1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the primary stateless implementation of the 11 // Alias Analysis interface that implements identities (two different 12 // globals cannot alias, etc), but does no stateful analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/Passes.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/Function.h" 21 #include "llvm/GlobalAlias.h" 22 #include "llvm/GlobalVariable.h" 23 #include "llvm/Instructions.h" 24 #include "llvm/IntrinsicInst.h" 25 #include "llvm/LLVMContext.h" 26 #include "llvm/Operator.h" 27 #include "llvm/Pass.h" 28 #include "llvm/Analysis/CaptureTracking.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/Target/TargetData.h" 33 #include "llvm/Target/TargetLibraryInfo.h" 34 #include "llvm/ADT/SmallPtrSet.h" 35 #include "llvm/ADT/SmallVector.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/GetElementPtrTypeIterator.h" 38 #include <algorithm> 39 using namespace llvm; 40 41 //===----------------------------------------------------------------------===// 42 // Useful predicates 43 //===----------------------------------------------------------------------===// 44 45 /// isNonEscapingLocalObject - Return true if the pointer is to a function-local 46 /// object that never escapes from the function. 47 static bool isNonEscapingLocalObject(const Value *V) { 48 // If this is a local allocation, check to see if it escapes. 49 if (isa<AllocaInst>(V) || isNoAliasCall(V)) 50 // Set StoreCaptures to True so that we can assume in our callers that the 51 // pointer is not the result of a load instruction. Currently 52 // PointerMayBeCaptured doesn't have any special analysis for the 53 // StoreCaptures=false case; if it did, our callers could be refined to be 54 // more precise. 55 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 56 57 // If this is an argument that corresponds to a byval or noalias argument, 58 // then it has not escaped before entering the function. Check if it escapes 59 // inside the function. 60 if (const Argument *A = dyn_cast<Argument>(V)) 61 if (A->hasByValAttr() || A->hasNoAliasAttr()) { 62 // Don't bother analyzing arguments already known not to escape. 63 if (A->hasNoCaptureAttr()) 64 return true; 65 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 66 } 67 return false; 68 } 69 70 /// isEscapeSource - Return true if the pointer is one which would have 71 /// been considered an escape by isNonEscapingLocalObject. 72 static bool isEscapeSource(const Value *V) { 73 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V)) 74 return true; 75 76 // The load case works because isNonEscapingLocalObject considers all 77 // stores to be escapes (it passes true for the StoreCaptures argument 78 // to PointerMayBeCaptured). 79 if (isa<LoadInst>(V)) 80 return true; 81 82 return false; 83 } 84 85 /// getObjectSize - Return the size of the object specified by V, or 86 /// UnknownSize if unknown. 87 static uint64_t getObjectSize(const Value *V, const TargetData &TD, 88 bool RoundToAlign = false) { 89 Type *AccessTy; 90 unsigned Align; 91 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 92 if (!GV->hasDefinitiveInitializer()) 93 return AliasAnalysis::UnknownSize; 94 AccessTy = GV->getType()->getElementType(); 95 Align = GV->getAlignment(); 96 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 97 if (!AI->isArrayAllocation()) 98 AccessTy = AI->getType()->getElementType(); 99 else 100 return AliasAnalysis::UnknownSize; 101 Align = AI->getAlignment(); 102 } else if (const CallInst* CI = extractMallocCall(V)) { 103 if (!RoundToAlign && !isArrayMalloc(V, &TD)) 104 // The size is the argument to the malloc call. 105 if (const ConstantInt* C = dyn_cast<ConstantInt>(CI->getArgOperand(0))) 106 return C->getZExtValue(); 107 return AliasAnalysis::UnknownSize; 108 } else if (const Argument *A = dyn_cast<Argument>(V)) { 109 if (A->hasByValAttr()) { 110 AccessTy = cast<PointerType>(A->getType())->getElementType(); 111 Align = A->getParamAlignment(); 112 } else { 113 return AliasAnalysis::UnknownSize; 114 } 115 } else { 116 return AliasAnalysis::UnknownSize; 117 } 118 119 if (!AccessTy->isSized()) 120 return AliasAnalysis::UnknownSize; 121 122 uint64_t Size = TD.getTypeAllocSize(AccessTy); 123 // If there is an explicitly specified alignment, and we need to 124 // take alignment into account, round up the size. (If the alignment 125 // is implicit, getTypeAllocSize is sufficient.) 126 if (RoundToAlign && Align) 127 Size = RoundUpToAlignment(Size, Align); 128 129 return Size; 130 } 131 132 /// isObjectSmallerThan - Return true if we can prove that the object specified 133 /// by V is smaller than Size. 134 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 135 const TargetData &TD) { 136 // This function needs to use the aligned object size because we allow 137 // reads a bit past the end given sufficient alignment. 138 uint64_t ObjectSize = getObjectSize(V, TD, /*RoundToAlign*/true); 139 140 return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size; 141 } 142 143 /// isObjectSize - Return true if we can prove that the object specified 144 /// by V has size Size. 145 static bool isObjectSize(const Value *V, uint64_t Size, 146 const TargetData &TD) { 147 uint64_t ObjectSize = getObjectSize(V, TD); 148 return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size; 149 } 150 151 //===----------------------------------------------------------------------===// 152 // GetElementPtr Instruction Decomposition and Analysis 153 //===----------------------------------------------------------------------===// 154 155 namespace { 156 enum ExtensionKind { 157 EK_NotExtended, 158 EK_SignExt, 159 EK_ZeroExt 160 }; 161 162 struct VariableGEPIndex { 163 const Value *V; 164 ExtensionKind Extension; 165 int64_t Scale; 166 }; 167 } 168 169 170 /// GetLinearExpression - Analyze the specified value as a linear expression: 171 /// "A*V + B", where A and B are constant integers. Return the scale and offset 172 /// values as APInts and return V as a Value*, and return whether we looked 173 /// through any sign or zero extends. The incoming Value is known to have 174 /// IntegerType and it may already be sign or zero extended. 