139 
   7140 <!-- _______________________________________________________________________ -->
   7141 <h4>
   7142   <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
   7143 </h4>
   7144 
   7145 <div>
   7146 
   7147 <h5>Syntax:</h5>
   7148 <p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
   7149    width and for different address spaces. However, not all targets support all
   7150    bit widths.</p>
   7151 
   7152 <pre>
   7153   declare void @llvm.memset.p0i8.i32(i8* &lt;dest&gt;, i8 &lt;val&gt;,
   7154                                      i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
   7155   declare void @llvm.memset.p0i8.i64(i8* &lt;dest&gt;, i8 &lt;val&gt;,
   7156                                      i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
   7157 </pre>
   7158 
   7159 <h5>Overview:</h5>
   7160 <p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
   7161    particular byte value.</p>
   7162 
   7163 <p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
   7164    intrinsic does not return a value and takes extra alignment/volatile
   7165    arguments.  Also, the destination can be in an arbitrary address space.</p>
   7166 
   7167 <h5>Arguments:</h5>
   7168 <p>The first argument is a pointer to the destination to fill, the second is the
   7169    byte value with which to fill it, the third argument is an integer argument
   7170    specifying the number of bytes to fill, and the fourth argument is the known
   7171    alignment of the destination location.</p>
   7172 
   7173 <p>If the call to this intrinsic has an alignment value that is not 0 or 1,
   7174    then the caller guarantees that the destination pointer is aligned to that
   7175    boundary.</p>
   7176 
   7177 <p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
   7178    <tt>llvm.memset</tt> call is a <a href="#volatile">volatile operation</a>.
   7179    The detailed access behavior is not very cleanly specified and it is unwise
   7180    to depend on it.</p>
   7181 
   7182 <h5>Semantics:</h5>
   7183 <p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
   7184    at the destination location.  If the argument is known to be aligned to some
   7185    boundary, this can be specified as the fourth argument, otherwise it should
   7186    be set to 0 or 1.</p>
   7187 
   7188 </div>
   7189 
   7190 <!-- _______________________________________________________________________ -->
   7191 <h4>
   7192   <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
   7193 </h4>
   7194 
   7195 <div>
   7196 
   7197 <h5>Syntax:</h5>
   7198 <p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
   7199    floating point or vector of floating point type. Not all targets support all
   7200    types however.</p>
   7201 
   7202 <pre>
   7203   declare float     @llvm.sqrt.f32(float %Val)
   7204   declare double    @llvm.sqrt.f64(double %Val)
   7205   declare x86_fp80  @llvm.sqrt.f80(x86_fp80 %Val)
   7206   declare fp128     @llvm.sqrt.f128(fp128 %Val)
   7207   declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
   7208 </pre>
   7209 
   7210 <h5>Overview:</h5>
   7211 <p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
   7212    returning the same value as the libm '<tt>sqrt</tt>' functions would.
   7213    Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
   7214    behavior for negative numbers other than -0.0 (which allows for better
   7215    optimization, because there is no need to worry about errno being
   7216    set).  <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
   7217 
   7218 <h5>Arguments:</h5>
   7219 <p>The argument and return value are floating point numbers of the same
   7220    type.</p>
   7221 
   7222 <h5>Semantics:</h5>
   7223 <p>This function returns the sqrt of the specified operand if it is a
   7224    nonnegative floating point number.</p>
   7225 
   7226 </div>
   7227 
   7228 <!-- _______________________________________________________________________ -->
   7229 <h4>
   7230   <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
   7231 </h4>
   7232 
   7233 <div>
   7234 
   7235 <h5>Syntax:</h5>
   7236 <p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
   7237    floating point or vector of floating point type. Not all targets support all
   7238    types however.</p>
   7239 
   7240 <pre>
   7241   declare float     @llvm.powi.f32(float  %Val, i32 %power)
   7242   declare double    @llvm.powi.f64(double %Val, i32 %power)
   7243   declare x86_fp80  @llvm.powi.f80(x86_fp80  %Val, i32 %power)
   7244   declare fp128     @llvm.powi.f128(fp128 %Val, i32 %power)
   7245   declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128  %Val, i32 %power)
   7246 </pre>
   7247 
   7248 <h5>Overview:</h5>
   7249 <p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
   7250    specified (positive or negative) power.  The order of evaluation of
   7251    multiplications is not defined.  When a vector of floating point type is
   7252    used, the second argument remains a scalar integer value.</p>
   7253 
   7254 <h5>Arguments:</h5>
   7255 <p>The second argument is an integer power, and the first is a value to raise to
   7256    that power.</p>
   7257 
   7258 <h5>Semantics:</h5>
   7259 <p>This function returns the first value raised to the second power with an
   7260    unspecified sequence of rounding operations.</p>
   7261 
   7262 </div>
   7263 
   7264 <!-- _______________________________________________________________________ -->
   7265 <h4>
   7266   <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
   7267 </h4>
   7268 
   7269 <div>
   7270 
   7271 <h5>Syntax:</h5>
   7272 <p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
   7273    floating point or vector of floating point type. Not all targets support all
   7274    types however.</p>
   7275 
   7276 <pre>
   7277   declare float     @llvm.sin.f32(float  %Val)
   7278   declare double    @llvm.sin.f64(double %Val)
   7279   declare x86_fp80  @llvm.sin.f80(x86_fp80  %Val)
   7280   declare fp128     @llvm.sin.f128(fp128 %Val)
   7281   declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128  %Val)
   7282 </pre>
   7283 
   7284 <h5>Overview:</h5>
   7285 <p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
   7286 
   7287 <h5>Arguments:</h5>
   7288 <p>The argument and return value are floating point numbers of the same
   7289    type.</p>
   7290 
   7291 <h5>Semantics:</h5>
   7292 <p>This function returns the sine of the specified operand, returning the same
   7293    values as the libm <tt>sin</tt> functions would, and handles error conditions
   7294    in the same way.</p>
   7295 
   7296 </div>
   7297 
   7298 <!-- _______________________________________________________________________ -->
