Home | History | Annotate | Download | only in tutorial
      1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
      2                       "http://www.w3.org/TR/html4/strict.dtd">
      3 
      4 <html>
      5 <head>
      6   <title>Kaleidoscope: Adding JIT and Optimizer Support</title>
      7   <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
      8   <meta name="author" content="Chris Lattner">
      9   <link rel="stylesheet" href="../llvm.css" type="text/css">
     10 </head>
     11 
     12 <body>
     13 
     14 <h1>Kaleidoscope: Adding JIT and Optimizer Support</h1>
     15 
     16 <ul>
     17 <li><a href="index.html">Up to Tutorial Index</a></li>
     18 <li>Chapter 4
     19   <ol>
     20     <li><a href="#intro">Chapter 4 Introduction</a></li>
     21     <li><a href="#trivialconstfold">Trivial Constant Folding</a></li>
     22     <li><a href="#optimizerpasses">LLVM Optimization Passes</a></li>
     23     <li><a href="#jit">Adding a JIT Compiler</a></li>
     24     <li><a href="#code">Full Code Listing</a></li>
     25   </ol>
     26 </li>
     27 <li><a href="LangImpl5.html">Chapter 5</a>: Extending the Language: Control 
     28 Flow</li>
     29 </ul>
     30 
     31 <div class="doc_author">
     32   <p>Written by <a href="mailto:sabre (a] nondot.org">Chris Lattner</a></p>
     33 </div>
     34 
     35 <!-- *********************************************************************** -->
     36 <h2><a name="intro">Chapter 4 Introduction</a></h2>
     37 <!-- *********************************************************************** -->
     38 
     39 <div>
     40 
     41 <p>Welcome to Chapter 4 of the "<a href="index.html">Implementing a language
     42 with LLVM</a>" tutorial.  Chapters 1-3 described the implementation of a simple
     43 language and added support for generating LLVM IR.  This chapter describes
     44 two new techniques: adding optimizer support to your language, and adding JIT
     45 compiler support.  These additions will demonstrate how to get nice, efficient code 
     46 for the Kaleidoscope language.</p>
     47 
     48 </div>
     49 
     50 <!-- *********************************************************************** -->
     51 <h2><a name="trivialconstfold">Trivial Constant Folding</a></h2>
     52 <!-- *********************************************************************** -->
     53 
     54 <div>
     55 
     56 <p>
     57 Our demonstration for Chapter 3 is elegant and easy to extend.  Unfortunately,
     58 it does not produce wonderful code.  The IRBuilder, however, does give us
     59 obvious optimizations when compiling simple code:</p>
     60 
     61 <div class="doc_code">
     62 <pre>
     63 ready&gt; <b>def test(x) 1+2+x;</b>
     64 Read function definition:
     65 define double @test(double %x) {
     66 entry:
     67         %addtmp = fadd double 3.000000e+00, %x
     68         ret double %addtmp
     69 }
     70 </pre>
     71 </div>
     72 
     73 <p>This code is not a literal transcription of the AST built by parsing the 
     74 input. That would be:
     75 
     76 <div class="doc_code">
     77 <pre>
     78 ready&gt; <b>def test(x) 1+2+x;</b>
     79 Read function definition:
     80 define double @test(double %x) {
     81 entry:
     82         %addtmp = fadd double 2.000000e+00, 1.000000e+00
     83         %addtmp1 = fadd double %addtmp, %x
     84         ret double %addtmp1
     85 }
     86 </pre>
     87 </div>
     88 
     89 <p>Constant folding, as seen above, in particular, is a very common and very
     90 important optimization: so much so that many language implementors implement
     91 constant folding support in their AST representation.</p>
     92 
     93 <p>With LLVM, you don't need this support in the AST.  Since all calls to build 
     94 LLVM IR go through the LLVM IR builder, the builder itself checked to see if 
     95 there was a constant folding opportunity when you call it.  If so, it just does 
     96 the constant fold and return the constant instead of creating an instruction.
