Home | History | Annotate | Download | only in docs
      1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" 
      2                       "http://www.w3.org/TR/html4/strict.dtd">
      3 <html>
      4 <head>
      5   <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
      6  <title>LLVM Link Time Optimization: Design and Implementation</title>
      7   <link rel="stylesheet" href="llvm.css" type="text/css">
      8 </head>
      9 
     10 <h1>
     11   LLVM Link Time Optimization: Design and Implementation
     12 </h1>
     13 
     14 <ul>
     15   <li><a href="#desc">Description</a></li>
     16   <li><a href="#design">Design Philosophy</a>
     17   <ul>
     18     <li><a href="#example1">Example of link time optimization</a></li>
     19     <li><a href="#alternative_approaches">Alternative Approaches</a></li>
     20   </ul></li>
     21   <li><a href="#multiphase">Multi-phase communication between LLVM and linker</a>
     22   <ul>
     23     <li><a href="#phase1">Phase 1 : Read LLVM Bitcode Files</a></li>
     24     <li><a href="#phase2">Phase 2 : Symbol Resolution</a></li>
     25     <li><a href="#phase3">Phase 3 : Optimize Bitcode Files</a></li>
     26     <li><a href="#phase4">Phase 4 : Symbol Resolution after optimization</a></li>
     27   </ul></li>
     28   <li><a href="#lto">libLTO</a>
     29   <ul>
     30     <li><a href="#lto_module_t">lto_module_t</a></li>
     31     <li><a href="#lto_code_gen_t">lto_code_gen_t</a></li>
     32   </ul>
     33 </ul>
     34 
     35 <div class="doc_author">
     36 <p>Written by Devang Patel and Nick Kledzik</p>
     37 </div>
     38 
     39 <!-- *********************************************************************** -->
     40 <h2>
     41 <a name="desc">Description</a>
     42 </h2>
     43 <!-- *********************************************************************** -->
     44 
     45 <div>
     46 <p>
     47 LLVM features powerful intermodular optimizations which can be used at link 
     48 time.  Link Time Optimization (LTO) is another name for intermodular optimization 
     49 when performed during the link stage. This document describes the interface 
     50 and design between the LTO optimizer and the linker.</p>
     51 </div>
     52 
     53 <!-- *********************************************************************** -->
     54 <h2>
     55 <a name="design">Design Philosophy</a>
     56 </h2>
     57 <!-- *********************************************************************** -->
     58 
     59 <div>
     60 <p>
     61 The LLVM Link Time Optimizer provides complete transparency, while doing 
     62 intermodular optimization, in the compiler tool chain. Its main goal is to let 
     63 the developer take advantage of intermodular optimizations without making any 
     64 significant changes to the developer's makefiles or build system. This is 
     65 achieved through tight integration with the linker. In this model, the linker 
     66 treates LLVM bitcode files like native object files and allows mixing and 
     67 matching among them. The linker uses <a href="#lto">libLTO</a>, a shared
     68 object, to handle LLVM bitcode files. This tight integration between 
     69 the linker and LLVM optimizer helps to do optimizations that are not possible 
     70 in other models. The linker input allows the optimizer to avoid relying on 
     71 conservative escape analysis.
     72 </p>
     73 
     74 <!-- ======================================================================= -->
     75 <h3>
     76   <a name="example1">Example of link time optimization</a>
     77 </h3>
     78 
     79 <div>
     80   <p>The following example illustrates the advantages of LTO's integrated
     81   approach and clean interface. This example requires a system linker which
     82   supports LTO through the interface described in this document.  Here,
     83   clang transparently invokes system linker. </p>
     84   <ul>
     85     <li> Input source file <tt>a.c</tt> is compiled into LLVM bitcode form.
     86     <li> Input source file <tt>main.c</tt> is compiled into native object code.
