Home | History | Annotate | Download | only in Analysis
      1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the primary stateless implementation of the
     11 // Alias Analysis interface that implements identities (two different
     12 // globals cannot alias, etc), but does no stateful analysis.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/Analysis/AliasAnalysis.h"
     17 #include "llvm/Analysis/Passes.h"
     18 #include "llvm/Constants.h"
     19 #include "llvm/DerivedTypes.h"
     20 #include "llvm/Function.h"
     21 #include "llvm/GlobalAlias.h"
     22 #include "llvm/GlobalVariable.h"
     23 #include "llvm/Instructions.h"
     24 #include "llvm/IntrinsicInst.h"
     25 #include "llvm/LLVMContext.h"
     26 #include "llvm/Operator.h"
     27 #include "llvm/Pass.h"
     28 #include "llvm/Analysis/CaptureTracking.h"
     29 #include "llvm/Analysis/MemoryBuiltins.h"
     30 #include "llvm/Analysis/InstructionSimplify.h"
     31 #include "llvm/Analysis/ValueTracking.h"
     32 #include "llvm/Target/TargetData.h"
     33 #include "llvm/Target/TargetLibraryInfo.h"
     34 #include "llvm/ADT/SmallPtrSet.h"
     35 #include "llvm/ADT/SmallVector.h"
     36 #include "llvm/Support/ErrorHandling.h"
     37 #include "llvm/Support/GetElementPtrTypeIterator.h"
     38 #include <algorithm>
     39 using namespace llvm;
     40 
     41 //===----------------------------------------------------------------------===//
     42 // Useful predicates
     43 //===----------------------------------------------------------------------===//
     44 
     45 /// isNonEscapingLocalObject - Return true if the pointer is to a function-local
     46 /// object that never escapes from the function.
     47 static bool isNonEscapingLocalObject(const Value *V) {
     48   // If this is a local allocation, check to see if it escapes.
     49   if (isa<AllocaInst>(V) || isNoAliasCall(V))
     50     // Set StoreCaptures to True so that we can assume in our callers that the
     51     // pointer is not the result of a load instruction. Currently
     52     // PointerMayBeCaptured doesn't have any special analysis for the
     53     // StoreCaptures=false case; if it did, our callers could be refined to be
     54     // more precise.
     55     return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
     56 
     57   // If this is an argument that corresponds to a byval or noalias argument,
     58   // then it has not escaped before entering the function.  Check if it escapes
     59   // inside the function.
     60   if (const Argument *A = dyn_cast<Argument>(V))
     61     if (A->hasByValAttr() || A->hasNoAliasAttr()) {
     62       // Don't bother analyzing arguments already known not to escape.
     63       if (A->hasNoCaptureAttr())
     64         return true;
     65       return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
     66     }
     67   return false;
     68 }
     69 
     70 /// isEscapeSource - Return true if the pointer is one which would have
     71 /// been considered an escape by isNonEscapingLocalObject.
     72 static bool isEscapeSource(const Value *V) {
     73   if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
     74     return true;
     75 
     76   // The load case works because isNonEscapingLocalObject considers all
     77   // stores to be escapes (it passes true for the StoreCaptures argument
     78   // to PointerMayBeCaptured).
     79   if (isa<LoadInst>(V))
     80     return true;
     81 
     82   return false;
     83 }
     84 
     85 /// getObjectSize - Return the size of the object specified by V, or
     86 /// UnknownSize if unknown.
     87 static uint64_t getObjectSize(const Value *V, const TargetData &TD,
     88                               bool RoundToAlign = false) {
     89   Type *AccessTy;
     90   unsigned Align;
     91   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
     92     if (!GV->hasDefinitiveInitializer())
     93       return AliasAnalysis::UnknownSize;
     94     AccessTy = GV->getType()->getElementType();
     95     Align = GV->getAlignment();
     96   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
     97     if (!AI->isArrayAllocation())
     98       AccessTy = AI->getType()->getElementType();
     99     else
    100       return AliasAnalysis::UnknownSize;
    101     Align = AI->getAlignment();
    102   } else if (const CallInst* CI = extractMallocCall(V)) {
    103     if (!RoundToAlign && !isArrayMalloc(V, &TD))
    104       // The size is the argument to the malloc call.
    105       if (const ConstantInt* C = dyn_cast<ConstantInt>(CI->getArgOperand(0)))
    106         return C->getZExtValue();
    107     return AliasAnalysis::UnknownSize;
    108   } else if (const Argument *A = dyn_cast<Argument>(V)) {
    109     if (A->hasByValAttr()) {
    110       AccessTy = cast<PointerType>(A->getType())->getElementType();
    111       Align = A->getParamAlignment();
    112     } else {
    113       return AliasAnalysis::UnknownSize;
    114     }
    115   } else {
    116     return AliasAnalysis::UnknownSize;
    117   }
    118 
    119   if (!AccessTy->isSized())
    120     return AliasAnalysis::UnknownSize;
    121 
    122   uint64_t Size = TD.getTypeAllocSize(AccessTy);
    123   // If there is an explicitly specified alignment, and we need to
    124   // take alignment into account, round up the size. (If the alignment
    125   // is implicit, getTypeAllocSize is sufficient.)
    126   if (RoundToAlign && Align)
    127     Size = RoundUpToAlignment(Size, Align);
    128 
    129   return Size;
    130 }
    131 
    132 /// isObjectSmallerThan - Return true if we can prove that the object specified
    133 /// by V is smaller than Size.
    134 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
    135                                 const TargetData &TD) {
    136   // This function needs to use the aligned object size because we allow
    137   // reads a bit past the end given sufficient alignment.
    138   uint64_t ObjectSize = getObjectSize(V, TD, /*RoundToAlign*/true);
    139 
    140   return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size;
    141 }
    142 
    143 /// isObjectSize - Return true if we can prove that the object specified
    144 /// by V has size Size.