175 /// 176 /// Note that this looks through extends, so the high bits may not be 177 /// represented in the result. 178 static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset, 179 ExtensionKind &Extension, 180 const TargetData &TD, unsigned Depth) { 181 assert(V->getType()->isIntegerTy() && "Not an integer value"); 182 183 // Limit our recursion depth. 184 if (Depth == 6) { 185 Scale = 1; 186 Offset = 0; 187 return V; 188 } 189 190 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 191 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 192 switch (BOp->getOpcode()) { 193 default: break; 194 case Instruction::Or: 195 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 196 // analyze it. 197 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &TD)) 198 break; 199 // FALL THROUGH. 200 case Instruction::Add: 201 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 202 TD, Depth+1); 203 Offset += RHSC->getValue(); 204 return V; 205 case Instruction::Mul: 206 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 207 TD, Depth+1); 208 Offset *= RHSC->getValue(); 209 Scale *= RHSC->getValue(); 210 return V; 211 case Instruction::Shl: 212 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 213 TD, Depth+1); 214 Offset <<= RHSC->getValue().getLimitedValue(); 215 Scale <<= RHSC->getValue().getLimitedValue(); 216 return V; 217 } 218 } 219 } 220 221 // Since GEP indices are sign extended anyway, we don't care about the high 222 // bits of a sign or zero extended value - just scales and offsets. The 223 // extensions have to be consistent though. 224 if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) || 225 (isa<ZExtInst>(V) && Extension != EK_SignExt)) { 226 Value *CastOp = cast<CastInst>(V)->getOperand(0); 227 unsigned OldWidth = Scale.getBitWidth(); 228 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 229 Scale = Scale.trunc(SmallWidth); 230 Offset = Offset.trunc(SmallWidth); 231 Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt; 232 233 Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension, 234 TD, Depth+1); 235 Scale = Scale.zext(OldWidth); 236 Offset = Offset.zext(OldWidth); 237 238 return Result; 239 } 240 241 Scale = 1; 242 Offset = 0; 243 return V; 244 } 245 246 /// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it 247 /// into a base pointer with a constant offset and a number of scaled symbolic 248 /// offsets. 249 /// 250 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale in 251 /// the VarIndices vector) are Value*'s that are known to be scaled by the 252 /// specified amount, but which may have other unrepresented high bits. As such, 253 /// the gep cannot necessarily be reconstructed from its decomposed form. 254 /// 255 /// When TargetData is around, this function is capable of analyzing everything 256 /// that GetUnderlyingObject can look through. When not, it just looks 257 /// through pointer casts. 258 /// 259 static const Value * 260 DecomposeGEPExpression(const Value *V, int64_t &BaseOffs, 261 SmallVectorImpl<VariableGEPIndex> &VarIndices, 262 const TargetData *TD) { 263 // Limit recursion depth to limit compile time in crazy cases. 264 unsigned MaxLookup = 6; 265 266 BaseOffs = 0; 267 do { 268 // See if this is a bitcast or GEP. 269 const Operator *Op = dyn_cast<Operator>(V); 270 if (Op == 0) { 271 // The only non-operator case we can handle are GlobalAliases. 272 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 273 if (!GA->mayBeOverridden()) { 274 V = GA->getAliasee(); 275 continue; 276 } 277 } 278 return V; 279 } 280 281 if (Op->getOpcode() == Instruction::BitCast) { 282 V = Op->getOperand(0); 283 continue; 284 } 285 286 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 287 if (GEPOp == 0) { 288 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 289 // can come up with something. This matches what GetUnderlyingObject does. 290 if (const Instruction *I = dyn_cast<Instruction>(V)) 291 // TODO: Get a DominatorTree and use it here. 292 if (const Value *Simplified = 293 SimplifyInstruction(const_cast<Instruction *>(I), TD)) { 294 V = Simplified; 295 continue; 296 } 297 298 return V; 299 } 300 301 // Don't attempt to analyze GEPs over unsized objects. 302 if (!cast<PointerType>(GEPOp->getOperand(0)->getType()) 303 ->getElementType()->isSized()) 304 return V; 305 306 // If we are lacking TargetData information, we can't compute the offets of 307 // elements computed by GEPs. However, we can handle bitcast equivalent 308 // GEPs. 309 if (TD == 0) { 310 if (!GEPOp->hasAllZeroIndices()) 311 return V; 312 V = GEPOp->getOperand(0); 313 continue; 314 } 315 316 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 317 gep_type_iterator GTI = gep_type_begin(GEPOp); 318 for (User::const_op_iterator I = GEPOp->op_begin()+1, 319 E = GEPOp->op_end(); I != E; ++I) { 320 Value *Index = *I; 321 // Compute the (potentially symbolic) offset in bytes for this index. 322 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 323 // For a struct, add the member offset. 324 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 325 if (FieldNo == 0) continue; 326 327 BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo); 328 continue; 329 } 330 331 // For an array/pointer, add the element offset, explicitly scaled. 