   7299 <h4>
   7300   <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
   7301 </h4>
   7302 
   7303 <div>
   7304 
   7305 <h5>Syntax:</h5>
   7306 <p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
   7307    floating point or vector of floating point type. Not all targets support all
   7308    types however.</p>
   7309 
   7310 <pre>
   7311   declare float     @llvm.cos.f32(float  %Val)
   7312   declare double    @llvm.cos.f64(double %Val)
   7313   declare x86_fp80  @llvm.cos.f80(x86_fp80  %Val)
   7314   declare fp128     @llvm.cos.f128(fp128 %Val)
   7315   declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128  %Val)
   7316 </pre>
   7317 
   7318 <h5>Overview:</h5>
   7319 <p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
   7320 
   7321 <h5>Arguments:</h5>
   7322 <p>The argument and return value are floating point numbers of the same
   7323    type.</p>
   7324 
   7325 <h5>Semantics:</h5>
   7326 <p>This function returns the cosine of the specified operand, returning the same
   7327    values as the libm <tt>cos</tt> functions would, and handles error conditions
   7328    in the same way.</p>
   7329 
   7330 </div>
   7331 
   7332 <!-- _______________________________________________________________________ -->
   7333 <h4>
   7334   <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
   7335 </h4>
   7336 
   7337 <div>
   7338 
   7339 <h5>Syntax:</h5>
   7340 <p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
   7341    floating point or vector of floating point type. Not all targets support all
   7342    types however.</p>
   7343 
   7344 <pre>
   7345   declare float     @llvm.pow.f32(float  %Val, float %Power)
   7346   declare double    @llvm.pow.f64(double %Val, double %Power)
   7347   declare x86_fp80  @llvm.pow.f80(x86_fp80  %Val, x86_fp80 %Power)
   7348   declare fp128     @llvm.pow.f128(fp128 %Val, fp128 %Power)
   7349   declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128  %Val, ppc_fp128 Power)
   7350 </pre>
   7351 
   7352 <h5>Overview:</h5>
   7353 <p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
   7354    specified (positive or negative) power.</p>
   7355 
   7356 <h5>Arguments:</h5>
   7357 <p>The second argument is a floating point power, and the first is a value to
   7358    raise to that power.</p>
   7359 
   7360 <h5>Semantics:</h5>
   7361 <p>This function returns the first value raised to the second power, returning
   7362    the same values as the libm <tt>pow</tt> functions would, and handles error
   7363    conditions in the same way.</p>
   7364 
   7365 </div>
   7366 
   7367 <!-- _______________________________________________________________________ -->
   7368 <h4>
   7369   <a name="int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a>
   7370 </h4>
   7371 
   7372 <div>
   7373 
   7374 <h5>Syntax:</h5>
   7375 <p>This is an overloaded intrinsic. You can use <tt>llvm.exp</tt> on any
   7376    floating point or vector of floating point type. Not all targets support all
   7377    types however.</p>
   7378 
   7379 <pre>
   7380   declare float     @llvm.exp.f32(float  %Val)
   7381   declare double    @llvm.exp.f64(double %Val)
   7382   declare x86_fp80  @llvm.exp.f80(x86_fp80  %Val)
   7383   declare fp128     @llvm.exp.f128(fp128 %Val)
   7384   declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128  %Val)
   7385 </pre>
   7386 
   7387 <h5>Overview:</h5>
   7388 <p>The '<tt>llvm.exp.*</tt>' intrinsics perform the exp function.</p>
   7389 
   7390 <h5>Arguments:</h5>
   7391 <p>The argument and return value are floating point numbers of the same
   7392    type.</p>
   7393 
   7394 <h5>Semantics:</h5>
   7395 <p>This function returns the same values as the libm <tt>exp</tt> functions
   7396    would, and handles error conditions in the same way.</p>
   7397 
   7398 </div>
   7399 
   7400 <!-- _______________________________________________________________________ -->
   7401 <h4>
   7402   <a name="int_log">'<tt>llvm.log.*</tt>' Intrinsic</a>
   7403 </h4>
   7404 
   7405 <div>
   7406 
   7407 <h5>Syntax:</h5>
   7408 <p>This is an overloaded intrinsic. You can use <tt>llvm.log</tt> on any
   7409    floating point or vector of floating point type. Not all targets support all
   7410    types however.</p>
   7411 
   7412 <pre>
   7413   declare float     @llvm.log.f32(float  %Val)
   7414   declare double    @llvm.log.f64(double %Val)
   7415   declare x86_fp80  @llvm.log.f80(x86_fp80  %Val)
   7416   declare fp128     @llvm.log.f128(fp128 %Val)
   7417   declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128  %Val)
   7418 </pre>
   7419 
   7420 <h5>Overview:</h5>
   7421 <p>The '<tt>llvm.log.*</tt>' intrinsics perform the log function.</p>
   7422 
   7423 <h5>Arguments:</h5>
   7424 <p>The argument and return value are floating point numbers of the same
   7425    type.</p>
   7426 
   7427 <h5>Semantics:</h5>
   7428 <p>This function returns the same values as the libm <tt>log</tt> functions
   7429    would, and handles error conditions in the same way.</p>
   7430 
   7431 </div>
   7432 
   7433 <!-- _______________________________________________________________________ -->
   7434 <h4>
   7435   <a name="int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a>
   7436 </h4>
   7437 
   7438 <div>
   7439 
   7440 <h5>Syntax:</h5>
   7441 <p>This is an overloaded intrinsic. You can use <tt>llvm.fma</tt> on any
   7442    floating point or vector of floating point type. Not all targets support all
   7443    types however.</p>
   7444 
   7445 <pre>
   7446   declare float     @llvm.fma.f32(float  %a, float  %b, float  %c)
   7447   declare double    @llvm.fma.f64(double %a, double %b, double %c)
   7448   declare x86_fp80  @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
   7449   declare fp128     @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
   7450   declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
   7451 </pre>
   7452 
   7453 <h5>Overview:</h5>
   7454 <p>The '<tt>llvm.fma.*</tt>' intrinsics perform the fused multiply-add
   7455    operation.</p>
   7456 
   7457 <h5>Arguments:</h5>
   7458 <p>The argument and return value are floating point numbers of the same
   7459    type.</p>
   7460 
   7461 <h5>Semantics:</h5>
   7462 <p>This function returns the same values as the libm <tt>fma</tt> functions
   7463    would.</p>
   7464 
   7465 </div>
   7466 
   7467 </div>
   7468 
   7469 <!-- ======================================================================= -->
   7470 <h3>
   7471   <a name="int_manip">Bit Manipulation Intrinsics</a>
   7472 </h3>
   7473 
   7474 <div>
   7475 
   7476 <p>LLVM provides intrinsics for a few important bit manipulation operations.