    145 static bool isObjectSize(const Value *V, uint64_t Size,
    146                          const TargetData &TD) {
    147   uint64_t ObjectSize = getObjectSize(V, TD);
    148   return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size;
    149 }
    150 
    151 //===----------------------------------------------------------------------===//
    152 // GetElementPtr Instruction Decomposition and Analysis
    153 //===----------------------------------------------------------------------===//
    154 
    155 namespace {
    156   enum ExtensionKind {
    157     EK_NotExtended,
    158     EK_SignExt,
    159     EK_ZeroExt
    160   };
    161 
    162   struct VariableGEPIndex {
    163     const Value *V;
    164     ExtensionKind Extension;
    165     int64_t Scale;
    166   };
    167 }
    168 
    169 
    170 /// GetLinearExpression - Analyze the specified value as a linear expression:
    171 /// "A*V + B", where A and B are constant integers.  Return the scale and offset
    172 /// values as APInts and return V as a Value*, and return whether we looked
    173 /// through any sign or zero extends.  The incoming Value is known to have
    174 /// IntegerType and it may already be sign or zero extended.
    175 ///
    176 /// Note that this looks through extends, so the high bits may not be
    177 /// represented in the result.
    178 static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
    179                                   ExtensionKind &Extension,
    180                                   const TargetData &TD, unsigned Depth) {
    181   assert(V->getType()->isIntegerTy() && "Not an integer value");
    182 
    183   // Limit our recursion depth.
    184   if (Depth == 6) {
    185     Scale = 1;
    186     Offset = 0;
    187     return V;
    188   }
    189 
    190   if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
    191     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
    192       switch (BOp->getOpcode()) {
    193       default: break;
    194       case Instruction::Or:
    195         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
    196         // analyze it.
    197         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &TD))
    198           break;
    199         // FALL THROUGH.
    200       case Instruction::Add:
    201         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
    202                                 TD, Depth+1);
    203         Offset += RHSC->getValue();
    204         return V;
    205       case Instruction::Mul:
    206         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
    207                                 TD, Depth+1);
    208         Offset *= RHSC->getValue();
    209         Scale *= RHSC->getValue();
    210         return V;
    211       case Instruction::Shl:
    212         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
    213                                 TD, Depth+1);
    214         Offset <<= RHSC->getValue().getLimitedValue();
    215         Scale <<= RHSC->getValue().getLimitedValue();
    216         return V;
    217       }
    218     }
    219   }
    220 
    221   // Since GEP indices are sign extended anyway, we don't care about the high
    222   // bits of a sign or zero extended value - just scales and offsets.  The
    223   // extensions have to be consistent though.
    224   if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) ||
    225       (isa<ZExtInst>(V) && Extension != EK_SignExt)) {
    226     Value *CastOp = cast<CastInst>(V)->getOperand(0);
    227     unsigned OldWidth = Scale.getBitWidth();
    228     unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
    229     Scale = Scale.trunc(SmallWidth);
    230     Offset = Offset.trunc(SmallWidth);
    231     Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt;
    232 
    233     Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension,
    234                                         TD, Depth+1);
    235     Scale = Scale.zext(OldWidth);
    236     Offset = Offset.zext(OldWidth);
    237 
    238     return Result;
    239   }
    240 
    241   Scale = 1;
    242   Offset = 0;
    243   return V;
    244 }
    245 
    246 /// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
    247 /// into a base pointer with a constant offset and a number of scaled symbolic
    248 /// offsets.
    249 ///
    250 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale in
    251 /// the VarIndices vector) are Value*'s that are known to be scaled by the
    252 /// specified amount, but which may have other unrepresented high bits. As such,
    253 /// the gep cannot necessarily be reconstructed from its decomposed form.
    254 ///
    255 /// When TargetData is around, this function is capable of analyzing everything
    256 /// that GetUnderlyingObject can look through.  When not, it just looks
    257 /// through pointer casts.
    258 ///
    259 static const Value *
    260 DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
    261                        SmallVectorImpl<VariableGEPIndex> &VarIndices,
    262                        const TargetData *TD) {
    263   // Limit recursion depth to limit compile time in crazy cases.
    264   unsigned MaxLookup = 6;
    265 
    266   BaseOffs = 0;
    267   do {
    268     // See if this is a bitcast or GEP.
    269     const Operator *Op = dyn_cast<Operator>(V);
    270     if (Op == 0) {
    271       // The only non-operator case we can handle are GlobalAliases.
    272       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
    273         if (!GA->mayBeOverridden()) {
    274           V = GA->getAliasee();
    275           continue;
    276         }
    277       }
    278       return V;
    279     }
    280 
    281     if (Op->getOpcode() == Instruction::BitCast) {
    282       V = Op->getOperand(0);
    283       continue;
    284     }
    285 
    286     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
    287     if (GEPOp == 0) {
    288       // If it's not a GEP, hand it off to SimplifyInstruction to see if it
    289       // can come up with something. This matches what GetUnderlyingObject does.
    290       if (const Instruction *I = dyn_cast<Instruction>(V))
    291         // TODO: Get a DominatorTree and use it here.
    292         if (const Value *Simplified =
    293               SimplifyInstruction(const_cast<Instruction *>(I), TD)) {
    294           V = Simplified;
    295           continue;
    296         }
    297 
    298       return V;
    299     }
    300 
    301     // Don't attempt to analyze GEPs over unsized objects.
    302     if (!cast<PointerType>(GEPOp->getOperand(0)->getType())
    303         ->getElementType()->isSized())
    304       return V;
    305 
    306     // If we are lacking TargetData information, we can't compute the offets of
    307     // elements computed by GEPs.  However, we can handle bitcast equivalent
    308     // GEPs.
    309     if (TD == 0) {
    310       if (!GEPOp->hasAllZeroIndices())
    311         return V;
    312       V = GEPOp->getOperand(0);
    313       continue;
    314     }
    315 
    316     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
    317     gep_type_iterator GTI = gep_type_begin(GEPOp);
    318     for (User::const_op_iterator I = GEPOp->op_begin()+1,
    319          E = GEPOp->op_end(); I != E; ++I) {
    320       Value *Index = *I;
    321       // Compute the (potentially symbolic) offset in bytes for this index.