332 if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 333 if (CIdx->isZero()) continue; 334 BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue(); 335 continue; 336 } 337 338 uint64_t Scale = TD->getTypeAllocSize(*GTI); 339 ExtensionKind Extension = EK_NotExtended; 340 341 // If the integer type is smaller than the pointer size, it is implicitly 342 // sign extended to pointer size. 343 unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth(); 344 if (TD->getPointerSizeInBits() > Width) 345 Extension = EK_SignExt; 346 347 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 348 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 349 Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension, 350 *TD, 0); 351 352 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 353 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 354 BaseOffs += IndexOffset.getSExtValue()*Scale; 355 Scale *= IndexScale.getSExtValue(); 356 357 358 // If we already had an occurrence of this index variable, merge this 359 // scale into it. For example, we want to handle: 360 // A[x][x] -> x*16 + x*4 -> x*20 361 // This also ensures that 'x' only appears in the index list once. 362 for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) { 363 if (VarIndices[i].V == Index && 364 VarIndices[i].Extension == Extension) { 365 Scale += VarIndices[i].Scale; 366 VarIndices.erase(VarIndices.begin()+i); 367 break; 368 } 369 } 370 371 // Make sure that we have a scale that makes sense for this target's 372 // pointer size. 373 if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) { 374 Scale <<= ShiftBits; 375 Scale = (int64_t)Scale >> ShiftBits; 376 } 377 378 if (Scale) { 379 VariableGEPIndex Entry = {Index, Extension, 380 static_cast<int64_t>(Scale)}; 381 VarIndices.push_back(Entry); 382 } 383 } 384 385 // Analyze the base pointer next. 386 V = GEPOp->getOperand(0); 387 } while (--MaxLookup); 388 389 // If the chain of expressions is too deep, just return early. 390 return V; 391 } 392 393 /// GetIndexDifference - Dest and Src are the variable indices from two 394 /// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base 395 /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic 396 /// difference between the two pointers. 397 static void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest, 398 const SmallVectorImpl<VariableGEPIndex> &Src) { 399 if (Src.empty()) return; 400 401 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 402 const Value *V = Src[i].V; 403 ExtensionKind Extension = Src[i].Extension; 404 int64_t Scale = Src[i].Scale; 405 406 // Find V in Dest. This is N^2, but pointer indices almost never have more 407 // than a few variable indexes. 408 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 409 if (Dest[j].V != V || Dest[j].Extension != Extension) continue; 410 411 // If we found it, subtract off Scale V's from the entry in Dest. If it 412 // goes to zero, remove the entry. 413 if (Dest[j].Scale != Scale) 414 Dest[j].Scale -= Scale; 415 else 416 Dest.erase(Dest.begin()+j); 417 Scale = 0; 418 break; 419 } 420 421 // If we didn't consume this entry, add it to the end of the Dest list. 422 if (Scale) { 423 VariableGEPIndex Entry = { V, Extension, -Scale }; 424 Dest.push_back(Entry); 425 } 426 } 427 } 428 429 //===----------------------------------------------------------------------===// 430 // BasicAliasAnalysis Pass 431 //===----------------------------------------------------------------------===// 432 433 #ifndef NDEBUG 434 static const Function *getParent(const Value *V) { 435 if (const Instruction *inst = dyn_cast<Instruction>(V)) 436 return inst->getParent()->getParent(); 437 438 if (const Argument *arg = dyn_cast<Argument>(V)) 439 return arg->getParent(); 440 441 return NULL; 442 } 443 444 static bool notDifferentParent(const Value *O1, const Value *O2) { 445 446 const Function *F1 = getParent(O1); 447 const Function *F2 = getParent(O2); 448 449 return !F1 || !F2 || F1 == F2; 450 } 451 #endif 452 453 namespace { 454 /// BasicAliasAnalysis - This is the primary alias analysis implementation. 455 struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis { 456 static char ID; // Class identification, replacement for typeinfo 457 BasicAliasAnalysis() : ImmutablePass(ID), 458 // AliasCache rarely has more than 1 or 2 elements, 459 // so start it off fairly small so that clear() 460 // doesn't have to tromp through 64 (the default) 461 // elements on each alias query. This really wants 462 // something like a SmallDenseMap. 463 AliasCache(8) { 464 initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry()); 465 } 466 467 virtual void initializePass() { 468 InitializeAliasAnalysis(this); 469 } 470 471 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 472 AU.addRequired<AliasAnalysis>(); 473 AU.addRequired<TargetLibraryInfo>(); 474 } 475 476 virtual AliasResult alias(const Location &LocA, 477 const Location &LocB) { 478 assert(AliasCache.empty() && "AliasCache must be cleared after use!"); 479 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 480 "BasicAliasAnalysis doesn't support interprocedural queries."); 481 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.TBAATag, 482 LocB.Ptr, LocB.Size, LocB.TBAATag); 483 AliasCache.clear(); 484 return Alias; 485 } 486 487 virtual ModRefResult getModRefInfo(ImmutableCallSite CS, 488 const Location &Loc); 489 490 virtual ModRefResult getModRefInfo(ImmutableCallSite CS1, 491 ImmutableCallSite CS2) { 492 // The AliasAnalysis base class has some smarts, lets use them. 493 return AliasAnalysis::getModRefInfo(CS1, CS2); 494 } 495 496 /// pointsToConstantMemory - Chase pointers until we find a (constant 497 /// global) or not. 498 virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal); 499 500 /// getModRefBehavior - Return the behavior when calling the given 501 /// call site. 502 virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS); 503 504 /// getModRefBehavior - Return the behavior when calling the given function. 