     87   </ul>
     88 <pre class="doc_code">
     89 --- a.h ---
     90 extern int foo1(void);
     91 extern void foo2(void);
     92 extern void foo4(void);
     93 
     94 --- a.c ---
     95 #include "a.h"
     96 
     97 static signed int i = 0;
     98 
     99 void foo2(void) {
    100   i = -1;
    101 }
    102 
    103 static int foo3() {
    104   foo4();
    105   return 10;
    106 }
    107 
    108 int foo1(void) {
    109   int data = 0;
    110 
    111   if (i &lt; 0) 
    112     data = foo3();
    113 
    114   data = data + 42;
    115   return data;
    116 }
    117 
    118 --- main.c ---
    119 #include &lt;stdio.h&gt;
    120 #include "a.h"
    121 
    122 void foo4(void) {
    123   printf("Hi\n");
    124 }
    125 
    126 int main() {
    127   return foo1();
    128 }
    129 
    130 --- command lines ---
    131 $ clang -emit-llvm -c a.c -o a.o   # &lt;-- a.o is LLVM bitcode file
    132 $ clang -c main.c -o main.o        # &lt;-- main.o is native object file
    133 $ clang a.o main.o -o main         # &lt;-- standard link command without any modifications
    134 </pre>
    135 
    136 <ul>
    137   <li>In this example, the linker recognizes that <tt>foo2()</tt> is an
    138       externally visible symbol defined in LLVM bitcode file. The linker
    139       completes its usual symbol resolution pass and finds that <tt>foo2()</tt>
    140       is not used anywhere. This information is used by the LLVM optimizer and
    141       it removes <tt>foo2()</tt>.</li>
    142   <li>As soon as <tt>foo2()</tt> is removed, the optimizer recognizes that condition 
    143       <tt>i &lt; 0</tt> is always false, which means <tt>foo3()</tt> is never 
    144       used. Hence, the optimizer also removes <tt>foo3()</tt>.</li>
    145   <li>And this in turn, enables linker to remove <tt>foo4()</tt>.</li>
    146 </ul>
    147 
    148 <p>This example illustrates the advantage of tight integration with the
    149    linker. Here, the optimizer can not remove <tt>foo3()</tt> without the
    150    linker's input.</p>
    151 
    152 </div>
    153 
    154 <!-- ======================================================================= -->
    155 <h3>
    156   <a name="alternative_approaches">Alternative Approaches</a>
    157 </h3>
    158 
    159 <div>
    160   <dl>
    161     <dt><b>Compiler driver invokes link time optimizer separately.</b></dt>
    162     <dd>In this model the link time optimizer is not able to take advantage of 
    163     information collected during the linker's normal symbol resolution phase. 
    164     In the above example, the optimizer can not remove <tt>foo2()</tt> without 
    165     the linker's input because it is externally visible. This in turn prohibits
    166     the optimizer from removing <tt>foo3()</tt>.</dd>
    167     <dt><b>Use separate tool to collect symbol information from all object
    168     files.</b></dt>
    169     <dd>In this model, a new, separate, tool or library replicates the linker's
    170     capability to collect information for link time optimization. Not only is
    171     this code duplication difficult to justify, but it also has several other 
    172     disadvantages.  For example, the linking semantics and the features 
    173     provided by the linker on various platform are not unique. This means, 
    174     this new tool needs to support all such features and platforms in one 
    175     super tool or a separate tool per platform is required. This increases 
    176     maintenance cost for link time optimizer significantly, which is not 
    177     necessary. This approach also requires staying synchronized with linker 
    178     developements on various platforms, which is not the main focus of the link 
    179     time optimizer. Finally, this approach increases end user's build time due 
    180     to the duplication of work done by this separate tool and the linker itself.
    181     </dd>
    182   </dl>
    183 </div>
    184 
    185 </div>
    186 
    187 <!-- *********************************************************************** -->
    188 <h2>
    189   <a name="multiphase">Multi-phase communication between libLTO and linker</a>
    190 </h2>
    191 
    192 <div>
    193   <p>The linker collects information about symbol defininitions and uses in 
    194   various link objects which is more accurate than any information collected 
    195   by other tools during typical build cycles.  The linker collects this 
    196   information by looking at the definitions and uses of symbols in native .o 
    197   files and using symbol visibility information. The linker also uses 
    198   user-supplied information, such as a list of exported symbols. LLVM 
    199   optimizer collects control flow information, data flow information and knows 
    200   much more about program structure from the optimizer's point of view. 