    322       if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
    323         // For a struct, add the member offset.
    324         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
    325         if (FieldNo == 0) continue;
    326 
    327         BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo);
    328         continue;
    329       }
    330 
    331       // For an array/pointer, add the element offset, explicitly scaled.
    332       if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
    333         if (CIdx->isZero()) continue;
    334         BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
    335         continue;
    336       }
    337 
    338       uint64_t Scale = TD->getTypeAllocSize(*GTI);
    339       ExtensionKind Extension = EK_NotExtended;
    340 
    341       // If the integer type is smaller than the pointer size, it is implicitly
    342       // sign extended to pointer size.
    343       unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth();
    344       if (TD->getPointerSizeInBits() > Width)
    345         Extension = EK_SignExt;
    346 
    347       // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
    348       APInt IndexScale(Width, 0), IndexOffset(Width, 0);
    349       Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension,
    350                                   *TD, 0);
    351 
    352       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
    353       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
    354       BaseOffs += IndexOffset.getSExtValue()*Scale;
    355       Scale *= IndexScale.getSExtValue();
    356 
    357 
    358       // If we already had an occurrence of this index variable, merge this
    359       // scale into it.  For example, we want to handle:
    360       //   A[x][x] -> x*16 + x*4 -> x*20
    361       // This also ensures that 'x' only appears in the index list once.
    362       for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
    363         if (VarIndices[i].V == Index &&
    364             VarIndices[i].Extension == Extension) {
    365           Scale += VarIndices[i].Scale;
    366           VarIndices.erase(VarIndices.begin()+i);
    367           break;
    368         }
    369       }
    370 
    371       // Make sure that we have a scale that makes sense for this target's
    372       // pointer size.
    373       if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) {
    374         Scale <<= ShiftBits;
    375         Scale = (int64_t)Scale >> ShiftBits;
    376       }
    377 
    378       if (Scale) {
    379         VariableGEPIndex Entry = {Index, Extension,
    380                                   static_cast<int64_t>(Scale)};
    381         VarIndices.push_back(Entry);
    382       }
    383     }
    384 
    385     // Analyze the base pointer next.
    386     V = GEPOp->getOperand(0);
    387   } while (--MaxLookup);
    388 
    389   // If the chain of expressions is too deep, just return early.
    390   return V;
    391 }
    392 
    393 /// GetIndexDifference - Dest and Src are the variable indices from two
    394 /// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
    395 /// pointers.  Subtract the GEP2 indices from GEP1 to find the symbolic
    396 /// difference between the two pointers.
    397 static void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest,
    398                                const SmallVectorImpl<VariableGEPIndex> &Src) {
    399   if (Src.empty()) return;
    400 
    401   for (unsigned i = 0, e = Src.size(); i != e; ++i) {
    402     const Value *V = Src[i].V;
    403     ExtensionKind Extension = Src[i].Extension;
    404     int64_t Scale = Src[i].Scale;
    405 
    406     // Find V in Dest.  This is N^2, but pointer indices almost never have more
    407     // than a few variable indexes.
    408     for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
    409       if (Dest[j].V != V || Dest[j].Extension != Extension) continue;
    410 
    411       // If we found it, subtract off Scale V's from the entry in Dest.  If it
    412       // goes to zero, remove the entry.
    413       if (Dest[j].Scale != Scale)
    414         Dest[j].Scale -= Scale;
    415       else
    416         Dest.erase(Dest.begin()+j);
    417       Scale = 0;
    418       break;
    419     }
    420 
    421     // If we didn't consume this entry, add it to the end of the Dest list.
    422     if (Scale) {
    423       VariableGEPIndex Entry = { V, Extension, -Scale };
    424       Dest.push_back(Entry);
    425     }
    426   }
    427 }
    428 
    429 //===----------------------------------------------------------------------===//
    430 // BasicAliasAnalysis Pass
    431 //===----------------------------------------------------------------------===//
    432 
    433 #ifndef NDEBUG
    434 static const Function *getParent(const Value *V) {
    435   if (const Instruction *inst = dyn_cast<Instruction>(V))
    436     return inst->getParent()->getParent();
    437 
    438   if (const Argument *arg = dyn_cast<Argument>(V))
    439     return arg->getParent();
    440 
    441   return NULL;
    442 }
    443 
    444 static bool notDifferentParent(const Value *O1, const Value *O2) {
    445 
    446   const Function *F1 = getParent(O1);
    447   const Function *F2 = getParent(O2);
    448 
    449   return !F1 || !F2 || F1 == F2;
    450 }
    451 #endif
    452 
    453 namespace {
    454   /// BasicAliasAnalysis - This is the primary alias analysis implementation.
    455   struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
    456     static char ID; // Class identification, replacement for typeinfo
    457     BasicAliasAnalysis() : ImmutablePass(ID),
    458                            // AliasCache rarely has more than 1 or 2 elements,
    459                            // so start it off fairly small so that clear()
    460                            // doesn't have to tromp through 64 (the default)
    461                            // elements on each alias query. This really wants
    462                            // something like a SmallDenseMap.
    463                            AliasCache(8) {
    464       initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry());
    465     }
    466 
    467     virtual void initializePass() {
    468       InitializeAliasAnalysis(this);
    469     }
    470 
    471     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    472       AU.addRequired<AliasAnalysis>();
    473       AU.addRequired<TargetLibraryInfo>();
    474     }
    475 
    476     virtual AliasResult alias(const Location &LocA,
    477                               const Location &LocB) {
    478       assert(AliasCache.empty() && "AliasCache must be cleared after use!");
    479       assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
    480              "BasicAliasAnalysis doesn't support interprocedural queries.");
    481       AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.TBAATag,
    482                                      LocB.Ptr, LocB.Size, LocB.TBAATag);
    483       AliasCache.clear();
    484       return Alias;
    485     }
    486 
    487     virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
    488                                        const Location &Loc);
    489 
    490     virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
    491                                        ImmutableCallSite CS2) {
    492       // The AliasAnalysis base class has some smarts, lets use them.