     97 
     98 <p>Well, that was easy :).  In practice, we recommend always using
     99 <tt>IRBuilder</tt> when generating code like this.  It has no
    100 "syntactic overhead" for its use (you don't have to uglify your compiler with
    101 constant checks everywhere) and it can dramatically reduce the amount of
    102 LLVM IR that is generated in some cases (particular for languages with a macro
    103 preprocessor or that use a lot of constants).</p>
    104 
    105 <p>On the other hand, the <tt>IRBuilder</tt> is limited by the fact
    106 that it does all of its analysis inline with the code as it is built.  If you
    107 take a slightly more complex example:</p>
    108 
    109 <div class="doc_code">
    110 <pre>
    111 ready&gt; <b>def test(x) (1+2+x)*(x+(1+2));</b>
    112 ready> Read function definition:
    113 define double @test(double %x) {
    114 entry:
    115         %addtmp = fadd double 3.000000e+00, %x
    116         %addtmp1 = fadd double %x, 3.000000e+00
    117         %multmp = fmul double %addtmp, %addtmp1
    118         ret double %multmp
    119 }
    120 </pre>
    121 </div>
    122 
    123 <p>In this case, the LHS and RHS of the multiplication are the same value.  We'd
    124 really like to see this generate "<tt>tmp = x+3; result = tmp*tmp;</tt>" instead
    125 of computing "<tt>x+3</tt>" twice.</p>
    126 
    127 <p>Unfortunately, no amount of local analysis will be able to detect and correct
    128 this.  This requires two transformations: reassociation of expressions (to 
    129 make the add's lexically identical) and Common Subexpression Elimination (CSE)
    130 to  delete the redundant add instruction.  Fortunately, LLVM provides a broad
    131 range of optimizations that you can use, in the form of "passes".</p>
    132 
    133 </div>
    134 
    135 <!-- *********************************************************************** -->
    136 <h2><a name="optimizerpasses">LLVM Optimization Passes</a></h2>
    137 <!-- *********************************************************************** -->
    138 
    139 <div>
    140 
    141 <p>LLVM provides many optimization passes, which do many different sorts of
    142 things and have different tradeoffs.  Unlike other systems, LLVM doesn't hold
    143 to the mistaken notion that one set of optimizations is right for all languages
    144 and for all situations.  LLVM allows a compiler implementor to make complete
    145 decisions about what optimizations to use, in which order, and in what
    146 situation.</p>
    147 
    148 <p>As a concrete example, LLVM supports both "whole module" passes, which look
    149 across as large of body of code as they can (often a whole file, but if run 
    150 at link time, this can be a substantial portion of the whole program).  It also
    151 supports and includes "per-function" passes which just operate on a single
    152 function at a time, without looking at other functions.  For more information
    153 on passes and how they are run, see the <a href="../WritingAnLLVMPass.html">How
    154 to Write a Pass</a> document and the <a href="../Passes.html">List of LLVM 
    155 Passes</a>.</p>
    156 
    157 <p>For Kaleidoscope, we are currently generating functions on the fly, one at
    158 a time, as the user types them in.  We aren't shooting for the ultimate
    159 optimization experience in this setting, but we also want to catch the easy and
    160 quick stuff where possible.  As such, we will choose to run a few per-function
    161 optimizations as the user types the function in.  If we wanted to make a "static
    162 Kaleidoscope compiler", we would use exactly the code we have now, except that
    163 we would defer running the optimizer until the entire file has been parsed.</p>
    164 
    165 <p>In order to get per-function optimizations going, we need to set up a
    166 <a href="../WritingAnLLVMPass.html#passmanager">FunctionPassManager</a> to hold and
    167 organize the LLVM optimizations that we want to run.  Once we have that, we can
    168 add a set of optimizations to run.  The code looks like this:</p>
    169 
    170 <div class="doc_code">
    171 <pre>
    172   FunctionPassManager OurFPM(TheModule);
    173 
    174   // Set up the optimizer pipeline.  Start with registering info about how the
    175   // target lays out data structures.
    176   OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData()));
    177   // Provide basic AliasAnalysis support for GVN.
    178   OurFPM.add(createBasicAliasAnalysisPass());
    179   // Do simple "peephole" optimizations and bit-twiddling optzns.
    180   OurFPM.add(createInstructionCombiningPass());
    181   // Reassociate expressions.
    182   OurFPM.add(createReassociatePass());
    183   // Eliminate Common SubExpressions.
    184   OurFPM.add(createGVNPass());
    185   // Simplify the control flow graph (deleting unreachable blocks, etc).
    186   OurFPM.add(createCFGSimplificationPass());
    187 
    188   OurFPM.doInitialization();
    189 
    190   // Set the global so the code gen can use this.
    191   TheFPM = &amp;OurFPM;
    192 
    193   // Run the main "interpreter loop" now.
    194   MainLoop();
    195 </pre>
    196 </div>
    197 
    198 <p>This code defines a <tt>FunctionPassManager</tt>, "<tt>OurFPM</tt>".  It
    199 requires a pointer to the <tt>Module</tt> to construct itself.  Once it is set
    200 up, we use a series of "add" calls to add a bunch of LLVM passes.  The first
    201 pass is basically boilerplate, it adds a pass so that later optimizations know
    202 how the data structures in the program are laid out.  The
    203 "<tt>TheExecutionEngine</tt>" variable is related to the JIT, which we will get
    204 to in the next section.</p>
    205 
    206 <p>In this case, we choose to add 4 optimization passes.  The passes we chose
    207 here are a pretty standard set of "cleanup" optimizations that are useful for
    208 a wide variety of code.  I won't delve into what they do but, believe me,
    209 they are a good starting place :).</p>
    210 
    211 <p>Once the PassManager is set up, we need to make use of it.  We do this by
    212 running it after our newly created function is constructed (in 
    213 <tt>FunctionAST::Codegen</tt>), but before it is returned to the client:</p>
    214 
    215 <div class="doc_code">
    216 <pre>
    217   if (Value *RetVal = Body->Codegen()) {
    218     // Finish off the function.
    219     Builder.CreateRet(RetVal);
    220 
    221     // Validate the generated code, checking for consistency.
    222     verifyFunction(*TheFunction);
    223 
    224     <b>// Optimize the function.