   7477    These allow efficient code generation for some algorithms.</p>
   7478 
   7479 <!-- _______________________________________________________________________ -->
   7480 <h4>
   7481   <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
   7482 </h4>
   7483 
   7484 <div>
   7485 
   7486 <h5>Syntax:</h5>
   7487 <p>This is an overloaded intrinsic function. You can use bswap on any integer
   7488    type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
   7489 
   7490 <pre>
   7491   declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
   7492   declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
   7493   declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
   7494 </pre>
   7495 
   7496 <h5>Overview:</h5>
   7497 <p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
   7498    values with an even number of bytes (positive multiple of 16 bits).  These
   7499    are useful for performing operations on data that is not in the target's
   7500    native byte order.</p>
   7501 
   7502 <h5>Semantics:</h5>
   7503 <p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
   7504    and low byte of the input i16 swapped.  Similarly,
   7505    the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
   7506    bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
   7507    2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
   7508    The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
   7509    extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
   7510    more, respectively).</p>
   7511 
   7512 </div>
   7513 
   7514 <!-- _______________________________________________________________________ -->
   7515 <h4>
   7516   <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
   7517 </h4>
   7518 
   7519 <div>
   7520 
   7521 <h5>Syntax:</h5>
   7522 <p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
   7523    width, or on any vector with integer elements. Not all targets support all
   7524   bit widths or vector types, however.</p>
   7525 
   7526 <pre>
   7527   declare i8 @llvm.ctpop.i8(i8  &lt;src&gt;)
   7528   declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
   7529   declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
   7530   declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
   7531   declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
   7532   declare &lt;2 x i32&gt; @llvm.ctpop.v2i32(&lt;2 x i32&gt; &lt;src&gt;)
   7533 </pre>
   7534 
   7535 <h5>Overview:</h5>
   7536 <p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
   7537    in a value.</p>
   7538 
   7539 <h5>Arguments:</h5>
   7540 <p>The only argument is the value to be counted.  The argument may be of any
   7541    integer type, or a vector with integer elements.
   7542    The return type must match the argument type.</p>
   7543 
   7544 <h5>Semantics:</h5>
   7545 <p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable, or within each
   7546    element of a vector.</p>
   7547 
   7548 </div>
   7549 
   7550 <!-- _______________________________________________________________________ -->
   7551 <h4>
   7552   <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
   7553 </h4>
   7554 
   7555 <div>
   7556 
   7557 <h5>Syntax:</h5>
   7558 <p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
   7559    integer bit width, or any vector whose elements are integers. Not all
   7560    targets support all bit widths or vector types, however.</p>
   7561 
   7562 <pre>
   7563   declare i8   @llvm.ctlz.i8  (i8   &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
   7564   declare i16  @llvm.ctlz.i16 (i16  &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
   7565   declare i32  @llvm.ctlz.i32 (i32  &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
   7566   declare i64  @llvm.ctlz.i64 (i64  &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
   7567   declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
   7568   declase &lt;2 x i32&gt; @llvm.ctlz.v2i32(&lt;2 x i32&gt; &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
   7569 </pre>
   7570 
   7571 <h5>Overview:</h5>
   7572 <p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
   7573    leading zeros in a variable.</p>
   7574 
   7575 <h5>Arguments:</h5>
   7576 <p>The first argument is the value to be counted. This argument may be of any
   7577    integer type, or a vectory with integer element type. The return type
   7578    must match the first argument type.</p>
   7579 
   7580 <p>The second argument must be a constant and is a flag to indicate whether the
   7581    intrinsic should ensure that a zero as the first argument produces a defined
   7582    result. Historically some architectures did not provide a defined result for
   7583    zero values as efficiently, and many algorithms are now predicated on
   7584    avoiding zero-value inputs.</p>
   7585 
   7586 <h5>Semantics:</h5>
   7587 <p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
   7588    zeros in a variable, or within each element of the vector.
   7589    If <tt>src == 0</tt> then the result is the size in bits of the type of
   7590    <tt>src</tt> if <tt>is_zero_undef == 0</tt> and <tt>undef</tt> otherwise.
   7591    For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
   7592 
   7593 </div>
   7594 
   7595 <!-- _______________________________________________________________________ -->
   7596 <h4>
   7597   <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
   7598 </h4>
   7599 
   7600 <div>
   7601 
   7602 <h5>Syntax:</h5>
   7603 <p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
   7604    integer bit width, or any vector of integer elements. Not all targets
   7605    support all bit widths or vector types, however.</p>
   7606 
   7607 <pre>
   7608   declare i8   @llvm.cttz.i8  (i8   &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
   7609   declare i16  @llvm.cttz.i16 (i16  &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
   7610   declare i32  @llvm.cttz.i32 (i32  &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
   7611   declare i64  @llvm.cttz.i64 (i64  &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
   7612   declare i256 @llvm.cttz.i256(i256 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
   7613   declase &lt;2 x i32&gt; @llvm.cttz.v2i32(&lt;2 x i32&gt; &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
   7614 </pre>
   7615 
   7616 <h5>Overview:</h5>
   7617 <p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
   7618    trailing zeros.</p>
   7619 
   7620 <h5>Arguments:</h5>
   7621 <p>The first argument is the value to be counted. This argument may be of any
   7622    integer type, or a vectory with integer element type. The return type
   7623    must match the first argument type.</p>
   7624 
   7625 <p>The second argument must be a constant and is a flag to indicate whether the
   7626    intrinsic should ensure that a zero as the first argument produces a defined
   7627    result. Historically some architectures did not provide a defined result for
   7628    zero values as efficiently, and many algorithms are now predicated on
   7629    avoiding zero-value inputs.</p>
   7630 
   7631 <h5>Semantics:</h5>
   7632 <p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
   7633    zeros in a variable, or within each element of a vector.
   7634    If <tt>src == 0</tt> then the result is the size in bits of the type of
   7635    <tt>src</tt> if <tt>is_zero_undef == 0</tt> and <tt>undef</tt> otherwise.
