Home | History | Annotate | Download | only in Analysis
      1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains routines that help analyze properties that chains of
     11 // computations have.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Analysis/ValueTracking.h"
     16 #include "llvm/Analysis/InstructionSimplify.h"
     17 #include "llvm/Constants.h"
     18 #include "llvm/Instructions.h"
     19 #include "llvm/GlobalVariable.h"
     20 #include "llvm/GlobalAlias.h"
     21 #include "llvm/IntrinsicInst.h"
     22 #include "llvm/LLVMContext.h"
     23 #include "llvm/Metadata.h"
     24 #include "llvm/Operator.h"
     25 #include "llvm/Target/TargetData.h"
     26 #include "llvm/Support/ConstantRange.h"
     27 #include "llvm/Support/GetElementPtrTypeIterator.h"
     28 #include "llvm/Support/MathExtras.h"
     29 #include "llvm/Support/PatternMatch.h"
     30 #include "llvm/ADT/SmallPtrSet.h"
     31 #include <cstring>
     32 using namespace llvm;
     33 using namespace llvm::PatternMatch;
     34 
     35 const unsigned MaxDepth = 6;
     36 
     37 /// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
     38 /// unknown returns 0).  For vector types, returns the element type's bitwidth.
     39 static unsigned getBitWidth(Type *Ty, const TargetData *TD) {
     40   if (unsigned BitWidth = Ty->getScalarSizeInBits())
     41     return BitWidth;
     42   assert(isa<PointerType>(Ty) && "Expected a pointer type!");
     43   return TD ? TD->getPointerSizeInBits() : 0;
     44 }
     45 
     46 static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
     47                                     APInt &KnownZero, APInt &KnownOne,
     48                                     APInt &KnownZero2, APInt &KnownOne2,
     49                                     const TargetData *TD, unsigned Depth) {
     50   if (!Add) {
     51     if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
     52       // We know that the top bits of C-X are clear if X contains less bits
     53       // than C (i.e. no wrap-around can happen).  For example, 20-X is
     54       // positive if we can prove that X is >= 0 and < 16.
     55       if (!CLHS->getValue().isNegative()) {
     56         unsigned BitWidth = KnownZero.getBitWidth();
     57         unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
     58         // NLZ can't be BitWidth with no sign bit
     59         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
     60         llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
     61 
     62         // If all of the MaskV bits are known to be zero, then we know the
     63         // output top bits are zero, because we now know that the output is
     64         // from [0-C].
     65         if ((KnownZero2 & MaskV) == MaskV) {
     66           unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
     67           // Top bits known zero.
     68           KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
     69         }
     70       }
     71     }
     72   }
     73 
     74   unsigned BitWidth = KnownZero.getBitWidth();
     75 
     76   // If one of the operands has trailing zeros, then the bits that the
     77   // other operand has in those bit positions will be preserved in the
     78   // result. For an add, this works with either operand. For a subtract,
     79   // this only works if the known zeros are in the right operand.
     80   APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
     81   llvm::ComputeMaskedBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1);
     82   assert((LHSKnownZero & LHSKnownOne) == 0 &&
     83          "Bits known to be one AND zero?");
     84   unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
     85 
     86   llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
     87   assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
     88   unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
     89 
     90   // Determine which operand has more trailing zeros, and use that
     91   // many bits from the other operand.
     92   if (LHSKnownZeroOut > RHSKnownZeroOut) {
     93     if (Add) {
     94       APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
     95       KnownZero |= KnownZero2 & Mask;
     96       KnownOne  |= KnownOne2 & Mask;
     97     } else {
     98       // If the known zeros are in the left operand for a subtract,
     99       // fall back to the minimum known zeros in both operands.
    100       KnownZero |= APInt::getLowBitsSet(BitWidth,
    101                                         std::min(LHSKnownZeroOut,
    102                                                  RHSKnownZeroOut));
    103     }
    104   } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
    105     APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
    106     KnownZero |= LHSKnownZero & Mask;
    107     KnownOne  |= LHSKnownOne & Mask;
    108   }
    109 
    110   // Are we still trying to solve for the sign bit?
    111   if (!KnownZero.isNegative() && !KnownOne.isNegative()) {
    112     if (NSW) {
    113       if (Add) {
    114         // Adding two positive numbers can't wrap into negative
    115         if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
    116           KnownZero |= APInt::getSignBit(BitWidth);
    117         // and adding two negative numbers can't wrap into positive.
    118         else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
    119           KnownOne |= APInt::getSignBit(BitWidth);
    120       } else {
    121         // Subtracting a negative number from a positive one can't wrap
    122         if (LHSKnownZero.isNegative() && KnownOne2.isNegative())
    123           KnownZero |= APInt::getSignBit(BitWidth);
    124         // neither can subtracting a positive number from a negative one.
    125         else if (LHSKnownOne.isNegative() && KnownZero2.isNegative())
    126           KnownOne |= APInt::getSignBit(BitWidth);
    127       }
    128     }
    129   }
    130 }
    131 
    132 static void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW,
    133                                  APInt &KnownZero, APInt &KnownOne,
    134                                  APInt &KnownZero2, APInt &KnownOne2,
    135                                  const TargetData *TD, unsigned Depth) {
    136   unsigned BitWidth = KnownZero.getBitWidth();
    137   ComputeMaskedBits(Op1, KnownZero, KnownOne, TD, Depth+1);
    138   ComputeMaskedBits(Op0, KnownZero2, KnownOne2, TD, Depth+1);
    139   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    140   assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    141 
    142   bool isKnownNegative = false;
    143   bool isKnownNonNegative = false;
    144   // If the multiplication is known not to overflow, compute the sign bit.
    145   if (NSW) {
    146     if (Op0 == Op1) {
    147       // The product of a number with itself is non-negative.
    148       isKnownNonNegative = true;
    149     } else {
    150       bool isKnownNonNegativeOp1 = KnownZero.isNegative();
    151       bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
    152       bool isKnownNegativeOp1 = KnownOne.isNegative();
    153       bool isKnownNegativeOp0 = KnownOne2.isNegative();
    154       // The product of two numbers with the same sign is non-negative.
    155       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
    156         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
    157       // The product of a negative number and a non-negative number is either
    158       // negative or zero.
    159       if (!isKnownNonNegative)
    160         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
    161                            isKnownNonZero(Op0, TD, Depth)) ||
    162                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
    163                            isKnownNonZero(Op1, TD, Depth));
    164     }
    165   }
    166 
    167   // If low bits are zero in either operand, output low known-0 bits.
    168   // Also compute a conserative estimate for high known-0 bits.
    169   // More trickiness is possible, but this is sufficient for the
    170   // interesting case of alignment computation.
    171   KnownOne.clearAllBits();
    172   unsigned TrailZ = KnownZero.countTrailingOnes() +
    173                     KnownZero2.countTrailingOnes();
    174   unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
    175                              KnownZero2.countLeadingOnes(),
    176                              BitWidth) - BitWidth;
    177 
    178   TrailZ = std::min(TrailZ, BitWidth);
    179   LeadZ = std::min(LeadZ, BitWidth);
    180   KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
    181               APInt::getHighBitsSet(BitWidth, LeadZ);
    182 
    183   // Only make use of no-wrap flags if we failed to compute the sign bit
    184   // directly.  This matters if the multiplication always overflows, in
    185   // which case we prefer to follow the result of the direct computation,
    186   // though as the program is invoking undefined behaviour we can choose
    187   // whatever we like here.
    188   if (isKnownNonNegative && !KnownOne.isNegative())
    189     KnownZero.setBit(BitWidth - 1);
    190   else if (isKnownNegative && !KnownZero.isNegative())
    191     KnownOne.setBit(BitWidth - 1);
    192 }
    193 
    194 void llvm::computeMaskedBitsLoad(const MDNode &Ranges, APInt &KnownZero) {
    195   unsigned BitWidth = KnownZero.getBitWidth();
    196   unsigned NumRanges = Ranges.getNumOperands() / 2;
    197   assert(NumRanges >= 1);
    198 
    199   // Use the high end of the ranges to find leading zeros.
    200   unsigned MinLeadingZeros = BitWidth;
    201   for (unsigned i = 0; i < NumRanges; ++i) {
    202     ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0));
    203     ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1));
    204     ConstantRange Range(Lower->getValue(), Upper->getValue());
    205     if (Range.isWrappedSet())
    206       MinLeadingZeros = 0; // -1 has no zeros
    207     unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
    208     MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
    209   }
    210 
    211   KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
    212 }
    213 /// ComputeMaskedBits - Determine which of the bits are known to be either zero
    214 /// or one and return them in the KnownZero/KnownOne bit sets.
    215 ///
    216 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
    217 /// we cannot optimize based on the assumption that it is zero without changing
    218 /// it to be an explicit zero.  If we don't change it to zero, other code could
    219 /// optimized based on the contradictory assumption that it is non-zero.