    225     TheFPM-&gt;run(*TheFunction);</b>
    226     
    227     return TheFunction;
    228   }
    229 </pre>
    230 </div>
    231 
    232 <p>As you can see, this is pretty straightforward.  The 
    233 <tt>FunctionPassManager</tt> optimizes and updates the LLVM Function* in place,
    234 improving (hopefully) its body.  With this in place, we can try our test above
    235 again:</p>
    236 
    237 <div class="doc_code">
    238 <pre>
    239 ready&gt; <b>def test(x) (1+2+x)*(x+(1+2));</b>
    240 ready> Read function definition:
    241 define double @test(double %x) {
    242 entry:
    243         %addtmp = fadd double %x, 3.000000e+00
    244         %multmp = fmul double %addtmp, %addtmp
    245         ret double %multmp
    246 }
    247 </pre>
    248 </div>
    249 
    250 <p>As expected, we now get our nicely optimized code, saving a floating point
    251 add instruction from every execution of this function.</p>
    252 
    253 <p>LLVM provides a wide variety of optimizations that can be used in certain
    254 circumstances.  Some <a href="../Passes.html">documentation about the various 
    255 passes</a> is available, but it isn't very complete.  Another good source of
    256 ideas can come from looking at the passes that <tt>llvm-gcc</tt> or
    257 <tt>llvm-ld</tt> run to get started.  The "<tt>opt</tt>" tool allows you to 
    258 experiment with passes from the command line, so you can see if they do
    259 anything.</p>
    260 
    261 <p>Now that we have reasonable code coming out of our front-end, lets talk about
    262 executing it!</p>
    263 
    264 </div>
    265 
    266 <!-- *********************************************************************** -->
    267 <h2><a name="jit">Adding a JIT Compiler</a></h2>
    268 <!-- *********************************************************************** -->
    269 
    270 <div>
    271 
    272 <p>Code that is available in LLVM IR can have a wide variety of tools 
    273 applied to it.  For example, you can run optimizations on it (as we did above),
    274 you can dump it out in textual or binary forms, you can compile the code to an
    275 assembly file (.s) for some target, or you can JIT compile it.  The nice thing
    276 about the LLVM IR representation is that it is the "common currency" between
    277 many different parts of the compiler.
    278 </p>
    279 
    280 <p>In this section, we'll add JIT compiler support to our interpreter.  The
    281 basic idea that we want for Kaleidoscope is to have the user enter function
    282 bodies as they do now, but immediately evaluate the top-level expressions they
    283 type in.  For example, if they type in "1 + 2;", we should evaluate and print
    284 out 3.  If they define a function, they should be able to call it from the 
    285 command line.</p>
    286 
    287 <p>In order to do this, we first declare and initialize the JIT.  This is done
    288 by adding a global variable and a call in <tt>main</tt>:</p>
    289 
    290 <div class="doc_code">
    291 <pre>
    292 <b>static ExecutionEngine *TheExecutionEngine;</b>
    293 ...
    294 int main() {
    295   ..
    296   <b>// Create the JIT.  This takes ownership of the module.
    297   TheExecutionEngine = EngineBuilder(TheModule).create();</b>
    298   ..
    299 }
    300 </pre>
    301 </div>
    302 
    303 <p>This creates an abstract "Execution Engine" which can be either a JIT
    304 compiler or the LLVM interpreter.  LLVM will automatically pick a JIT compiler
    305 for you if one is available for your platform, otherwise it will fall back to
    306 the interpreter.</p>
    307 
    308 <p>Once the <tt>ExecutionEngine</tt> is created, the JIT is ready to be used.
    309 There are a variety of APIs that are useful, but the simplest one is the
    310 "<tt>getPointerToFunction(F)</tt>" method.  This method JIT compiles the
    311 specified LLVM Function and returns a function pointer to the generated machine
    312 code.  In our case, this means that we can change the code that parses a
    313 top-level expression to look like this:</p>
    314 
    315 <div class="doc_code">
    316 <pre>
    317 static void HandleTopLevelExpression() {
    318   // Evaluate a top-level expression into an anonymous function.
    319   if (FunctionAST *F = ParseTopLevelExpr()) {
    320     if (Function *LF = F-&gt;Codegen()) {
    321       LF->dump();  // Dump the function for exposition purposes.
    322     
    323       <b>// JIT the function, returning a function pointer.
    324       void *FPtr = TheExecutionEngine-&gt;getPointerToFunction(LF);
    325       
    326       // Cast it to the right type (takes no arguments, returns a double) so we
    327       // can call it as a native function.
    328       double (*FP)() = (double (*)())(intptr_t)FPtr;
    329       fprintf(stderr, "Evaluated to %f\n", FP());</b>
    330     }
    331 </pre>
    332 </div>
    333 
    334 <p>Recall that we compile top-level expressions into a self-contained LLVM
    335 function that takes no arguments and returns the computed double.  Because the 
    336 LLVM JIT compiler matches the native platform ABI, this means that you can just
    337 cast the result pointer to a function pointer of that type and call it directly.
    338 This means, there is no difference between JIT compiled code and native machine
    339 code that is statically linked into your application.</p>
    340 
    341 <p>With just these two changes, lets see how Kaleidoscope works now!</p>
    342 
    343 <div class="doc_code">
    344 <pre>
    345 ready&gt; <b>4+5;</b>
    346 Read top-level expression:
    347 define double @0() {
    348 entry:
    349   ret double 9.000000e+00
    350 }
    351 
    352 <em>Evaluated to 9.000000</em>
    353 </pre>
    354 </div>
    355 
    356 <p>Well this looks like it is basically working.  The dump of the function
    357 shows the "no argument function that always returns double" that we synthesize
    358 for each top-level expression that is typed in.  This demonstrates very basic
    359 functionality, but can we do more?</p>
    360 
    361 <div class="doc_code">
    362 <pre>
    363 ready&gt; <b>def testfunc(x y) x + y*2; </b> 
    364 Read function definition:
    365 define double @testfunc(double %x, double %y) {
    366 entry:
    367   %multmp = fmul double %y, 2.000000e+00
    368   %addtmp = fadd double %multmp, %x
    369   ret double %addtmp
    370 }
    371 
    372 ready&gt; <b>testfunc(4, 10);</b>
    373 Read top-level expression:
    374 define double @1() {
    375 entry:
    376   %calltmp = call double @testfunc(double 4.000000e+00, double 1.000000e+01)
    377   ret double %calltmp
    378 }
    379 
    380 <em>Evaluated to 24.000000</em>
    381 </pre>
    382 </div>
    383 
    384 <p>This illustrates that we can now call user code, but there is something a bit
    385 subtle going on here.  Note that we only invoke the JIT on the anonymous
    386 functions that <em>call testfunc</em>, but we never invoked it
    387 on <em>testfunc</em> itself.  What actually happened here is that the JIT
    388 scanned for all non-JIT'd functions transitively called from the anonymous
    389 function and compiled all of them before returning
    390 from <tt>getPointerToFunction()</tt>.</p>
    391 
    392 <p>The JIT provides a number of other more advanced interfaces for things like
    393 freeing allocated machine code, rejit'ing functions to update them, etc.
