Home | History | Annotate | Download | only in docs
      1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
      2                       "http://www.w3.org/TR/html4/strict.dtd">
      3 <html>
      4 <head>
      5   <title>LLVM's Analysis and Transform Passes</title>
      6   <link rel="stylesheet" href="llvm.css" type="text/css">
      7   <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
      8 </head>
      9 <body>
     10 
     11 <!--
     12 
     13 If Passes.html is up to date, the following "one-liner" should print
     14 an empty diff.
     15 
     16 egrep -e '^<tr><td><a href="#.*">-.*</a></td><td>.*</td></tr>$' \
     17       -e '^  <a name=".*">.*</a>$' < Passes.html >html; \
     18 perl >help <<'EOT' && diff -u help html; rm -f help html
     19 open HTML, "<Passes.html" or die "open: Passes.html: $!\n";
     20 while (<HTML>) {
     21   m:^<tr><td><a href="#(.*)">-.*</a></td><td>.*</td></tr>$: or next;
     22   $order{$1} = sprintf("%03d", 1 + int %order);
     23 }
     24 open HELP, "../Release/bin/opt -help|" or die "open: opt -help: $!\n";
     25 while (<HELP>) {
     26   m:^    -([^ ]+) +- (.*)$: or next;
     27   my $o = $order{$1};
     28   $o = "000" unless defined $o;
     29   push @x, "$o<tr><td><a href=\"#$1\">-$1</a></td><td>$2</td></tr>\n";
     30   push @y, "$o  <a name=\"$1\">-$1: $2</a>\n";
     31 }
     32 @x = map { s/^\d\d\d//; $_ } sort @x;
     33 @y = map { s/^\d\d\d//; $_ } sort @y;
     34 print @x, @y;
     35 EOT
     36 
     37 This (real) one-liner can also be helpful when converting comments to HTML:
     38 
     39 perl -e '$/ = undef; for (split(/\n/, <>)) { s:^ *///? ?::; print "  <p>\n" if !$on && $_ =~ /\S/; print "  </p>\n" if $on && $_ =~ /^\s*$/; print "  $_\n"; $on = ($_ =~ /\S/); } print "  </p>\n" if $on'
     40 
     41   -->
     42 
     43 <h1>LLVM's Analysis and Transform Passes</h1>
     44 
     45 <ol>
     46   <li><a href="#intro">Introduction</a></li>
     47   <li><a href="#analyses">Analysis Passes</a>
     48   <li><a href="#transforms">Transform Passes</a></li>
     49   <li><a href="#utilities">Utility Passes</a></li>
     50 </ol>
     51 
     52 <div class="doc_author">
     53   <p>Written by <a href="mailto:rspencer (a] x10sys.com">Reid Spencer</a>
     54             and Gordon Henriksen</p>
     55 </div>
     56 
     57 <!-- ======================================================================= -->
     58 <h2><a name="intro">Introduction</a></h2>
     59 <div>
     60   <p>This document serves as a high level summary of the optimization features 
     61   that LLVM provides. Optimizations are implemented as Passes that traverse some
     62   portion of a program to either collect information or transform the program.
     63   The table below divides the passes that LLVM provides into three categories.
     64   Analysis passes compute information that other passes can use or for debugging
     65   or program visualization purposes. Transform passes can use (or invalidate)
     66   the analysis passes. Transform passes all mutate the program in some way. 
     67   Utility passes provides some utility but don't otherwise fit categorization.
     68   For example passes to extract functions to bitcode or write a module to
     69   bitcode are neither analysis nor transform passes.
     70   <p>The table below provides a quick summary of each pass and links to the more
     71   complete pass description later in the document.</p>
     72 
     73 <table>
     74 <tr><th colspan="2"><b>ANALYSIS PASSES</b></th></tr>
     75 <tr><th>Option</th><th>Name</th></tr>
     76 <tr><td><a href="#aa-eval">-aa-eval</a></td><td>Exhaustive Alias Analysis Precision Evaluator</td></tr>
     77 <tr><td><a href="#basicaa">-basicaa</a></td><td>Basic Alias Analysis (stateless AA impl)</td></tr>
     78 <tr><td><a href="#basiccg">-basiccg</a></td><td>Basic CallGraph Construction</td></tr>
     79 <tr><td><a href="#count-aa">-count-aa</a></td><td>Count Alias Analysis Query Responses</td></tr>
     80 <tr><td><a href="#debug-aa">-debug-aa</a></td><td>AA use debugger</td></tr>
     81 <tr><td><a href="#domfrontier">-domfrontier</a></td><td>Dominance Frontier Construction</td></tr>
     82 <tr><td><a href="#domtree">-domtree</a></td><td>Dominator Tree Construction</td></tr>
     83 <tr><td><a href="#dot-callgraph">-dot-callgraph</a></td><td>Print Call Graph to 'dot' file</td></tr>
     84 <tr><td><a href="#dot-cfg">-dot-cfg</a></td><td>Print CFG of function to 'dot' file</td></tr>
     85 <tr><td><a href="#dot-cfg-only">-dot-cfg-only</a></td><td>Print CFG of function to 'dot' file (with no function bodies)</td></tr>
     86 <tr><td><a href="#dot-dom">-dot-dom</a></td><td>Print dominance tree of function to 'dot' file</td></tr>
     87 <tr><td><a href="#dot-dom-only">-dot-dom-only</a></td><td>Print dominance tree of function to 'dot' file (with no function bodies)</td></tr>
     88 <tr><td><a href="#dot-postdom">-dot-postdom</a></td><td>Print postdominance tree of function to 'dot' file</td></tr>
     89 <tr><td><a href="#dot-postdom-only">-dot-postdom-only</a></td><td>Print postdominance tree of function to 'dot' file (with no function bodies)</td></tr>
     90 <tr><td><a href="#globalsmodref-aa">-globalsmodref-aa</a></td><td>Simple mod/ref analysis for globals</td></tr>
     91 <tr><td><a href="#instcount">-instcount</a></td><td>Counts the various types of Instructions</td></tr>
     92 <tr><td><a href="#intervals">-intervals</a></td><td>Interval Partition Construction</td></tr>
     93 <tr><td><a href="#iv-users">-iv-users</a></td><td>Induction Variable Users</td></tr>
     94 <tr><td><a href="#lazy-value-info">-lazy-value-info</a></td><td>Lazy Value Information Analysis</td></tr>
     95 <tr><td><a href="#lda">-lda</a></td><td>Loop Dependence Analysis</td></tr>
     96 <tr><td><a href="#libcall-aa">-libcall-aa</a></td><td>LibCall Alias Analysis</td></tr>
     97 <tr><td><a href="#lint">-lint</a></td><td>Statically lint-checks LLVM IR</td></tr>
     98 <tr><td><a href="#loops">-loops</a></td><td>Natural Loop Information</td></tr>
     99 <tr><td><a href="#memdep">-memdep</a></td><td>Memory Dependence Analysis</td></tr>
    100 <tr><td><a href="#module-debuginfo">-module-debuginfo</a></td><td>Decodes module-level debug info</td></tr>
    101 <tr><td><a href="#no-aa">-no-aa</a></td><td>No Alias Analysis (always returns 'may' alias)</td></tr>
    102 <tr><td><a href="#no-profile">-no-profile</a></td><td>No Profile Information</td></tr>
    103 <tr><td><a href="#postdomfrontier">-postdomfrontier</a></td><td>Post-Dominance Frontier Construction</td></tr>
    104 <tr><td><a href="#postdomtree">-postdomtree</a></td><td>Post-Dominator Tree Construction</td></tr>
    105 <tr><td><a href="#print-alias-sets">-print-alias-sets</a></td><td>Alias Set Printer</td></tr>
    106 <tr><td><a href="#print-callgraph">-print-callgraph</a></td><td>Print a call graph</td></tr>
    107 <tr><td><a href="#print-callgraph-sccs">-print-callgraph-sccs</a></td><td>Print SCCs of the Call Graph</td></tr>
    108 <tr><td><a href="#print-cfg-sccs">-print-cfg-sccs</a></td><td>Print SCCs of each function CFG</td></tr>
    109 <tr><td><a href="#print-dbginfo">-print-dbginfo</a></td><td>Print debug info in human readable form</td></tr>
    110 <tr><td><a href="#print-dom-info">-print-dom-info</a></td><td>Dominator Info Printer</td></tr>
    111 <tr><td><a href="#print-externalfnconstants">-print-externalfnconstants</a></td><td>Print external fn callsites passed constants</td></tr>
    112 <tr><td><a href="#print-function">-print-function</a></td><td>Print function to stderr</td></tr>
    113 <tr><td><a href="#print-module">-print-module</a></td><td>Print module to stderr</td></tr>
    114 <tr><td><a href="#print-used-types">-print-used-types</a></td><td>Find Used Types</td></tr>
    115 <tr><td><a href="#profile-estimator">-profile-estimator</a></td><td>Estimate profiling information</td></tr>
    116 <tr><td><a href="#profile-loader">-profile-loader</a></td><td>Load profile information from llvmprof.out</td></tr>
    117 <tr><td><a href="#profile-verifier">-profile-verifier</a></td><td>Verify profiling information</td></tr>
    118 <tr><td><a href="#regions">-regions</a></td><td>Detect single entry single exit regions</td></tr>
    119 <tr><td><a href="#scalar-evolution">-scalar-evolution</a></td><td>Scalar Evolution Analysis</td></tr>
    120 <tr><td><a href="#scev-aa">-scev-aa</a></td><td>ScalarEvolution-based Alias Analysis</td></tr>
    121 <tr><td><a href="#targetdata">-targetdata</a></td><td>Target Data Layout</td></tr>
    122 
    123 
    124 <tr><th colspan="2"><b>TRANSFORM PASSES</b></th></tr>
    125 <tr><th>Option</th><th>Name</th></tr>
    126 <tr><td><a href="#adce">-adce</a></td><td>Aggressive Dead Code Elimination</td></tr>
    127 <tr><td><a href="#always-inline">-always-inline</a></td><td>Inliner for always_inline functions</td></tr>
    128 <tr><td><a href="#argpromotion">-argpromotion</a></td><td>Promote 'by reference' arguments to scalars</td></tr>
    129 <tr><td><a href="#bb-vectorize">-bb-vectorize</a></td><td>Combine instructions to form vector instructions within basic blocks</td></tr>
    130 <tr><td><a href="#block-placement">-block-placement</a></td><td>Profile Guided Basic Block Placement</td></tr>
    131 <tr><td><a href="#break-crit-edges">-break-crit-edges</a></td><td>Break critical edges in CFG</td></tr>
    132 <tr><td><a href="#codegenprepare">-codegenprepare</a></td><td>Optimize for code generation</td></tr>
    133 <tr><td><a href="#constmerge">-constmerge</a></td><td>Merge Duplicate Global Constants</td></tr>
    134 <tr><td><a href="#constprop">-constprop</a></td><td>Simple constant propagation</td></tr>
    135 <tr><td><a href="#dce">-dce</a></td><td>Dead Code Elimination</td></tr>
    136 <tr><td><a href="#deadargelim">-deadargelim</a></td><td>Dead Argument Elimination</td></tr>
    137 <tr><td><a href="#deadtypeelim">-deadtypeelim</a></td><td>Dead Type Elimination</td></tr>
    138 <tr><td><a href="#die">-die</a></td><td>Dead Instruction Elimination</td></tr>
    139 <tr><td><a href="#dse">-dse</a></td><td>Dead Store Elimination</td></tr>
    140 <tr><td><a href="#functionattrs">-functionattrs</a></td><td>Deduce function attributes</td></tr>
    141 <tr><td><a href="#globaldce">-globaldce</a></td><td>Dead Global Elimination</td></tr>