    201   Our goal is to take advantage of tight integration between the linker and 
    202   the optimizer by sharing this information during various linking phases.
    203 </p>
    204 
    205 <!-- ======================================================================= -->
    206 <h3>
    207   <a name="phase1">Phase 1 : Read LLVM Bitcode Files</a>
    208 </h3>
    209 
    210 <div>
    211   <p>The linker first reads all object files in natural order and collects 
    212   symbol information. This includes native object files as well as LLVM bitcode 
    213   files.  To minimize the cost to the linker in the case that all .o files
    214   are native object files, the linker only calls <tt>lto_module_create()</tt> 
    215   when a supplied object file is found to not be a native object file.  If
    216   <tt>lto_module_create()</tt> returns that the file is an LLVM bitcode file, 
    217   the linker
    218   then iterates over the module using <tt>lto_module_get_symbol_name()</tt> and
    219   <tt>lto_module_get_symbol_attribute()</tt> to get all symbols defined and 
    220   referenced.
    221   This information is added to the linker's global symbol table.
    222 </p>
    223   <p>The lto* functions are all implemented in a shared object libLTO.  This
    224   allows the LLVM LTO code to be updated independently of the linker tool.
    225   On platforms that support it, the shared object is lazily loaded. 
    226 </p>
    227 </div>
    228 
    229 <!-- ======================================================================= -->
    230 <h3>
    231   <a name="phase2">Phase 2 : Symbol Resolution</a>
    232 </h3>
    233 
    234 <div>
    235   <p>In this stage, the linker resolves symbols using global symbol table. 
    236   It may report undefined symbol errors, read archive members, replace 
    237   weak symbols, etc.  The linker is able to do this seamlessly even though it 
    238   does not know the exact content of input LLVM bitcode files.  If dead code 
    239   stripping is enabled then the linker collects the list of live symbols.
    240   </p>
    241 </div>
    242 
    243 <!-- ======================================================================= -->
    244 <h3>
    245   <a name="phase3">Phase 3 : Optimize Bitcode Files</a>
    246 </h3>
    247 <div>
    248   <p>After symbol resolution, the linker tells the LTO shared object which
    249   symbols are needed by native object files.  In the example above, the linker 
    250   reports that only <tt>foo1()</tt> is used by native object files using 
    251   <tt>lto_codegen_add_must_preserve_symbol()</tt>.  Next the linker invokes
    252   the LLVM optimizer and code generators using <tt>lto_codegen_compile()</tt>
    253   which returns a native object file creating by merging the LLVM bitcode files 
    254   and applying various optimization passes.  
    255 </p>
    256 </div>
    257 
    258 <!-- ======================================================================= -->
    259 <h3>
    260   <a name="phase4">Phase 4 : Symbol Resolution after optimization</a>
    261 </h3>
    262 
    263 <div>
    264   <p>In this phase, the linker reads optimized a native object file and 
    265   updates the internal global symbol table to reflect any changes. The linker 
    266   also collects information about any changes in use of external symbols by 
    267   LLVM bitcode files. In the example above, the linker notes that 
    268   <tt>foo4()</tt> is not used any more. If dead code stripping is enabled then 
    269   the linker refreshes the live symbol information appropriately and performs 
    270   dead code stripping.</p>
    271   <p>After this phase, the linker continues linking as if it never saw LLVM 
    272   bitcode files.</p>
    273 </div>
    274 
    275 </div>
    276 
    277 <!-- *********************************************************************** -->
    278 <h2>
    279 <a name="lto">libLTO</a>
    280 </h2>
    281 
    282 <div>
    283   <p><tt>libLTO</tt> is a shared object that is part of the LLVM tools, and 
    284   is intended for use by a linker. <tt>libLTO</tt> provides an abstract C 
    285   interface to use the LLVM interprocedural optimizer without exposing details 
    286   of LLVM's internals. The intention is to keep the interface as stable as 
    287   possible even when the LLVM optimizer continues to evolve. It should even
    288   be possible for a completely different compilation technology to provide
    289   a different libLTO that works with their object files and the standard
    290   linker tool.</p>
    291 
    292 <!-- ======================================================================= -->
    293 <h3>
    294   <a name="lto_module_t">lto_module_t</a>
    295 </h3>
    296 
    297 <div>
    298 
    299 <p>A non-native object file is handled via an <tt>lto_module_t</tt>.  