    394 However, even with this simple code, we get some surprisingly powerful
    395 capabilities - check this out (I removed the dump of the anonymous functions,
    396 you should get the idea by now :) :</p>
    397 
    398 <div class="doc_code">
    399 <pre>
    400 ready&gt; <b>extern sin(x);</b>
    401 Read extern: 
    402 declare double @sin(double)
    403 
    404 ready&gt; <b>extern cos(x);</b>
    405 Read extern: 
    406 declare double @cos(double)
    407 
    408 ready&gt; <b>sin(1.0);</b>
    409 Read top-level expression:
    410 define double @2() {
    411 entry:
    412   ret double 0x3FEAED548F090CEE
    413 }
    414 
    415 <em>Evaluated to 0.841471</em>
    416 
    417 ready&gt; <b>def foo(x) sin(x)*sin(x) + cos(x)*cos(x);</b>
    418 Read function definition:
    419 define double @foo(double %x) {
    420 entry:
    421   %calltmp = call double @sin(double %x)
    422   %multmp = fmul double %calltmp, %calltmp
    423   %calltmp2 = call double @cos(double %x)
    424   %multmp4 = fmul double %calltmp2, %calltmp2
    425   %addtmp = fadd double %multmp, %multmp4
    426   ret double %addtmp
    427 }
    428 
    429 ready&gt; <b>foo(4.0);</b>
    430 Read top-level expression:
    431 define double @3() {
    432 entry:
    433   %calltmp = call double @foo(double 4.000000e+00)
    434   ret double %calltmp
    435 }
    436 
    437 <em>Evaluated to 1.000000</em>
    438 </pre>
    439 </div>
    440 
    441 <p>Whoa, how does the JIT know about sin and cos?  The answer is surprisingly
    442 simple: in this
    443 example, the JIT started execution of a function and got to a function call.  It
    444 realized that the function was not yet JIT compiled and invoked the standard set
    445 of routines to resolve the function.  In this case, there is no body defined
    446 for the function, so the JIT ended up calling "<tt>dlsym("sin")</tt>" on the
    447 Kaleidoscope process itself.
    448 Since "<tt>sin</tt>" is defined within the JIT's address space, it simply
    449 patches up calls in the module to call the libm version of <tt>sin</tt>
    450 directly.</p>
    451 
    452 <p>The LLVM JIT provides a number of interfaces (look in the 
    453 <tt>ExecutionEngine.h</tt> file) for controlling how unknown functions get
    454 resolved.  It allows you to establish explicit mappings between IR objects and
    455 addresses (useful for LLVM global variables that you want to map to static
    456 tables, for example), allows you to dynamically decide on the fly based on the
    457 function name, and even allows you to have the JIT compile functions lazily the
    458 first time they're called.</p>
    459 
    460 <p>One interesting application of this is that we can now extend the language
    461 by writing arbitrary C++ code to implement operations.  For example, if we add:
    462 </p>
    463 
    464 <div class="doc_code">
    465 <pre>
    466 /// putchard - putchar that takes a double and returns 0.
    467 extern "C" 
    468 double putchard(double X) {
    469   putchar((char)X);
    470   return 0;
    471 }
    472 </pre>
    473 </div>
    474 
    475 <p>Now we can produce simple output to the console by using things like:
    476 "<tt>extern putchard(x); putchard(120);</tt>", which prints a lowercase 'x' on
    477 the console (120 is the ASCII code for 'x').  Similar code could be used to 
    478 implement file I/O, console input, and many other capabilities in
    479 Kaleidoscope.</p>
    480 
    481 <p>This completes the JIT and optimizer chapter of the Kaleidoscope tutorial. At
    482 this point, we can compile a non-Turing-complete programming language, optimize
    483 and JIT compile it in a user-driven way.  Next up we'll look into <a 
    484 href="LangImpl5.html">extending the language with control flow constructs</a>,
    485 tackling some interesting LLVM IR issues along the way.</p>
    486 
    487 </div>
    488 
    489 <!-- *********************************************************************** -->
    490 <h2><a name="code">Full Code Listing</a></h2>
    491 <!-- *********************************************************************** -->
    492 
    493 <div>
    494 
    495 <p>
    496 Here is the complete code listing for our running example, enhanced with the
    497 LLVM JIT and optimizer.  To build this example, use:
    498 </p>
    499 
    500 <div class="doc_code">
    501 <pre>
    502 # Compile
    503 clang++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy
    504 # Run
    505 ./toy
    506 </pre>
    507 </div>
    508 
    509 <p>
    510 If you are compiling this on Linux, make sure to add the "-rdynamic" option 
    511 as well.  This makes sure that the external functions are resolved properly 
    512 at runtime.</p>
    513 
    514 <p>Here is the code:</p>
    515 
    516 <div class="doc_code">
    517 <pre>
    518 #include "llvm/DerivedTypes.h"
    519 #include "llvm/ExecutionEngine/ExecutionEngine.h"
    520 #include "llvm/ExecutionEngine/JIT.h"
    521 #include "llvm/LLVMContext.h"
    522 #include "llvm/Module.h"
    523 #include "llvm/PassManager.h"
    524 #include "llvm/Analysis/Verifier.h"
    525 #include "llvm/Analysis/Passes.h"
    526 #include "llvm/Target/TargetData.h"
    527 #include "llvm/Transforms/Scalar.h"
    528 #include "llvm/Support/IRBuilder.h"
    529 #include "llvm/Support/TargetSelect.h"
    530 #include &lt;cstdio&gt;
    531 #include &lt;string&gt;
    532 #include &lt;map&gt;
    533 #include &lt;vector&gt;
    534 using namespace llvm;
    535 
    536 //===----------------------------------------------------------------------===//
    537 // Lexer
    538 //===----------------------------------------------------------------------===//
    539 
    540 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
    541 // of these for known things.