    142 <tr><td><a href="#globalopt">-globalopt</a></td><td>Global Variable Optimizer</td></tr>
    143 <tr><td><a href="#gvn">-gvn</a></td><td>Global Value Numbering</td></tr>
    144 <tr><td><a href="#indvars">-indvars</a></td><td>Canonicalize Induction Variables</td></tr>
    145 <tr><td><a href="#inline">-inline</a></td><td>Function Integration/Inlining</td></tr>
    146 <tr><td><a href="#insert-edge-profiling">-insert-edge-profiling</a></td><td>Insert instrumentation for edge profiling</td></tr>
    147 <tr><td><a href="#insert-optimal-edge-profiling">-insert-optimal-edge-profiling</a></td><td>Insert optimal instrumentation for edge profiling</td></tr>
    148 <tr><td><a href="#instcombine">-instcombine</a></td><td>Combine redundant instructions</td></tr>
    149 <tr><td><a href="#internalize">-internalize</a></td><td>Internalize Global Symbols</td></tr>
    150 <tr><td><a href="#ipconstprop">-ipconstprop</a></td><td>Interprocedural constant propagation</td></tr>
    151 <tr><td><a href="#ipsccp">-ipsccp</a></td><td>Interprocedural Sparse Conditional Constant Propagation</td></tr>
    152 <tr><td><a href="#jump-threading">-jump-threading</a></td><td>Jump Threading</td></tr>
    153 <tr><td><a href="#lcssa">-lcssa</a></td><td>Loop-Closed SSA Form Pass</td></tr>
    154 <tr><td><a href="#licm">-licm</a></td><td>Loop Invariant Code Motion</td></tr>
    155 <tr><td><a href="#loop-deletion">-loop-deletion</a></td><td>Delete dead loops</td></tr>
    156 <tr><td><a href="#loop-extract">-loop-extract</a></td><td>Extract loops into new functions</td></tr>
    157 <tr><td><a href="#loop-extract-single">-loop-extract-single</a></td><td>Extract at most one loop into a new function</td></tr>
    158 <tr><td><a href="#loop-reduce">-loop-reduce</a></td><td>Loop Strength Reduction</td></tr>
    159 <tr><td><a href="#loop-rotate">-loop-rotate</a></td><td>Rotate Loops</td></tr>
    160 <tr><td><a href="#loop-simplify">-loop-simplify</a></td><td>Canonicalize natural loops</td></tr>
    161 <tr><td><a href="#loop-unroll">-loop-unroll</a></td><td>Unroll loops</td></tr>
    162 <tr><td><a href="#loop-unswitch">-loop-unswitch</a></td><td>Unswitch loops</td></tr>
    163 <tr><td><a href="#loweratomic">-loweratomic</a></td><td>Lower atomic intrinsics to non-atomic form</td></tr>
    164 <tr><td><a href="#lowerinvoke">-lowerinvoke</a></td><td>Lower invoke and unwind, for unwindless code generators</td></tr>
    165 <tr><td><a href="#lowerswitch">-lowerswitch</a></td><td>Lower SwitchInst's to branches</td></tr>
    166 <tr><td><a href="#mem2reg">-mem2reg</a></td><td>Promote Memory to Register</td></tr>
    167 <tr><td><a href="#memcpyopt">-memcpyopt</a></td><td>MemCpy Optimization</td></tr>
    168 <tr><td><a href="#mergefunc">-mergefunc</a></td><td>Merge Functions</td></tr>
    169 <tr><td><a href="#mergereturn">-mergereturn</a></td><td>Unify function exit nodes</td></tr>
    170 <tr><td><a href="#partial-inliner">-partial-inliner</a></td><td>Partial Inliner</td></tr>
    171 <tr><td><a href="#prune-eh">-prune-eh</a></td><td>Remove unused exception handling info</td></tr>
    172 <tr><td><a href="#reassociate">-reassociate</a></td><td>Reassociate expressions</td></tr>
    173 <tr><td><a href="#reg2mem">-reg2mem</a></td><td>Demote all values to stack slots</td></tr>
    174 <tr><td><a href="#scalarrepl">-scalarrepl</a></td><td>Scalar Replacement of Aggregates (DT)</td></tr>
    175 <tr><td><a href="#sccp">-sccp</a></td><td>Sparse Conditional Constant Propagation</td></tr>
    176 <tr><td><a href="#simplify-libcalls">-simplify-libcalls</a></td><td>Simplify well-known library calls</td></tr>
    177 <tr><td><a href="#simplifycfg">-simplifycfg</a></td><td>Simplify the CFG</td></tr>
    178 <tr><td><a href="#sink">-sink</a></td><td>Code sinking</td></tr>
    179 <tr><td><a href="#sretpromotion">-sretpromotion</a></td><td>Promote sret arguments to multiple ret values</td></tr>
    180 <tr><td><a href="#strip">-strip</a></td><td>Strip all symbols from a module</td></tr>
    181 <tr><td><a href="#strip-dead-debug-info">-strip-dead-debug-info</a></td><td>Strip debug info for unused symbols</td></tr>
    182 <tr><td><a href="#strip-dead-prototypes">-strip-dead-prototypes</a></td><td>Strip Unused Function Prototypes</td></tr>
    183 <tr><td><a href="#strip-debug-declare">-strip-debug-declare</a></td><td>Strip all llvm.dbg.declare intrinsics</td></tr>
    184 <tr><td><a href="#strip-nondebug">-strip-nondebug</a></td><td>Strip all symbols, except dbg symbols, from a module</td></tr>
    185 <tr><td><a href="#tailcallelim">-tailcallelim</a></td><td>Tail Call Elimination</td></tr>
    186 <tr><td><a href="#tailduplicate">-tailduplicate</a></td><td>Tail Duplication</td></tr>
    187 
    188 
    189 <tr><th colspan="2"><b>UTILITY PASSES</b></th></tr>
    190 <tr><th>Option</th><th>Name</th></tr>
    191 <tr><td><a href="#deadarghaX0r">-deadarghaX0r</a></td><td>Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)</td></tr>
    192 <tr><td><a href="#extract-blocks">-extract-blocks</a></td><td>Extract Basic Blocks From Module (for bugpoint use)</td></tr>
    193 <tr><td><a href="#instnamer">-instnamer</a></td><td>Assign names to anonymous instructions</td></tr>
    194 <tr><td><a href="#preverify">-preverify</a></td><td>Preliminary module verification</td></tr>
    195 <tr><td><a href="#verify">-verify</a></td><td>Module Verifier</td></tr>
    196 <tr><td><a href="#view-cfg">-view-cfg</a></td><td>View CFG of function</td></tr>
    197 <tr><td><a href="#view-cfg-only">-view-cfg-only</a></td><td>View CFG of function (with no function bodies)</td></tr>
    198 <tr><td><a href="#view-dom">-view-dom</a></td><td>View dominance tree of function</td></tr>
    199 <tr><td><a href="#view-dom-only">-view-dom-only</a></td><td>View dominance tree of function (with no function bodies)</td></tr>
    200 <tr><td><a href="#view-postdom">-view-postdom</a></td><td>View postdominance tree of function</td></tr>
    201 <tr><td><a href="#view-postdom-only">-view-postdom-only</a></td><td>View postdominance tree of function (with no function bodies)</td></tr>
    202 </table>
    203 
    204 </div>
    205 
    206 <!-- ======================================================================= -->
    207 <h2><a name="analyses">Analysis Passes</a></h2>
    208 <div>
    209   <p>This section describes the LLVM Analysis Passes.</p>
    210 
    211 <!-------------------------------------------------------------------------- -->
    212 <h3>
    213   <a name="aa-eval">-aa-eval: Exhaustive Alias Analysis Precision Evaluator</a>
    214 </h3>
    215 <div>
    216   <p>This is a simple N^2 alias analysis accuracy evaluator.
    217   Basically, for each function in the program, it simply queries to see how the
    218   alias analysis implementation answers alias queries between each pair of
    219   pointers in the function.</p>
    220 
    221   <p>This is inspired and adapted from code by: Naveen Neelakantam, Francesco
    222   Spadini, and Wojciech Stryjewski.</p>
    223 </div>
    224 
    225 <!-------------------------------------------------------------------------- -->
    226 <h3>
    227   <a name="basicaa">-basicaa: Basic Alias Analysis (stateless AA impl)</a>
    228 </h3>
    229 <div>
    230   <p>A basic alias analysis pass that implements identities (two different
    231   globals cannot alias, etc), but does no stateful analysis.</p>
    232 </div>
    233 
    234 <!-------------------------------------------------------------------------- -->
    235 <h3>
    236   <a name="basiccg">-basiccg: Basic CallGraph Construction</a>
    237 </h3>
    238 <div>
    239   <p>Yet to be written.</p>
    240 </div>
    241 
    242 <!-------------------------------------------------------------------------- -->
    243 <h3>
    244   <a name="count-aa">-count-aa: Count Alias Analysis Query Responses</a>
    245 </h3>
    246 <div>
    247   <p>
    248   A pass which can be used to count how many alias queries
    249   are being made and how the alias analysis implementation being used responds.
    250   </p>
    251 </div>
    252 
    253 <!-------------------------------------------------------------------------- -->
    254 <h3>
    255   <a name="debug-aa">-debug-aa: AA use debugger</a>
    256 </h3>
    257 <div>
    258   <p>
    259   This simple pass checks alias analysis users to ensure that if they
    260   create a new value, they do not query AA without informing it of the value.
    261   It acts as a shim over any other AA pass you want.
    262   </p>
    263   
    264   <p>
    265   Yes keeping track of every value in the program is expensive, but this is 
    266   a debugging pass.
    267   </p>
    268 </div>
    269 
    270 <!-------------------------------------------------------------------------- -->
    271 <h3>
    272   <a name="domfrontier">-domfrontier: Dominance Frontier Construction</a>
    273 </h3>
    274 <div>
    275   <p>
    276   This pass is a simple dominator construction algorithm for finding forward
    277   dominator frontiers.
    278   </p>
    279 </div>
    280 
    281 <!-------------------------------------------------------------------------- -->
    282 <h3>
    283   <a name="domtree">-domtree: Dominator Tree Construction</a>
    284 </h3>
    285 <div>
    286   <p>
    287   This pass is a simple dominator construction algorithm for finding forward
    288   dominators.
    289   </p>
    290 </div>
    291 
    292 <!-------------------------------------------------------------------------- -->
    293 <h3>
    294   <a name="dot-callgraph">-dot-callgraph: Print Call Graph to 'dot' file</a>
    295 </h3>
    296 <div>
    297   <p>
    298   This pass, only available in <code>opt</code>, prints the call graph into a
    299   <code>.dot</code> graph.  This graph can then be processed with the "dot" tool
    300   to convert it to postscript or some other suitable format.
    301   </p>
    302 </div>
    303 
    304 <!-------------------------------------------------------------------------- -->
    305 <h3>
    306   <a name="dot-cfg">-dot-cfg: Print CFG of function to 'dot' file</a>
    307 </h3>
    308 <div>
    309   <p>
    310   This pass, only available in <code>opt</code>, prints the control flow graph
    311   into a <code>.dot</code> graph.  This graph can then be processed with the
    312   "dot" tool to convert it to postscript or some other suitable format.