    220 /// Because instcombine aggressively folds operations with undef args anyway,
    221 /// this won't lose us code quality.
    222 ///
    223 /// This function is defined on values with integer type, values with pointer
    224 /// type (but only if TD is non-null), and vectors of integers.  In the case
    225 /// where V is a vector, known zero, and known one values are the
    226 /// same width as the vector element, and the bit is set only if it is true
    227 /// for all of the elements in the vector.
    228 void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
    229                              const TargetData *TD, unsigned Depth) {
    230   assert(V && "No Value?");
    231   assert(Depth <= MaxDepth && "Limit Search Depth");
    232   unsigned BitWidth = KnownZero.getBitWidth();
    233 
    234   assert((V->getType()->isIntOrIntVectorTy() ||
    235           V->getType()->getScalarType()->isPointerTy()) &&
    236          "Not integer or pointer type!");
    237   assert((!TD ||
    238           TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
    239          (!V->getType()->isIntOrIntVectorTy() ||
    240           V->getType()->getScalarSizeInBits() == BitWidth) &&
    241          KnownZero.getBitWidth() == BitWidth &&
    242          KnownOne.getBitWidth() == BitWidth &&
    243          "V, Mask, KnownOne and KnownZero should have same BitWidth");
    244 
    245   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    246     // We know all of the bits for a constant!
    247     KnownOne = CI->getValue();
    248     KnownZero = ~KnownOne;
    249     return;
    250   }
    251   // Null and aggregate-zero are all-zeros.
    252   if (isa<ConstantPointerNull>(V) ||
    253       isa<ConstantAggregateZero>(V)) {
    254     KnownOne.clearAllBits();
    255     KnownZero = APInt::getAllOnesValue(BitWidth);
    256     return;
    257   }
    258   // Handle a constant vector by taking the intersection of the known bits of
    259   // each element.  There is no real need to handle ConstantVector here, because
    260   // we don't handle undef in any particularly useful way.
    261   if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
    262     // We know that CDS must be a vector of integers. Take the intersection of
    263     // each element.
    264     KnownZero.setAllBits(); KnownOne.setAllBits();
    265     APInt Elt(KnownZero.getBitWidth(), 0);
    266     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
    267       Elt = CDS->getElementAsInteger(i);
    268       KnownZero &= ~Elt;
    269       KnownOne &= Elt;
    270     }
    271     return;
    272   }
    273 
    274   // The address of an aligned GlobalValue has trailing zeros.
    275   if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
    276     unsigned Align = GV->getAlignment();
    277     if (Align == 0 && TD) {
    278       if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
    279         Type *ObjectType = GVar->getType()->getElementType();
    280         if (ObjectType->isSized()) {
    281           // If the object is defined in the current Module, we'll be giving
    282           // it the preferred alignment. Otherwise, we have to assume that it
    283           // may only have the minimum ABI alignment.
    284           if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
    285             Align = TD->getPreferredAlignment(GVar);
    286           else
    287             Align = TD->getABITypeAlignment(ObjectType);
    288         }
    289       }
    290     }
    291     if (Align > 0)
    292       KnownZero = APInt::getLowBitsSet(BitWidth,
    293                                        CountTrailingZeros_32(Align));
    294     else
    295       KnownZero.clearAllBits();
    296     KnownOne.clearAllBits();
    297     return;
    298   }
    299   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
    300   // the bits of its aliasee.
    301   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
    302     if (GA->mayBeOverridden()) {
    303       KnownZero.clearAllBits(); KnownOne.clearAllBits();
    304     } else {
    305       ComputeMaskedBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1);
    306     }
    307     return;
    308   }
    309 
    310   if (Argument *A = dyn_cast<Argument>(V)) {
    311     // Get alignment information off byval arguments if specified in the IR.
    312     if (A->hasByValAttr())
    313       if (unsigned Align = A->getParamAlignment())
    314         KnownZero = APInt::getLowBitsSet(BitWidth,
    315                                          CountTrailingZeros_32(Align));
    316     return;
    317   }
    318 
    319   // Start out not knowing anything.
    320   KnownZero.clearAllBits(); KnownOne.clearAllBits();
    321 
    322   if (Depth == MaxDepth)
    323     return;  // Limit search depth.
    324 
    325   Operator *I = dyn_cast<Operator>(V);
    326   if (!I) return;
    327 
    328   APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
    329   switch (I->getOpcode()) {
    330   default: break;
    331   case Instruction::Load:
    332     if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
    333       computeMaskedBitsLoad(*MD, KnownZero);
    334     return;
    335   case Instruction::And: {
    336     // If either the LHS or the RHS are Zero, the result is zero.
    337     ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
    338     ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
    339     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    340     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    341 
    342     // Output known-1 bits are only known if set in both the LHS & RHS.
    343     KnownOne &= KnownOne2;
    344     // Output known-0 are known to be clear if zero in either the LHS | RHS.
    345     KnownZero |= KnownZero2;
    346     return;
    347   }
    348   case Instruction::Or: {
    349     ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
    350     ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
    351     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    352     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    353 
    354     // Output known-0 bits are only known if clear in both the LHS & RHS.
    355     KnownZero &= KnownZero2;
    356     // Output known-1 are known to be set if set in either the LHS | RHS.
    357     KnownOne |= KnownOne2;
    358     return;
    359   }
    360   case Instruction::Xor: {
    361     ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
    362     ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
    363     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    364     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    365 
    366     // Output known-0 bits are known if clear or set in both the LHS & RHS.
    367     APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
    368     // Output known-1 are known to be set if set in only one of the LHS, RHS.
    369     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
    370     KnownZero = KnownZeroOut;
    371     return;
    372   }
    373   case Instruction::Mul: {
    374     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
    375     ComputeMaskedBitsMul(I->getOperand(0), I->getOperand(1), NSW,
    376                          KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth);
    377     break;
    378   }
    379   case Instruction::UDiv: {
    380     // For the purposes of computing leading zeros we can conservatively
    381     // treat a udiv as a logical right shift by the power of 2 known to
    382     // be less than the denominator.
    383     ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
    384     unsigned LeadZ = KnownZero2.countLeadingOnes();
    385 
    386     KnownOne2.clearAllBits();
    387     KnownZero2.clearAllBits();
    388     ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
    389     unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
    390     if (RHSUnknownLeadingOnes != BitWidth)
    391       LeadZ = std::min(BitWidth,
    392                        LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
    393 
    394     KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
    395     return;
    396   }
    397   case Instruction::Select:
    398     ComputeMaskedBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1);
    399     ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD,
    400                       Depth+1);
    401     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    402     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    403 
    404     // Only known if known in both the LHS and RHS.
    405     KnownOne &= KnownOne2;
    406     KnownZero &= KnownZero2;
    407     return;
    408   case Instruction::FPTrunc:
    409   case Instruction::FPExt:
    410   case Instruction::FPToUI:
    411   case Instruction::FPToSI:
    412   case Instruction::SIToFP:
    413   case Instruction::UIToFP:
    414     return; // Can't work with floating point.
    415   case Instruction::PtrToInt:
    416   case Instruction::IntToPtr:
    417     // We can't handle these if we don't know the pointer size.
    418     if (!TD) return;
    419     // FALL THROUGH and handle them the same as zext/trunc.
    420   case Instruction::ZExt:
    421   case Instruction::Trunc: {
    422     Type *SrcTy = I->getOperand(0)->getType();
    423 
    424     unsigned SrcBitWidth;
    425     // Note that we handle pointer operands here because of inttoptr/ptrtoint
    426     // which fall through here.
    427     if (SrcTy->isPointerTy())
    428       SrcBitWidth = TD->getTypeSizeInBits(SrcTy);
    429     else
    430       SrcBitWidth = SrcTy->getScalarSizeInBits();
    431 
    432     KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
    433     KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
    434     ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
    435     KnownZero = KnownZero.zextOrTrunc(BitWidth);
    436     KnownOne = KnownOne.zextOrTrunc(BitWidth);
    437     // Any top bits are known to be zero.
    438     if (BitWidth > SrcBitWidth)
    439       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
    440     return;
    441   }
    442   case Instruction::BitCast: {
    443     Type *SrcTy = I->getOperand(0)->getType();
    444     if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
    445         // TODO: For now, not handling conversions like:
    446         // (bitcast i64 %x to <2 x i32>)
    447         !I->getType()->isVectorTy()) {
    448       ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
    449       return;
    450     }
    451     break;
    452   }
    453   case Instruction::SExt: {
    454     // Compute the bits in the result that are not present in the input.
    455     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
    456 
    457     KnownZero = KnownZero.trunc(SrcBitWidth);
    458     KnownOne = KnownOne.trunc(SrcBitWidth);
    459     ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
    460     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    461     KnownZero = KnownZero.zext(BitWidth);
    462     KnownOne = KnownOne.zext(BitWidth);
    463 
    464     // If the sign bit of the input is known set or clear, then we know the
    465     // top bits of the result.