505 /// For use when the call site is not known. 506 virtual ModRefBehavior getModRefBehavior(const Function *F); 507 508 /// getAdjustedAnalysisPointer - This method is used when a pass implements 509 /// an analysis interface through multiple inheritance. If needed, it 510 /// should override this to adjust the this pointer as needed for the 511 /// specified pass info. 512 virtual void *getAdjustedAnalysisPointer(const void *ID) { 513 if (ID == &AliasAnalysis::ID) 514 return (AliasAnalysis*)this; 515 return this; 516 } 517 518 private: 519 // AliasCache - Track alias queries to guard against recursion. 520 typedef std::pair<Location, Location> LocPair; 521 typedef DenseMap<LocPair, AliasResult> AliasCacheTy; 522 AliasCacheTy AliasCache; 523 524 // Visited - Track instructions visited by pointsToConstantMemory. 525 SmallPtrSet<const Value*, 16> Visited; 526 527 // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP 528 // instruction against another. 529 AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size, 530 const Value *V2, uint64_t V2Size, 531 const MDNode *V2TBAAInfo, 532 const Value *UnderlyingV1, const Value *UnderlyingV2); 533 534 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI 535 // instruction against another. 536 AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize, 537 const MDNode *PNTBAAInfo, 538 const Value *V2, uint64_t V2Size, 539 const MDNode *V2TBAAInfo); 540 541 /// aliasSelect - Disambiguate a Select instruction against another value. 542 AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize, 543 const MDNode *SITBAAInfo, 544 const Value *V2, uint64_t V2Size, 545 const MDNode *V2TBAAInfo); 546 547 AliasResult aliasCheck(const Value *V1, uint64_t V1Size, 548 const MDNode *V1TBAATag, 549 const Value *V2, uint64_t V2Size, 550 const MDNode *V2TBAATag); 551 }; 552 } // End of anonymous namespace 553 554 // Register this pass... 555 char BasicAliasAnalysis::ID = 0; 556 INITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa", 557 "Basic Alias Analysis (stateless AA impl)", 558 false, true, false) 559 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 560 INITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa", 561 "Basic Alias Analysis (stateless AA impl)", 562 false, true, false) 563 564 565 ImmutablePass *llvm::createBasicAliasAnalysisPass() { 566 return new BasicAliasAnalysis(); 567 } 568 569 /// pointsToConstantMemory - Returns whether the given pointer value 570 /// points to memory that is local to the function, with global constants being 571 /// considered local to all functions. 572 bool 573 BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) { 574 assert(Visited.empty() && "Visited must be cleared after use!"); 575 576 unsigned MaxLookup = 8; 577 SmallVector<const Value *, 16> Worklist; 578 Worklist.push_back(Loc.Ptr); 579 do { 580 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), TD); 581 if (!Visited.insert(V)) { 582 Visited.clear(); 583 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 584 } 585 586 // An alloca instruction defines local memory. 587 if (OrLocal && isa<AllocaInst>(V)) 588 continue; 589 590 // A global constant counts as local memory for our purposes. 591 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 592 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 593 // global to be marked constant in some modules and non-constant in 594 // others. GV may even be a declaration, not a definition. 595 if (!GV->isConstant()) { 596 Visited.clear(); 597 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 598 } 599 continue; 600 } 601 602 // If both select values point to local memory, then so does the select. 603 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 604 Worklist.push_back(SI->getTrueValue()); 605 Worklist.push_back(SI->getFalseValue()); 606 continue; 607 } 608 609 // If all values incoming to a phi node point to local memory, then so does 610 // the phi. 611 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 612 // Don't bother inspecting phi nodes with many operands. 613 if (PN->getNumIncomingValues() > MaxLookup) { 614 Visited.clear(); 615 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 616 } 617 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 618 Worklist.push_back(PN->getIncomingValue(i)); 619 continue; 620 } 621 622 // Otherwise be conservative. 623 Visited.clear(); 624 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 625 626 } while (!Worklist.empty() && --MaxLookup); 627 628 Visited.clear(); 629 return Worklist.empty(); 630 } 631 632 /// getModRefBehavior - Return the behavior when calling the given call site. 633 AliasAnalysis::ModRefBehavior 634 BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) { 635 if (CS.doesNotAccessMemory()) 636 // Can't do better than this. 637 return DoesNotAccessMemory; 638 639 ModRefBehavior Min = UnknownModRefBehavior; 640 641 // If the callsite knows it only reads memory, don't return worse 642 // than that. 643 if (CS.onlyReadsMemory()) 644 Min = OnlyReadsMemory; 645 646 // The AliasAnalysis base class has some smarts, lets use them. 647 return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min); 648 } 649 650 /// getModRefBehavior - Return the behavior when calling the given function. 651 /// For use when the call site is not known. 