    313   </p>
    314 </div>
    315 
    316 <!-------------------------------------------------------------------------- -->
    317 <h3>
    318   <a name="dot-cfg-only">-dot-cfg-only: Print CFG of function to 'dot' file (with no function bodies)</a>
    319 </h3>
    320 <div>
    321   <p>
    322   This pass, only available in <code>opt</code>, prints the control flow graph
    323   into a <code>.dot</code> graph, omitting the function bodies.  This graph can
    324   then be processed with the "dot" tool to convert it to postscript or some
    325   other suitable format.
    326   </p>
    327 </div>
    328 
    329 <!-------------------------------------------------------------------------- -->
    330 <h3>
    331   <a name="dot-dom">-dot-dom: Print dominance tree of function to 'dot' file</a>
    332 </h3>
    333 <div>
    334   <p>
    335   This pass, only available in <code>opt</code>, prints the dominator tree
    336   into a <code>.dot</code> graph.  This graph can then be processed with the
    337   "dot" tool to convert it to postscript or some other suitable format.
    338   </p>
    339 </div>
    340 
    341 <!-------------------------------------------------------------------------- -->
    342 <h3>
    343   <a name="dot-dom-only">-dot-dom-only: Print dominance tree of function to 'dot' file (with no function bodies)</a>
    344 </h3>
    345 <div>
    346   <p>
    347   This pass, only available in <code>opt</code>, prints the dominator tree
    348   into a <code>.dot</code> graph, omitting the function bodies.  This graph can
    349   then be processed with the "dot" tool to convert it to postscript or some
    350   other suitable format.
    351   </p>
    352 </div>
    353 
    354 <!-------------------------------------------------------------------------- -->
    355 <h3>
    356   <a name="dot-postdom">-dot-postdom: Print postdominance tree of function to 'dot' file</a>
    357 </h3>
    358 <div>
    359   <p>
    360   This pass, only available in <code>opt</code>, prints the post dominator tree
    361   into a <code>.dot</code> graph.  This graph can then be processed with the
    362   "dot" tool to convert it to postscript or some other suitable format.
    363   </p>
    364 </div>
    365 
    366 <!-------------------------------------------------------------------------- -->
    367 <h3>
    368   <a name="dot-postdom-only">-dot-postdom-only: Print postdominance tree of function to 'dot' file (with no function bodies)</a>
    369 </h3>
    370 <div>
    371   <p>
    372   This pass, only available in <code>opt</code>, prints the post dominator tree
    373   into a <code>.dot</code> graph, omitting the function bodies.  This graph can
    374   then be processed with the "dot" tool to convert it to postscript or some
    375   other suitable format.
    376   </p>
    377 </div>
    378 
    379 <!-------------------------------------------------------------------------- -->
    380 <h3>
    381   <a name="globalsmodref-aa">-globalsmodref-aa: Simple mod/ref analysis for globals</a>
    382 </h3>
    383 <div>
    384   <p>
    385   This simple pass provides alias and mod/ref information for global values
    386   that do not have their address taken, and keeps track of whether functions
    387   read or write memory (are "pure").  For this simple (but very common) case,
    388   we can provide pretty accurate and useful information.
    389   </p>
    390 </div>
    391 
    392 <!-------------------------------------------------------------------------- -->
    393 <h3>
    394   <a name="instcount">-instcount: Counts the various types of Instructions</a>
    395 </h3>
    396 <div>
    397   <p>
    398   This pass collects the count of all instructions and reports them
    399   </p>
    400 </div>
    401 
    402 <!-------------------------------------------------------------------------- -->
    403 <h3>
    404   <a name="intervals">-intervals: Interval Partition Construction</a>
    405 </h3>
    406 <div>
    407   <p>
    408   This analysis calculates and represents the interval partition of a function,
    409   or a preexisting interval partition.
    410   </p>
    411   
    412   <p>
    413   In this way, the interval partition may be used to reduce a flow graph down
    414   to its degenerate single node interval partition (unless it is irreducible).
    415   </p>
    416 </div>
    417 
    418 <!-------------------------------------------------------------------------- -->
    419 <h3>
    420   <a name="iv-users">-iv-users: Induction Variable Users</a>
    421 </h3>
    422 <div>
    423   <p>Bookkeeping for "interesting" users of expressions computed from 
    424   induction variables.</p>
    425 </div>
    426 
    427 <!-------------------------------------------------------------------------- -->
    428 <h3>
    429   <a name="lazy-value-info">-lazy-value-info: Lazy Value Information Analysis</a>
    430 </h3>
    431 <div>
    432   <p>Interface for lazy computation of value constraint information.</p>
    433 </div>
    434 
    435 <!-------------------------------------------------------------------------- -->
    436 <h3>
    437   <a name="lda">-lda: Loop Dependence Analysis</a>
    438 </h3>
    439 <div>
    440   <p>Loop dependence analysis framework, which is used to detect dependences in
    441   memory accesses in loops.</p>
    442 </div>
    443 
    444 <!-------------------------------------------------------------------------- -->
    445 <h3>
    446   <a name="libcall-aa">-libcall-aa: LibCall Alias Analysis</a>
    447 </h3>
    448 <div>
    449   <p>LibCall Alias Analysis.</p>
    450 </div>
    451 
    452 <!-------------------------------------------------------------------------- -->
    453 <h3>
    454   <a name="lint">-lint: Statically lint-checks LLVM IR</a>
    455 </h3>
    456 <div>
    457   <p>This pass statically checks for common and easily-identified constructs
    458   which produce undefined or likely unintended behavior in LLVM IR.</p>
    459  
    460   <p>It is not a guarantee of correctness, in two ways. First, it isn't
    461   comprehensive. There are checks which could be done statically which are
    462   not yet implemented. Some of these are indicated by TODO comments, but
    463   those aren't comprehensive either. Second, many conditions cannot be
    464   checked statically. This pass does no dynamic instrumentation, so it
    465   can't check for all possible problems.</p>
    466   
    467   <p>Another limitation is that it assumes all code will be executed. A store
    468   through a null pointer in a basic block which is never reached is harmless,
    469   but this pass will warn about it anyway.</p>
    470  
    471   <p>Optimization passes may make conditions that this pass checks for more or
    472   less obvious. If an optimization pass appears to be introducing a warning,
    473   it may be that the optimization pass is merely exposing an existing
    474   condition in the code.</p>
    475   
    476   <p>This code may be run before instcombine. In many cases, instcombine checks
    477   for the same kinds of things and turns instructions with undefined behavior
    478   into unreachable (or equivalent). Because of this, this pass makes some
    479   effort to look through bitcasts and so on.
    480   </p>
    481 </div>
    482 
    483 <!-------------------------------------------------------------------------- -->
    484 <h3>
    485   <a name="loops">-loops: Natural Loop Information</a>
    486 </h3>
    487 <div>
    488   <p>
    489   This analysis is used to identify natural loops and determine the loop depth
    490   of various nodes of the CFG.  Note that the loops identified may actually be
    491   several natural loops that share the same header node... not just a single
    492   natural loop.
    493   </p>
    494 </div>
    495 
    496 <!-------------------------------------------------------------------------- -->
    497 <h3>
    498   <a name="memdep">-memdep: Memory Dependence Analysis</a>
    499 </h3>
    500 <div>
    501   <p>
    502   An analysis that determines, for a given memory operation, what preceding 
    503   memory operations it depends on.  It builds on alias analysis information, and 
    504   tries to provide a lazy, caching interface to a common kind of alias 
    505   information query.
    506   </p>
    507 </div>
    508 
    509 <!-------------------------------------------------------------------------- -->
    510 <h3>
    511   <a name="module-debuginfo">-module-debuginfo: Decodes module-level debug info</a>
    512 </h3>
    513 <div>
    514   <p>This pass decodes the debug info metadata in a module and prints in a
    515  (sufficiently-prepared-) human-readable form.
    516 
    517  For example, run this pass from opt along with the -analyze option, and
    518  it'll print to standard output.
    519   </p>
    520 </div>
    521 
    522 <!-------------------------------------------------------------------------- -->
    523 <h3>
    524   <a name="no-aa">-no-aa: No Alias Analysis (always returns 'may' alias)</a>
    525 </h3>
    526 <div>
    527   <p>
    528   This is the default implementation of the Alias Analysis interface. It always
    529   returns "I don't know" for alias queries.  NoAA is unlike other alias analysis
    530   implementations, in that it does not chain to a previous analysis. As such it
    531   doesn't follow many of the rules that other alias analyses must.
    532   </p>
    533 </div>
    534 
    535 <!-------------------------------------------------------------------------- -->
    536 <h3>
    537   <a name="no-profile">-no-profile: No Profile Information</a>
    538 </h3>
    539 <div>
    540   <p>
    541   The default "no profile" implementation of the abstract
    542   <code>ProfileInfo</code> interface.
    543   </p>
    544 </div>
    545 
    546 <!-------------------------------------------------------------------------- -->
    547 <h3>
    548   <a name="postdomfrontier">-postdomfrontier: Post-Dominance Frontier Construction</a>
    549 </h3>
    550 <div>
    551   <p>
    552   This pass is a simple post-dominator construction algorithm for finding
    553   post-dominator frontiers.
    554   </p>
    555 </div>
    556 
    557 <!-------------------------------------------------------------------------- -->
    558 <h3>
    559   <a name="postdomtree">-postdomtree: Post-Dominator Tree Construction</a>
    560 </h3>
    561 <div>
    562   <p>
    563   This pass is a simple post-dominator construction algorithm for finding
    564   post-dominators.
    565   </p>
    566 </div>
    567 
    568 <!-------------------------------------------------------------------------- -->
    569 <h3>
    570   <a name="print-alias-sets">-print-alias-sets: Alias Set Printer</a>
    571 </h3>
    572 <div>
    573   <p>Yet to be written.</p>
    574 </div>
    575 
    576 <!-------------------------------------------------------------------------- -->
    577 <h3>
    578   <a name="print-callgraph">-print-callgraph: Print a call graph</a>
    579 </h3>
    580 <div>
    581   <p>
    582   This pass, only available in <code>opt</code>, prints the call graph to
    583   standard error in a human-readable form.
    584   </p>
    585 </div>
    586 
    587 <!-------------------------------------------------------------------------- -->
    588 <h3>
    589   <a name="print-callgraph-sccs">-print-callgraph-sccs: Print SCCs of the Call Graph</a>
    590 </h3>
    591 <div>
    592   <p>
    593   This pass, only available in <code>opt</code>, prints the SCCs of the call
    594   graph to standard error in a human-readable form.
    595   </p>
    596 </div>
    597 
    598 <!-------------------------------------------------------------------------- -->
    599 <h3>
    600   <a name="print-cfg-sccs">-print-cfg-sccs: Print SCCs of each function CFG</a>
    601 </h3>
    602 <div>
    603   <p>
    604   This pass, only available in <code>opt</code>, prints the SCCs of each
    605   function CFG to standard error in a human-readable form.