   7636    For example, <tt>llvm.cttz(2) = 1</tt>.</p>
   7637 
   7638 </div>
   7639 
   7640 </div>
   7641 
   7642 <!-- ======================================================================= -->
   7643 <h3>
   7644   <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
   7645 </h3>
   7646 
   7647 <div>
   7648 
   7649 <p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
   7650 
   7651 <!-- _______________________________________________________________________ -->
   7652 <h4>
   7653   <a name="int_sadd_overflow">
   7654     '<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics
   7655   </a>
   7656 </h4>
   7657 
   7658 <div>
   7659 
   7660 <h5>Syntax:</h5>
   7661 <p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
   7662    on any integer bit width.</p>
   7663 
   7664 <pre>
   7665   declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
   7666   declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
   7667   declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
   7668 </pre>
   7669 
   7670 <h5>Overview:</h5>
   7671 <p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
   7672    a signed addition of the two arguments, and indicate whether an overflow
   7673    occurred during the signed summation.</p>
   7674 
   7675 <h5>Arguments:</h5>
   7676 <p>The arguments (%a and %b) and the first element of the result structure may
   7677    be of integer types of any bit width, but they must have the same bit
   7678    width. The second element of the result structure must be of
   7679    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
   7680    undergo signed addition.</p>
   7681 
   7682 <h5>Semantics:</h5>
   7683 <p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
   7684    a signed addition of the two variables. They return a structure &mdash; the
   7685    first element of which is the signed summation, and the second element of
   7686    which is a bit specifying if the signed summation resulted in an
   7687    overflow.</p>
   7688 
   7689 <h5>Examples:</h5>
   7690 <pre>
   7691   %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
   7692   %sum = extractvalue {i32, i1} %res, 0
   7693   %obit = extractvalue {i32, i1} %res, 1
   7694   br i1 %obit, label %overflow, label %normal
   7695 </pre>
   7696 
   7697 </div>
   7698 
   7699 <!-- _______________________________________________________________________ -->
   7700 <h4>
   7701   <a name="int_uadd_overflow">
   7702     '<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics
   7703   </a>
   7704 </h4>
   7705 
   7706 <div>
   7707 
   7708 <h5>Syntax:</h5>
   7709 <p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
   7710    on any integer bit width.</p>
   7711 
   7712 <pre>
   7713   declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
   7714   declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
   7715   declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
   7716 </pre>
   7717 
   7718 <h5>Overview:</h5>
   7719 <p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
   7720    an unsigned addition of the two arguments, and indicate whether a carry
   7721    occurred during the unsigned summation.</p>
   7722 
   7723 <h5>Arguments:</h5>
   7724 <p>The arguments (%a and %b) and the first element of the result structure may
   7725    be of integer types of any bit width, but they must have the same bit
   7726    width. The second element of the result structure must be of
   7727    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
   7728    undergo unsigned addition.</p>
   7729 
   7730 <h5>Semantics:</h5>
   7731 <p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
   7732    an unsigned addition of the two arguments. They return a structure &mdash;
   7733    the first element of which is the sum, and the second element of which is a
   7734    bit specifying if the unsigned summation resulted in a carry.</p>
   7735 
   7736 <h5>Examples:</h5>
   7737 <pre>
   7738   %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
   7739   %sum = extractvalue {i32, i1} %res, 0
   7740   %obit = extractvalue {i32, i1} %res, 1
   7741   br i1 %obit, label %carry, label %normal
   7742 </pre>
   7743 
   7744 </div>
   7745 
   7746 <!-- _______________________________________________________________________ -->
   7747 <h4>
   7748   <a name="int_ssub_overflow">
   7749     '<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics
   7750   </a>
   7751 </h4>
   7752 
   7753 <div>
   7754 
   7755 <h5>Syntax:</h5>
   7756 <p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
   7757    on any integer bit width.</p>
   7758 
   7759 <pre>
   7760   declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
   7761   declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
   7762   declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
   7763 </pre>
   7764 
   7765 <h5>Overview:</h5>
   7766 <p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
   7767    a signed subtraction of the two arguments, and indicate whether an overflow
   7768    occurred during the signed subtraction.</p>
   7769 
   7770 <h5>Arguments:</h5>
   7771 <p>The arguments (%a and %b) and the first element of the result structure may
   7772    be of integer types of any bit width, but they must have the same bit
   7773    width. The second element of the result structure must be of
   7774    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
   7775    undergo signed subtraction.</p>
   7776 
   7777 <h5>Semantics:</h5>
   7778 <p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
   7779    a signed subtraction of the two arguments. They return a structure &mdash;
   7780    the first element of which is the subtraction, and the second element of
   7781    which is a bit specifying if the signed subtraction resulted in an
   7782    overflow.</p>
   7783 
   7784 <h5>Examples:</h5>
   7785 <pre>
   7786   %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
   7787   %sum = extractvalue {i32, i1} %res, 0
   7788   %obit = extractvalue {i32, i1} %res, 1
   7789   br i1 %obit, label %overflow, label %normal
   7790 </pre>
   7791 
   7792 </div>
   7793 
   7794 <!-- _______________________________________________________________________ -->
   7795 <h4>
   7796   <a name="int_usub_overflow">
   7797     '<tt>llvm.usub.with.overflow.*</tt>' Intrinsics
   7798   </a>
   7799 </h4>
   7800 
   7801 <div>
   7802 
   7803 <h5>Syntax:</h5>
   7804 <p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
   7805    on any integer bit width.</p>
   7806 
   7807 <pre>
   7808   declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
   7809   declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
   7810   declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
   7811 </pre>
   7812 
   7813 <h5>Overview:</h5>
   7814 <p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
   7815    an unsigned subtraction of the two arguments, and indicate whether an
   7816    overflow occurred during the unsigned subtraction.</p>
   7817 
   7818 <h5>Arguments:</h5>
   7819 <p>The arguments (%a and %b) and the first element of the result structure may
   7820    be of integer types of any bit width, but they must have the same bit
   7821    width. The second element of the result structure must be of
   7822    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
   7823    undergo unsigned subtraction.</p>
   7824 
   7825 <h5>Semantics:</h5>
   7826 <p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
   7827    an unsigned subtraction of the two arguments. They return a structure &mdash;
   7828    the first element of which is the subtraction, and the second element of
   7829    which is a bit specifying if the unsigned subtraction resulted in an
   7830    overflow.</p>
   7831 
   7832 <h5>Examples:</h5>
   7833 <pre>
   7834   %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
   7835   %sum = extractvalue {i32, i1} %res, 0
   7836   %obit = extractvalue {i32, i1} %res, 1
   7837   br i1 %obit, label %overflow, label %normal
   7838 </pre>
   7839 
   7840 </div>
   7841 
   7842 <!-- _______________________________________________________________________ -->
   7843 <h4>
   7844   <a name="int_smul_overflow">
   7845     '<tt>llvm.smul.with.overflow.*</tt>' Intrinsics
   7846   </a>
   7847 </h4>
   7848 
   7849 <div>
   7850 
   7851 <h5>Syntax:</h5>