652 AliasAnalysis::ModRefBehavior 653 BasicAliasAnalysis::getModRefBehavior(const Function *F) { 654 // If the function declares it doesn't access memory, we can't do better. 655 if (F->doesNotAccessMemory()) 656 return DoesNotAccessMemory; 657 658 // For intrinsics, we can check the table. 659 if (unsigned iid = F->getIntrinsicID()) { 660 #define GET_INTRINSIC_MODREF_BEHAVIOR 661 #include "llvm/Intrinsics.gen" 662 #undef GET_INTRINSIC_MODREF_BEHAVIOR 663 } 664 665 ModRefBehavior Min = UnknownModRefBehavior; 666 667 // If the function declares it only reads memory, go with that. 668 if (F->onlyReadsMemory()) 669 Min = OnlyReadsMemory; 670 671 // Otherwise be conservative. 672 return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min); 673 } 674 675 /// getModRefInfo - Check to see if the specified callsite can clobber the 676 /// specified memory object. Since we only look at local properties of this 677 /// function, we really can't say much about this query. We do, however, use 678 /// simple "address taken" analysis on local objects. 679 AliasAnalysis::ModRefResult 680 BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS, 681 const Location &Loc) { 682 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && 683 "AliasAnalysis query involving multiple functions!"); 684 685 const Value *Object = GetUnderlyingObject(Loc.Ptr, TD); 686 687 // If this is a tail call and Loc.Ptr points to a stack location, we know that 688 // the tail call cannot access or modify the local stack. 689 // We cannot exclude byval arguments here; these belong to the caller of 690 // the current function not to the current function, and a tail callee 691 // may reference them. 692 if (isa<AllocaInst>(Object)) 693 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) 694 if (CI->isTailCall()) 695 return NoModRef; 696 697 // If the pointer is to a locally allocated object that does not escape, 698 // then the call can not mod/ref the pointer unless the call takes the pointer 699 // as an argument, and itself doesn't capture it. 700 if (!isa<Constant>(Object) && CS.getInstruction() != Object && 701 isNonEscapingLocalObject(Object)) { 702 bool PassedAsArg = false; 703 unsigned ArgNo = 0; 704 for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end(); 705 CI != CE; ++CI, ++ArgNo) { 706 // Only look at the no-capture or byval pointer arguments. If this 707 // pointer were passed to arguments that were neither of these, then it 708 // couldn't be no-capture. 709 if (!(*CI)->getType()->isPointerTy() || 710 (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo))) 711 continue; 712 713 // If this is a no-capture pointer argument, see if we can tell that it 714 // is impossible to alias the pointer we're checking. If not, we have to 715 // assume that the call could touch the pointer, even though it doesn't 716 // escape. 717 if (!isNoAlias(Location(*CI), Location(Object))) { 718 PassedAsArg = true; 719 break; 720 } 721 } 722 723 if (!PassedAsArg) 724 return NoModRef; 725 } 726 727 const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>(); 728 ModRefResult Min = ModRef; 729 730 // Finally, handle specific knowledge of intrinsics. 731 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 732 if (II != 0) 733 switch (II->getIntrinsicID()) { 734 default: break; 735 case Intrinsic::memcpy: 736 case Intrinsic::memmove: { 737 uint64_t Len = UnknownSize; 738 if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) 739 Len = LenCI->getZExtValue(); 740 Value *Dest = II->getArgOperand(0); 741 Value *Src = II->getArgOperand(1); 742 // If it can't overlap the source dest, then it doesn't modref the loc. 743 if (isNoAlias(Location(Dest, Len), Loc)) { 744 if (isNoAlias(Location(Src, Len), Loc)) 745 return NoModRef; 746 // If it can't overlap the dest, then worst case it reads the loc. 747 Min = Ref; 748 } else if (isNoAlias(Location(Src, Len), Loc)) { 749 // If it can't overlap the source, then worst case it mutates the loc. 750 Min = Mod; 751 } 752 break; 753 } 754 case Intrinsic::memset: 755 // Since memset is 'accesses arguments' only, the AliasAnalysis base class 756 // will handle it for the variable length case. 757 if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) { 758 uint64_t Len = LenCI->getZExtValue(); 759 Value *Dest = II->getArgOperand(0); 760 if (isNoAlias(Location(Dest, Len), Loc)) 761 return NoModRef; 762 } 763 // We know that memset doesn't load anything. 764 Min = Mod; 765 break; 766 case Intrinsic::lifetime_start: 767 case Intrinsic::lifetime_end: 768 case Intrinsic::invariant_start: { 769 uint64_t PtrSize = 770 cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(); 771 if (isNoAlias(Location(II->getArgOperand(1), 772 PtrSize, 773 II->getMetadata(LLVMContext::MD_tbaa)), 774 Loc)) 775 return NoModRef; 776 break; 777 } 778 case Intrinsic::invariant_end: { 779 uint64_t PtrSize = 780 cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(); 781 if (isNoAlias(Location(II->getArgOperand(2), 782 PtrSize, 783 II->getMetadata(LLVMContext::MD_tbaa)), 784 Loc)) 785 return NoModRef; 786 break; 787 } 788 case Intrinsic::arm_neon_vld1: { 789 // LLVM's vld1 and vst1 intrinsics currently only support a single 790 // vector register. 791 uint64_t Size = 792 TD ? TD->getTypeStoreSize(II->getType()) : UnknownSize; 793 if (isNoAlias(Location(II->getArgOperand(0), Size, 794 II->getMetadata(LLVMContext::MD_tbaa)), 795 Loc)) 796 return NoModRef; 797 break; 798 } 799 case Intrinsic::arm_neon_vst1: { 800 uint64_t Size = 801 TD ? TD->getTypeStoreSize(II->getArgOperand(1)->getType()) : UnknownSize; 802 if (isNoAlias(Location(II->getArgOperand(0), Size, 803 II->getMetadata(LLVMContext::MD_tbaa)), 804 Loc)) 805 return NoModRef; 806 break; 807 } 808 } 809 810 // We can bound the aliasing properties of memset_pattern16 just as we can 811 // for memcpy/memset. This is particularly important because the 812 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 813 // whenever possible. 