    606   </p>
    607 </div>
    608 
    609 <!-------------------------------------------------------------------------- -->
    610 <h3>
    611   <a name="print-dbginfo">-print-dbginfo: Print debug info in human readable form</a>
    612 </h3>
    613 <div>
    614   <p>Pass that prints instructions, and associated debug info:</p>
    615   <ul>
    616   
    617   <li>source/line/col information</li>
    618   <li>original variable name</li>
    619   <li>original type name</li>
    620   </ul>
    621 </div>
    622 
    623 <!-------------------------------------------------------------------------- -->
    624 <h3>
    625   <a name="print-dom-info">-print-dom-info: Dominator Info Printer</a>
    626 </h3>
    627 <div>
    628   <p>Dominator Info Printer.</p>
    629 </div>
    630 
    631 <!-------------------------------------------------------------------------- -->
    632 <h3>
    633   <a name="print-externalfnconstants">-print-externalfnconstants: Print external fn callsites passed constants</a>
    634 </h3>
    635 <div>
    636   <p>
    637   This pass, only available in <code>opt</code>, prints out call sites to
    638   external functions that are called with constant arguments.  This can be
    639   useful when looking for standard library functions we should constant fold
    640   or handle in alias analyses.
    641   </p>
    642 </div>
    643 
    644 <!-------------------------------------------------------------------------- -->
    645 <h3>
    646   <a name="print-function">-print-function: Print function to stderr</a>
    647 </h3>
    648 <div>
    649   <p>
    650   The <code>PrintFunctionPass</code> class is designed to be pipelined with
    651   other <code>FunctionPass</code>es, and prints out the functions of the module
    652   as they are processed.
    653   </p>
    654 </div>
    655 
    656 <!-------------------------------------------------------------------------- -->
    657 <h3>
    658   <a name="print-module">-print-module: Print module to stderr</a>
    659 </h3>
    660 <div>
    661   <p>
    662   This pass simply prints out the entire module when it is executed.
    663   </p>
    664 </div>
    665 
    666 <!-------------------------------------------------------------------------- -->
    667 <h3>
    668   <a name="print-used-types">-print-used-types: Find Used Types</a>
    669 </h3>
    670 <div>
    671   <p>
    672   This pass is used to seek out all of the types in use by the program.  Note
    673   that this analysis explicitly does not include types only used by the symbol
    674   table.
    675 </div>
    676 
    677 <!-------------------------------------------------------------------------- -->
    678 <h3>
    679   <a name="profile-estimator">-profile-estimator: Estimate profiling information</a>
    680 </h3>
    681 <div>
    682   <p>Profiling information that estimates the profiling information 
    683   in a very crude and unimaginative way.
    684   </p>
    685 </div>
    686 
    687 <!-------------------------------------------------------------------------- -->
    688 <h3>
    689   <a name="profile-loader">-profile-loader: Load profile information from llvmprof.out</a>
    690 </h3>
    691 <div>
    692   <p>
    693   A concrete implementation of profiling information that loads the information
    694   from a profile dump file.
    695   </p>
    696 </div>
    697 
    698 <!-------------------------------------------------------------------------- -->
    699 <h3>
    700   <a name="profile-verifier">-profile-verifier: Verify profiling information</a>
    701 </h3>
    702 <div>
    703   <p>Pass that checks profiling information for plausibility.</p>
    704 </div>
    705 <h3>
    706   <a name="regions">-regions: Detect single entry single exit regions</a>
    707 </h3>
    708 <div>
    709   <p>
    710   The <code>RegionInfo</code> pass detects single entry single exit regions in a
    711   function, where a region is defined as any subgraph that is connected to the
    712   remaining graph at only two spots. Furthermore, an hierarchical region tree is
    713   built.
    714   </p>
    715 </div>
    716 
    717 <!-------------------------------------------------------------------------- -->
    718 <h3>
    719   <a name="scalar-evolution">-scalar-evolution: Scalar Evolution Analysis</a>
    720 </h3>
    721 <div>
    722   <p>
    723   The <code>ScalarEvolution</code> analysis can be used to analyze and
    724   catagorize scalar expressions in loops.  It specializes in recognizing general
    725   induction variables, representing them with the abstract and opaque
    726   <code>SCEV</code> class.  Given this analysis, trip counts of loops and other
    727   important properties can be obtained.
    728   </p>
    729   
    730   <p>
    731   This analysis is primarily useful for induction variable substitution and
    732   strength reduction.
    733   </p>
    734 </div>
    735 
    736 <!-------------------------------------------------------------------------- -->
    737 <h3>
    738   <a name="scev-aa">-scev-aa: ScalarEvolution-based Alias Analysis</a>
    739 </h3>
    740 <div>
    741   <p>Simple alias analysis implemented in terms of ScalarEvolution queries.
    742  
    743   This differs from traditional loop dependence analysis in that it tests
    744   for dependencies within a single iteration of a loop, rather than
    745   dependencies between different iterations.
    746  
    747   ScalarEvolution has a more complete understanding of pointer arithmetic
    748   than BasicAliasAnalysis' collection of ad-hoc analyses.
    749   </p>
    750 </div>
    751 
    752 <!-------------------------------------------------------------------------- -->
    753 <h3>
    754   <a name="targetdata">-targetdata: Target Data Layout</a>
    755 </h3>
    756 <div>
    757   <p>Provides other passes access to information on how the size and alignment
    758   required by the the target ABI for various data types.</p>
    759 </div>
    760 
    761 </div>
    762 
    763 <!-- ======================================================================= -->
    764 <h2><a name="transforms">Transform Passes</a></h2>
    765 <div>
    766   <p>This section describes the LLVM Transform Passes.</p>
    767 
    768 <!-------------------------------------------------------------------------- -->
    769 <h3>
    770   <a name="adce">-adce: Aggressive Dead Code Elimination</a>
    771 </h3>
    772 <div>
    773   <p>ADCE aggressively tries to eliminate code. This pass is similar to
    774   <a href="#dce">DCE</a> but it assumes that values are dead until proven 
    775   otherwise. This is similar to <a href="#sccp">SCCP</a>, except applied to 
    776   the liveness of values.</p>
    777 </div>
    778 
    779 <!-------------------------------------------------------------------------- -->
    780 <h3>
    781   <a name="always-inline">-always-inline: Inliner for always_inline functions</a>
    782 </h3>
    783 <div>
    784   <p>A custom inliner that handles only functions that are marked as 
    785   "always inline".</p>
    786 </div>
    787 
    788 <!-------------------------------------------------------------------------- -->
    789 <h3>
    790   <a name="argpromotion">-argpromotion: Promote 'by reference' arguments to scalars</a>
    791 </h3>
    792 <div>
    793   <p>
    794   This pass promotes "by reference" arguments to be "by value" arguments.  In
    795   practice, this means looking for internal functions that have pointer
    796   arguments.  If it can prove, through the use of alias analysis, that an
    797   argument is *only* loaded, then it can pass the value into the function
    798   instead of the address of the value.  This can cause recursive simplification
    799   of code and lead to the elimination of allocas (especially in C++ template
    800   code like the STL).
    801   </p>
    802   
    803   <p>
    804   This pass also handles aggregate arguments that are passed into a function,
    805   scalarizing them if the elements of the aggregate are only loaded.  Note that
    806   it refuses to scalarize aggregates which would require passing in more than
    807   three operands to the function, because passing thousands of operands for a
    808   large array or structure is unprofitable!
    809   </p>
    810   
    811   <p>
    812   Note that this transformation could also be done for arguments that are only
    813   stored to (returning the value instead), but does not currently.  This case
    814   would be best handled when and if LLVM starts supporting multiple return
    815   values from functions.
    816   </p>
    817 </div>
    818 
    819 <!-------------------------------------------------------------------------- -->
    820 <h3>
    821   <a name="bb-vectorize">-bb-vectorize: Basic-Block Vectorization</a>
    822 </h3>
    823 <div>
    824   <p>This pass combines instructions inside basic blocks to form vector
    825   instructions. It iterates over each basic block, attempting to pair
    826   compatible instructions, repeating this process until no additional
    827   pairs are selected for vectorization. When the outputs of some pair
    828   of compatible instructions are used as inputs by some other pair of
    829   compatible instructions, those pairs are part of a potential
    830   vectorization chain. Instruction pairs are only fused into vector
    831   instructions when they are part of a chain longer than some
    832   threshold length. Moreover, the pass attempts to find the best
    833   possible chain for each pair of compatible instructions. These
    834   heuristics are intended to prevent vectorization in cases where
    835   it would not yield a performance increase of the resulting code.
    836   </p>
    837 </div>
    838 
    839 <!-------------------------------------------------------------------------- -->
    840 <h3>
    841   <a name="block-placement">-block-placement: Profile Guided Basic Block Placement</a>
    842 </h3>
    843 <div>
    844   <p>This pass is a very simple profile guided basic block placement algorithm.
    845   The idea is to put frequently executed blocks together at the start of the
    846   function and hopefully increase the number of fall-through conditional
    847   branches.  If there is no profile information for a particular function, this
    848   pass basically orders blocks in depth-first order.</p>
    849 </div>
    850 
    851 <!-------------------------------------------------------------------------- -->
    852 <h3>
    853   <a name="break-crit-edges">-break-crit-edges: Break critical edges in CFG</a>
    854 </h3>
    855 <div>
    856   <p>
    857   Break all of the critical edges in the CFG by inserting a dummy basic block.
    858   It may be "required" by passes that cannot deal with critical edges. This
    859   transformation obviously invalidates the CFG, but can update forward dominator
    860   (set, immediate dominators, tree, and frontier) information.
    861   </p>
    862 </div>
    863 
    864 <!-------------------------------------------------------------------------- -->
    865 <h3>
    866   <a name="codegenprepare">-codegenprepare: Optimize for code generation</a>
    867 </h3>
    868 <div>
    869   This pass munges the code in the input function to better prepare it for
    870   SelectionDAG-based code generation. This works around limitations in it's
    871   basic-block-at-a-time approach. It should eventually be removed.
    872 </div>
    873 
    874 <!-------------------------------------------------------------------------- -->
    875 <h3>
    876   <a name="constmerge">-constmerge: Merge Duplicate Global Constants</a>
    877 </h3>
    878 <div>
    879   <p>
    880   Merges duplicate global constants together into a single constant that is
    881   shared.  This is useful because some passes (ie TraceValues) insert a lot of
    882   string constants into the program, regardless of whether or not an existing
    883   string is available.
    884   </p>
    885 </div>
    886 
    887 <!-------------------------------------------------------------------------- -->
    888 <h3>
    889   <a name="constprop">-constprop: Simple constant propagation</a>
    890 </h3>
    891 <div>
    892   <p>This file implements constant propagation and merging. It looks for
    893   instructions involving only constant operands and replaces them with a
    894   constant value instead of an instruction. For example:</p>
    895   <blockquote><pre>add i32 1, 2</pre></blockquote>
    896   <p>becomes</p>
    897   <blockquote><pre>i32 3</pre></blockquote>
    898   <p>NOTE: this pass has a habit of making definitions be dead.  It is a good 
    899   idea to to run a <a href="#die">DIE</a> (Dead Instruction Elimination) pass 
    900   sometime after running this pass.</p>
    901 </div>
    902 
    903 <!-------------------------------------------------------------------------- -->
    904 <h3>
    905   <a name="dce">-dce: Dead Code Elimination</a>
    906 </h3>
    907 <div>
    908   <p>
    909   Dead code elimination is similar to <a href="#die">dead instruction
    910   elimination</a>, but it rechecks instructions that were used by removed
    911   instructions to see if they are newly dead.