    493       return AliasAnalysis::getModRefInfo(CS1, CS2);
    494     }
    495 
    496     /// pointsToConstantMemory - Chase pointers until we find a (constant
    497     /// global) or not.
    498     virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal);
    499 
    500     /// getModRefBehavior - Return the behavior when calling the given
    501     /// call site.
    502     virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
    503 
    504     /// getModRefBehavior - Return the behavior when calling the given function.
    505     /// For use when the call site is not known.
    506     virtual ModRefBehavior getModRefBehavior(const Function *F);
    507 
    508     /// getAdjustedAnalysisPointer - This method is used when a pass implements
    509     /// an analysis interface through multiple inheritance.  If needed, it
    510     /// should override this to adjust the this pointer as needed for the
    511     /// specified pass info.
    512     virtual void *getAdjustedAnalysisPointer(const void *ID) {
    513       if (ID == &AliasAnalysis::ID)
    514         return (AliasAnalysis*)this;
    515       return this;
    516     }
    517 
    518   private:
    519     // AliasCache - Track alias queries to guard against recursion.
    520     typedef std::pair<Location, Location> LocPair;
    521     typedef DenseMap<LocPair, AliasResult> AliasCacheTy;
    522     AliasCacheTy AliasCache;
    523 
    524     // Visited - Track instructions visited by pointsToConstantMemory.
    525     SmallPtrSet<const Value*, 16> Visited;
    526 
    527     // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
    528     // instruction against another.
    529     AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size,
    530                          const Value *V2, uint64_t V2Size,
    531                          const MDNode *V2TBAAInfo,
    532                          const Value *UnderlyingV1, const Value *UnderlyingV2);
    533 
    534     // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
    535     // instruction against another.
    536     AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize,
    537                          const MDNode *PNTBAAInfo,
    538                          const Value *V2, uint64_t V2Size,
    539                          const MDNode *V2TBAAInfo);
    540 
    541     /// aliasSelect - Disambiguate a Select instruction against another value.
    542     AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize,
    543                             const MDNode *SITBAAInfo,
    544                             const Value *V2, uint64_t V2Size,
    545                             const MDNode *V2TBAAInfo);
    546 
    547     AliasResult aliasCheck(const Value *V1, uint64_t V1Size,
    548                            const MDNode *V1TBAATag,
    549                            const Value *V2, uint64_t V2Size,
    550                            const MDNode *V2TBAATag);
    551   };
    552 }  // End of anonymous namespace
    553 
    554 // Register this pass...
    555 char BasicAliasAnalysis::ID = 0;
    556 INITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa",
    557                    "Basic Alias Analysis (stateless AA impl)",
    558                    false, true, false)
    559 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
    560 INITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa",
    561                    "Basic Alias Analysis (stateless AA impl)",
    562                    false, true, false)
    563 
    564 
    565 ImmutablePass *llvm::createBasicAliasAnalysisPass() {
    566   return new BasicAliasAnalysis();
    567 }
    568 
    569 /// pointsToConstantMemory - Returns whether the given pointer value
    570 /// points to memory that is local to the function, with global constants being
    571 /// considered local to all functions.
    572 bool
    573 BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) {
    574   assert(Visited.empty() && "Visited must be cleared after use!");
    575 
    576   unsigned MaxLookup = 8;
    577   SmallVector<const Value *, 16> Worklist;
    578   Worklist.push_back(Loc.Ptr);
    579   do {
    580     const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), TD);
    581     if (!Visited.insert(V)) {
    582       Visited.clear();
    583       return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
    584     }
    585 
    586     // An alloca instruction defines local memory.
    587     if (OrLocal && isa<AllocaInst>(V))
    588       continue;
    589 
    590     // A global constant counts as local memory for our purposes.
    591     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
    592       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
    593       // global to be marked constant in some modules and non-constant in
    594       // others.  GV may even be a declaration, not a definition.
    595       if (!GV->isConstant()) {
    596         Visited.clear();
    597         return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
    598       }
    599       continue;
    600     }
    601 
    602     // If both select values point to local memory, then so does the select.
    603     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
    604       Worklist.push_back(SI->getTrueValue());
    605       Worklist.push_back(SI->getFalseValue());
    606       continue;
    607     }
    608 
    609     // If all values incoming to a phi node point to local memory, then so does
    610     // the phi.
    611     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
    612       // Don't bother inspecting phi nodes with many operands.
    613       if (PN->getNumIncomingValues() > MaxLookup) {
    614         Visited.clear();
    615         return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
    616       }
    617       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    618         Worklist.push_back(PN->getIncomingValue(i));
    619       continue;
    620     }
    621 
    622     // Otherwise be conservative.
    623     Visited.clear();
    624     return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
    625 
    626   } while (!Worklist.empty() && --MaxLookup);
    627 
    628   Visited.clear();
    629   return Worklist.empty();
    630 }
    631 
    632 /// getModRefBehavior - Return the behavior when calling the given call site.
    633 AliasAnalysis::ModRefBehavior
    634 BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
    635   if (CS.doesNotAccessMemory())
    636     // Can't do better than this.
    637     return DoesNotAccessMemory;
    638 
    639   ModRefBehavior Min = UnknownModRefBehavior;
    640 
    641   // If the callsite knows it only reads memory, don't return worse
    642   // than that.
    643   if (CS.onlyReadsMemory())
    644     Min = OnlyReadsMemory;
    645 
    646   // The AliasAnalysis base class has some smarts, lets use them.
    647   return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
    648 }
    649 
    650 /// getModRefBehavior - Return the behavior when calling the given function.
    651 /// For use when the call site is not known.
    652 AliasAnalysis::ModRefBehavior
    653 BasicAliasAnalysis::getModRefBehavior(const Function *F) {
    654   // If the function declares it doesn't access memory, we can't do better.
    655   if (F->doesNotAccessMemory())
    656     return DoesNotAccessMemory;
    657 
    658   // For intrinsics, we can check the table.