    466     if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
    467       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
    468     else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
    469       KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
    470     return;
    471   }
    472   case Instruction::Shl:
    473     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
    474     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
    475       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
    476       ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
    477       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    478       KnownZero <<= ShiftAmt;
    479       KnownOne  <<= ShiftAmt;
    480       KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
    481       return;
    482     }
    483     break;
    484   case Instruction::LShr:
    485     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
    486     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
    487       // Compute the new bits that are at the top now.
    488       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
    489 
    490       // Unsigned shift right.
    491       ComputeMaskedBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1);
    492       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    493       KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
    494       KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
    495       // high bits known zero.
    496       KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
    497       return;
    498     }
    499     break;
    500   case Instruction::AShr:
    501     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
    502     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
    503       // Compute the new bits that are at the top now.
    504       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
    505 
    506       // Signed shift right.
    507       ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
    508       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    509       KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
    510       KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
    511 
    512       APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
    513       if (KnownZero[BitWidth-ShiftAmt-1])    // New bits are known zero.
    514         KnownZero |= HighBits;
    515       else if (KnownOne[BitWidth-ShiftAmt-1])  // New bits are known one.
    516         KnownOne |= HighBits;
    517       return;
    518     }
    519     break;
    520   case Instruction::Sub: {
    521     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
    522     ComputeMaskedBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
    523                             KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
    524                             Depth);
    525     break;
    526   }
    527   case Instruction::Add: {
    528     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
    529     ComputeMaskedBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
    530                             KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
    531                             Depth);
    532     break;
    533   }
    534   case Instruction::SRem:
    535     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
    536       APInt RA = Rem->getValue().abs();
    537       if (RA.isPowerOf2()) {
    538         APInt LowBits = RA - 1;
    539         ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
    540 
    541         // The low bits of the first operand are unchanged by the srem.
    542         KnownZero = KnownZero2 & LowBits;
    543         KnownOne = KnownOne2 & LowBits;
    544 
    545         // If the first operand is non-negative or has all low bits zero, then
    546         // the upper bits are all zero.
    547         if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
    548           KnownZero |= ~LowBits;
    549 
    550         // If the first operand is negative and not all low bits are zero, then
    551         // the upper bits are all one.
    552         if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
    553           KnownOne |= ~LowBits;
    554 
    555         assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    556       }
    557     }
    558 
    559     // The sign bit is the LHS's sign bit, except when the result of the
    560     // remainder is zero.
    561     if (KnownZero.isNonNegative()) {
    562       APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
    563       ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
    564                         Depth+1);
    565       // If it's known zero, our sign bit is also zero.
    566       if (LHSKnownZero.isNegative())
    567         KnownZero |= LHSKnownZero;
    568     }
    569 
    570     break;
    571   case Instruction::URem: {
    572     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
    573       APInt RA = Rem->getValue();
    574       if (RA.isPowerOf2()) {
    575         APInt LowBits = (RA - 1);
    576         ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD,
    577                           Depth+1);
    578         assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    579         KnownZero |= ~LowBits;
    580         KnownOne &= LowBits;
    581         break;
    582       }
    583     }
    584 
    585     // Since the result is less than or equal to either operand, any leading
    586     // zero bits in either operand must also exist in the result.
    587     ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
    588     ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
    589 
    590     unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
    591                                 KnownZero2.countLeadingOnes());
    592     KnownOne.clearAllBits();
    593     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
    594     break;
    595   }
    596 
    597   case Instruction::Alloca: {
    598     AllocaInst *AI = cast<AllocaInst>(V);
    599     unsigned Align = AI->getAlignment();
    600     if (Align == 0 && TD)
    601       Align = TD->getABITypeAlignment(AI->getType()->getElementType());
    602 
    603     if (Align > 0)
    604       KnownZero = APInt::getLowBitsSet(BitWidth, CountTrailingZeros_32(Align));
    605     break;
    606   }
    607   case Instruction::GetElementPtr: {
    608     // Analyze all of the subscripts of this getelementptr instruction
    609     // to determine if we can prove known low zero bits.
    610     APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
    611     ComputeMaskedBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
    612                       Depth+1);
    613     unsigned TrailZ = LocalKnownZero.countTrailingOnes();
    614 
    615     gep_type_iterator GTI = gep_type_begin(I);
    616     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
    617       Value *Index = I->getOperand(i);
    618       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    619         // Handle struct member offset arithmetic.
    620         if (!TD) return;
    621         const StructLayout *SL = TD->getStructLayout(STy);
    622         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
    623         uint64_t Offset = SL->getElementOffset(Idx);
    624         TrailZ = std::min(TrailZ,
    625                           CountTrailingZeros_64(Offset));
    626       } else {
    627         // Handle array index arithmetic.
    628         Type *IndexedTy = GTI.getIndexedType();
    629         if (!IndexedTy->isSized()) return;
    630         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
    631         uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
    632         LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
    633         ComputeMaskedBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1);
    634         TrailZ = std::min(TrailZ,
    635                           unsigned(CountTrailingZeros_64(TypeSize) +
    636                                    LocalKnownZero.countTrailingOnes()));
    637       }
    638     }
    639 
    640     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
    641     break;
    642   }
    643   case Instruction::PHI: {
    644     PHINode *P = cast<PHINode>(I);
    645     // Handle the case of a simple two-predecessor recurrence PHI.
    646     // There's a lot more that could theoretically be done here, but
    647     // this is sufficient to catch some interesting cases.
    648     if (P->getNumIncomingValues() == 2) {
    649       for (unsigned i = 0; i != 2; ++i) {
    650         Value *L = P->getIncomingValue(i);
    651         Value *R = P->getIncomingValue(!i);
    652         Operator *LU = dyn_cast<Operator>(L);
    653         if (!LU)
    654           continue;
    655         unsigned Opcode = LU->getOpcode();
    656         // Check for operations that have the property that if
    657         // both their operands have low zero bits, the result
    658         // will have low zero bits.
    659         if (Opcode == Instruction::Add ||
    660             Opcode == Instruction::Sub ||
    661             Opcode == Instruction::And ||
    662             Opcode == Instruction::Or ||
    663             Opcode == Instruction::Mul) {
    664           Value *LL = LU->getOperand(0);
    665           Value *LR = LU->getOperand(1);
    666           // Find a recurrence.
    667           if (LL == I)
    668             L = LR;
    669           else if (LR == I)
    670             L = LL;
    671           else
    672             break;
    673           // Ok, we have a PHI of the form L op= R. Check for low
    674           // zero bits.
    675           ComputeMaskedBits(R, KnownZero2, KnownOne2, TD, Depth+1);
    676 
    677           // We need to take the minimum number of known bits
    678           APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
    679           ComputeMaskedBits(L, KnownZero3, KnownOne3, TD, Depth+1);
    680 
    681           KnownZero = APInt::getLowBitsSet(BitWidth,
    682                                            std::min(KnownZero2.countTrailingOnes(),
    683                                                     KnownZero3.countTrailingOnes()));
    684           break;
    685         }
    686       }
    687     }
    688 
    689     // Unreachable blocks may have zero-operand PHI nodes.
    690     if (P->getNumIncomingValues() == 0)
    691       return;
    692 
    693     // Otherwise take the unions of the known bit sets of the operands,
    694     // taking conservative care to avoid excessive recursion.
    695     if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
    696       // Skip if every incoming value references to ourself.
    697       if (P->hasConstantValue() == P)
    698         break;
    699 
    700       KnownZero = APInt::getAllOnesValue(BitWidth);
    701       KnownOne = APInt::getAllOnesValue(BitWidth);
    702       for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
    703         // Skip direct self references.
    704         if (P->getIncomingValue(i) == P) continue;
    705 
    706         KnownZero2 = APInt(BitWidth, 0);
    707         KnownOne2 = APInt(BitWidth, 0);
    708         // Recurse, but cap the recursion to one level, because we don't
    709         // want to waste time spinning around in loops.
    710         ComputeMaskedBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
    711                           MaxDepth-1);
    712         KnownZero &= KnownZero2;
    713         KnownOne &= KnownOne2;
    714         // If all bits have been ruled out, there's no need to check
    715         // more operands.
    716         if (!KnownZero && !KnownOne)
    717           break;
    718       }
    719     }
    720     break;
    721   }
    722   case Instruction::Call:
    723     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    724       switch (II->getIntrinsicID()) {
    725       default: break;
    726       case Intrinsic::ctlz:
    727       case Intrinsic::cttz: {
    728         unsigned LowBits = Log2_32(BitWidth)+1;
    729         // If this call is undefined for 0, the result will be less than 2^n.