    542 enum Token {
    543   tok_eof = -1,
    544 
    545   // commands
    546   tok_def = -2, tok_extern = -3,
    547 
    548   // primary
    549   tok_identifier = -4, tok_number = -5
    550 };
    551 
    552 static std::string IdentifierStr;  // Filled in if tok_identifier
    553 static double NumVal;              // Filled in if tok_number
    554 
    555 /// gettok - Return the next token from standard input.
    556 static int gettok() {
    557   static int LastChar = ' ';
    558 
    559   // Skip any whitespace.
    560   while (isspace(LastChar))
    561     LastChar = getchar();
    562 
    563   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
    564     IdentifierStr = LastChar;
    565     while (isalnum((LastChar = getchar())))
    566       IdentifierStr += LastChar;
    567 
    568     if (IdentifierStr == "def") return tok_def;
    569     if (IdentifierStr == "extern") return tok_extern;
    570     return tok_identifier;
    571   }
    572 
    573   if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
    574     std::string NumStr;
    575     do {
    576       NumStr += LastChar;
    577       LastChar = getchar();
    578     } while (isdigit(LastChar) || LastChar == '.');
    579 
    580     NumVal = strtod(NumStr.c_str(), 0);
    581     return tok_number;
    582   }
    583 
    584   if (LastChar == '#') {
    585     // Comment until end of line.
    586     do LastChar = getchar();
    587     while (LastChar != EOF &amp;&amp; LastChar != '\n' &amp;&amp; LastChar != '\r');
    588     
    589     if (LastChar != EOF)
    590       return gettok();
    591   }
    592   
    593   // Check for end of file.  Don't eat the EOF.
    594   if (LastChar == EOF)
    595     return tok_eof;
    596 
    597   // Otherwise, just return the character as its ascii value.
    598   int ThisChar = LastChar;
    599   LastChar = getchar();
    600   return ThisChar;
    601 }
    602 
    603 //===----------------------------------------------------------------------===//
    604 // Abstract Syntax Tree (aka Parse Tree)
    605 //===----------------------------------------------------------------------===//
    606 
    607 /// ExprAST - Base class for all expression nodes.
    608 class ExprAST {
    609 public:
    610   virtual ~ExprAST() {}
    611   virtual Value *Codegen() = 0;
    612 };
    613 
    614 /// NumberExprAST - Expression class for numeric literals like "1.0".
    615 class NumberExprAST : public ExprAST {
    616   double Val;
    617 public:
    618   NumberExprAST(double val) : Val(val) {}
    619   virtual Value *Codegen();
    620 };
    621 
    622 /// VariableExprAST - Expression class for referencing a variable, like "a".
    623 class VariableExprAST : public ExprAST {
    624   std::string Name;
    625 public:
    626   VariableExprAST(const std::string &amp;name) : Name(name) {}
    627   virtual Value *Codegen();
    628 };
    629 
    630 /// BinaryExprAST - Expression class for a binary operator.
    631 class BinaryExprAST : public ExprAST {
    632   char Op;
    633   ExprAST *LHS, *RHS;
    634 public:
    635   BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 
    636     : Op(op), LHS(lhs), RHS(rhs) {}
    637   virtual Value *Codegen();
    638 };
    639 
    640 /// CallExprAST - Expression class for function calls.
    641 class CallExprAST : public ExprAST {
    642   std::string Callee;
    643   std::vector&lt;ExprAST*&gt; Args;
    644 public:
    645   CallExprAST(const std::string &amp;callee, std::vector&lt;ExprAST*&gt; &amp;args)
    646     : Callee(callee), Args(args) {}
    647   virtual Value *Codegen();
    648 };
    649 
    650 /// PrototypeAST - This class represents the "prototype" for a function,
    651 /// which captures its name, and its argument names (thus implicitly the number
    652 /// of arguments the function takes).
    653 class PrototypeAST {
    654   std::string Name;
    655   std::vector&lt;std::string&gt; Args;
    656 public:
    657   PrototypeAST(const std::string &amp;name, const std::vector&lt;std::string&gt; &amp;args)
    658     : Name(name), Args(args) {}
    659   
    660   Function *Codegen();
    661 };
    662 
    663 /// FunctionAST - This class represents a function definition itself.
    664 class FunctionAST {
    665   PrototypeAST *Proto;
    666   ExprAST *Body;
    667 public:
    668   FunctionAST(PrototypeAST *proto, ExprAST *body)
    669     : Proto(proto), Body(body) {}
    670   
    671   Function *Codegen();
    672 };
    673 
    674 //===----------------------------------------------------------------------===//
    675 // Parser
    676 //===----------------------------------------------------------------------===//
    677 
    678 /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
    679 /// token the parser is looking at.  getNextToken reads another token from the
    680 /// lexer and updates CurTok with its results.