   7852 <p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
   7853    on any integer bit width.</p>
   7854 
   7855 <pre>
   7856   declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
   7857   declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
   7858   declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
   7859 </pre>
   7860 
   7861 <h5>Overview:</h5>
   7862 
   7863 <p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
   7864    a signed multiplication of the two arguments, and indicate whether an
   7865    overflow occurred during the signed multiplication.</p>
   7866 
   7867 <h5>Arguments:</h5>
   7868 <p>The arguments (%a and %b) and the first element of the result structure may
   7869    be of integer types of any bit width, but they must have the same bit
   7870    width. The second element of the result structure must be of
   7871    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
   7872    undergo signed multiplication.</p>
   7873 
   7874 <h5>Semantics:</h5>
   7875 <p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
   7876    a signed multiplication of the two arguments. They return a structure &mdash;
   7877    the first element of which is the multiplication, and the second element of
   7878    which is a bit specifying if the signed multiplication resulted in an
   7879    overflow.</p>
   7880 
   7881 <h5>Examples:</h5>
   7882 <pre>
   7883   %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
   7884   %sum = extractvalue {i32, i1} %res, 0
   7885   %obit = extractvalue {i32, i1} %res, 1
   7886   br i1 %obit, label %overflow, label %normal
   7887 </pre>
   7888 
   7889 </div>
   7890 
   7891 <!-- _______________________________________________________________________ -->
   7892 <h4>
   7893   <a name="int_umul_overflow">
   7894     '<tt>llvm.umul.with.overflow.*</tt>' Intrinsics
   7895   </a>
   7896 </h4>
   7897 
   7898 <div>
   7899 
   7900 <h5>Syntax:</h5>
   7901 <p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
   7902    on any integer bit width.</p>
   7903 
   7904 <pre>
   7905   declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
   7906   declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
   7907   declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
   7908 </pre>
   7909 
   7910 <h5>Overview:</h5>
   7911 <p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
   7912    a unsigned multiplication of the two arguments, and indicate whether an
   7913    overflow occurred during the unsigned multiplication.</p>
   7914 
   7915 <h5>Arguments:</h5>
   7916 <p>The arguments (%a and %b) and the first element of the result structure may
   7917    be of integer types of any bit width, but they must have the same bit
   7918    width. The second element of the result structure must be of
   7919    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
   7920    undergo unsigned multiplication.</p>
   7921 
   7922 <h5>Semantics:</h5>
   7923 <p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
   7924    an unsigned multiplication of the two arguments. They return a structure
   7925    &mdash; the first element of which is the multiplication, and the second
   7926    element of which is a bit specifying if the unsigned multiplication resulted
   7927    in an overflow.</p>
   7928 
   7929 <h5>Examples:</h5>
   7930 <pre>
   7931   %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
   7932   %sum = extractvalue {i32, i1} %res, 0
   7933   %obit = extractvalue {i32, i1} %res, 1
   7934   br i1 %obit, label %overflow, label %normal
   7935 </pre>
   7936 
   7937 </div>
   7938 
   7939 </div>
   7940 
   7941 <!-- ======================================================================= -->
   7942 <h3>
   7943   <a name="int_fp16">Half Precision Floating Point Intrinsics</a>
   7944 </h3>
   7945 
   7946 <div>
   7947 
   7948 <p>Half precision floating point is a storage-only format. This means that it is
   7949    a dense encoding (in memory) but does not support computation in the
   7950    format.</p>
   7951    
   7952 <p>This means that code must first load the half-precision floating point
   7953    value as an i16, then convert it to float with <a
   7954    href="#int_convert_from_fp16"><tt>llvm.convert.from.fp16</tt></a>.
   7955    Computation can then be performed on the float value (including extending to
   7956    double etc).  To store the value back to memory, it is first converted to
   7957    float if needed, then converted to i16 with
   7958    <a href="#int_convert_to_fp16"><tt>llvm.convert.to.fp16</tt></a>, then
   7959    storing as an i16 value.</p>
   7960 
   7961 <!-- _______________________________________________________________________ -->
   7962 <h4>
   7963   <a name="int_convert_to_fp16">
   7964     '<tt>llvm.convert.to.fp16</tt>' Intrinsic
   7965   </a>
   7966 </h4>
   7967 
   7968 <div>
   7969 
   7970 <h5>Syntax:</h5>
   7971 <pre>
   7972   declare i16 @llvm.convert.to.fp16(f32 %a)
   7973 </pre>
   7974 
   7975 <h5>Overview:</h5>
   7976 <p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
   7977    a conversion from single precision floating point format to half precision
   7978    floating point format.</p>
   7979 
   7980 <h5>Arguments:</h5>
   7981 <p>The intrinsic function contains single argument - the value to be
   7982    converted.</p>
   7983 
   7984 <h5>Semantics:</h5>
   7985 <p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
   7986    a conversion from single precision floating point format to half precision
   7987    floating point format. The return value is an <tt>i16</tt> which
   7988    contains the converted number.</p>
   7989 
   7990 <h5>Examples:</h5>
   7991 <pre>
   7992   %res = call i16 @llvm.convert.to.fp16(f32 %a)
   7993   store i16 %res, i16* @x, align 2
   7994 </pre>
   7995 
   7996 </div>
   7997 
   7998 <!-- _______________________________________________________________________ -->
   7999 <h4>
   8000   <a name="int_convert_from_fp16">
   8001     '<tt>llvm.convert.from.fp16</tt>' Intrinsic
   8002   </a>
   8003 </h4>
   8004 
   8005 <div>
   8006 
   8007 <h5>Syntax:</h5>
   8008 <pre>
   8009   declare f32 @llvm.convert.from.fp16(i16 %a)
   8010 </pre>
   8011 
   8012 <h5>Overview:</h5>
   8013 <p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs
   8014    a conversion from half precision floating point format to single precision
   8015    floating point format.</p>
   8016 
   8017 <h5>Arguments:</h5>
   8018 <p>The intrinsic function contains single argument - the value to be
   8019    converted.</p>
   8020 
   8021 <h5>Semantics:</h5>
   8022 <p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs a
   8023    conversion from half single precision floating point format to single
   8024    precision floating point format. The input half-float value is represented by
   8025    an <tt>i16</tt> value.</p>
   8026 
   8027 <h5>Examples:</h5>
   8028 <pre>
   8029   %a = load i16* @x, align 2
   8030   %res = call f32 @llvm.convert.from.fp16(i16 %a)
   8031 </pre>
   8032 
   8033 </div>
   8034 
   8035 </div>
   8036 
   8037 <!-- ======================================================================= -->
   8038 <h3>
   8039   <a name="int_debugger">Debugger Intrinsics</a>
   8040 </h3>
   8041 
   8042 <div>
   8043 
   8044 <p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
   8045    prefix), are described in
   8046    the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
   8047    Level Debugging</a> document.</p>
   8048 
   8049 </div>
   8050 
   8051 <!-- ======================================================================= -->
   8052 <h3>
   8053   <a name="int_eh">Exception Handling Intrinsics</a>
   8054 </h3>
   8055 
   8056 <div>
   8057 
   8058 <p>The LLVM exception handling intrinsics (which all start with
   8059    <tt>llvm.eh.</tt> prefix), are described in
   8060    the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
   8061    Handling</a> document.</p>
   8062 
   8063 </div>
   8064 
   8065 <!-- ======================================================================= -->
   8066 <h3>
   8067   <a name="int_trampoline">Trampoline Intrinsics</a>
   8068 </h3>
   8069 
   8070 <div>
   8071 
   8072 <p>These intrinsics make it possible to excise one parameter, marked with
   8073    the <a href="#nest"><tt>nest</tt></a> attribute, from a function.