    730         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
    731           LowBits -= 1;
    732         KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
    733         break;
    734       }
    735       case Intrinsic::ctpop: {
    736         unsigned LowBits = Log2_32(BitWidth)+1;
    737         KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
    738         break;
    739       }
    740       case Intrinsic::x86_sse42_crc32_64_8:
    741       case Intrinsic::x86_sse42_crc32_64_64:
    742         KnownZero = APInt::getHighBitsSet(64, 32);
    743         break;
    744       }
    745     }
    746     break;
    747   case Instruction::ExtractValue:
    748     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
    749       ExtractValueInst *EVI = cast<ExtractValueInst>(I);
    750       if (EVI->getNumIndices() != 1) break;
    751       if (EVI->getIndices()[0] == 0) {
    752         switch (II->getIntrinsicID()) {
    753         default: break;
    754         case Intrinsic::uadd_with_overflow:
    755         case Intrinsic::sadd_with_overflow:
    756           ComputeMaskedBitsAddSub(true, II->getArgOperand(0),
    757                                   II->getArgOperand(1), false, KnownZero,
    758                                   KnownOne, KnownZero2, KnownOne2, TD, Depth);
    759           break;
    760         case Intrinsic::usub_with_overflow:
    761         case Intrinsic::ssub_with_overflow:
    762           ComputeMaskedBitsAddSub(false, II->getArgOperand(0),
    763                                   II->getArgOperand(1), false, KnownZero,
    764                                   KnownOne, KnownZero2, KnownOne2, TD, Depth);
    765           break;
    766         case Intrinsic::umul_with_overflow:
    767         case Intrinsic::smul_with_overflow:
    768           ComputeMaskedBitsMul(II->getArgOperand(0), II->getArgOperand(1),
    769                                false, KnownZero, KnownOne,
    770                                KnownZero2, KnownOne2, TD, Depth);
    771           break;
    772         }
    773       }
    774     }
    775   }
    776 }
    777 
    778 /// ComputeSignBit - Determine whether the sign bit is known to be zero or
    779 /// one.  Convenience wrapper around ComputeMaskedBits.
    780 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
    781                           const TargetData *TD, unsigned Depth) {
    782   unsigned BitWidth = getBitWidth(V->getType(), TD);
    783   if (!BitWidth) {
    784     KnownZero = false;
    785     KnownOne = false;
    786     return;
    787   }
    788   APInt ZeroBits(BitWidth, 0);
    789   APInt OneBits(BitWidth, 0);
    790   ComputeMaskedBits(V, ZeroBits, OneBits, TD, Depth);
    791   KnownOne = OneBits[BitWidth - 1];
    792   KnownZero = ZeroBits[BitWidth - 1];
    793 }
    794 
    795 /// isPowerOfTwo - Return true if the given value is known to have exactly one
    796 /// bit set when defined. For vectors return true if every element is known to
    797 /// be a power of two when defined.  Supports values with integer or pointer
    798 /// types and vectors of integers.
    799 bool llvm::isPowerOfTwo(Value *V, const TargetData *TD, bool OrZero,
    800                         unsigned Depth) {
    801   if (Constant *C = dyn_cast<Constant>(V)) {
    802     if (C->isNullValue())
    803       return OrZero;
    804     if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
    805       return CI->getValue().isPowerOf2();
    806     // TODO: Handle vector constants.
    807   }
    808 
    809   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
    810   // it is shifted off the end then the result is undefined.
    811   if (match(V, m_Shl(m_One(), m_Value())))
    812     return true;
    813 
    814   // (signbit) >>l X is clearly a power of two if the one is not shifted off the
    815   // bottom.  If it is shifted off the bottom then the result is undefined.
    816   if (match(V, m_LShr(m_SignBit(), m_Value())))
    817     return true;
    818 
    819   // The remaining tests are all recursive, so bail out if we hit the limit.
    820   if (Depth++ == MaxDepth)
    821     return false;
    822 
    823   Value *X = 0, *Y = 0;
    824   // A shift of a power of two is a power of two or zero.
    825   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
    826                  match(V, m_Shr(m_Value(X), m_Value()))))
    827     return isPowerOfTwo(X, TD, /*OrZero*/true, Depth);
    828 
    829   if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
    830     return isPowerOfTwo(ZI->getOperand(0), TD, OrZero, Depth);
    831 
    832   if (SelectInst *SI = dyn_cast<SelectInst>(V))
    833     return isPowerOfTwo(SI->getTrueValue(), TD, OrZero, Depth) &&
    834       isPowerOfTwo(SI->getFalseValue(), TD, OrZero, Depth);
    835 
    836   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
    837     // A power of two and'd with anything is a power of two or zero.
    838     if (isPowerOfTwo(X, TD, /*OrZero*/true, Depth) ||
    839         isPowerOfTwo(Y, TD, /*OrZero*/true, Depth))
    840       return true;
    841     // X & (-X) is always a power of two or zero.
    842     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
    843       return true;
    844     return false;
    845   }
    846 
    847   // An exact divide or right shift can only shift off zero bits, so the result
    848   // is a power of two only if the first operand is a power of two and not
    849   // copying a sign bit (sdiv int_min, 2).
    850   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
    851       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
    852     return isPowerOfTwo(cast<Operator>(V)->getOperand(0), TD, OrZero, Depth);
    853   }
    854 
    855   return false;
    856 }
    857 
    858 /// isKnownNonZero - Return true if the given value is known to be non-zero
    859 /// when defined.  For vectors return true if every element is known to be
    860 /// non-zero when defined.  Supports values with integer or pointer type and
    861 /// vectors of integers.
    862 bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
    863   if (Constant *C = dyn_cast<Constant>(V)) {
    864     if (C->isNullValue())
    865       return false;
    866     if (isa<ConstantInt>(C))
    867       // Must be non-zero due to null test above.
    868       return true;
    869     // TODO: Handle vectors
    870     return false;
    871   }
    872 
    873   // The remaining tests are all recursive, so bail out if we hit the limit.
    874   if (Depth++ >= MaxDepth)
    875     return false;
    876 
    877   unsigned BitWidth = getBitWidth(V->getType(), TD);
    878 
    879   // X | Y != 0 if X != 0 or Y != 0.
    880   Value *X = 0, *Y = 0;
    881   if (match(V, m_Or(m_Value(X), m_Value(Y))))
    882     return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
    883 
    884   // ext X != 0 if X != 0.
    885   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
    886     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth);
    887 
    888   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
    889   // if the lowest bit is shifted off the end.
    890   if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
    891     // shl nuw can't remove any non-zero bits.
    892     OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
    893     if (BO->hasNoUnsignedWrap())
    894       return isKnownNonZero(X, TD, Depth);
    895 
    896     APInt KnownZero(BitWidth, 0);
    897     APInt KnownOne(BitWidth, 0);
    898     ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
    899     if (KnownOne[0])
    900       return true;
    901   }
    902   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
    903   // defined if the sign bit is shifted off the end.
    904   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
    905     // shr exact can only shift out zero bits.
    906     PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
    907     if (BO->isExact())
    908       return isKnownNonZero(X, TD, Depth);
    909 
    910     bool XKnownNonNegative, XKnownNegative;
    911     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
    912     if (XKnownNegative)
    913       return true;
    914   }
    915   // div exact can only produce a zero if the dividend is zero.
    916   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
    917     return isKnownNonZero(X, TD, Depth);
    918   }
    919   // X + Y.
    920   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
    921     bool XKnownNonNegative, XKnownNegative;
    922     bool YKnownNonNegative, YKnownNegative;
    923     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
    924     ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth);
    925 
    926     // If X and Y are both non-negative (as signed values) then their sum is not
    927     // zero unless both X and Y are zero.
    928     if (XKnownNonNegative && YKnownNonNegative)
    929       if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth))
    930         return true;
    931 
    932     // If X and Y are both negative (as signed values) then their sum is not
    933     // zero unless both X and Y equal INT_MIN.
    934     if (BitWidth && XKnownNegative && YKnownNegative) {
    935       APInt KnownZero(BitWidth, 0);
    936       APInt KnownOne(BitWidth, 0);
    937       APInt Mask = APInt::getSignedMaxValue(BitWidth);
    938       // The sign bit of X is set.  If some other bit is set then X is not equal
    939       // to INT_MIN.
    940       ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
    941       if ((KnownOne & Mask) != 0)
    942         return true;
    943       // The sign bit of Y is set.  If some other bit is set then Y is not equal
    944       // to INT_MIN.
    945       ComputeMaskedBits(Y, KnownZero, KnownOne, TD, Depth);
    946       if ((KnownOne & Mask) != 0)
    947         return true;
    948     }
    949 
    950     // The sum of a non-negative number and a power of two is not zero.
    951     if (XKnownNonNegative && isPowerOfTwo(Y, TD, /*OrZero*/false, Depth))
    952       return true;
    953     if (YKnownNonNegative && isPowerOfTwo(X, TD, /*OrZero*/false, Depth))
    954       return true;
    955   }
    956   // X * Y.