    659   if (unsigned iid = F->getIntrinsicID()) {
    660 #define GET_INTRINSIC_MODREF_BEHAVIOR
    661 #include "llvm/Intrinsics.gen"
    662 #undef GET_INTRINSIC_MODREF_BEHAVIOR
    663   }
    664 
    665   ModRefBehavior Min = UnknownModRefBehavior;
    666 
    667   // If the function declares it only reads memory, go with that.
    668   if (F->onlyReadsMemory())
    669     Min = OnlyReadsMemory;
    670 
    671   // Otherwise be conservative.
    672   return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
    673 }
    674 
    675 /// getModRefInfo - Check to see if the specified callsite can clobber the
    676 /// specified memory object.  Since we only look at local properties of this
    677 /// function, we really can't say much about this query.  We do, however, use
    678 /// simple "address taken" analysis on local objects.
    679 AliasAnalysis::ModRefResult
    680 BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
    681                                   const Location &Loc) {
    682   assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
    683          "AliasAnalysis query involving multiple functions!");
    684 
    685   const Value *Object = GetUnderlyingObject(Loc.Ptr, TD);
    686 
    687   // If this is a tail call and Loc.Ptr points to a stack location, we know that
    688   // the tail call cannot access or modify the local stack.
    689   // We cannot exclude byval arguments here; these belong to the caller of
    690   // the current function not to the current function, and a tail callee
    691   // may reference them.
    692   if (isa<AllocaInst>(Object))
    693     if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
    694       if (CI->isTailCall())
    695         return NoModRef;
    696 
    697   // If the pointer is to a locally allocated object that does not escape,
    698   // then the call can not mod/ref the pointer unless the call takes the pointer
    699   // as an argument, and itself doesn't capture it.
    700   if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
    701       isNonEscapingLocalObject(Object)) {
    702     bool PassedAsArg = false;
    703     unsigned ArgNo = 0;
    704     for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
    705          CI != CE; ++CI, ++ArgNo) {
    706       // Only look at the no-capture or byval pointer arguments.  If this
    707       // pointer were passed to arguments that were neither of these, then it
    708       // couldn't be no-capture.
    709       if (!(*CI)->getType()->isPointerTy() ||
    710           (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
    711         continue;
    712 
    713       // If this is a no-capture pointer argument, see if we can tell that it
    714       // is impossible to alias the pointer we're checking.  If not, we have to
    715       // assume that the call could touch the pointer, even though it doesn't
    716       // escape.
    717       if (!isNoAlias(Location(*CI), Location(Object))) {
    718         PassedAsArg = true;
    719         break;
    720       }
    721     }
    722 
    723     if (!PassedAsArg)
    724       return NoModRef;
    725   }
    726 
    727   const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>();
    728   ModRefResult Min = ModRef;
    729 
    730   // Finally, handle specific knowledge of intrinsics.
    731   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
    732   if (II != 0)
    733     switch (II->getIntrinsicID()) {
    734     default: break;
    735     case Intrinsic::memcpy:
    736     case Intrinsic::memmove: {
    737       uint64_t Len = UnknownSize;
    738       if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
    739         Len = LenCI->getZExtValue();
    740       Value *Dest = II->getArgOperand(0);
    741       Value *Src = II->getArgOperand(1);
    742       // If it can't overlap the source dest, then it doesn't modref the loc.
    743       if (isNoAlias(Location(Dest, Len), Loc)) {
    744         if (isNoAlias(Location(Src, Len), Loc))
    745           return NoModRef;
    746         // If it can't overlap the dest, then worst case it reads the loc.
    747         Min = Ref;
    748       } else if (isNoAlias(Location(Src, Len), Loc)) {
    749         // If it can't overlap the source, then worst case it mutates the loc.
    750         Min = Mod;
    751       }
    752       break;
    753     }
    754     case Intrinsic::memset:
    755       // Since memset is 'accesses arguments' only, the AliasAnalysis base class
    756       // will handle it for the variable length case.
    757       if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
    758         uint64_t Len = LenCI->getZExtValue();
    759         Value *Dest = II->getArgOperand(0);
    760         if (isNoAlias(Location(Dest, Len), Loc))
    761           return NoModRef;
    762       }
    763       // We know that memset doesn't load anything.
    764       Min = Mod;
    765       break;
    766     case Intrinsic::lifetime_start:
    767     case Intrinsic::lifetime_end:
    768     case Intrinsic::invariant_start: {
    769       uint64_t PtrSize =
    770         cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
    771       if (isNoAlias(Location(II->getArgOperand(1),
    772                              PtrSize,
    773                              II->getMetadata(LLVMContext::MD_tbaa)),
    774                     Loc))
    775         return NoModRef;
    776       break;
    777     }
    778     case Intrinsic::invariant_end: {
    779       uint64_t PtrSize =
    780         cast<ConstantInt>(II->getArgOperand(1))->getZExtValue();
    781       if (isNoAlias(Location(II->getArgOperand(2),
    782                              PtrSize,
    783                              II->getMetadata(LLVMContext::MD_tbaa)),
    784                     Loc))
    785         return NoModRef;
    786       break;
    787     }
    788     case Intrinsic::arm_neon_vld1: {
    789       // LLVM's vld1 and vst1 intrinsics currently only support a single
    790       // vector register.
    791       uint64_t Size =
    792         TD ? TD->getTypeStoreSize(II->getType()) : UnknownSize;
    793       if (isNoAlias(Location(II->getArgOperand(0), Size,
    794                              II->getMetadata(LLVMContext::MD_tbaa)),
    795                     Loc))
    796         return NoModRef;
    797       break;
    798     }
    799     case Intrinsic::arm_neon_vst1: {
    800       uint64_t Size =
    801         TD ? TD->getTypeStoreSize(II->getArgOperand(1)->getType()) : UnknownSize;
    802       if (isNoAlias(Location(II->getArgOperand(0), Size,
    803                              II->getMetadata(LLVMContext::MD_tbaa)),
    804                     Loc))
    805         return NoModRef;
    806       break;
    807     }
    808     }
    809 
    810   // We can bound the aliasing properties of memset_pattern16 just as we can
    811   // for memcpy/memset.  This is particularly important because the
    812   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
    813   // whenever possible.