   8074    The result is a callable
   8075    function pointer lacking the nest parameter - the caller does not need to
   8076    provide a value for it.  Instead, the value to use is stored in advance in a
   8077    "trampoline", a block of memory usually allocated on the stack, which also
   8078    contains code to splice the nest value into the argument list.  This is used
   8079    to implement the GCC nested function address extension.</p>
   8080 
   8081 <p>For example, if the function is
   8082    <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
   8083    pointer has signature <tt>i32 (i32, i32)*</tt>.  It can be created as
   8084    follows:</p>
   8085 
   8086 <pre class="doc_code">
   8087   %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
   8088   %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
   8089   call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
   8090   %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
   8091   %fp = bitcast i8* %p to i32 (i32, i32)*
   8092 </pre>
   8093 
   8094 <p>The call <tt>%val = call i32 %fp(i32 %x, i32 %y)</tt> is then equivalent
   8095    to <tt>%val = call i32 %f(i8* %nval, i32 %x, i32 %y)</tt>.</p>
   8096 
   8097 <!-- _______________________________________________________________________ -->
   8098 <h4>
   8099   <a name="int_it">
   8100     '<tt>llvm.init.trampoline</tt>' Intrinsic
   8101   </a>
   8102 </h4>
   8103 
   8104 <div>
   8105 
   8106 <h5>Syntax:</h5>
   8107 <pre>
   8108   declare void @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
   8109 </pre>
   8110 
   8111 <h5>Overview:</h5>
   8112 <p>This fills the memory pointed to by <tt>tramp</tt> with executable code,
   8113    turning it into a trampoline.</p>
   8114 
   8115 <h5>Arguments:</h5>
   8116 <p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
   8117    pointers.  The <tt>tramp</tt> argument must point to a sufficiently large and
   8118    sufficiently aligned block of memory; this memory is written to by the
   8119    intrinsic.  Note that the size and the alignment are target-specific - LLVM
   8120    currently provides no portable way of determining them, so a front-end that
   8121    generates this intrinsic needs to have some target-specific knowledge.
   8122    The <tt>func</tt> argument must hold a function bitcast to
   8123    an <tt>i8*</tt>.</p>
   8124 
   8125 <h5>Semantics:</h5>
   8126 <p>The block of memory pointed to by <tt>tramp</tt> is filled with target
   8127    dependent code, turning it into a function.  Then <tt>tramp</tt> needs to be
   8128    passed to <a href="#int_at">llvm.adjust.trampoline</a> to get a pointer
   8129    which can be <a href="#int_trampoline">bitcast (to a new function) and
   8130    called</a>.  The new function's signature is the same as that of
   8131    <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
   8132    removed.  At most one such <tt>nest</tt> argument is allowed, and it must be of
   8133    pointer type.  Calling the new function is equivalent to calling <tt>func</tt>
   8134    with the same argument list, but with <tt>nval</tt> used for the missing
   8135    <tt>nest</tt> argument.  If, after calling <tt>llvm.init.trampoline</tt>, the
   8136    memory pointed to by <tt>tramp</tt> is modified, then the effect of any later call
   8137    to the returned function pointer is undefined.</p>
   8138 </div>
   8139 
   8140 <!-- _______________________________________________________________________ -->
   8141 <h4>
   8142   <a name="int_at">
   8143     '<tt>llvm.adjust.trampoline</tt>' Intrinsic
   8144   </a>
   8145 </h4>
   8146 
   8147 <div>
   8148 
   8149 <h5>Syntax:</h5>
   8150 <pre>
   8151   declare i8* @llvm.adjust.trampoline(i8* &lt;tramp&gt;)
   8152 </pre>
   8153 
   8154 <h5>Overview:</h5>
   8155 <p>This performs any required machine-specific adjustment to the address of a
   8156    trampoline (passed as <tt>tramp</tt>).</p>
   8157 
   8158 <h5>Arguments:</h5>
   8159 <p><tt>tramp</tt> must point to a block of memory which already has trampoline code
   8160    filled in by a previous call to <a href="#int_it"><tt>llvm.init.trampoline</tt>
   8161    </a>.</p>
   8162 
   8163 <h5>Semantics:</h5>
   8164 <p>On some architectures the address of the code to be executed needs to be
   8165    different to the address where the trampoline is actually stored.  This
   8166    intrinsic returns the executable address corresponding to <tt>tramp</tt>
   8167    after performing the required machine specific adjustments.
   8168    The pointer returned can then be <a href="#int_trampoline"> bitcast and
   8169    executed</a>.