    912   </p>
    913 </div>
    914 
    915 <!-------------------------------------------------------------------------- -->
    916 <h3>
    917   <a name="deadargelim">-deadargelim: Dead Argument Elimination</a>
    918 </h3>
    919 <div>
    920   <p>
    921   This pass deletes dead arguments from internal functions.  Dead argument
    922   elimination removes arguments which are directly dead, as well as arguments
    923   only passed into function calls as dead arguments of other functions.  This
    924   pass also deletes dead arguments in a similar way.
    925   </p>
    926   
    927   <p>
    928   This pass is often useful as a cleanup pass to run after aggressive
    929   interprocedural passes, which add possibly-dead arguments.
    930   </p>
    931 </div>
    932 
    933 <!-------------------------------------------------------------------------- -->
    934 <h3>
    935   <a name="deadtypeelim">-deadtypeelim: Dead Type Elimination</a>
    936 </h3>
    937 <div>
    938   <p>
    939   This pass is used to cleanup the output of GCC.  It eliminate names for types
    940   that are unused in the entire translation unit, using the <a
    941   href="#findusedtypes">find used types</a> pass.
    942   </p>
    943 </div>
    944 
    945 <!-------------------------------------------------------------------------- -->
    946 <h3>
    947   <a name="die">-die: Dead Instruction Elimination</a>
    948 </h3>
    949 <div>
    950   <p>
    951   Dead instruction elimination performs a single pass over the function,
    952   removing instructions that are obviously dead.
    953   </p>
    954 </div>
    955 
    956 <!-------------------------------------------------------------------------- -->
    957 <h3>
    958   <a name="dse">-dse: Dead Store Elimination</a>
    959 </h3>
    960 <div>
    961   <p>
    962   A trivial dead store elimination that only considers basic-block local
    963   redundant stores.
    964   </p>
    965 </div>
    966 
    967 <!-------------------------------------------------------------------------- -->
    968 <h3>
    969   <a name="functionattrs">-functionattrs: Deduce function attributes</a>
    970 </h3>
    971 <div>
    972   <p>A simple interprocedural pass which walks the call-graph, looking for 
    973   functions which do not access or only read non-local memory, and marking them 
    974   readnone/readonly.  In addition, it marks function arguments (of pointer type) 
    975   'nocapture' if a call to the function does not create any copies of the pointer 
    976   value that outlive the call. This more or less means that the pointer is only
    977   dereferenced, and not returned from the function or stored in a global.
    978   This pass is implemented as a bottom-up traversal of the call-graph.
    979   </p>
    980 </div>
    981 
    982 <!-------------------------------------------------------------------------- -->
    983 <h3>
    984   <a name="globaldce">-globaldce: Dead Global Elimination</a>
    985 </h3>
    986 <div>
    987   <p>
    988   This transform is designed to eliminate unreachable internal globals from the
    989   program.  It uses an aggressive algorithm, searching out globals that are
    990   known to be alive.  After it finds all of the globals which are needed, it
    991   deletes whatever is left over.  This allows it to delete recursive chunks of
    992   the program which are unreachable.
    993   </p>
    994 </div>
    995 
    996 <!-------------------------------------------------------------------------- -->
    997 <h3>
    998   <a name="globalopt">-globalopt: Global Variable Optimizer</a>
    999 </h3>
   1000 <div>
   1001   <p>
   1002   This pass transforms simple global variables that never have their address
   1003   taken.  If obviously true, it marks read/write globals as constant, deletes
   1004   variables only stored to, etc.
   1005   </p>
   1006 </div>
   1007 
   1008 <!-------------------------------------------------------------------------- -->
   1009 <h3>
   1010   <a name="gvn">-gvn: Global Value Numbering</a>
   1011 </h3>
   1012 <div>
   1013   <p>
   1014   This pass performs global value numbering to eliminate fully and partially
   1015   redundant instructions.  It also performs redundant load elimination.
   1016   </p>
   1017 </div>
   1018 
   1019 <!-------------------------------------------------------------------------- -->
   1020 <h3>
   1021   <a name="indvars">-indvars: Canonicalize Induction Variables</a>
   1022 </h3>
   1023 <div>
   1024   <p>
   1025   This transformation analyzes and transforms the induction variables (and
   1026   computations derived from them) into simpler forms suitable for subsequent
   1027   analysis and transformation.
   1028   </p>
   1029   
   1030   <p>
   1031   This transformation makes the following changes to each loop with an
   1032   identifiable induction variable:
   1033   </p>
   1034   
   1035   <ol>
   1036     <li>All loops are transformed to have a <em>single</em> canonical
   1037         induction variable which starts at zero and steps by one.</li>
   1038     <li>The canonical induction variable is guaranteed to be the first PHI node
   1039         in the loop header block.</li>
   1040     <li>Any pointer arithmetic recurrences are raised to use array
   1041         subscripts.</li>
   1042   </ol>
   1043   
   1044   <p>
   1045   If the trip count of a loop is computable, this pass also makes the following
   1046   changes:
   1047   </p>
   1048   
   1049   <ol>
   1050     <li>The exit condition for the loop is canonicalized to compare the
   1051         induction value against the exit value.  This turns loops like:
   1052         <blockquote><pre>for (i = 7; i*i < 1000; ++i)</pre></blockquote>
   1053         into
   1054         <blockquote><pre>for (i = 0; i != 25; ++i)</pre></blockquote></li>
   1055     <li>Any use outside of the loop of an expression derived from the indvar
   1056         is changed to compute the derived value outside of the loop, eliminating
   1057         the dependence on the exit value of the induction variable.  If the only
   1058         purpose of the loop is to compute the exit value of some derived
   1059         expression, this transformation will make the loop dead.</li>
   1060   </ol>
   1061   
   1062   <p>
   1063   This transformation should be followed by strength reduction after all of the
   1064   desired loop transformations have been performed.  Additionally, on targets
   1065   where it is profitable, the loop could be transformed to count down to zero
   1066   (the "do loop" optimization).
   1067   </p>
   1068 </div>
   1069 
   1070 <!-------------------------------------------------------------------------- -->
   1071 <h3>
   1072   <a name="inline">-inline: Function Integration/Inlining</a>
   1073 </h3>
   1074 <div>
   1075   <p>
   1076   Bottom-up inlining of functions into callees.
   1077   </p>
   1078 </div>
   1079 
   1080 <!-------------------------------------------------------------------------- -->
   1081 <h3>
   1082   <a name="insert-edge-profiling">-insert-edge-profiling: Insert instrumentation for edge profiling</a>
   1083 </h3>
   1084 <div>
   1085   <p>
   1086   This pass instruments the specified program with counters for edge profiling.
   1087   Edge profiling can give a reasonable approximation of the hot paths through a
   1088   program, and is used for a wide variety of program transformations.
   1089   </p>
   1090   
   1091   <p>
   1092   Note that this implementation is very nave.  It inserts a counter for
   1093   <em>every</em> edge in the program, instead of using control flow information
   1094   to prune the number of counters inserted.
   1095   </p>
   1096 </div>
   1097 
   1098 <!-------------------------------------------------------------------------- -->
   1099 <h3>
   1100   <a name="insert-optimal-edge-profiling">-insert-optimal-edge-profiling: Insert optimal instrumentation for edge profiling</a>
   1101 </h3>
   1102 <div>
   1103   <p>This pass instruments the specified program with counters for edge profiling.
   1104   Edge profiling can give a reasonable approximation of the hot paths through a
   1105   program, and is used for a wide variety of program transformations.
   1106   </p>
   1107 </div>
   1108 
   1109 <!-------------------------------------------------------------------------- -->
   1110 <h3>
   1111   <a name="instcombine">-instcombine: Combine redundant instructions</a>
   1112 </h3>
   1113 <div>
   1114   <p>
   1115   Combine instructions to form fewer, simple
   1116   instructions.  This pass does not modify the CFG This pass is where algebraic
   1117   simplification happens.
   1118   </p>
   1119   
   1120   <p>
   1121   This pass combines things like:
   1122   </p>
   1123   
   1124 <blockquote><pre
   1125 >%Y = add i32 %X, 1
   1126 %Z = add i32 %Y, 1</pre></blockquote>
   1127   
   1128   <p>
   1129   into:
   1130   </p>
   1131 
   1132 <blockquote><pre
   1133 >%Z = add i32 %X, 2</pre></blockquote>
   1134   
   1135   <p>
   1136   This is a simple worklist driven algorithm.
   1137   </p>
   1138   
   1139   <p>
   1140   This pass guarantees that the following canonicalizations are performed on
   1141   the program:
   1142   </p>
   1143 
   1144   <ul>
   1145     <li>If a binary operator has a constant operand, it is moved to the right-
   1146         hand side.</li>
   1147     <li>Bitwise operators with constant operands are always grouped so that
   1148         shifts are performed first, then <code>or</code>s, then
   1149         <code>and</code>s, then <code>xor</code>s.</li>
   1150     <li>Compare instructions are converted from <code>&lt;</code>,
   1151         <code>&gt;</code>, <code></code>, or <code></code> to
   1152         <code>=</code> or <code></code> if possible.</li>
   1153     <li>All <code>cmp</code> instructions on boolean values are replaced with
   1154         logical operations.</li>
   1155     <li><code>add <var>X</var>, <var>X</var></code> is represented as
   1156         <code>mul <var>X</var>, 2</code>  <code>shl <var>X</var>, 1</code></li>
   1157     <li>Multiplies with a constant power-of-two argument are transformed into
   1158         shifts.</li>
   1159     <li> etc.</li>
   1160   </ul>
   1161 </div>
   1162 
   1163 <!-------------------------------------------------------------------------- -->
   1164 <h3>
   1165   <a name="internalize">-internalize: Internalize Global Symbols</a>
   1166 </h3>
   1167 <div>
   1168   <p>
   1169   This pass loops over all of the functions in the input module, looking for a
   1170   main function.  If a main function is found, all other functions and all
   1171   global variables with initializers are marked as internal.
   1172   </p>
   1173 </div>
   1174 
   1175 <!-------------------------------------------------------------------------- -->
   1176 <h3>
   1177   <a name="ipconstprop">-ipconstprop: Interprocedural constant propagation</a>
   1178 </h3>
   1179 <div>
   1180   <p>
   1181   This pass implements an <em>extremely</em> simple interprocedural constant
   1182   propagation pass.  It could certainly be improved in many different ways,
   1183   like using a worklist.  This pass makes arguments dead, but does not remove
   1184   them.  The existing dead argument elimination pass should be run after this
   1185   to clean up the mess.
   1186   </p>
   1187 </div>
   1188 
   1189 <!-------------------------------------------------------------------------- -->
   1190 <h3>
   1191   <a name="ipsccp">-ipsccp: Interprocedural Sparse Conditional Constant Propagation</a>
   1192 </h3>
   1193 <div>
   1194   <p>
   1195   An interprocedural variant of <a href="#sccp">Sparse Conditional Constant 
   1196   Propagation</a>.
   1197   </p>
   1198 </div>
   1199 
   1200 <!-------------------------------------------------------------------------- -->
   1201 <h3>
   1202   <a name="jump-threading">-jump-threading: Jump Threading</a>
   1203 </h3>
   1204 <div>
   1205   <p>
   1206   Jump threading tries to find distinct threads of control flow running through
   1207   a basic block. This pass looks at blocks that have multiple predecessors and
   1208   multiple successors.  If one or more of the predecessors of the block can be
   1209   proven to always cause a jump to one of the successors, we forward the edge
   1210   from the predecessor to the successor by duplicating the contents of this
   1211   block.