    814   else if (TLI.has(LibFunc::memset_pattern16) &&
    815            CS.getCalledFunction() &&
    816            CS.getCalledFunction()->getName() == "memset_pattern16") {
    817     const Function *MS = CS.getCalledFunction();
    818     FunctionType *MemsetType = MS->getFunctionType();
    819     if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 &&
    820         isa<PointerType>(MemsetType->getParamType(0)) &&
    821         isa<PointerType>(MemsetType->getParamType(1)) &&
    822         isa<IntegerType>(MemsetType->getParamType(2))) {
    823       uint64_t Len = UnknownSize;
    824       if (const ConstantInt *LenCI = dyn_cast<ConstantInt>(CS.getArgument(2)))
    825         Len = LenCI->getZExtValue();
    826       const Value *Dest = CS.getArgument(0);
    827       const Value *Src = CS.getArgument(1);
    828       // If it can't overlap the source dest, then it doesn't modref the loc.
    829       if (isNoAlias(Location(Dest, Len), Loc)) {
    830         // Always reads 16 bytes of the source.
    831         if (isNoAlias(Location(Src, 16), Loc))
    832           return NoModRef;
    833         // If it can't overlap the dest, then worst case it reads the loc.
    834         Min = Ref;
    835       // Always reads 16 bytes of the source.
    836       } else if (isNoAlias(Location(Src, 16), Loc)) {
    837         // If it can't overlap the source, then worst case it mutates the loc.
    838         Min = Mod;
    839       }
    840     }
    841   }
    842 
    843   // The AliasAnalysis base class has some smarts, lets use them.
    844   return ModRefResult(AliasAnalysis::getModRefInfo(CS, Loc) & Min);
    845 }
    846 
    847 /// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
    848 /// against another pointer.  We know that V1 is a GEP, but we don't know
    849 /// anything about V2.  UnderlyingV1 is GetUnderlyingObject(GEP1, TD),
    850 /// UnderlyingV2 is the same for V2.
    851 ///
    852 AliasAnalysis::AliasResult
    853 BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
    854                              const Value *V2, uint64_t V2Size,
    855                              const MDNode *V2TBAAInfo,
    856                              const Value *UnderlyingV1,
    857                              const Value *UnderlyingV2) {
    858   int64_t GEP1BaseOffset;
    859   SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
    860 
    861   // If we have two gep instructions with must-alias'ing base pointers, figure
    862   // out if the indexes to the GEP tell us anything about the derived pointer.
    863   if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
    864     // Do the base pointers alias?
    865     AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, 0,
    866                                        UnderlyingV2, UnknownSize, 0);
    867 
    868     // If we get a No or May, then return it immediately, no amount of analysis
    869     // will improve this situation.
    870     if (BaseAlias != MustAlias) return BaseAlias;
    871 
    872     // Otherwise, we have a MustAlias.  Since the base pointers alias each other
    873     // exactly, see if the computed offset from the common pointer tells us
    874     // about the relation of the resulting pointer.
    875     const Value *GEP1BasePtr =
    876       DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
    877 
    878     int64_t GEP2BaseOffset;
    879     SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
    880     const Value *GEP2BasePtr =
    881       DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
    882 
    883     // If DecomposeGEPExpression isn't able to look all the way through the
    884     // addressing operation, we must not have TD and this is too complex for us
    885     // to handle without it.
    886     if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
    887       assert(TD == 0 &&
    888              "DecomposeGEPExpression and GetUnderlyingObject disagree!");
    889       return MayAlias;
    890     }
    891 
    892     // Subtract the GEP2 pointer from the GEP1 pointer to find out their
    893     // symbolic difference.
    894     GEP1BaseOffset -= GEP2BaseOffset;
    895     GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);
    896 
    897   } else {
    898     // Check to see if these two pointers are related by the getelementptr
    899     // instruction.  If one pointer is a GEP with a non-zero index of the other
    900     // pointer, we know they cannot alias.
    901 
    902     // If both accesses are unknown size, we can't do anything useful here.
    903     if (V1Size == UnknownSize && V2Size == UnknownSize)
    904       return MayAlias;
    905 
    906     AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, 0,
    907                                V2, V2Size, V2TBAAInfo);
    908     if (R != MustAlias)
    909       // If V2 may alias GEP base pointer, conservatively returns MayAlias.
    910       // If V2 is known not to alias GEP base pointer, then the two values
    911       // cannot alias per GEP semantics: "A pointer value formed from a
    912       // getelementptr instruction is associated with the addresses associated
    913       // with the first operand of the getelementptr".
    914       return R;
    915 
    916     const Value *GEP1BasePtr =
    917       DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
    918 
    919     // If DecomposeGEPExpression isn't able to look all the way through the
    920     // addressing operation, we must not have TD and this is too complex for us
    921     // to handle without it.
    922     if (GEP1BasePtr != UnderlyingV1) {
    923       assert(TD == 0 &&
    924              "DecomposeGEPExpression and GetUnderlyingObject disagree!");
    925       return MayAlias;
    926     }
    927   }
    928 
    929   // In the two GEP Case, if there is no difference in the offsets of the
    930   // computed pointers, the resultant pointers are a must alias.  This
    931   // hapens when we have two lexically identical GEP's (for example).
    932   //
    933   // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
    934   // must aliases the GEP, the end result is a must alias also.
    935   if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
    936     return MustAlias;
    937 
    938   // If there is a constant difference between the pointers, but the difference
    939   // is less than the size of the associated memory object, then we know
    940   // that the objects are partially overlapping.  If the difference is
    941   // greater, we know they do not overlap.
    942   if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) {
    943     if (GEP1BaseOffset >= 0) {
    944       if (V2Size != UnknownSize) {
    945         if ((uint64_t)GEP1BaseOffset < V2Size)
    946           return PartialAlias;
    947         return NoAlias;
    948       }
    949     } else {
    950       if (V1Size != UnknownSize) {
    951         if (-(uint64_t)GEP1BaseOffset < V1Size)
    952           return PartialAlias;
    953         return NoAlias;
    954       }
    955     }
    956   }
    957 
    958   // Try to distinguish something like &A[i][1] against &A[42][0].