    681 static int CurTok;
    682 static int getNextToken() {
    683   return CurTok = gettok();
    684 }
    685 
    686 /// BinopPrecedence - This holds the precedence for each binary operator that is
    687 /// defined.
    688 static std::map&lt;char, int&gt; BinopPrecedence;
    689 
    690 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
    691 static int GetTokPrecedence() {
    692   if (!isascii(CurTok))
    693     return -1;
    694   
    695   // Make sure it's a declared binop.
    696   int TokPrec = BinopPrecedence[CurTok];
    697   if (TokPrec &lt;= 0) return -1;
    698   return TokPrec;
    699 }
    700 
    701 /// Error* - These are little helper functions for error handling.
    702 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
    703 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
    704 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
    705 
    706 static ExprAST *ParseExpression();
    707 
    708 /// identifierexpr
    709 ///   ::= identifier
    710 ///   ::= identifier '(' expression* ')'
    711 static ExprAST *ParseIdentifierExpr() {
    712   std::string IdName = IdentifierStr;
    713   
    714   getNextToken();  // eat identifier.
    715   
    716   if (CurTok != '(') // Simple variable ref.
    717     return new VariableExprAST(IdName);
    718   
    719   // Call.
    720   getNextToken();  // eat (
    721   std::vector&lt;ExprAST*&gt; Args;
    722   if (CurTok != ')') {
    723     while (1) {
    724       ExprAST *Arg = ParseExpression();
    725       if (!Arg) return 0;
    726       Args.push_back(Arg);
    727 
    728       if (CurTok == ')') break;
    729 
    730       if (CurTok != ',')
    731         return Error("Expected ')' or ',' in argument list");
    732       getNextToken();
    733     }
    734   }
    735 
    736   // Eat the ')'.
    737   getNextToken();
    738   
    739   return new CallExprAST(IdName, Args);
    740 }
    741 
    742 /// numberexpr ::= number
    743 static ExprAST *ParseNumberExpr() {
    744   ExprAST *Result = new NumberExprAST(NumVal);
    745   getNextToken(); // consume the number
    746   return Result;
    747 }
    748 
    749 /// parenexpr ::= '(' expression ')'
    750 static ExprAST *ParseParenExpr() {
    751   getNextToken();  // eat (.
    752   ExprAST *V = ParseExpression();
    753   if (!V) return 0;
    754   
    755   if (CurTok != ')')
    756     return Error("expected ')'");
    757   getNextToken();  // eat ).
    758   return V;
    759 }
    760 
    761 /// primary
    762 ///   ::= identifierexpr
    763 ///   ::= numberexpr
    764 ///   ::= parenexpr
    765 static ExprAST *ParsePrimary() {
    766   switch (CurTok) {
    767   default: return Error("unknown token when expecting an expression");
    768   case tok_identifier: return ParseIdentifierExpr();
    769   case tok_number:     return ParseNumberExpr();
    770   case '(':            return ParseParenExpr();
    771   }
    772 }
    773 
    774 /// binoprhs
    775 ///   ::= ('+' primary)*
    776 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
    777   // If this is a binop, find its precedence.
    778   while (1) {
    779     int TokPrec = GetTokPrecedence();
    780     
    781     // If this is a binop that binds at least as tightly as the current binop,
    782     // consume it, otherwise we are done.
    783     if (TokPrec &lt; ExprPrec)
    784       return LHS;
    785     
    786     // Okay, we know this is a binop.
    787     int BinOp = CurTok;
    788     getNextToken();  // eat binop
    789     
    790     // Parse the primary expression after the binary operator.
    791     ExprAST *RHS = ParsePrimary();
    792     if (!RHS) return 0;
    793     
    794     // If BinOp binds less tightly with RHS than the operator after RHS, let
    795     // the pending operator take RHS as its LHS.
    796     int NextPrec = GetTokPrecedence();
    797     if (TokPrec &lt; NextPrec) {
    798       RHS = ParseBinOpRHS(TokPrec+1, RHS);
    799       if (RHS == 0) return 0;
    800     }
    801     
    802     // Merge LHS/RHS.
    803     LHS = new BinaryExprAST(BinOp, LHS, RHS);
    804   }
    805 }
    806 
    807 /// expression
    808 ///   ::= primary binoprhs
    809 ///
    810 static ExprAST *ParseExpression() {
    811   ExprAST *LHS = ParsePrimary();
    812   if (!LHS) return 0;
    813   
    814   return ParseBinOpRHS(0, LHS);
    815 }
    816 
    817 /// prototype
    818 ///   ::= id '(' id* ')'
    819 static PrototypeAST *ParsePrototype() {
    820   if (CurTok != tok_identifier)
    821     return ErrorP("Expected function name in prototype");
    822 
    823   std::string FnName = IdentifierStr;
    824   getNextToken();
    825   
    826   if (CurTok != '(')
    827     return ErrorP("Expected '(' in prototype");
    828   
    829   std::vector&lt;std::string&gt; ArgNames;
    830   while (getNextToken() == tok_identifier)
    831     ArgNames.push_back(IdentifierStr);
    832   if (CurTok != ')')
    833     return ErrorP("Expected ')' in prototype");
    834   
    835   // success.
    836   getNextToken();  // eat ')'.
    837   
    838   return new PrototypeAST(FnName, ArgNames);
    839 }
    840 
    841 /// definition ::= 'def' prototype expression
    842 static FunctionAST *ParseDefinition() {
    843   getNextToken();  // eat def.
    844   PrototypeAST *Proto = ParsePrototype();
    845   if (Proto == 0) return 0;
    846 
    847   if (ExprAST *E = ParseExpression())
    848     return new FunctionAST(Proto, E);
    849   return 0;
    850 }
    851 
    852 /// toplevelexpr ::= expression
    853 static FunctionAST *ParseTopLevelExpr() {
    854   if (ExprAST *E = ParseExpression()) {
    855     // Make an anonymous proto.