   1212   </p>
   1213   <p>
   1214   An example of when this can occur is code like this:
   1215   </p>
   1216 
   1217   <pre
   1218 >if () { ...
   1219   X = 4;
   1220 }
   1221 if (X &lt; 3) {</pre>
   1222 
   1223   <p>
   1224   In this case, the unconditional branch at the end of the first if can be
   1225   revectored to the false side of the second if.
   1226   </p>
   1227 </div>
   1228 
   1229 <!-------------------------------------------------------------------------- -->
   1230 <h3>
   1231   <a name="lcssa">-lcssa: Loop-Closed SSA Form Pass</a>
   1232 </h3>
   1233 <div>
   1234   <p>
   1235   This pass transforms loops by placing phi nodes at the end of the loops for
   1236   all values that are live across the loop boundary.  For example, it turns
   1237   the left into the right code:
   1238   </p>
   1239   
   1240   <pre
   1241 >for (...)                for (...)
   1242   if (c)                   if (c)
   1243     X1 = ...                 X1 = ...
   1244   else                     else
   1245     X2 = ...                 X2 = ...
   1246   X3 = phi(X1, X2)         X3 = phi(X1, X2)
   1247 ... = X3 + 4              X4 = phi(X3)
   1248                           ... = X4 + 4</pre>
   1249   
   1250   <p>
   1251   This is still valid LLVM; the extra phi nodes are purely redundant, and will
   1252   be trivially eliminated by <code>InstCombine</code>.  The major benefit of
   1253   this transformation is that it makes many other loop optimizations, such as 
   1254   LoopUnswitching, simpler.
   1255   </p>
   1256 </div>
   1257 
   1258 <!-------------------------------------------------------------------------- -->
   1259 <h3>
   1260   <a name="licm">-licm: Loop Invariant Code Motion</a>
   1261 </h3>
   1262 <div>
   1263   <p>
   1264   This pass performs loop invariant code motion, attempting to remove as much
   1265   code from the body of a loop as possible.  It does this by either hoisting
   1266   code into the preheader block, or by sinking code to the exit blocks if it is
   1267   safe.  This pass also promotes must-aliased memory locations in the loop to
   1268   live in registers, thus hoisting and sinking "invariant" loads and stores.
   1269   </p>
   1270   
   1271   <p>
   1272   This pass uses alias analysis for two purposes:
   1273   </p>
   1274   
   1275   <ul>
   1276     <li>Moving loop invariant loads and calls out of loops.  If we can determine
   1277         that a load or call inside of a loop never aliases anything stored to,
   1278         we can hoist it or sink it like any other instruction.</li>
   1279     <li>Scalar Promotion of Memory - If there is a store instruction inside of
   1280         the loop, we try to move the store to happen AFTER the loop instead of
   1281         inside of the loop.  This can only happen if a few conditions are true:
   1282         <ul>
   1283           <li>The pointer stored through is loop invariant.</li>
   1284           <li>There are no stores or loads in the loop which <em>may</em> alias
   1285               the pointer.  There are no calls in the loop which mod/ref the
   1286               pointer.</li>
   1287         </ul>
   1288         If these conditions are true, we can promote the loads and stores in the
   1289         loop of the pointer to use a temporary alloca'd variable.  We then use
   1290         the mem2reg functionality to construct the appropriate SSA form for the
   1291         variable.</li>
   1292   </ul>
   1293 </div>
   1294 
   1295 <!-------------------------------------------------------------------------- -->
   1296 <h3>
   1297   <a name="loop-deletion">-loop-deletion: Delete dead loops</a>
   1298 </h3>
   1299 <div>
   1300   <p>
   1301   This file implements the Dead Loop Deletion Pass.  This pass is responsible
   1302   for eliminating loops with non-infinite computable trip counts that have no
   1303   side effects or volatile instructions, and do not contribute to the
   1304   computation of the function's return value.
   1305   </p>
   1306 </div>
   1307 
   1308 <!-------------------------------------------------------------------------- -->
   1309 <h3>
   1310   <a name="loop-extract">-loop-extract: Extract loops into new functions</a>
   1311 </h3>
   1312 <div>
   1313   <p>
   1314   A pass wrapper around the <code>ExtractLoop()</code> scalar transformation to 
   1315   extract each top-level loop into its own new function. If the loop is the
   1316   <em>only</em> loop in a given function, it is not touched. This is a pass most
   1317   useful for debugging via bugpoint.
   1318   </p>
   1319 </div>
   1320 
   1321 <!-------------------------------------------------------------------------- -->
   1322 <h3>
   1323   <a name="loop-extract-single">-loop-extract-single: Extract at most one loop into a new function</a>
   1324 </h3>
   1325 <div>
   1326   <p>
   1327   Similar to <a href="#loop-extract">Extract loops into new functions</a>,
   1328   this pass extracts one natural loop from the program into a function if it
   1329   can. This is used by bugpoint.
   1330   </p>
   1331 </div>
   1332 
   1333 <!-------------------------------------------------------------------------- -->
   1334 <h3>
   1335   <a name="loop-reduce">-loop-reduce: Loop Strength Reduction</a>
   1336 </h3>
   1337 <div>
   1338   <p>
   1339   This pass performs a strength reduction on array references inside loops that
   1340   have as one or more of their components the loop induction variable.  This is
   1341   accomplished by creating a new value to hold the initial value of the array
   1342   access for the first iteration, and then creating a new GEP instruction in
   1343   the loop to increment the value by the appropriate amount.
   1344   </p>
   1345 </div>
   1346 
   1347 <!-------------------------------------------------------------------------- -->
   1348 <h3>
   1349   <a name="loop-rotate">-loop-rotate: Rotate Loops</a>
   1350 </h3>
   1351 <div>
   1352   <p>A simple loop rotation transformation.</p>
   1353 </div>
   1354 
   1355 <!-------------------------------------------------------------------------- -->
   1356 <h3>
   1357   <a name="loop-simplify">-loop-simplify: Canonicalize natural loops</a>
   1358 </h3>
   1359 <div>
   1360   <p>
   1361   This pass performs several transformations to transform natural loops into a
   1362   simpler form, which makes subsequent analyses and transformations simpler and
   1363   more effective.
   1364   </p>
   1365   
   1366   <p>
   1367   Loop pre-header insertion guarantees that there is a single, non-critical
   1368   entry edge from outside of the loop to the loop header.  This simplifies a
   1369   number of analyses and transformations, such as LICM.
   1370   </p>
   1371   
   1372   <p>
   1373   Loop exit-block insertion guarantees that all exit blocks from the loop
   1374   (blocks which are outside of the loop that have predecessors inside of the
   1375   loop) only have predecessors from inside of the loop (and are thus dominated
   1376   by the loop header).  This simplifies transformations such as store-sinking
   1377   that are built into LICM.
   1378   </p>
   1379   
   1380   <p>
   1381   This pass also guarantees that loops will have exactly one backedge.
   1382   </p>
   1383   
   1384   <p>
   1385   Note that the simplifycfg pass will clean up blocks which are split out but
   1386   end up being unnecessary, so usage of this pass should not pessimize
   1387   generated code.
   1388   </p>
   1389   
   1390   <p>
   1391   This pass obviously modifies the CFG, but updates loop information and
   1392   dominator information.
   1393   </p>
   1394 </div>
   1395 
   1396 <!-------------------------------------------------------------------------- -->
   1397 <h3>
   1398   <a name="loop-unroll">-loop-unroll: Unroll loops</a>
   1399 </h3>
   1400 <div>
   1401   <p>
   1402   This pass implements a simple loop unroller.  It works best when loops have
   1403   been canonicalized by the <a href="#indvars"><tt>-indvars</tt></a> pass,
   1404   allowing it to determine the trip counts of loops easily.
   1405   </p>
   1406 </div>
   1407 
   1408 <!-------------------------------------------------------------------------- -->
   1409 <h3>
   1410   <a name="loop-unswitch">-loop-unswitch: Unswitch loops</a>
   1411 </h3>
   1412 <div>
   1413   <p>
   1414   This pass transforms loops that contain branches on loop-invariant conditions
   1415   to have multiple loops.  For example, it turns the left into the right code:
   1416   </p>
   1417   
   1418   <pre
   1419 >for (...)                  if (lic)
   1420   A                          for (...)
   1421   if (lic)                     A; B; C
   1422     B                      else
   1423   C                          for (...)
   1424                                A; C</pre>
   1425   
   1426   <p>
   1427   This can increase the size of the code exponentially (doubling it every time
   1428   a loop is unswitched) so we only unswitch if the resultant code will be
   1429   smaller than a threshold.
   1430   </p>
   1431   
   1432   <p>
   1433   This pass expects LICM to be run before it to hoist invariant conditions out
   1434   of the loop, to make the unswitching opportunity obvious.
   1435   </p>
   1436 </div>
   1437 
   1438 <!-------------------------------------------------------------------------- -->
   1439 <h3>
   1440   <a name="loweratomic">-loweratomic: Lower atomic intrinsics to non-atomic form</a>
   1441 </h3>
   1442 <div>
   1443   <p>
   1444   This pass lowers atomic intrinsics to non-atomic form for use in a known
   1445   non-preemptible environment.
   1446   </p>
   1447 
   1448   <p>
   1449   The pass does not verify that the environment is non-preemptible (in
   1450   general this would require knowledge of the entire call graph of the
   1451   program including any libraries which may not be available in bitcode form);
   1452   it simply lowers every atomic intrinsic.
   1453   </p>
   1454 </div>
   1455 
   1456 <!-------------------------------------------------------------------------- -->
   1457 <h3>
   1458   <a name="lowerinvoke">-lowerinvoke: Lower invoke and unwind, for unwindless code generators</a>
   1459 </h3>
   1460 <div>
   1461   <p>
   1462   This transformation is designed for use by code generators which do not yet
   1463   support stack unwinding.  This pass supports two models of exception handling
   1464   lowering, the 'cheap' support and the 'expensive' support.
   1465   </p>
   1466   
   1467   <p>
   1468   'Cheap' exception handling support gives the program the ability to execute
   1469   any program which does not "throw an exception", by turning 'invoke'
   1470   instructions into calls and by turning 'unwind' instructions into calls to
   1471   abort().  If the program does dynamically use the unwind instruction, the
   1472   program will print a message then abort.
   1473   </p>
   1474   
   1475   <p>
   1476   'Expensive' exception handling support gives the full exception handling
   1477   support to the program at the cost of making the 'invoke' instruction
   1478   really expensive.  It basically inserts setjmp/longjmp calls to emulate the
   1479   exception handling as necessary.
   1480   </p>
   1481   
   1482   <p>
   1483   Because the 'expensive' support slows down programs a lot, and EH is only
   1484   used for a subset of the programs, it must be specifically enabled by the
   1485   <tt>-enable-correct-eh-support</tt> option.
   1486   </p>
   1487   
   1488   <p>
   1489   Note that after this pass runs the CFG is not entirely accurate (exceptional
   1490   control flow edges are not correct anymore) so only very simple things should
   1491   be done after the lowerinvoke pass has run (like generation of native code).
   1492   This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't
   1493   support the invoke instruction yet" lowering pass.
   1494   </p>
   1495 </div>
   1496 
   1497 <!-------------------------------------------------------------------------- -->
   1498 <h3>
   1499   <a name="lowerswitch">-lowerswitch: Lower SwitchInst's to branches</a>
   1500 </h3>
   1501 <div>
   1502   <p>
   1503   Rewrites <tt>switch</tt> instructions with a sequence of branches, which
   1504   allows targets to get away with not implementing the switch instruction until
   1505   it is convenient.