    957   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
    958     OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
    959     // If X and Y are non-zero then so is X * Y as long as the multiplication
    960     // does not overflow.
    961     if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
    962         isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth))
    963       return true;
    964   }
    965   // (C ? X : Y) != 0 if X != 0 and Y != 0.
    966   else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
    967     if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
    968         isKnownNonZero(SI->getFalseValue(), TD, Depth))
    969       return true;
    970   }
    971 
    972   if (!BitWidth) return false;
    973   APInt KnownZero(BitWidth, 0);
    974   APInt KnownOne(BitWidth, 0);
    975   ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
    976   return KnownOne != 0;
    977 }
    978 
    979 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
    980 /// this predicate to simplify operations downstream.  Mask is known to be zero
    981 /// for bits that V cannot have.
    982 ///
    983 /// This function is defined on values with integer type, values with pointer
    984 /// type (but only if TD is non-null), and vectors of integers.  In the case
    985 /// where V is a vector, the mask, known zero, and known one values are the
    986 /// same width as the vector element, and the bit is set only if it is true
    987 /// for all of the elements in the vector.
    988 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
    989                              const TargetData *TD, unsigned Depth) {
    990   APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
    991   ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
    992   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    993   return (KnownZero & Mask) == Mask;
    994 }
    995 
    996 
    997 
    998 /// ComputeNumSignBits - Return the number of times the sign bit of the
    999 /// register is replicated into the other bits.  We know that at least 1 bit
   1000 /// is always equal to the sign bit (itself), but other cases can give us
   1001 /// information.  For example, immediately after an "ashr X, 2", we know that
   1002 /// the top 3 bits are all equal to each other, so we return 3.
   1003 ///
   1004 /// 'Op' must have a scalar integer type.
   1005 ///
   1006 unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD,
   1007                                   unsigned Depth) {
   1008   assert((TD || V->getType()->isIntOrIntVectorTy()) &&
   1009          "ComputeNumSignBits requires a TargetData object to operate "
   1010          "on non-integer values!");
   1011   Type *Ty = V->getType();
   1012   unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
   1013                          Ty->getScalarSizeInBits();
   1014   unsigned Tmp, Tmp2;
   1015   unsigned FirstAnswer = 1;
   1016 
   1017   // Note that ConstantInt is handled by the general ComputeMaskedBits case
   1018   // below.
   1019 
   1020   if (Depth == 6)
   1021     return 1;  // Limit search depth.
   1022 
   1023   Operator *U = dyn_cast<Operator>(V);
   1024   switch (Operator::getOpcode(V)) {
   1025   default: break;
   1026   case Instruction::SExt:
   1027     Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
   1028     return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
   1029 
   1030   case Instruction::AShr: {
   1031     Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
   1032     // ashr X, C   -> adds C sign bits.  Vectors too.
   1033     const APInt *ShAmt;
   1034     if (match(U->getOperand(1), m_APInt(ShAmt))) {
   1035       Tmp += ShAmt->getZExtValue();
   1036       if (Tmp > TyBits) Tmp = TyBits;
   1037     }
   1038     return Tmp;
   1039   }
   1040   case Instruction::Shl: {
   1041     const APInt *ShAmt;
   1042     if (match(U->getOperand(1), m_APInt(ShAmt))) {
   1043       // shl destroys sign bits.
   1044       Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
   1045       Tmp2 = ShAmt->getZExtValue();
   1046       if (Tmp2 >= TyBits ||      // Bad shift.
   1047           Tmp2 >= Tmp) break;    // Shifted all sign bits out.
   1048       return Tmp - Tmp2;
   1049     }
   1050     break;
   1051   }
   1052   case Instruction::And:
   1053   case Instruction::Or:
   1054   case Instruction::Xor:    // NOT is handled here.
   1055     // Logical binary ops preserve the number of sign bits at the worst.
   1056     Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
   1057     if (Tmp != 1) {
   1058       Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
   1059       FirstAnswer = std::min(Tmp, Tmp2);
   1060       // We computed what we know about the sign bits as our first
   1061       // answer. Now proceed to the generic code that uses
   1062       // ComputeMaskedBits, and pick whichever answer is better.
   1063     }
   1064     break;
   1065 
   1066   case Instruction::Select:
   1067     Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
   1068     if (Tmp == 1) return 1;  // Early out.
   1069     Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
   1070     return std::min(Tmp, Tmp2);
   1071 
   1072   case Instruction::Add:
   1073     // Add can have at most one carry bit.  Thus we know that the output
   1074     // is, at worst, one more bit than the inputs.
   1075     Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
   1076     if (Tmp == 1) return 1;  // Early out.
   1077 
   1078     // Special case decrementing a value (ADD X, -1):
   1079     if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
   1080       if (CRHS->isAllOnesValue()) {
   1081         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
   1082         ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
   1083 
   1084         // If the input is known to be 0 or 1, the output is 0/-1, which is all
   1085         // sign bits set.
   1086         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
   1087           return TyBits;
   1088 
   1089         // If we are subtracting one from a positive number, there is no carry
   1090         // out of the result.
   1091         if (KnownZero.isNegative())
   1092           return Tmp;
   1093       }
   1094 
   1095     Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
   1096     if (Tmp2 == 1) return 1;
   1097     return std::min(Tmp, Tmp2)-1;
   1098 
   1099   case Instruction::Sub:
   1100     Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
   1101     if (Tmp2 == 1) return 1;
   1102 
   1103     // Handle NEG.
   1104     if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
   1105       if (CLHS->isNullValue()) {
   1106         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
   1107         ComputeMaskedBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
   1108         // If the input is known to be 0 or 1, the output is 0/-1, which is all
   1109         // sign bits set.
   1110         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
   1111           return TyBits;
   1112 
   1113         // If the input is known to be positive (the sign bit is known clear),
   1114         // the output of the NEG has the same number of sign bits as the input.
   1115         if (KnownZero.isNegative())
   1116           return Tmp2;
   1117 
   1118         // Otherwise, we treat this like a SUB.
   1119       }
   1120 
   1121     // Sub can have at most one carry bit.  Thus we know that the output
   1122     // is, at worst, one more bit than the inputs.
   1123     Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
   1124     if (Tmp == 1) return 1;  // Early out.
   1125     return std::min(Tmp, Tmp2)-1;
   1126 
   1127   case Instruction::PHI: {
   1128     PHINode *PN = cast<PHINode>(U);
   1129     // Don't analyze large in-degree PHIs.
   1130     if (PN->getNumIncomingValues() > 4) break;
   1131 
   1132     // Take the minimum of all incoming values.  This can't infinitely loop
   1133     // because of our depth threshold.
   1134     Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
   1135     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
   1136       if (Tmp == 1) return Tmp;
   1137       Tmp = std::min(Tmp,
   1138                      ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
   1139     }
   1140     return Tmp;
   1141   }
   1142 
   1143   case Instruction::Trunc:
   1144     // FIXME: it's tricky to do anything useful for this, but it is an important
   1145     // case for targets like X86.
   1146     break;
   1147   }
   1148 
   1149   // Finally, if we can prove that the top bits of the result are 0's or 1's,
   1150   // use this information.
   1151   APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
   1152   APInt Mask;
   1153   ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
   1154 
   1155   if (KnownZero.isNegative()) {        // sign bit is 0
   1156     Mask = KnownZero;
   1157   } else if (KnownOne.isNegative()) {  // sign bit is 1;
   1158     Mask = KnownOne;
   1159   } else {
   1160     // Nothing known.
   1161     return FirstAnswer;
   1162   }
   1163 
   1164   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
   1165   // the number of identical bits in the top of the input value.
   1166   Mask = ~Mask;
   1167   Mask <<= Mask.getBitWidth()-TyBits;
   1168   // Return # leading zeros.  We use 'min' here in case Val was zero before
   1169   // shifting.  We don't want to return '64' as for an i32 "0".
   1170   return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
   1171 }
   1172 
   1173 /// ComputeMultiple - This function computes the integer multiple of Base that
   1174 /// equals V.  If successful, it returns true and returns the multiple in
   1175 /// Multiple.  If unsuccessful, it returns false. It looks
   1176 /// through SExt instructions only if LookThroughSExt is true.
   1177 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
   1178                            bool LookThroughSExt, unsigned Depth) {
   1179   const unsigned MaxDepth = 6;
   1180 
   1181   assert(V && "No Value?");
   1182   assert(Depth <= MaxDepth && "Limit Search Depth");
   1183   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
   1184 
   1185   Type *T = V->getType();
   1186 
   1187   ConstantInt *CI = dyn_cast<ConstantInt>(V);
   1188 
   1189   if (Base == 0)
   1190     return false;
   1191 
   1192   if (Base == 1) {
   1193     Multiple = V;
   1194     return true;
   1195   }
   1196 
   1197   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
   1198   Constant *BaseVal = ConstantInt::get(T, Base);
   1199   if (CO && CO == BaseVal) {
   1200     // Multiple is 1.