    959   // Grab the least significant bit set in any of the scales.
    960   if (!GEP1VariableIndices.empty()) {
    961     uint64_t Modulo = 0;
    962     for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i)
    963       Modulo |= (uint64_t)GEP1VariableIndices[i].Scale;
    964     Modulo = Modulo ^ (Modulo & (Modulo - 1));
    965 
    966     // We can compute the difference between the two addresses
    967     // mod Modulo. Check whether that difference guarantees that the
    968     // two locations do not alias.
    969     uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
    970     if (V1Size != UnknownSize && V2Size != UnknownSize &&
    971         ModOffset >= V2Size && V1Size <= Modulo - ModOffset)
    972       return NoAlias;
    973   }
    974 
    975   // Statically, we can see that the base objects are the same, but the
    976   // pointers have dynamic offsets which we can't resolve. And none of our
    977   // little tricks above worked.
    978   //
    979   // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
    980   // practical effect of this is protecting TBAA in the case of dynamic
    981   // indices into arrays of unions or malloc'd memory.
    982   return PartialAlias;
    983 }
    984 
    985 static AliasAnalysis::AliasResult
    986 MergeAliasResults(AliasAnalysis::AliasResult A, AliasAnalysis::AliasResult B) {
    987   // If the results agree, take it.
    988   if (A == B)
    989     return A;
    990   // A mix of PartialAlias and MustAlias is PartialAlias.
    991   if ((A == AliasAnalysis::PartialAlias && B == AliasAnalysis::MustAlias) ||
    992       (B == AliasAnalysis::PartialAlias && A == AliasAnalysis::MustAlias))
    993     return AliasAnalysis::PartialAlias;
    994   // Otherwise, we don't know anything.
    995   return AliasAnalysis::MayAlias;
    996 }
    997 
    998 /// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
    999 /// instruction against another.
   1000 AliasAnalysis::AliasResult
   1001 BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize,
   1002                                 const MDNode *SITBAAInfo,
   1003                                 const Value *V2, uint64_t V2Size,
   1004                                 const MDNode *V2TBAAInfo) {
   1005   // If the values are Selects with the same condition, we can do a more precise
   1006   // check: just check for aliases between the values on corresponding arms.
   1007   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
   1008     if (SI->getCondition() == SI2->getCondition()) {
   1009       AliasResult Alias =
   1010         aliasCheck(SI->getTrueValue(), SISize, SITBAAInfo,
   1011                    SI2->getTrueValue(), V2Size, V2TBAAInfo);
   1012       if (Alias == MayAlias)
   1013         return MayAlias;
   1014       AliasResult ThisAlias =
   1015         aliasCheck(SI->getFalseValue(), SISize, SITBAAInfo,
   1016                    SI2->getFalseValue(), V2Size, V2TBAAInfo);
   1017       return MergeAliasResults(ThisAlias, Alias);
   1018     }
   1019 
   1020   // If both arms of the Select node NoAlias or MustAlias V2, then returns
   1021   // NoAlias / MustAlias. Otherwise, returns MayAlias.
   1022   AliasResult Alias =
   1023     aliasCheck(V2, V2Size, V2TBAAInfo, SI->getTrueValue(), SISize, SITBAAInfo);
   1024   if (Alias == MayAlias)
   1025     return MayAlias;
   1026 
   1027   AliasResult ThisAlias =
   1028     aliasCheck(V2, V2Size, V2TBAAInfo, SI->getFalseValue(), SISize, SITBAAInfo);
   1029   return MergeAliasResults(ThisAlias, Alias);
   1030 }
   1031 
   1032 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
   1033 // against another.
   1034 AliasAnalysis::AliasResult
   1035 BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
   1036                              const MDNode *PNTBAAInfo,
   1037                              const Value *V2, uint64_t V2Size,
   1038                              const MDNode *V2TBAAInfo) {
   1039   // If the values are PHIs in the same block, we can do a more precise
   1040   // as well as efficient check: just check for aliases between the values
   1041   // on corresponding edges.
   1042   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
   1043     if (PN2->getParent() == PN->getParent()) {
   1044       AliasResult Alias =
   1045         aliasCheck(PN->getIncomingValue(0), PNSize, PNTBAAInfo,
   1046                    PN2->getIncomingValueForBlock(PN->getIncomingBlock(0)),
   1047                    V2Size, V2TBAAInfo);
   1048       if (Alias == MayAlias)
   1049         return MayAlias;
   1050       for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
   1051         AliasResult ThisAlias =
   1052           aliasCheck(PN->getIncomingValue(i), PNSize, PNTBAAInfo,
   1053                      PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
   1054                      V2Size, V2TBAAInfo);
   1055         Alias = MergeAliasResults(ThisAlias, Alias);
   1056         if (Alias == MayAlias)
   1057           break;
   1058       }
   1059       return Alias;
   1060     }
   1061 
   1062   SmallPtrSet<Value*, 4> UniqueSrc;
   1063   SmallVector<Value*, 4> V1Srcs;
   1064   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1065     Value *PV1 = PN->getIncomingValue(i);
   1066     if (isa<PHINode>(PV1))
   1067       // If any of the source itself is a PHI, return MayAlias conservatively
   1068       // to avoid compile time explosion. The worst possible case is if both
   1069       // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
   1070       // and 'n' are the number of PHI sources.
   1071       return MayAlias;
   1072     if (UniqueSrc.insert(PV1))
   1073       V1Srcs.push_back(PV1);
   1074   }
   1075 
   1076   AliasResult Alias = aliasCheck(V2, V2Size, V2TBAAInfo,
   1077                                  V1Srcs[0], PNSize, PNTBAAInfo);
   1078   // Early exit if the check of the first PHI source against V2 is MayAlias.
   1079   // Other results are not possible.
   1080   if (Alias == MayAlias)
   1081     return MayAlias;
   1082 
   1083   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
   1084   // NoAlias / MustAlias. Otherwise, returns MayAlias.