   1506   </p>
   1507 </div>
   1508 
   1509 <!-------------------------------------------------------------------------- -->
   1510 <h3>
   1511   <a name="mem2reg">-mem2reg: Promote Memory to Register</a>
   1512 </h3>
   1513 <div>
   1514   <p>
   1515   This file promotes memory references to be register references.  It promotes
   1516   <tt>alloca</tt> instructions which only have <tt>load</tt>s and
   1517   <tt>store</tt>s as uses.  An <tt>alloca</tt> is transformed by using dominator
   1518   frontiers to place <tt>phi</tt> nodes, then traversing the function in
   1519   depth-first order to rewrite <tt>load</tt>s and <tt>store</tt>s as
   1520   appropriate. This is just the standard SSA construction algorithm to construct
   1521   "pruned" SSA form.
   1522   </p>
   1523 </div>
   1524 
   1525 <!-------------------------------------------------------------------------- -->
   1526 <h3>
   1527   <a name="memcpyopt">-memcpyopt: MemCpy Optimization</a>
   1528 </h3>
   1529 <div>
   1530   <p>
   1531   This pass performs various transformations related to eliminating memcpy
   1532   calls, or transforming sets of stores into memset's.
   1533   </p>
   1534 </div>
   1535 
   1536 <!-------------------------------------------------------------------------- -->
   1537 <h3>
   1538   <a name="mergefunc">-mergefunc: Merge Functions</a>
   1539 </h3>
   1540 <div>
   1541   <p>This pass looks for equivalent functions that are mergable and folds them.
   1542  
   1543   A hash is computed from the function, based on its type and number of
   1544   basic blocks.
   1545  
   1546   Once all hashes are computed, we perform an expensive equality comparison
   1547   on each function pair. This takes n^2/2 comparisons per bucket, so it's
   1548   important that the hash function be high quality. The equality comparison
   1549   iterates through each instruction in each basic block.
   1550  
   1551   When a match is found the functions are folded. If both functions are
   1552   overridable, we move the functionality into a new internal function and
   1553   leave two overridable thunks to it.
   1554   </p>
   1555 </div>
   1556 
   1557 <!-------------------------------------------------------------------------- -->
   1558 <h3>
   1559   <a name="mergereturn">-mergereturn: Unify function exit nodes</a>
   1560 </h3>
   1561 <div>
   1562   <p>
   1563   Ensure that functions have at most one <tt>ret</tt> instruction in them.
   1564   Additionally, it keeps track of which node is the new exit node of the CFG.
   1565   </p>
   1566 </div>
   1567 
   1568 <!-------------------------------------------------------------------------- -->
   1569 <h3>
   1570   <a name="partial-inliner">-partial-inliner: Partial Inliner</a>
   1571 </h3>
   1572 <div>
   1573   <p>This pass performs partial inlining, typically by inlining an if 
   1574   statement that surrounds the body of the function.
   1575   </p>
   1576 </div>
   1577 
   1578 <!-------------------------------------------------------------------------- -->
   1579 <h3>
   1580   <a name="prune-eh">-prune-eh: Remove unused exception handling info</a>
   1581 </h3>
   1582 <div>
   1583   <p>
   1584   This file implements a simple interprocedural pass which walks the call-graph,
   1585   turning <tt>invoke</tt> instructions into <tt>call</tt> instructions if and
   1586   only if the callee cannot throw an exception. It implements this as a
   1587   bottom-up traversal of the call-graph.
   1588   </p>
   1589 </div>
   1590 
   1591 <!-------------------------------------------------------------------------- -->
   1592 <h3>
   1593   <a name="reassociate">-reassociate: Reassociate expressions</a>
   1594 </h3>
   1595 <div>
   1596   <p>
   1597   This pass reassociates commutative expressions in an order that is designed
   1598   to promote better constant propagation, GCSE, LICM, PRE, etc.
   1599   </p>
   1600   
   1601   <p>
   1602   For example: 4 + (<var>x</var> + 5)  <var>x</var> + (4 + 5)
   1603   </p>
   1604   
   1605   <p>
   1606   In the implementation of this algorithm, constants are assigned rank = 0,
   1607   function arguments are rank = 1, and other values are assigned ranks
   1608   corresponding to the reverse post order traversal of current function
   1609   (starting at 2), which effectively gives values in deep loops higher rank
   1610   than values not in loops.
   1611   </p>
   1612 </div>
   1613 
   1614 <!-------------------------------------------------------------------------- -->
   1615 <h3>
   1616   <a name="reg2mem">-reg2mem: Demote all values to stack slots</a>
   1617 </h3>
   1618 <div>
   1619   <p>
   1620   This file demotes all registers to memory references.  It is intented to be
   1621   the inverse of <a href="#mem2reg"><tt>-mem2reg</tt></a>.  By converting to
   1622   <tt>load</tt> instructions, the only values live across basic blocks are
   1623   <tt>alloca</tt> instructions and <tt>load</tt> instructions before
   1624   <tt>phi</tt> nodes. It is intended that this should make CFG hacking much 
   1625   easier. To make later hacking easier, the entry block is split into two, such
   1626   that all introduced <tt>alloca</tt> instructions (and nothing else) are in the
   1627   entry block.
   1628   </p>
   1629 </div>
   1630 
   1631 <!-------------------------------------------------------------------------- -->
   1632 <h3>
   1633   <a name="scalarrepl">-scalarrepl: Scalar Replacement of Aggregates (DT)</a>
   1634 </h3>
   1635 <div>
   1636   <p>
   1637   The well-known scalar replacement of aggregates transformation.  This
   1638   transform breaks up <tt>alloca</tt> instructions of aggregate type (structure
   1639   or array) into individual <tt>alloca</tt> instructions for each member if
   1640   possible.  Then, if possible, it transforms the individual <tt>alloca</tt>
   1641   instructions into nice clean scalar SSA form.
   1642   </p>
   1643   
   1644   <p>
   1645   This combines a simple scalar replacement of aggregates algorithm with the <a
   1646   href="#mem2reg"><tt>mem2reg</tt></a> algorithm because often interact, 
   1647   especially for C++ programs.  As such, iterating between <tt>scalarrepl</tt>, 
   1648   then <a href="#mem2reg"><tt>mem2reg</tt></a> until we run out of things to 
   1649   promote works well.
   1650   </p>
   1651 </div>
   1652 
   1653 <!-------------------------------------------------------------------------- -->
   1654 <h3>
   1655   <a name="sccp">-sccp: Sparse Conditional Constant Propagation</a>
   1656 </h3>
   1657 <div>
   1658   <p>
   1659   Sparse conditional constant propagation and merging, which can be summarized
   1660   as:
   1661   </p>
   1662   
   1663   <ol>
   1664     <li>Assumes values are constant unless proven otherwise</li>
   1665     <li>Assumes BasicBlocks are dead unless proven otherwise</li>
   1666     <li>Proves values to be constant, and replaces them with constants</li>
   1667     <li>Proves conditional branches to be unconditional</li>
   1668   </ol>
   1669   
   1670   <p>
   1671   Note that this pass has a habit of making definitions be dead.  It is a good
   1672   idea to to run a DCE pass sometime after running this pass.
   1673   </p>
   1674 </div>
   1675 
   1676 <!-------------------------------------------------------------------------- -->
   1677 <h3>
   1678   <a name="simplify-libcalls">-simplify-libcalls: Simplify well-known library calls</a>
   1679 </h3>
   1680 <div>
   1681   <p>
   1682   Applies a variety of small optimizations for calls to specific well-known 
   1683   function calls (e.g. runtime library functions). For example, a call
   1684    <tt>exit(3)</tt> that occurs within the <tt>main()</tt> function can be 
   1685    transformed into simply <tt>return 3</tt>.
   1686   </p>
   1687 </div>
   1688 
   1689 <!-------------------------------------------------------------------------- -->
   1690 <h3>
   1691   <a name="simplifycfg">-simplifycfg: Simplify the CFG</a>
   1692 </h3>
   1693 <div>
   1694   <p>
   1695   Performs dead code elimination and basic block merging. Specifically:
   1696   </p>
   1697   
   1698   <ol>
   1699     <li>Removes basic blocks with no predecessors.</li>
   1700     <li>Merges a basic block into its predecessor if there is only one and the
   1701         predecessor only has one successor.</li>
   1702     <li>Eliminates PHI nodes for basic blocks with a single predecessor.</li>
   1703     <li>Eliminates a basic block that only contains an unconditional
   1704         branch.</li>
   1705   </ol>
   1706 </div>
   1707 
   1708 <!-------------------------------------------------------------------------- -->
   1709 <h3>
   1710   <a name="sink">-sink: Code sinking</a>
   1711 </h3>
   1712 <div>
   1713   <p>This pass moves instructions into successor blocks, when possible, so that
   1714  they aren't executed on paths where their results aren't needed.
   1715   </p>
   1716 </div>
   1717 
   1718 <!-------------------------------------------------------------------------- -->
   1719 <h3>
   1720   <a name="sretpromotion">-sretpromotion: Promote sret arguments to multiple ret values</a>
   1721 </h3>
   1722 <div>
   1723   <p>
   1724   This pass finds functions that return a struct (using a pointer to the struct
   1725   as the first argument of the function, marked with the '<tt>sret</tt>' attribute) and
   1726   replaces them with a new function that simply returns each of the elements of
   1727   that struct (using multiple return values).
   1728   </p>
   1729 
   1730   <p>
   1731   This pass works under a number of conditions:
   1732   </p>
   1733 
   1734   <ul>
   1735   <li>The returned struct must not contain other structs</li>
   1736   <li>The returned struct must only be used to load values from</li>
   1737   <li>The placeholder struct passed in is the result of an <tt>alloca</tt></li>
   1738   </ul>
   1739 </div>
   1740 
   1741 <!-------------------------------------------------------------------------- -->
   1742 <h3>
   1743   <a name="strip">-strip: Strip all symbols from a module</a>
   1744 </h3>
   1745 <div>
   1746   <p>
   1747   performs code stripping. this transformation can delete:
   1748   </p>
   1749   
   1750   <ol>
   1751     <li>names for virtual registers</li>
   1752     <li>symbols for internal globals and functions</li>
   1753     <li>debug information</li>
   1754   </ol>
   1755   
   1756   <p>
   1757   note that this transformation makes code much less readable, so it should
   1758   only be used in situations where the <tt>strip</tt> utility would be used,
   1759   such as reducing code size or making it harder to reverse engineer code.
   1760   </p>
   1761 </div>
   1762 
   1763 <!-------------------------------------------------------------------------- -->
   1764 <h3>
   1765   <a name="strip-dead-debug-info">-strip-dead-debug-info: Strip debug info for unused symbols</a>
   1766 </h3>
   1767 <div>
   1768   <p>
   1769   performs code stripping. this transformation can delete:
   1770   </p>
   1771   
   1772   <ol>
   1773     <li>names for virtual registers</li>
   1774     <li>symbols for internal globals and functions</li>
   1775     <li>debug information</li>
   1776   </ol>
   1777   
   1778   <p>
   1779   note that this transformation makes code much less readable, so it should
   1780   only be used in situations where the <tt>strip</tt> utility would be used,
   1781   such as reducing code size or making it harder to reverse engineer code.