814 else if (TLI.has(LibFunc::memset_pattern16) && 815 CS.getCalledFunction() && 816 CS.getCalledFunction()->getName() == "memset_pattern16") { 817 const Function *MS = CS.getCalledFunction(); 818 FunctionType *MemsetType = MS->getFunctionType(); 819 if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 && 820 isa<PointerType>(MemsetType->getParamType(0)) && 821 isa<PointerType>(MemsetType->getParamType(1)) && 822 isa<IntegerType>(MemsetType->getParamType(2))) { 823 uint64_t Len = UnknownSize; 824 if (const ConstantInt *LenCI = dyn_cast<ConstantInt>(CS.getArgument(2))) 825 Len = LenCI->getZExtValue(); 826 const Value *Dest = CS.getArgument(0); 827 const Value *Src = CS.getArgument(1); 828 // If it can't overlap the source dest, then it doesn't modref the loc. 829 if (isNoAlias(Location(Dest, Len), Loc)) { 830 // Always reads 16 bytes of the source. 831 if (isNoAlias(Location(Src, 16), Loc)) 832 return NoModRef; 833 // If it can't overlap the dest, then worst case it reads the loc. 834 Min = Ref; 835 // Always reads 16 bytes of the source. 836 } else if (isNoAlias(Location(Src, 16), Loc)) { 837 // If it can't overlap the source, then worst case it mutates the loc. 838 Min = Mod; 839 } 840 } 841 } 842 843 // The AliasAnalysis base class has some smarts, lets use them. 844 return ModRefResult(AliasAnalysis::getModRefInfo(CS, Loc) & Min); 845 } 846 847 /// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction 848 /// against another pointer. We know that V1 is a GEP, but we don't know 849 /// anything about V2. UnderlyingV1 is GetUnderlyingObject(GEP1, TD), 850 /// UnderlyingV2 is the same for V2. 851 /// 852 AliasAnalysis::AliasResult 853 BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, 854 const Value *V2, uint64_t V2Size, 855 const MDNode *V2TBAAInfo, 856 const Value *UnderlyingV1, 857 const Value *UnderlyingV2) { 858 int64_t GEP1BaseOffset; 859 SmallVector<VariableGEPIndex, 4> GEP1VariableIndices; 860 861 // If we have two gep instructions with must-alias'ing base pointers, figure 862 // out if the indexes to the GEP tell us anything about the derived pointer. 863 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 864 // Do the base pointers alias? 865 AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, 0, 866 UnderlyingV2, UnknownSize, 0); 867 868 // If we get a No or May, then return it immediately, no amount of analysis 869 // will improve this situation. 870 if (BaseAlias != MustAlias) return BaseAlias; 871 872 // Otherwise, we have a MustAlias. Since the base pointers alias each other 873 // exactly, see if the computed offset from the common pointer tells us 874 // about the relation of the resulting pointer. 875 const Value *GEP1BasePtr = 876 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD); 877 878 int64_t GEP2BaseOffset; 879 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 880 const Value *GEP2BasePtr = 881 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD); 882 883 // If DecomposeGEPExpression isn't able to look all the way through the 884 // addressing operation, we must not have TD and this is too complex for us 885 // to handle without it. 886 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 887 assert(TD == 0 && 888 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 889 return MayAlias; 890 } 891 892 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 893 // symbolic difference. 894 GEP1BaseOffset -= GEP2BaseOffset; 895 GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices); 896 897 } else { 898 // Check to see if these two pointers are related by the getelementptr 899 // instruction. If one pointer is a GEP with a non-zero index of the other 900 // pointer, we know they cannot alias. 901 902 // If both accesses are unknown size, we can't do anything useful here. 903 if (V1Size == UnknownSize && V2Size == UnknownSize) 904 return MayAlias; 905 906 AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, 0, 907 V2, V2Size, V2TBAAInfo); 908 if (R != MustAlias) 909 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 910 // If V2 is known not to alias GEP base pointer, then the two values 911 // cannot alias per GEP semantics: "A pointer value formed from a 912 // getelementptr instruction is associated with the addresses associated 913 // with the first operand of the getelementptr". 914 return R; 915 916 const Value *GEP1BasePtr = 917 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD); 918 919 // If DecomposeGEPExpression isn't able to look all the way through the 920 // addressing operation, we must not have TD and this is too complex for us 921 // to handle without it. 922 if (GEP1BasePtr != UnderlyingV1) { 923 assert(TD == 0 && 924 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 925 return MayAlias; 926 } 927 } 928 929 // In the two GEP Case, if there is no difference in the offsets of the 930 // computed pointers, the resultant pointers are a must alias. This 931 // hapens when we have two lexically identical GEP's (for example). 932 // 933 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 934 // must aliases the GEP, the end result is a must alias also. 935 if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty()) 936 return MustAlias; 937 938 // If there is a constant difference between the pointers, but the difference 939 // is less than the size of the associated memory object, then we know 940 // that the objects are partially overlapping. If the difference is 941 // greater, we know they do not overlap. 