   8170 </p>
   8171 
   8172 </div>
   8173 
   8174 </div>
   8175 
   8176 <!-- ======================================================================= -->
   8177 <h3>
   8178   <a name="int_memorymarkers">Memory Use Markers</a>
   8179 </h3>
   8180 
   8181 <div>
   8182 
   8183 <p>This class of intrinsics exists to information about the lifetime of memory
   8184    objects and ranges where variables are immutable.</p>
   8185 
   8186 <!-- _______________________________________________________________________ -->
   8187 <h4>
   8188   <a name="int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a>
   8189 </h4>
   8190 
   8191 <div>
   8192 
   8193 <h5>Syntax:</h5>
   8194 <pre>
   8195   declare void @llvm.lifetime.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
   8196 </pre>
   8197 
   8198 <h5>Overview:</h5>
   8199 <p>The '<tt>llvm.lifetime.start</tt>' intrinsic specifies the start of a memory
   8200    object's lifetime.</p>
   8201 
   8202 <h5>Arguments:</h5>
   8203 <p>The first argument is a constant integer representing the size of the
   8204    object, or -1 if it is variable sized.  The second argument is a pointer to
   8205    the object.</p>
   8206 
   8207 <h5>Semantics:</h5>
   8208 <p>This intrinsic indicates that before this point in the code, the value of the
   8209    memory pointed to by <tt>ptr</tt> is dead.  This means that it is known to
   8210    never be used and has an undefined value.  A load from the pointer that
   8211    precedes this intrinsic can be replaced with
   8212    <tt>'<a href="#undefvalues">undef</a>'</tt>.</p>
   8213 
   8214 </div>
   8215 
   8216 <!-- _______________________________________________________________________ -->
   8217 <h4>
   8218   <a name="int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a>
   8219 </h4>
   8220 
   8221 <div>
   8222 
   8223 <h5>Syntax:</h5>
   8224 <pre>
   8225   declare void @llvm.lifetime.end(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
   8226 </pre>
   8227 
   8228 <h5>Overview:</h5>
   8229 <p>The '<tt>llvm.lifetime.end</tt>' intrinsic specifies the end of a memory
   8230    object's lifetime.</p>
   8231 
   8232 <h5>Arguments:</h5>
   8233 <p>The first argument is a constant integer representing the size of the
   8234    object, or -1 if it is variable sized.  The second argument is a pointer to
   8235    the object.</p>
   8236 
   8237 <h5>Semantics:</h5>
   8238 <p>This intrinsic indicates that after this point in the code, the value of the
   8239    memory pointed to by <tt>ptr</tt> is dead.  This means that it is known to
   8240    never be used and has an undefined value.  Any stores into the memory object
   8241    following this intrinsic may be removed as dead.
   8242 
   8243 </div>
   8244 
   8245 <!-- _______________________________________________________________________ -->
   8246 <h4>
   8247   <a name="int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a>
   8248 </h4>
   8249 
   8250 <div>
   8251 
   8252 <h5>Syntax:</h5>
   8253 <pre>
   8254   declare {}* @llvm.invariant.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
   8255 </pre>
   8256 
   8257 <h5>Overview:</h5>
   8258 <p>The '<tt>llvm.invariant.start</tt>' intrinsic specifies that the contents of
   8259    a memory object will not change.</p>
   8260 
   8261 <h5>Arguments:</h5>
   8262 <p>The first argument is a constant integer representing the size of the
   8263    object, or -1 if it is variable sized.  The second argument is a pointer to
   8264    the object.</p>
   8265 
   8266 <h5>Semantics:</h5>
   8267 <p>This intrinsic indicates that until an <tt>llvm.invariant.end</tt> that uses
   8268    the return value, the referenced memory location is constant and
   8269    unchanging.</p>
   8270 
   8271 </div>
   8272 
   8273 <!-- _______________________________________________________________________ -->
   8274 <h4>
   8275   <a name="int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a>
   8276 </h4>
   8277 
   8278 <div>
   8279 
   8280 <h5>Syntax:</h5>
   8281 <pre>
   8282   declare void @llvm.invariant.end({}* &lt;start&gt;, i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
   8283 </pre>
   8284 
   8285 <h5>Overview:</h5>
   8286 <p>The '<tt>llvm.invariant.end</tt>' intrinsic specifies that the contents of
   8287    a memory object are mutable.</p>
   8288 
   8289 <h5>Arguments:</h5>
   8290 <p>The first argument is the matching <tt>llvm.invariant.start</tt> intrinsic.
   8291    The second argument is a constant integer representing the size of the
   8292    object, or -1 if it is variable sized and the third argument is a pointer
   8293    to the object.</p>
   8294 
   8295 <h5>Semantics:</h5>
   8296 <p>This intrinsic indicates that the memory is mutable again.</p>
   8297 
   8298 </div>
   8299 
   8300 </div>
   8301 
   8302 <!-- ======================================================================= -->
   8303 <h3>
   8304   <a name="int_general">General Intrinsics</a>
   8305 </h3>
   8306 
   8307 <div>
   8308 
   8309 <p>This class of intrinsics is designed to be generic and has no specific
   8310    purpose.</p>
   8311 
   8312 <!-- _______________________________________________________________________ -->
   8313 <h4>
   8314   <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
   8315 </h4>
   8316 
   8317 <div>
   8318 
   8319 <h5>Syntax:</h5>
   8320 <pre>
   8321   declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
   8322 </pre>
   8323 
   8324 <h5>Overview:</h5>
   8325 <p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
   8326 
   8327 <h5>Arguments:</h5>
   8328 <p>The first argument is a pointer to a value, the second is a pointer to a
   8329    global string, the third is a pointer to a global string which is the source
   8330    file name, and the last argument is the line number.</p>
   8331 
   8332 <h5>Semantics:</h5>
   8333 <p>This intrinsic allows annotation of local variables with arbitrary strings.