   1782   </p>
   1783 </div>
   1784 
   1785 <!-------------------------------------------------------------------------- -->
   1786 <h3>
   1787   <a name="strip-dead-prototypes">-strip-dead-prototypes: Strip Unused Function Prototypes</a>
   1788 </h3>
   1789 <div>
   1790   <p>
   1791   This pass loops over all of the functions in the input module, looking for
   1792   dead declarations and removes them. Dead declarations are declarations of
   1793   functions for which no implementation is available (i.e., declarations for
   1794   unused library functions).
   1795   </p>
   1796 </div>
   1797 
   1798 <!-------------------------------------------------------------------------- -->
   1799 <h3>
   1800   <a name="strip-debug-declare">-strip-debug-declare: Strip all llvm.dbg.declare intrinsics</a>
   1801 </h3>
   1802 <div>
   1803   <p>This pass implements code stripping. Specifically, it can delete:</p>
   1804   <ul>
   1805   <li>names for virtual registers</li>
   1806   <li>symbols for internal globals and functions</li>
   1807   <li>debug information</li>
   1808   </ul>
   1809   <p>
   1810   Note that this transformation makes code much less readable, so it should
   1811   only be used in situations where the 'strip' utility would be used, such as
   1812   reducing code size or making it harder to reverse engineer code.
   1813   </p>
   1814 </div>
   1815 
   1816 <!-------------------------------------------------------------------------- -->
   1817 <h3>
   1818   <a name="strip-nondebug">-strip-nondebug: Strip all symbols, except dbg symbols, from a module</a>
   1819 </h3>
   1820 <div>
   1821   <p>This pass implements code stripping. Specifically, it can delete:</p>
   1822   <ul>
   1823   <li>names for virtual registers</li>
   1824   <li>symbols for internal globals and functions</li>
   1825   <li>debug information</li>
   1826   </ul>
   1827   <p>
   1828   Note that this transformation makes code much less readable, so it should
   1829   only be used in situations where the 'strip' utility would be used, such as
   1830   reducing code size or making it harder to reverse engineer code.
   1831   </p>
   1832 </div>
   1833 
   1834 <!-------------------------------------------------------------------------- -->
   1835 <h3>
   1836   <a name="tailcallelim">-tailcallelim: Tail Call Elimination</a>
   1837 </h3>
   1838 <div>
   1839   <p>
   1840   This file transforms calls of the current function (self recursion) followed
   1841   by a return instruction with a branch to the entry of the function, creating
   1842   a loop.  This pass also implements the following extensions to the basic
   1843   algorithm:
   1844   </p>
   1845   
   1846   <ul>
   1847   <li>Trivial instructions between the call and return do not prevent the
   1848       transformation from taking place, though currently the analysis cannot
   1849       support moving any really useful instructions (only dead ones).
   1850   <li>This pass transforms functions that are prevented from being tail
   1851       recursive by an associative expression to use an accumulator variable,
   1852       thus compiling the typical naive factorial or <tt>fib</tt> implementation
   1853       into efficient code.
   1854   <li>TRE is performed if the function returns void, if the return
   1855       returns the result returned by the call, or if the function returns a
   1856       run-time constant on all exits from the function.  It is possible, though
   1857       unlikely, that the return returns something else (like constant 0), and
   1858       can still be TRE'd.  It can be TRE'd if <em>all other</em> return 
   1859       instructions in the function return the exact same value.
   1860   <li>If it can prove that callees do not access theier caller stack frame,
   1861       they are marked as eligible for tail call elimination (by the code
   1862       generator).
   1863   </ul>
   1864 </div>
   1865 
   1866 <!-------------------------------------------------------------------------- -->
   1867 <h3>
   1868   <a name="tailduplicate">-tailduplicate: Tail Duplication</a>
   1869 </h3>
   1870 <div>
   1871   <p>
   1872   This pass performs a limited form of tail duplication, intended to simplify
   1873   CFGs by removing some unconditional branches.  This pass is necessary to
   1874   straighten out loops created by the C front-end, but also is capable of
   1875   making other code nicer.  After this pass is run, the CFG simplify pass
   1876   should be run to clean up the mess.
   1877   </p>
   1878 </div>
   1879 
   1880 </div>
   1881 
   1882 <!-- ======================================================================= -->
   1883 <h2><a name="utilities">Utility Passes</a></h2>
   1884 <div>
   1885   <p>This section describes the LLVM Utility Passes.</p>
   1886 
   1887 <!-------------------------------------------------------------------------- -->
   1888 <h3>
   1889   <a name="deadarghaX0r">-deadarghaX0r: Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)</a>
   1890 </h3>
   1891 <div>
   1892   <p>
   1893   Same as dead argument elimination, but deletes arguments to functions which
   1894   are external.  This is only for use by <a
   1895   href="Bugpoint.html">bugpoint</a>.</p>
   1896 </div>
   1897 
   1898 <!-------------------------------------------------------------------------- -->
   1899 <h3>
   1900   <a name="extract-blocks">-extract-blocks: Extract Basic Blocks From Module (for bugpoint use)</a>
   1901 </h3>
   1902 <div>
   1903   <p>
   1904   This pass is used by bugpoint to extract all blocks from the module into their
   1905   own functions.</p>
   1906 </div>
   1907 
   1908 <!-------------------------------------------------------------------------- -->
   1909 <h3>
   1910   <a name="instnamer">-instnamer: Assign names to anonymous instructions</a>
   1911 </h3>
   1912 <div>
   1913   <p>This is a little utility pass that gives instructions names, this is mostly
   1914  useful when diffing the effect of an optimization because deleting an
   1915  unnamed instruction can change all other instruction numbering, making the
   1916  diff very noisy.  
   1917   </p>
   1918 </div>
   1919 
   1920 <!-------------------------------------------------------------------------- -->
   1921 <h3>
   1922   <a name="preverify">-preverify: Preliminary module verification</a>
   1923 </h3>
   1924 <div>
   1925   <p>
   1926   Ensures that the module is in the form required by the <a
   1927   href="#verifier">Module Verifier</a> pass.
   1928   </p>
   1929   
   1930   <p>
   1931   Running the verifier runs this pass automatically, so there should be no need
   1932   to use it directly.
   1933   </p>
   1934 </div>
   1935 
   1936 <!-------------------------------------------------------------------------- -->
   1937 <h3>
   1938   <a name="verify">-verify: Module Verifier</a>
   1939 </h3>
   1940 <div>
   1941   <p>
   1942   Verifies an LLVM IR code. This is useful to run after an optimization which is
   1943   undergoing testing. Note that <tt>llvm-as</tt> verifies its input before
   1944   emitting bitcode, and also that malformed bitcode is likely to make LLVM
   1945   crash. All language front-ends are therefore encouraged to verify their output
   1946   before performing optimizing transformations.
   1947   </p>
   1948 
   1949   <ul>
   1950     <li>Both of a binary operator's parameters are of the same type.</li>
   1951     <li>Verify that the indices of mem access instructions match other
   1952         operands.</li>
   1953     <li>Verify that arithmetic and other things are only performed on
   1954         first-class types.  Verify that shifts and logicals only happen on
   1955         integrals f.e.</li>
   1956     <li>All of the constants in a switch statement are of the correct type.</li>
   1957     <li>The code is in valid SSA form.</li>
   1958     <li>It is illegal to put a label into any other type (like a structure) or 
   1959         to return one.</li>
   1960     <li>Only phi nodes can be self referential: <tt>%x = add i32 %x, %x</tt> is
   1961         invalid.</li>
   1962     <li>PHI nodes must have an entry for each predecessor, with no extras.</li>
   1963     <li>PHI nodes must be the first thing in a basic block, all grouped
   1964         together.</li>
   1965     <li>PHI nodes must have at least one entry.</li>
   1966     <li>All basic blocks should only end with terminator insts, not contain
   1967         them.</li>
   1968     <li>The entry node to a function must not have predecessors.</li>
   1969     <li>All Instructions must be embedded into a basic block.</li>
   1970     <li>Functions cannot take a void-typed parameter.</li>
   1971     <li>Verify that a function's argument list agrees with its declared
   1972         type.</li>
   1973     <li>It is illegal to specify a name for a void value.</li>
   1974     <li>It is illegal to have a internal global value with no initializer.</li>
   1975     <li>It is illegal to have a ret instruction that returns a value that does
   1976         not agree with the function return value type.</li>
   1977     <li>Function call argument types match the function prototype.</li>
   1978     <li>All other things that are tested by asserts spread about the code.</li>
   1979   </ul>
   1980   
   1981   <p>
   1982   Note that this does not provide full security verification (like Java), but
   1983   instead just tries to ensure that code is well-formed.
   1984   </p>
   1985 </div>
   1986 
   1987 <!-------------------------------------------------------------------------- -->
   1988 <h3>
   1989   <a name="view-cfg">-view-cfg: View CFG of function</a>
   1990 </h3>
   1991 <div>
   1992   <p>
   1993   Displays the control flow graph using the GraphViz tool.
   1994   </p>
   1995 </div>
   1996 
   1997 <!-------------------------------------------------------------------------- -->
   1998 <h3>
   1999   <a name="view-cfg-only">-view-cfg-only: View CFG of function (with no function bodies)</a>
   2000 </h3>
   2001 <div>
   2002   <p>
   2003   Displays the control flow graph using the GraphViz tool, but omitting function
   2004   bodies.
   2005   </p>
   2006 </div>
   2007 
   2008 <!-------------------------------------------------------------------------- -->
   2009 <h3>
   2010   <a name="view-dom">-view-dom: View dominance tree of function</a>
   2011 </h3>
   2012 <div>
   2013   <p>
   2014   Displays the dominator tree using the GraphViz tool.
   2015   </p>
   2016 </div>
   2017 
   2018 <!-------------------------------------------------------------------------- -->
   2019 <h3>
   2020   <a name="view-dom-only">-view-dom-only: View dominance tree of function (with no function bodies)</a>
   2021 </h3>
   2022 <div>
   2023   <p>
   2024   Displays the dominator tree using the GraphViz tool, but omitting function
   2025   bodies.
   2026   </p>
   2027 </div>
   2028 
   2029 <!-------------------------------------------------------------------------- -->
   2030 <h3>
   2031   <a name="view-postdom">-view-postdom: View postdominance tree of function</a>
   2032 </h3>
   2033 <div>
   2034   <p>
   2035   Displays the post dominator tree using the GraphViz tool.
   2036   </p>
   2037 </div>
   2038 
   2039 <!-------------------------------------------------------------------------- -->
   2040 <h3>
   2041   <a name="view-postdom-only">-view-postdom-only: View postdominance tree of function (with no function bodies)</a>
   2042 </h3>
   2043 <div>
   2044   <p>
   2045   Displays the post dominator tree using the GraphViz tool, but omitting
   2046   function bodies.
   2047   </p>
   2048 </div>
   2049 
   2050 </div>
   2051 
   2052 <!-- *********************************************************************** -->
   2053 
   2054 <hr>
   2055 <address>
   2056   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
   2057   src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
   2058   <a href="http://validator.w3.org/check/referer"><img
   2059   src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
   2060 
   2061   <a href="mailto:rspencer (a] x10sys.com">Reid Spencer</a><br>
   2062   <a href="http://llvm.org/">LLVM Compiler Infrastructure</a><br>
   2063   Last modified: $Date$
   2064 </address>
   2065 
   2066 </body>
   2067 </html>
   2068