   1085   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
   1086     Value *V = V1Srcs[i];
   1087 
   1088     AliasResult ThisAlias = aliasCheck(V2, V2Size, V2TBAAInfo,
   1089                                        V, PNSize, PNTBAAInfo);
   1090     Alias = MergeAliasResults(ThisAlias, Alias);
   1091     if (Alias == MayAlias)
   1092       break;
   1093   }
   1094 
   1095   return Alias;
   1096 }
   1097 
   1098 // aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
   1099 // such as array references.
   1100 //
   1101 AliasAnalysis::AliasResult
   1102 BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
   1103                                const MDNode *V1TBAAInfo,
   1104                                const Value *V2, uint64_t V2Size,
   1105                                const MDNode *V2TBAAInfo) {
   1106   // If either of the memory references is empty, it doesn't matter what the
   1107   // pointer values are.
   1108   if (V1Size == 0 || V2Size == 0)
   1109     return NoAlias;
   1110 
   1111   // Strip off any casts if they exist.
   1112   V1 = V1->stripPointerCasts();
   1113   V2 = V2->stripPointerCasts();
   1114 
   1115   // Are we checking for alias of the same value?
   1116   if (V1 == V2) return MustAlias;
   1117 
   1118   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
   1119     return NoAlias;  // Scalars cannot alias each other
   1120 
   1121   // Figure out what objects these things are pointing to if we can.
   1122   const Value *O1 = GetUnderlyingObject(V1, TD);
   1123   const Value *O2 = GetUnderlyingObject(V2, TD);
   1124 
   1125   // Null values in the default address space don't point to any object, so they
   1126   // don't alias any other pointer.
   1127   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
   1128     if (CPN->getType()->getAddressSpace() == 0)
   1129       return NoAlias;
   1130   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
   1131     if (CPN->getType()->getAddressSpace() == 0)
   1132       return NoAlias;
   1133 
   1134   if (O1 != O2) {
   1135     // If V1/V2 point to two different objects we know that we have no alias.
   1136     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
   1137       return NoAlias;
   1138 
   1139     // Constant pointers can't alias with non-const isIdentifiedObject objects.
   1140     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
   1141         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
   1142       return NoAlias;
   1143 
   1144     // Arguments can't alias with local allocations or noalias calls
   1145     // in the same function.
   1146     if (((isa<Argument>(O1) && (isa<AllocaInst>(O2) || isNoAliasCall(O2))) ||
   1147          (isa<Argument>(O2) && (isa<AllocaInst>(O1) || isNoAliasCall(O1)))))
   1148       return NoAlias;
   1149 
   1150     // Most objects can't alias null.
   1151     if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
   1152         (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
   1153       return NoAlias;
   1154 
   1155     // If one pointer is the result of a call/invoke or load and the other is a
   1156     // non-escaping local object within the same function, then we know the
   1157     // object couldn't escape to a point where the call could return it.
   1158     //
   1159     // Note that if the pointers are in different functions, there are a
   1160     // variety of complications. A call with a nocapture argument may still
   1161     // temporary store the nocapture argument's value in a temporary memory
   1162     // location if that memory location doesn't escape. Or it may pass a
   1163     // nocapture value to other functions as long as they don't capture it.
   1164     if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
   1165       return NoAlias;
   1166     if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
   1167       return NoAlias;
   1168   }
   1169 
   1170   // If the size of one access is larger than the entire object on the other
   1171   // side, then we know such behavior is undefined and can assume no alias.
   1172   if (TD)
   1173     if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *TD)) ||
   1174         (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *TD)))
   1175       return NoAlias;
   1176 
   1177   // Check the cache before climbing up use-def chains. This also terminates
   1178   // otherwise infinitely recursive queries.
   1179   LocPair Locs(Location(V1, V1Size, V1TBAAInfo),
   1180                Location(V2, V2Size, V2TBAAInfo));
   1181   if (V1 > V2)
   1182     std::swap(Locs.first, Locs.second);
   1183   std::pair<AliasCacheTy::iterator, bool> Pair =
   1184     AliasCache.insert(std::make_pair(Locs, MayAlias));
   1185   if (!Pair.second)
   1186     return Pair.first->second;
   1187 
   1188   // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
   1189   // GEP can't simplify, we don't even look at the PHI cases.
   1190   if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
   1191     std::swap(V1, V2);
   1192     std::swap(V1Size, V2Size);
   1193     std::swap(O1, O2);
   1194   }
   1195   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
   1196     AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, V2TBAAInfo, O1, O2);
   1197     if (Result != MayAlias) return AliasCache[Locs] = Result;
   1198   }
   1199 
   1200   if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
   1201     std::swap(V1, V2);
   1202     std::swap(V1Size, V2Size);
   1203   }
   1204   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
   1205     AliasResult Result = aliasPHI(PN, V1Size, V1TBAAInfo,
   1206                                   V2, V2Size, V2TBAAInfo);
   1207     if (Result != MayAlias) return AliasCache[Locs] = Result;
   1208   }
   1209 
   1210   if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
   1211     std::swap(V1, V2);
   1212     std::swap(V1Size, V2Size);
   1213   }
   1214   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
   1215     AliasResult Result = aliasSelect(S1, V1Size, V1TBAAInfo,
   1216                                      V2, V2Size, V2TBAAInfo);
   1217     if (Result != MayAlias) return AliasCache[Locs] = Result;
   1218   }
   1219 
   1220   // If both pointers are pointing into the same object and one of them
   1221   // accesses is accessing the entire object, then the accesses must
   1222   // overlap in some way.
   1223   if (TD && O1 == O2)
   1224     if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *TD)) ||
   1225         (V2Size != UnknownSize && isObjectSize(O2, V2Size, *TD)))
   1226       return AliasCache[Locs] = PartialAlias;
   1227 
   1228   AliasResult Result =
   1229     AliasAnalysis::alias(Location(V1, V1Size, V1TBAAInfo),
   1230                          Location(V2, V2Size, V2TBAAInfo));
   1231   return AliasCache[Locs] = Result;
   1232 }
   1233