   1201     Multiple = ConstantInt::get(T, 1);
   1202     return true;
   1203   }
   1204 
   1205   if (CI && CI->getZExtValue() % Base == 0) {
   1206     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
   1207     return true;
   1208   }
   1209 
   1210   if (Depth == MaxDepth) return false;  // Limit search depth.
   1211 
   1212   Operator *I = dyn_cast<Operator>(V);
   1213   if (!I) return false;
   1214 
   1215   switch (I->getOpcode()) {
   1216   default: break;
   1217   case Instruction::SExt:
   1218     if (!LookThroughSExt) return false;
   1219     // otherwise fall through to ZExt
   1220   case Instruction::ZExt:
   1221     return ComputeMultiple(I->getOperand(0), Base, Multiple,
   1222                            LookThroughSExt, Depth+1);
   1223   case Instruction::Shl:
   1224   case Instruction::Mul: {
   1225     Value *Op0 = I->getOperand(0);
   1226     Value *Op1 = I->getOperand(1);
   1227 
   1228     if (I->getOpcode() == Instruction::Shl) {
   1229       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
   1230       if (!Op1CI) return false;
   1231       // Turn Op0 << Op1 into Op0 * 2^Op1
   1232       APInt Op1Int = Op1CI->getValue();
   1233       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
   1234       APInt API(Op1Int.getBitWidth(), 0);
   1235       API.setBit(BitToSet);
   1236       Op1 = ConstantInt::get(V->getContext(), API);
   1237     }
   1238 
   1239     Value *Mul0 = NULL;
   1240     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
   1241       if (Constant *Op1C = dyn_cast<Constant>(Op1))
   1242         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
   1243           if (Op1C->getType()->getPrimitiveSizeInBits() <
   1244               MulC->getType()->getPrimitiveSizeInBits())
   1245             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
   1246           if (Op1C->getType()->getPrimitiveSizeInBits() >
   1247               MulC->getType()->getPrimitiveSizeInBits())
   1248             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
   1249 
   1250           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
   1251           Multiple = ConstantExpr::getMul(MulC, Op1C);
   1252           return true;
   1253         }
   1254 
   1255       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
   1256         if (Mul0CI->getValue() == 1) {
   1257           // V == Base * Op1, so return Op1
   1258           Multiple = Op1;
   1259           return true;
   1260         }
   1261     }
   1262 
   1263     Value *Mul1 = NULL;
   1264     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
   1265       if (Constant *Op0C = dyn_cast<Constant>(Op0))
   1266         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
   1267           if (Op0C->getType()->getPrimitiveSizeInBits() <
   1268               MulC->getType()->getPrimitiveSizeInBits())
   1269             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
   1270           if (Op0C->getType()->getPrimitiveSizeInBits() >
   1271               MulC->getType()->getPrimitiveSizeInBits())
   1272             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
   1273 
   1274           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
   1275           Multiple = ConstantExpr::getMul(MulC, Op0C);
   1276           return true;
   1277         }
   1278 
   1279       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
   1280         if (Mul1CI->getValue() == 1) {
   1281           // V == Base * Op0, so return Op0
   1282           Multiple = Op0;
   1283           return true;
   1284         }
   1285     }
   1286   }
   1287   }
   1288 
   1289   // We could not determine if V is a multiple of Base.
   1290   return false;
   1291 }
   1292 
   1293 /// CannotBeNegativeZero - Return true if we can prove that the specified FP
   1294 /// value is never equal to -0.0.
   1295 ///
   1296 /// NOTE: this function will need to be revisited when we support non-default
   1297 /// rounding modes!
   1298 ///
   1299 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
   1300   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
   1301     return !CFP->getValueAPF().isNegZero();
   1302 
   1303   if (Depth == 6)
   1304     return 1;  // Limit search depth.
   1305 
   1306   const Operator *I = dyn_cast<Operator>(V);
   1307   if (I == 0) return false;
   1308 
   1309   // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
   1310   if (I->getOpcode() == Instruction::FAdd &&
   1311       isa<ConstantFP>(I->getOperand(1)) &&
   1312       cast<ConstantFP>(I->getOperand(1))->isNullValue())
   1313     return true;
   1314 
   1315   // sitofp and uitofp turn into +0.0 for zero.
   1316   if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
   1317     return true;
   1318 
   1319   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
   1320     // sqrt(-0.0) = -0.0, no other negative results are possible.
   1321     if (II->getIntrinsicID() == Intrinsic::sqrt)
   1322       return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
   1323 
   1324   if (const CallInst *CI = dyn_cast<CallInst>(I))
   1325     if (const Function *F = CI->getCalledFunction()) {
   1326       if (F->isDeclaration()) {
   1327         // abs(x) != -0.0
   1328         if (F->getName() == "abs") return true;
   1329         // fabs[lf](x) != -0.0
   1330         if (F->getName() == "fabs") return true;
   1331         if (F->getName() == "fabsf") return true;
   1332         if (F->getName() == "fabsl") return true;
   1333         if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
   1334             F->getName() == "sqrtl")
   1335           return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
   1336       }
   1337     }
   1338 
   1339   return false;
   1340 }
   1341 
   1342 /// isBytewiseValue - If the specified value can be set by repeating the same
   1343 /// byte in memory, return the i8 value that it is represented with.  This is
   1344 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
   1345 /// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
   1346 /// byte store (e.g. i16 0x1234), return null.
   1347 Value *llvm::isBytewiseValue(Value *V) {
   1348   // All byte-wide stores are splatable, even of arbitrary variables.
   1349   if (V->getType()->isIntegerTy(8)) return V;
   1350 
   1351   // Handle 'null' ConstantArrayZero etc.
   1352   if (Constant *C = dyn_cast<Constant>(V))
   1353     if (C->isNullValue())
   1354       return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
   1355 
   1356   // Constant float and double values can be handled as integer values if the
   1357   // corresponding integer value is "byteable".  An important case is 0.0.
   1358   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
   1359     if (CFP->getType()->isFloatTy())
   1360       V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
   1361     if (CFP->getType()->isDoubleTy())
   1362       V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
   1363     // Don't handle long double formats, which have strange constraints.
   1364   }
   1365 
   1366   // We can handle constant integers that are power of two in size and a
   1367   // multiple of 8 bits.
   1368   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
   1369     unsigned Width = CI->getBitWidth();
   1370     if (isPowerOf2_32(Width) && Width > 8) {
   1371       // We can handle this value if the recursive binary decomposition is the
   1372       // same at all levels.
   1373       APInt Val = CI->getValue();
   1374       APInt Val2;
   1375       while (Val.getBitWidth() != 8) {
   1376         unsigned NextWidth = Val.getBitWidth()/2;
   1377         Val2  = Val.lshr(NextWidth);
   1378         Val2 = Val2.trunc(Val.getBitWidth()/2);
   1379         Val = Val.trunc(Val.getBitWidth()/2);
   1380 
   1381         // If the top/bottom halves aren't the same, reject it.
   1382         if (Val != Val2)
   1383           return 0;
   1384       }
   1385       return ConstantInt::get(V->getContext(), Val);
   1386     }
   1387   }
   1388 
   1389   // A ConstantDataArray/Vector is splatable if all its members are equal and
   1390   // also splatable.
   1391   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
   1392     Value *Elt = CA->getElementAsConstant(0);
   1393     Value *Val = isBytewiseValue(Elt);
   1394     if (!Val)
   1395       return 0;
   1396 
   1397     for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
   1398       if (CA->getElementAsConstant(I) != Elt)
   1399         return 0;
   1400 
   1401     return Val;
   1402   }
   1403 
   1404   // Conceptually, we could handle things like:
   1405   //   %a = zext i8 %X to i16
   1406   //   %b = shl i16 %a, 8
   1407   //   %c = or i16 %a, %b
   1408   // but until there is an example that actually needs this, it doesn't seem
   1409   // worth worrying about.
   1410   return 0;
   1411 }
   1412 
   1413 
   1414 // This is the recursive version of BuildSubAggregate. It takes a few different
   1415 // arguments. Idxs is the index within the nested struct From that we are
   1416 // looking at now (which is of type IndexedType). IdxSkip is the number of
   1417 // indices from Idxs that should be left out when inserting into the resulting
   1418 // struct. To is the result struct built so far, new insertvalue instructions
   1419 // build on that.