   8334    This can be useful for special purpose optimizations that want to look for
   8335    these annotations.  These have no other defined use; they are ignored by code
   8336    generation and optimization.</p>
   8337 
   8338 </div>
   8339 
   8340 <!-- _______________________________________________________________________ -->
   8341 <h4>
   8342   <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
   8343 </h4>
   8344 
   8345 <div>
   8346 
   8347 <h5>Syntax:</h5>
   8348 <p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
   8349    any integer bit width.</p>
   8350 
   8351 <pre>
   8352   declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
   8353   declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
   8354   declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
   8355   declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
   8356   declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
   8357 </pre>
   8358 
   8359 <h5>Overview:</h5>
   8360 <p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
   8361 
   8362 <h5>Arguments:</h5>
   8363 <p>The first argument is an integer value (result of some expression), the
   8364    second is a pointer to a global string, the third is a pointer to a global
   8365    string which is the source file name, and the last argument is the line
   8366    number.  It returns the value of the first argument.</p>
   8367 
   8368 <h5>Semantics:</h5>
   8369 <p>This intrinsic allows annotations to be put on arbitrary expressions with
   8370    arbitrary strings.  This can be useful for special purpose optimizations that
   8371    want to look for these annotations.  These have no other defined use; they
   8372    are ignored by code generation and optimization.</p>
   8373 
   8374 </div>
   8375 
   8376 <!-- _______________________________________________________________________ -->
   8377 <h4>
   8378   <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
   8379 </h4>
   8380 
   8381 <div>
   8382 
   8383 <h5>Syntax:</h5>
   8384 <pre>
   8385   declare void @llvm.trap()
   8386 </pre>
   8387 
   8388 <h5>Overview:</h5>
   8389 <p>The '<tt>llvm.trap</tt>' intrinsic.</p>
   8390 
   8391 <h5>Arguments:</h5>
   8392 <p>None.</p>
   8393 
   8394 <h5>Semantics:</h5>
   8395 <p>This intrinsics is lowered to the target dependent trap instruction. If the
   8396    target does not have a trap instruction, this intrinsic will be lowered to
   8397    the call of the <tt>abort()</tt> function.</p>
   8398 
   8399 </div>
   8400 
   8401 <!-- _______________________________________________________________________ -->
   8402 <h4>
   8403   <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
   8404 </h4>
   8405 
   8406 <div>
   8407 
   8408 <h5>Syntax:</h5>
   8409 <pre>
   8410   declare void @llvm.stackprotector(i8* &lt;guard&gt;, i8** &lt;slot&gt;)
   8411 </pre>
   8412 
   8413 <h5>Overview:</h5>
   8414 <p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
   8415    stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
   8416    ensure that it is placed on the stack before local variables.</p>
   8417 
   8418 <h5>Arguments:</h5>
   8419 <p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
   8420    arguments. The first argument is the value loaded from the stack
   8421    guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
   8422    that has enough space to hold the value of the guard.</p>
   8423 
   8424 <h5>Semantics:</h5>
   8425 <p>This intrinsic causes the prologue/epilogue inserter to force the position of
   8426    the <tt>AllocaInst</tt> stack slot to be before local variables on the
   8427    stack. This is to ensure that if a local variable on the stack is
   8428    overwritten, it will destroy the value of the guard. When the function exits,
   8429    the guard on the stack is checked against the original guard. If they are
   8430    different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
   8431    function.</p>
   8432 
   8433 </div>
   8434 
   8435 <!-- _______________________________________________________________________ -->
   8436 <h4>
   8437   <a name="int_objectsize">'<tt>llvm.objectsize</tt>' Intrinsic</a>
   8438 </h4>
   8439 
   8440 <div>
   8441 
   8442 <h5>Syntax:</h5>
   8443 <pre>
   8444   declare i32 @llvm.objectsize.i32(i8* &lt;object&gt;, i1 &lt;type&gt;)
   8445   declare i64 @llvm.objectsize.i64(i8* &lt;object&gt;, i1 &lt;type&gt;)
   8446 </pre>
   8447 
   8448 <h5>Overview:</h5>
   8449 <p>The <tt>llvm.objectsize</tt> intrinsic is designed to provide information to
   8450    the optimizers to determine at compile time whether a) an operation (like
   8451    memcpy) will overflow a buffer that corresponds to an object, or b) that a
   8452    runtime check for overflow isn't necessary. An object in this context means
   8453    an allocation of a specific class, structure, array, or other object.</p>
   8454 
   8455 <h5>Arguments:</h5>
   8456 <p>The <tt>llvm.objectsize</tt> intrinsic takes two arguments. The first
   8457    argument is a pointer to or into the <tt>object</tt>. The second argument
   8458    is a boolean 0 or 1. This argument determines whether you want the 
   8459    maximum (0) or minimum (1) bytes remaining. This needs to be a literal 0 or
   8460    1, variables are not allowed.</p>
   8461    
   8462 <h5>Semantics:</h5>
   8463 <p>The <tt>llvm.objectsize</tt> intrinsic is lowered to either a constant
   8464    representing the size of the object concerned, or <tt>i32/i64 -1 or 0</tt>,
   8465    depending on the <tt>type</tt> argument, if the size cannot be determined at
   8466    compile time.</p>
   8467 
   8468 </div>
   8469 <!-- _______________________________________________________________________ -->
   8470 <h4>
   8471   <a name="int_expect">'<tt>llvm.expect</tt>' Intrinsic</a>
   8472 </h4>
   8473 
   8474 <div>
   8475 
   8476 <h5>Syntax:</h5>
   8477 <pre>
   8478   declare i32 @llvm.expect.i32(i32 &lt;val&gt;, i32 &lt;expected_val&gt;)
   8479   declare i64 @llvm.expect.i64(i64 &lt;val&gt;, i64 &lt;expected_val&gt;)
   8480 </pre>
   8481 
   8482 <h5>Overview:</h5>
   8483 <p>The <tt>llvm.expect</tt> intrinsic provides information about expected (the
   8484    most probable) value of <tt>val</tt>, which can be used by optimizers.</p>
   8485 
   8486 <h5>Arguments:</h5>
   8487 <p>The <tt>llvm.expect</tt> intrinsic takes two arguments. The first
   8488    argument is a value. The second argument is an expected value, this needs to
   8489    be a constant value, variables are not allowed.</p>
   8490 
   8491 <h5>Semantics:</h5>
   8492 <p>This intrinsic is lowered to the <tt>val</tt>.</p>
   8493 </div>
   8494 
   8495 </div>
   8496 
   8497 </div>
   8498 <!-- *********************************************************************** -->
   8499 <hr>
   8500 <address>
   8501   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
   8502   src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
   8503   <a href="http://validator.w3.org/check/referer"><img
   8504   src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
   8505 
   8506   <a href="mailto:sabre (a] nondot.org">Chris Lattner</a><br>
   8507   <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
   8508   Last modified: $Date$
   8509 </address>
   8510 
   8511 </body>
   8512 </html>
   8513