    856     PrototypeAST *Proto = new PrototypeAST("", std::vector&lt;std::string&gt;());
    857     return new FunctionAST(Proto, E);
    858   }
    859   return 0;
    860 }
    861 
    862 /// external ::= 'extern' prototype
    863 static PrototypeAST *ParseExtern() {
    864   getNextToken();  // eat extern.
    865   return ParsePrototype();
    866 }
    867 
    868 //===----------------------------------------------------------------------===//
    869 // Code Generation
    870 //===----------------------------------------------------------------------===//
    871 
    872 static Module *TheModule;
    873 static IRBuilder&lt;&gt; Builder(getGlobalContext());
    874 static std::map&lt;std::string, Value*&gt; NamedValues;
    875 static FunctionPassManager *TheFPM;
    876 
    877 Value *ErrorV(const char *Str) { Error(Str); return 0; }
    878 
    879 Value *NumberExprAST::Codegen() {
    880   return ConstantFP::get(getGlobalContext(), APFloat(Val));
    881 }
    882 
    883 Value *VariableExprAST::Codegen() {
    884   // Look this variable up in the function.
    885   Value *V = NamedValues[Name];
    886   return V ? V : ErrorV("Unknown variable name");
    887 }
    888 
    889 Value *BinaryExprAST::Codegen() {
    890   Value *L = LHS-&gt;Codegen();
    891   Value *R = RHS-&gt;Codegen();
    892   if (L == 0 || R == 0) return 0;
    893   
    894   switch (Op) {
    895   case '+': return Builder.CreateFAdd(L, R, "addtmp");
    896   case '-': return Builder.CreateFSub(L, R, "subtmp");
    897   case '*': return Builder.CreateFMul(L, R, "multmp");
    898   case '&lt;':
    899     L = Builder.CreateFCmpULT(L, R, "cmptmp");
    900     // Convert bool 0/1 to double 0.0 or 1.0
    901     return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
    902                                 "booltmp");
    903   default: return ErrorV("invalid binary operator");
    904   }
    905 }
    906 
    907 Value *CallExprAST::Codegen() {
    908   // Look up the name in the global module table.
    909   Function *CalleeF = TheModule-&gt;getFunction(Callee);
    910   if (CalleeF == 0)
    911     return ErrorV("Unknown function referenced");
    912   
    913   // If argument mismatch error.
    914   if (CalleeF-&gt;arg_size() != Args.size())
    915     return ErrorV("Incorrect # arguments passed");
    916 
    917   std::vector&lt;Value*&gt; ArgsV;
    918   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
    919     ArgsV.push_back(Args[i]-&gt;Codegen());
    920     if (ArgsV.back() == 0) return 0;
    921   }
    922   
    923   return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
    924 }
    925 
    926 Function *PrototypeAST::Codegen() {
    927   // Make the function type:  double(double,double) etc.
    928   std::vector&lt;Type*&gt; Doubles(Args.size(),
    929                              Type::getDoubleTy(getGlobalContext()));
    930   FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
    931                                        Doubles, false);
    932   
    933   Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
    934   
    935   // If F conflicted, there was already something named 'Name'.  If it has a
    936   // body, don't allow redefinition or reextern.
    937   if (F-&gt;getName() != Name) {
    938     // Delete the one we just made and get the existing one.
    939     F-&gt;eraseFromParent();
    940     F = TheModule-&gt;getFunction(Name);
    941     
    942     // If F already has a body, reject this.
    943     if (!F-&gt;empty()) {
    944       ErrorF("redefinition of function");
    945       return 0;
    946     }
    947     
    948     // If F took a different number of args, reject.
    949     if (F-&gt;arg_size() != Args.size()) {
    950       ErrorF("redefinition of function with different # args");
    951       return 0;
    952     }
    953   }
    954   
    955   // Set names for all arguments.
    956   unsigned Idx = 0;
    957   for (Function::arg_iterator AI = F-&gt;arg_begin(); Idx != Args.size();
    958        ++AI, ++Idx) {
    959     AI-&gt;setName(Args[Idx]);
    960     
    961     // Add arguments to variable symbol table.
    962     NamedValues[Args[Idx]] = AI;
    963   }
    964   
    965   return F;
    966 }
    967 
    968 Function *FunctionAST::Codegen() {
    969   NamedValues.clear();
    970   
    971   Function *TheFunction = Proto-&gt;Codegen();
    972   if (TheFunction == 0)
    973     return 0;
    974   
    975   // Create a new basic block to start insertion into.
    976   BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
    977   Builder.SetInsertPoint(BB);
    978   
    979   if (Value *RetVal = Body-&gt;Codegen()) {
    980     // Finish off the function.
    981     Builder.CreateRet(RetVal);
    982 
    983     // Validate the generated code, checking for consistency.
    984     verifyFunction(*TheFunction);
    985 
    986     // Optimize the function.
    987     TheFPM-&gt;run(*TheFunction);
    988     
    989     return TheFunction;
    990   }
    991   
    992   // Error reading body, remove function.
    993   TheFunction-&gt;eraseFromParent();
    994   return 0;
    995 }
    996 
    997 //===----------------------------------------------------------------------===//
    998 // Top-Level parsing and JIT Driver
    999 //===----------------------------------------------------------------------===//
   1000 
   1001 static ExecutionEngine *TheExecutionEngine;
   1002 
   1003 static void HandleDefinition() {
   1004   if (FunctionAST *F = ParseDefinition()) {
   1005     if (Function *LF = F-&gt;Codegen()) {
   1006       fprintf(stderr, "Read function definition:");
   1007       LF-&gt;dump();
   1008     }
   1009   } else {
   1010     // Skip token for error recovery.