   1420 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
   1421                                 SmallVector<unsigned, 10> &Idxs,
   1422                                 unsigned IdxSkip,
   1423                                 Instruction *InsertBefore) {
   1424   llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
   1425   if (STy) {
   1426     // Save the original To argument so we can modify it
   1427     Value *OrigTo = To;
   1428     // General case, the type indexed by Idxs is a struct
   1429     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1430       // Process each struct element recursively
   1431       Idxs.push_back(i);
   1432       Value *PrevTo = To;
   1433       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
   1434                              InsertBefore);
   1435       Idxs.pop_back();
   1436       if (!To) {
   1437         // Couldn't find any inserted value for this index? Cleanup
   1438         while (PrevTo != OrigTo) {
   1439           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
   1440           PrevTo = Del->getAggregateOperand();
   1441           Del->eraseFromParent();
   1442         }
   1443         // Stop processing elements
   1444         break;
   1445       }
   1446     }
   1447     // If we successfully found a value for each of our subaggregates
   1448     if (To)
   1449       return To;
   1450   }
   1451   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
   1452   // the struct's elements had a value that was inserted directly. In the latter
   1453   // case, perhaps we can't determine each of the subelements individually, but
   1454   // we might be able to find the complete struct somewhere.
   1455 
   1456   // Find the value that is at that particular spot
   1457   Value *V = FindInsertedValue(From, Idxs);
   1458 
   1459   if (!V)
   1460     return NULL;
   1461 
   1462   // Insert the value in the new (sub) aggregrate
   1463   return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
   1464                                        "tmp", InsertBefore);
   1465 }
   1466 
   1467 // This helper takes a nested struct and extracts a part of it (which is again a
   1468 // struct) into a new value. For example, given the struct:
   1469 // { a, { b, { c, d }, e } }
   1470 // and the indices "1, 1" this returns
   1471 // { c, d }.
   1472 //
   1473 // It does this by inserting an insertvalue for each element in the resulting
   1474 // struct, as opposed to just inserting a single struct. This will only work if
   1475 // each of the elements of the substruct are known (ie, inserted into From by an
   1476 // insertvalue instruction somewhere).
   1477 //
   1478 // All inserted insertvalue instructions are inserted before InsertBefore
   1479 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
   1480                                 Instruction *InsertBefore) {
   1481   assert(InsertBefore && "Must have someplace to insert!");
   1482   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
   1483                                                              idx_range);
   1484   Value *To = UndefValue::get(IndexedType);
   1485   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
   1486   unsigned IdxSkip = Idxs.size();
   1487 
   1488   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
   1489 }
   1490 
   1491 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
   1492 /// the scalar value indexed is already around as a register, for example if it
   1493 /// were inserted directly into the aggregrate.
   1494 ///
   1495 /// If InsertBefore is not null, this function will duplicate (modified)
   1496 /// insertvalues when a part of a nested struct is extracted.
   1497 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
   1498                                Instruction *InsertBefore) {
   1499   // Nothing to index? Just return V then (this is useful at the end of our
   1500   // recursion).
   1501   if (idx_range.empty())
   1502     return V;
   1503   // We have indices, so V should have an indexable type.
   1504   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
   1505          "Not looking at a struct or array?");
   1506   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
   1507          "Invalid indices for type?");
   1508 
   1509   if (Constant *C = dyn_cast<Constant>(V)) {
   1510     C = C->getAggregateElement(idx_range[0]);
   1511     if (C == 0) return 0;
   1512     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
   1513   }
   1514 
   1515   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
   1516     // Loop the indices for the insertvalue instruction in parallel with the
   1517     // requested indices
   1518     const unsigned *req_idx = idx_range.begin();
   1519     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
   1520          i != e; ++i, ++req_idx) {
   1521       if (req_idx == idx_range.end()) {
   1522         // We can't handle this without inserting insertvalues
   1523         if (!InsertBefore)
   1524           return 0;
   1525 
   1526         // The requested index identifies a part of a nested aggregate. Handle
   1527         // this specially. For example,
   1528         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
   1529         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
   1530         // %C = extractvalue {i32, { i32, i32 } } %B, 1
   1531         // This can be changed into
   1532         // %A = insertvalue {i32, i32 } undef, i32 10, 0
   1533         // %C = insertvalue {i32, i32 } %A, i32 11, 1
   1534         // which allows the unused 0,0 element from the nested struct to be
   1535         // removed.
   1536         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
   1537                                  InsertBefore);
   1538       }
   1539 
   1540       // This insert value inserts something else than what we are looking for.
   1541       // See if the (aggregrate) value inserted into has the value we are
   1542       // looking for, then.
   1543       if (*req_idx != *i)
   1544         return FindInsertedValue(I->getAggregateOperand(), idx_range,
   1545                                  InsertBefore);
   1546     }
   1547     // If we end up here, the indices of the insertvalue match with those
   1548     // requested (though possibly only partially). Now we recursively look at
   1549     // the inserted value, passing any remaining indices.
   1550     return FindInsertedValue(I->getInsertedValueOperand(),
   1551                              makeArrayRef(req_idx, idx_range.end()),
   1552                              InsertBefore);
   1553   }
   1554 
   1555   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
   1556     // If we're extracting a value from an aggregrate that was extracted from
   1557     // something else, we can extract from that something else directly instead.
   1558     // However, we will need to chain I's indices with the requested indices.
   1559 
   1560     // Calculate the number of indices required
   1561     unsigned size = I->getNumIndices() + idx_range.size();
   1562     // Allocate some space to put the new indices in
   1563     SmallVector<unsigned, 5> Idxs;
   1564     Idxs.reserve(size);
   1565     // Add indices from the extract value instruction
   1566     Idxs.append(I->idx_begin(), I->idx_end());
   1567 
   1568     // Add requested indices
   1569     Idxs.append(idx_range.begin(), idx_range.end());
   1570 
   1571     assert(Idxs.size() == size
   1572            && "Number of indices added not correct?");
   1573 
   1574     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
   1575   }
   1576   // Otherwise, we don't know (such as, extracting from a function return value
   1577   // or load instruction)
   1578   return 0;
   1579 }
   1580 
   1581 /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
   1582 /// it can be expressed as a base pointer plus a constant offset.  Return the
   1583 /// base and offset to the caller.
   1584 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
   1585                                               const TargetData &TD) {
   1586   Operator *PtrOp = dyn_cast<Operator>(Ptr);
   1587   if (PtrOp == 0 || Ptr->getType()->isVectorTy())
   1588     return Ptr;
   1589 
   1590   // Just look through bitcasts.
   1591   if (PtrOp->getOpcode() == Instruction::BitCast)
   1592     return GetPointerBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
   1593 
   1594   // If this is a GEP with constant indices, we can look through it.
   1595   GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
   1596   if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
   1597 
   1598   gep_type_iterator GTI = gep_type_begin(GEP);
   1599   for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
   1600        ++I, ++GTI) {
   1601     ConstantInt *OpC = cast<ConstantInt>(*I);
   1602     if (OpC->isZero()) continue;
   1603 
   1604     // Handle a struct and array indices which add their offset to the pointer.
   1605     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
   1606       Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
   1607     } else {
   1608       uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
   1609       Offset += OpC->getSExtValue()*Size;
   1610     }
   1611   }
   1612 
   1613   // Re-sign extend from the pointer size if needed to get overflow edge cases
   1614   // right.
   1615   unsigned PtrSize = TD.getPointerSizeInBits();
   1616   if (PtrSize < 64)
   1617     Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
   1618 
   1619   return GetPointerBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
   1620 }
   1621 
   1622 
   1623 /// getConstantStringInfo - This function computes the length of a
   1624 /// null-terminated C string pointed to by V.  If successful, it returns true
   1625 /// and returns the string in Str.  If unsuccessful, it returns false.
   1626 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
   1627                                  uint64_t Offset, bool TrimAtNul) {
   1628   assert(V);
   1629 
   1630   // Look through bitcast instructions and geps.
   1631   V = V->stripPointerCasts();
   1632 
   1633   // If the value is a GEP instructionor  constant expression, treat it as an
   1634   // offset.
   1635   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
   1636     // Make sure the GEP has exactly three arguments.
   1637     if (GEP->getNumOperands() != 3)
   1638       return false;
   1639 
   1640     // Make sure the index-ee is a pointer to array of i8.
   1641     PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
   1642     ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
   1643     if (AT == 0 || !AT->getElementType()->isIntegerTy(8))
   1644       return false;
   1645 
   1646     // Check to make sure that the first operand of the GEP is an integer and
   1647     // has value 0 so that we are sure we're indexing into the initializer.
   1648     const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
   1649     if (FirstIdx == 0 || !FirstIdx->isZero())
   1650       return false;
   1651 
   1652     // If the second index isn't a ConstantInt, then this is a variable index
   1653     // into the array.  If this occurs, we can't say anything meaningful about
   1654     // the string.
   1655     uint64_t StartIdx = 0;
   1656     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
   1657       StartIdx = CI->getZExtValue();
   1658     else
   1659       return false;
   1660     return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset);
   1661   }
   1662 
   1663   // The GEP instruction, constant or instruction, must reference a global
   1664   // variable that is a constant and is initialized. The referenced constant
   1665   // initializer is the array that we'll use for optimization.