942 if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) { 943 if (GEP1BaseOffset >= 0) { 944 if (V2Size != UnknownSize) { 945 if ((uint64_t)GEP1BaseOffset < V2Size) 946 return PartialAlias; 947 return NoAlias; 948 } 949 } else { 950 if (V1Size != UnknownSize) { 951 if (-(uint64_t)GEP1BaseOffset < V1Size) 952 return PartialAlias; 953 return NoAlias; 954 } 955 } 956 } 957 958 // Try to distinguish something like &A[i][1] against &A[42][0]. 959 // Grab the least significant bit set in any of the scales. 960 if (!GEP1VariableIndices.empty()) { 961 uint64_t Modulo = 0; 962 for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) 963 Modulo |= (uint64_t)GEP1VariableIndices[i].Scale; 964 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 965 966 // We can compute the difference between the two addresses 967 // mod Modulo. Check whether that difference guarantees that the 968 // two locations do not alias. 969 uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1); 970 if (V1Size != UnknownSize && V2Size != UnknownSize && 971 ModOffset >= V2Size && V1Size <= Modulo - ModOffset) 972 return NoAlias; 973 } 974 975 // Statically, we can see that the base objects are the same, but the 976 // pointers have dynamic offsets which we can't resolve. And none of our 977 // little tricks above worked. 978 // 979 // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the 980 // practical effect of this is protecting TBAA in the case of dynamic 981 // indices into arrays of unions or malloc'd memory. 982 return PartialAlias; 983 } 984 985 static AliasAnalysis::AliasResult 986 MergeAliasResults(AliasAnalysis::AliasResult A, AliasAnalysis::AliasResult B) { 987 // If the results agree, take it. 988 if (A == B) 989 return A; 990 // A mix of PartialAlias and MustAlias is PartialAlias. 991 if ((A == AliasAnalysis::PartialAlias && B == AliasAnalysis::MustAlias) || 992 (B == AliasAnalysis::PartialAlias && A == AliasAnalysis::MustAlias)) 993 return AliasAnalysis::PartialAlias; 994 // Otherwise, we don't know anything. 995 return AliasAnalysis::MayAlias; 996 } 997 998 /// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select 999 /// instruction against another. 1000 AliasAnalysis::AliasResult 1001 BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize, 1002 const MDNode *SITBAAInfo, 1003 const Value *V2, uint64_t V2Size, 1004 const MDNode *V2TBAAInfo) { 1005 // If the values are Selects with the same condition, we can do a more precise 1006 // check: just check for aliases between the values on corresponding arms. 1007 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1008 if (SI->getCondition() == SI2->getCondition()) { 1009 AliasResult Alias = 1010 aliasCheck(SI->getTrueValue(), SISize, SITBAAInfo, 1011 SI2->getTrueValue(), V2Size, V2TBAAInfo); 1012 if (Alias == MayAlias) 1013 return MayAlias; 1014 AliasResult ThisAlias = 1015 aliasCheck(SI->getFalseValue(), SISize, SITBAAInfo, 1016 SI2->getFalseValue(), V2Size, V2TBAAInfo); 1017 return MergeAliasResults(ThisAlias, Alias); 1018 } 1019 1020 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1021 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1022 AliasResult Alias = 1023 aliasCheck(V2, V2Size, V2TBAAInfo, SI->getTrueValue(), SISize, SITBAAInfo); 1024 if (Alias == MayAlias) 1025 return MayAlias; 1026 1027 AliasResult ThisAlias = 1028 aliasCheck(V2, V2Size, V2TBAAInfo, SI->getFalseValue(), SISize, SITBAAInfo); 1029 return MergeAliasResults(ThisAlias, Alias); 1030 } 1031 1032 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction 1033 // against another. 1034 AliasAnalysis::AliasResult 1035 BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize, 1036 const MDNode *PNTBAAInfo, 1037 const Value *V2, uint64_t V2Size, 1038 const MDNode *V2TBAAInfo) { 1039 // If the values are PHIs in the same block, we can do a more precise 1040 // as well as efficient check: just check for aliases between the values 1041 // on corresponding edges. 1042 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1043 if (PN2->getParent() == PN->getParent()) { 1044 AliasResult Alias = 1045 aliasCheck(PN->getIncomingValue(0), PNSize, PNTBAAInfo, 1046 PN2->getIncomingValueForBlock(PN->getIncomingBlock(0)), 1047 V2Size, V2TBAAInfo); 1048 if (Alias == MayAlias) 1049 return MayAlias; 1050 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 1051 AliasResult ThisAlias = 1052 aliasCheck(PN->getIncomingValue(i), PNSize, PNTBAAInfo, 1053 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1054 V2Size, V2TBAAInfo); 1055 Alias = MergeAliasResults(ThisAlias, Alias); 1056 if (Alias == MayAlias) 1057 break; 1058 } 1059 return Alias; 1060 } 1061 1062 SmallPtrSet<Value*, 4> UniqueSrc; 1063 SmallVector<Value*, 4> V1Srcs; 1064 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1065 Value *PV1 = PN->getIncomingValue(i); 1066 if (isa<PHINode>(PV1)) 1067 // If any of the source itself is a PHI, return MayAlias conservatively 1068 // to avoid compile time explosion. The worst possible case is if both 1069 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1070 // and 'n' are the number of PHI sources. 1071 return MayAlias; 1072 if (UniqueSrc.insert(PV1)) 1073 V1Srcs.push_back(PV1); 1074 } 1075 1076 AliasResult Alias = aliasCheck(V2, V2Size, V2TBAAInfo, 1077 V1Srcs[0], PNSize, PNTBAAInfo); 1078 // Early exit if the check of the first PHI source against V2 is MayAlias. 1079 // Other results are not possible. 1080 if (Alias == MayAlias) 1081 return MayAlias; 1082 1083 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1084 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1085 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1086 Value *V = V1Srcs[i]; 1087 1088 AliasResult ThisAlias = aliasCheck(V2, V2Size, V2TBAAInfo, 1089 V, PNSize, PNTBAAInfo); 1090 Alias = MergeAliasResults(ThisAlias, Alias); 1091 if (Alias == MayAlias) 1092 break; 1093 } 1094 1095 return Alias; 1096 } 1097 1098 // aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases, 1099 // such as array references. 