   1011     getNextToken();
   1012   }
   1013 }
   1014 
   1015 static void HandleExtern() {
   1016   if (PrototypeAST *P = ParseExtern()) {
   1017     if (Function *F = P-&gt;Codegen()) {
   1018       fprintf(stderr, "Read extern: ");
   1019       F-&gt;dump();
   1020     }
   1021   } else {
   1022     // Skip token for error recovery.
   1023     getNextToken();
   1024   }
   1025 }
   1026 
   1027 static void HandleTopLevelExpression() {
   1028   // Evaluate a top-level expression into an anonymous function.
   1029   if (FunctionAST *F = ParseTopLevelExpr()) {
   1030     if (Function *LF = F-&gt;Codegen()) {
   1031       fprintf(stderr, "Read top-level expression:");
   1032       LF->dump();
   1033 
   1034       // JIT the function, returning a function pointer.
   1035       void *FPtr = TheExecutionEngine-&gt;getPointerToFunction(LF);
   1036       
   1037       // Cast it to the right type (takes no arguments, returns a double) so we
   1038       // can call it as a native function.
   1039       double (*FP)() = (double (*)())(intptr_t)FPtr;
   1040       fprintf(stderr, "Evaluated to %f\n", FP());
   1041     }
   1042   } else {
   1043     // Skip token for error recovery.
   1044     getNextToken();
   1045   }
   1046 }
   1047 
   1048 /// top ::= definition | external | expression | ';'
   1049 static void MainLoop() {
   1050   while (1) {
   1051     fprintf(stderr, "ready&gt; ");
   1052     switch (CurTok) {
   1053     case tok_eof:    return;
   1054     case ';':        getNextToken(); break;  // ignore top-level semicolons.
   1055     case tok_def:    HandleDefinition(); break;
   1056     case tok_extern: HandleExtern(); break;
   1057     default:         HandleTopLevelExpression(); break;
   1058     }
   1059   }
   1060 }
   1061 
   1062 //===----------------------------------------------------------------------===//
   1063 // "Library" functions that can be "extern'd" from user code.
   1064 //===----------------------------------------------------------------------===//
   1065 
   1066 /// putchard - putchar that takes a double and returns 0.
   1067 extern "C" 
   1068 double putchard(double X) {
   1069   putchar((char)X);
   1070   return 0;
   1071 }
   1072 
   1073 //===----------------------------------------------------------------------===//
   1074 // Main driver code.
   1075 //===----------------------------------------------------------------------===//
   1076 
   1077 int main() {
   1078   InitializeNativeTarget();
   1079   LLVMContext &amp;Context = getGlobalContext();
   1080 
   1081   // Install standard binary operators.
   1082   // 1 is lowest precedence.
   1083   BinopPrecedence['&lt;'] = 10;
   1084   BinopPrecedence['+'] = 20;
   1085   BinopPrecedence['-'] = 20;
   1086   BinopPrecedence['*'] = 40;  // highest.
   1087 
   1088   // Prime the first token.
   1089   fprintf(stderr, "ready&gt; ");
   1090   getNextToken();
   1091 
   1092   // Make the module, which holds all the code.
   1093   TheModule = new Module("my cool jit", Context);
   1094 
   1095   // Create the JIT.  This takes ownership of the module.
   1096   std::string ErrStr;
   1097   TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&amp;ErrStr).create();
   1098   if (!TheExecutionEngine) {
   1099     fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
   1100     exit(1);
   1101   }
   1102 
   1103   FunctionPassManager OurFPM(TheModule);
   1104 
   1105   // Set up the optimizer pipeline.  Start with registering info about how the
   1106   // target lays out data structures.
   1107   OurFPM.add(new TargetData(*TheExecutionEngine-&gt;getTargetData()));
   1108   // Provide basic AliasAnalysis support for GVN.
   1109   OurFPM.add(createBasicAliasAnalysisPass());
   1110   // Do simple "peephole" optimizations and bit-twiddling optzns.
   1111   OurFPM.add(createInstructionCombiningPass());
   1112   // Reassociate expressions.
   1113   OurFPM.add(createReassociatePass());
   1114   // Eliminate Common SubExpressions.
   1115   OurFPM.add(createGVNPass());
   1116   // Simplify the control flow graph (deleting unreachable blocks, etc).
   1117   OurFPM.add(createCFGSimplificationPass());
   1118 
   1119   OurFPM.doInitialization();
   1120 
   1121   // Set the global so the code gen can use this.
   1122   TheFPM = &amp;OurFPM;
   1123 
   1124   // Run the main "interpreter loop" now.
   1125   MainLoop();
   1126 
   1127   TheFPM = 0;
   1128 
   1129   // Print out all of the generated code.
   1130   TheModule-&gt;dump();
   1131 
   1132   return 0;
   1133 }
   1134 </pre>
   1135 </div>
   1136 
   1137 <a href="LangImpl5.html">Next: Extending the language: control flow</a>
   1138 </div>
   1139 
   1140 <!-- *********************************************************************** -->
   1141 <hr>
   1142 <address>
   1143   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
   1144   src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
   1145   <a href="http://validator.w3.org/check/referer"><img
   1146   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
   1147 
   1148   <a href="mailto:sabre (a] nondot.org">Chris Lattner</a><br>
   1149   <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
   1150   Last modified: $Date$
   1151 </address>
   1152 </body>
   1153 </html>
   1154