   1666   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
   1667   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
   1668     return false;
   1669 
   1670   // Handle the all-zeros case
   1671   if (GV->getInitializer()->isNullValue()) {
   1672     // This is a degenerate case. The initializer is constant zero so the
   1673     // length of the string must be zero.
   1674     Str = "";
   1675     return true;
   1676   }
   1677 
   1678   // Must be a Constant Array
   1679   const ConstantDataArray *Array =
   1680     dyn_cast<ConstantDataArray>(GV->getInitializer());
   1681   if (Array == 0 || !Array->isString())
   1682     return false;
   1683 
   1684   // Get the number of elements in the array
   1685   uint64_t NumElts = Array->getType()->getArrayNumElements();
   1686 
   1687   // Start out with the entire array in the StringRef.
   1688   Str = Array->getAsString();
   1689 
   1690   if (Offset > NumElts)
   1691     return false;
   1692 
   1693   // Skip over 'offset' bytes.
   1694   Str = Str.substr(Offset);
   1695 
   1696   if (TrimAtNul) {
   1697     // Trim off the \0 and anything after it.  If the array is not nul
   1698     // terminated, we just return the whole end of string.  The client may know
   1699     // some other way that the string is length-bound.
   1700     Str = Str.substr(0, Str.find('\0'));
   1701   }
   1702   return true;
   1703 }
   1704 
   1705 // These next two are very similar to the above, but also look through PHI
   1706 // nodes.
   1707 // TODO: See if we can integrate these two together.
   1708 
   1709 /// GetStringLengthH - If we can compute the length of the string pointed to by
   1710 /// the specified pointer, return 'len+1'.  If we can't, return 0.
   1711 static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
   1712   // Look through noop bitcast instructions.
   1713   V = V->stripPointerCasts();
   1714 
   1715   // If this is a PHI node, there are two cases: either we have already seen it
   1716   // or we haven't.
   1717   if (PHINode *PN = dyn_cast<PHINode>(V)) {
   1718     if (!PHIs.insert(PN))
   1719       return ~0ULL;  // already in the set.
   1720 
   1721     // If it was new, see if all the input strings are the same length.
   1722     uint64_t LenSoFar = ~0ULL;
   1723     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1724       uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
   1725       if (Len == 0) return 0; // Unknown length -> unknown.
   1726 
   1727       if (Len == ~0ULL) continue;
   1728 
   1729       if (Len != LenSoFar && LenSoFar != ~0ULL)
   1730         return 0;    // Disagree -> unknown.
   1731       LenSoFar = Len;
   1732     }
   1733 
   1734     // Success, all agree.
   1735     return LenSoFar;
   1736   }
   1737 
   1738   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
   1739   if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
   1740     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
   1741     if (Len1 == 0) return 0;
   1742     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
   1743     if (Len2 == 0) return 0;
   1744     if (Len1 == ~0ULL) return Len2;
   1745     if (Len2 == ~0ULL) return Len1;
   1746     if (Len1 != Len2) return 0;
   1747     return Len1;
   1748   }
   1749 
   1750   // Otherwise, see if we can read the string.
   1751   StringRef StrData;
   1752   if (!getConstantStringInfo(V, StrData))
   1753     return 0;
   1754 
   1755   return StrData.size()+1;
   1756 }
   1757 
   1758 /// GetStringLength - If we can compute the length of the string pointed to by
   1759 /// the specified pointer, return 'len+1'.  If we can't, return 0.
   1760 uint64_t llvm::GetStringLength(Value *V) {
   1761   if (!V->getType()->isPointerTy()) return 0;
   1762 
   1763   SmallPtrSet<PHINode*, 32> PHIs;
   1764   uint64_t Len = GetStringLengthH(V, PHIs);
   1765   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
   1766   // an empty string as a length.
   1767   return Len == ~0ULL ? 1 : Len;
   1768 }
   1769 
   1770 Value *
   1771 llvm::GetUnderlyingObject(Value *V, const TargetData *TD, unsigned MaxLookup) {
   1772   if (!V->getType()->isPointerTy())
   1773     return V;
   1774   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
   1775     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
   1776       V = GEP->getPointerOperand();
   1777     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
   1778       V = cast<Operator>(V)->getOperand(0);
   1779     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
   1780       if (GA->mayBeOverridden())
   1781         return V;
   1782       V = GA->getAliasee();
   1783     } else {
   1784       // See if InstructionSimplify knows any relevant tricks.
   1785       if (Instruction *I = dyn_cast<Instruction>(V))
   1786         // TODO: Acquire a DominatorTree and use it.
   1787         if (Value *Simplified = SimplifyInstruction(I, TD, 0)) {
   1788           V = Simplified;
   1789           continue;
   1790         }
   1791 
   1792       return V;
   1793     }
   1794     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
   1795   }
   1796   return V;
   1797 }
   1798 
   1799 /// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer
   1800 /// are lifetime markers.
   1801 ///
   1802 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
   1803   for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
   1804        UI != UE; ++UI) {
   1805     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI);
   1806     if (!II) return false;
   1807 
   1808     if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
   1809         II->getIntrinsicID() != Intrinsic::lifetime_end)
   1810       return false;
   1811   }
   1812   return true;
   1813 }
   1814 
   1815 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
   1816                                         const TargetData *TD) {
   1817   const Operator *Inst = dyn_cast<Operator>(V);
   1818   if (!Inst)
   1819     return false;
   1820 
   1821   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
   1822     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
   1823       if (C->canTrap())
   1824         return false;
   1825 
   1826   switch (Inst->getOpcode()) {
   1827   default:
   1828     return true;
   1829   case Instruction::UDiv:
   1830   case Instruction::URem:
   1831     // x / y is undefined if y == 0, but calcuations like x / 3 are safe.
   1832     return isKnownNonZero(Inst->getOperand(1), TD);
   1833   case Instruction::SDiv:
   1834   case Instruction::SRem: {
   1835     Value *Op = Inst->getOperand(1);
   1836     // x / y is undefined if y == 0
   1837     if (!isKnownNonZero(Op, TD))
   1838       return false;
   1839     // x / y might be undefined if y == -1
   1840     unsigned BitWidth = getBitWidth(Op->getType(), TD);
   1841     if (BitWidth == 0)
   1842       return false;
   1843     APInt KnownZero(BitWidth, 0);
   1844     APInt KnownOne(BitWidth, 0);
   1845     ComputeMaskedBits(Op, KnownZero, KnownOne, TD);
   1846     return !!KnownZero;
   1847   }
   1848   case Instruction::Load: {
   1849     const LoadInst *LI = cast<LoadInst>(Inst);
   1850     if (!LI->isUnordered())
   1851       return false;
   1852     return LI->getPointerOperand()->isDereferenceablePointer();
   1853   }
   1854   case Instruction::Call: {
   1855    if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
   1856      switch (II->getIntrinsicID()) {
   1857        // These synthetic intrinsics have no side-effects, and just mark
   1858        // information about their operands.
   1859        // FIXME: There are other no-op synthetic instructions that potentially
   1860        // should be considered at least *safe* to speculate...
   1861        case Intrinsic::dbg_declare:
   1862        case Intrinsic::dbg_value:
   1863          return true;
   1864 
   1865        case Intrinsic::bswap:
   1866        case Intrinsic::ctlz:
   1867        case Intrinsic::ctpop:
   1868        case Intrinsic::cttz:
   1869        case Intrinsic::objectsize:
   1870        case Intrinsic::sadd_with_overflow:
   1871        case Intrinsic::smul_with_overflow:
   1872        case Intrinsic::ssub_with_overflow:
   1873        case Intrinsic::uadd_with_overflow:
   1874        case Intrinsic::umul_with_overflow:
   1875        case Intrinsic::usub_with_overflow:
   1876          return true;
   1877        // TODO: some fp intrinsics are marked as having the same error handling
   1878        // as libm. They're safe to speculate when they won't error.
   1879        // TODO: are convert_{from,to}_fp16 safe?
   1880        // TODO: can we list target-specific intrinsics here?
   1881        default: break;
   1882      }
   1883    }
   1884     return false; // The called function could have undefined behavior or
   1885                   // side-effects, even if marked readnone nounwind.
   1886   }
   1887   case Instruction::VAArg:
   1888   case Instruction::Alloca:
   1889   case Instruction::Invoke:
   1890   case Instruction::PHI:
   1891   case Instruction::Store:
   1892   case Instruction::Ret:
   1893   case Instruction::Br:
   1894   case Instruction::IndirectBr:
   1895   case Instruction::Switch:
   1896   case Instruction::Unreachable:
   1897   case Instruction::Fence:
   1898   case Instruction::LandingPad:
   1899   case Instruction::AtomicRMW:
   1900   case Instruction::AtomicCmpXchg:
   1901   case Instruction::Resume:
   1902     return false; // Misc instructions which have effects
   1903   }
   1904 }
   1905