    300 The following functions allow the linker to check if a file (on disk
    301 or in a memory buffer) is a file which libLTO can process:</p>
    302 
    303 <pre class="doc_code">
    304 lto_module_is_object_file(const char*)
    305 lto_module_is_object_file_for_target(const char*, const char*)
    306 lto_module_is_object_file_in_memory(const void*, size_t)
    307 lto_module_is_object_file_in_memory_for_target(const void*, size_t, const char*)
    308 </pre>
    309 
    310 <p>If the object file can be processed by libLTO, the linker creates a
    311 <tt>lto_module_t</tt> by using one of</p>
    312 
    313 <pre class="doc_code">
    314 lto_module_create(const char*)
    315 lto_module_create_from_memory(const void*, size_t)
    316 </pre>
    317 
    318 <p>and when done, the handle is released via</p>
    319 
    320 <pre class="doc_code">
    321 lto_module_dispose(lto_module_t)
    322 </pre>
    323 
    324 <p>The linker can introspect the non-native object file by getting the number of
    325 symbols and getting the name and attributes of each symbol via:</p>
    326 
    327 <pre class="doc_code">
    328 lto_module_get_num_symbols(lto_module_t)
    329 lto_module_get_symbol_name(lto_module_t, unsigned int)
    330 lto_module_get_symbol_attribute(lto_module_t, unsigned int)
    331 </pre>
    332 
    333 <p>The attributes of a symbol include the alignment, visibility, and kind.</p>
    334 </div>
    335 
    336 <!-- ======================================================================= -->
    337 <h3>
    338   <a name="lto_code_gen_t">lto_code_gen_t</a>
    339 </h3>
    340 
    341 <div>
    342 
    343 <p>Once the linker has loaded each non-native object files into an
    344 <tt>lto_module_t</tt>, it can request libLTO to process them all and
    345 generate a native object file.  This is done in a couple of steps.
    346 First, a code generator is created with:</p>
    347 
    348 <pre class="doc_code">lto_codegen_create()</pre>
    349 
    350 <p>Then, each non-native object file is added to the code generator with:</p>
    351 
    352 <pre class="doc_code">
    353 lto_codegen_add_module(lto_code_gen_t, lto_module_t)
    354 </pre>
    355 
    356 <p>The linker then has the option of setting some codegen options.  Whether or
    357 not to generate DWARF debug info is set with:</p>
    358   
    359 <pre class="doc_code">lto_codegen_set_debug_model(lto_code_gen_t)</pre>
    360 
    361 <p>Which kind of position independence is set with:</p>
    362 
    363 <pre class="doc_code">lto_codegen_set_pic_model(lto_code_gen_t) </pre>
    364   
    365 <p>And each symbol that is referenced by a native object file or otherwise must
    366 not be optimized away is set with:</p>
    367 
    368 <pre class="doc_code">
    369 lto_codegen_add_must_preserve_symbol(lto_code_gen_t, const char*)
    370 </pre>
    371 
    372 <p>After all these settings are done, the linker requests that a native object
    373 file be created from the modules with the settings using:</p>
    374 
    375 <pre class="doc_code">lto_codegen_compile(lto_code_gen_t, size*)</pre>
    376 
    377 <p>which returns a pointer to a buffer containing the generated native
    378 object file.  The linker then parses that and links it with the rest 
    379 of the native object files.</p>
    380 
    381 </div>
    382 
    383 </div>
    384 
    385 <!-- *********************************************************************** -->
    386 
    387 <hr>
    388 <address>
    389   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
    390   src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
    391   <a href="http://validator.w3.org/check/referer"><img
    392   src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
    393 
    394   Devang Patel and Nick Kledzik<br>
    395   <a href="http://llvm.org/">LLVM Compiler Infrastructure</a><br>
    396   Last modified: $Date$
    397 </address>
    398 
    399 </body>
    400 </html>
    401 
    402