1100 // 1101 AliasAnalysis::AliasResult 1102 BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size, 1103 const MDNode *V1TBAAInfo, 1104 const Value *V2, uint64_t V2Size, 1105 const MDNode *V2TBAAInfo) { 1106 // If either of the memory references is empty, it doesn't matter what the 1107 // pointer values are. 1108 if (V1Size == 0 || V2Size == 0) 1109 return NoAlias; 1110 1111 // Strip off any casts if they exist. 1112 V1 = V1->stripPointerCasts(); 1113 V2 = V2->stripPointerCasts(); 1114 1115 // Are we checking for alias of the same value? 1116 if (V1 == V2) return MustAlias; 1117 1118 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1119 return NoAlias; // Scalars cannot alias each other 1120 1121 // Figure out what objects these things are pointing to if we can. 1122 const Value *O1 = GetUnderlyingObject(V1, TD); 1123 const Value *O2 = GetUnderlyingObject(V2, TD); 1124 1125 // Null values in the default address space don't point to any object, so they 1126 // don't alias any other pointer. 1127 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1128 if (CPN->getType()->getAddressSpace() == 0) 1129 return NoAlias; 1130 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1131 if (CPN->getType()->getAddressSpace() == 0) 1132 return NoAlias; 1133 1134 if (O1 != O2) { 1135 // If V1/V2 point to two different objects we know that we have no alias. 1136 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1137 return NoAlias; 1138 1139 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1140 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1141 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1142 return NoAlias; 1143 1144 // Arguments can't alias with local allocations or noalias calls 1145 // in the same function. 1146 if (((isa<Argument>(O1) && (isa<AllocaInst>(O2) || isNoAliasCall(O2))) || 1147 (isa<Argument>(O2) && (isa<AllocaInst>(O1) || isNoAliasCall(O1))))) 1148 return NoAlias; 1149 1150 // Most objects can't alias null. 1151 if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) || 1152 (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2))) 1153 return NoAlias; 1154 1155 // If one pointer is the result of a call/invoke or load and the other is a 1156 // non-escaping local object within the same function, then we know the 1157 // object couldn't escape to a point where the call could return it. 1158 // 1159 // Note that if the pointers are in different functions, there are a 1160 // variety of complications. A call with a nocapture argument may still 1161 // temporary store the nocapture argument's value in a temporary memory 1162 // location if that memory location doesn't escape. Or it may pass a 1163 // nocapture value to other functions as long as they don't capture it. 1164 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) 1165 return NoAlias; 1166 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) 1167 return NoAlias; 1168 } 1169 1170 // If the size of one access is larger than the entire object on the other 1171 // side, then we know such behavior is undefined and can assume no alias. 1172 if (TD) 1173 if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *TD)) || 1174 (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *TD))) 1175 return NoAlias; 1176 1177 // Check the cache before climbing up use-def chains. This also terminates 1178 // otherwise infinitely recursive queries. 1179 LocPair Locs(Location(V1, V1Size, V1TBAAInfo), 1180 Location(V2, V2Size, V2TBAAInfo)); 1181 if (V1 > V2) 1182 std::swap(Locs.first, Locs.second); 1183 std::pair<AliasCacheTy::iterator, bool> Pair = 1184 AliasCache.insert(std::make_pair(Locs, MayAlias)); 1185 if (!Pair.second) 1186 return Pair.first->second; 1187 1188 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1189 // GEP can't simplify, we don't even look at the PHI cases. 1190 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1191 std::swap(V1, V2); 1192 std::swap(V1Size, V2Size); 1193 std::swap(O1, O2); 1194 } 1195 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1196 AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, V2TBAAInfo, O1, O2); 1197 if (Result != MayAlias) return AliasCache[Locs] = Result; 1198 } 1199 1200 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1201 std::swap(V1, V2); 1202 std::swap(V1Size, V2Size); 1203 } 1204 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1205 AliasResult Result = aliasPHI(PN, V1Size, V1TBAAInfo, 1206 V2, V2Size, V2TBAAInfo); 1207 if (Result != MayAlias) return AliasCache[Locs] = Result; 1208 } 1209 1210 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1211 std::swap(V1, V2); 1212 std::swap(V1Size, V2Size); 1213 } 1214 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1215 AliasResult Result = aliasSelect(S1, V1Size, V1TBAAInfo, 1216 V2, V2Size, V2TBAAInfo); 1217 if (Result != MayAlias) return AliasCache[Locs] = Result; 1218 } 1219 1220 // If both pointers are pointing into the same object and one of them 1221 // accesses is accessing the entire object, then the accesses must 1222 // overlap in some way. 1223 if (TD && O1 == O2) 1224 if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *TD)) || 1225 (V2Size != UnknownSize && isObjectSize(O2, V2Size, *TD))) 1226 return AliasCache[Locs] = PartialAlias; 1227 1228 AliasResult Result = 1229 AliasAnalysis::alias(Location(V1, V1Size, V1TBAAInfo), 1230 Location(V2, V2Size, V2TBAAInfo)); 1231 return AliasCache[Locs] = Result; 1232 } 1233