Home | History | Annotate | Download | only in CodeGen
      1 //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the LiveVariable analysis pass.  For each machine
     11 // instruction in the function, this pass calculates the set of registers that
     12 // are immediately dead after the instruction (i.e., the instruction calculates
     13 // the value, but it is never used) and the set of registers that are used by
     14 // the instruction, but are never used after the instruction (i.e., they are
     15 // killed).
     16 //
     17 // This class computes live variables using a sparse implementation based on
     18 // the machine code SSA form.  This class computes live variable information for
     19 // each virtual and _register allocatable_ physical register in a function.  It
     20 // uses the dominance properties of SSA form to efficiently compute live
     21 // variables for virtual registers, and assumes that physical registers are only
     22 // live within a single basic block (allowing it to do a single local analysis
     23 // to resolve physical register lifetimes in each basic block).  If a physical
     24 // register is not register allocatable, it is not tracked.  This is useful for
     25 // things like the stack pointer and condition codes.
     26 //
     27 //===----------------------------------------------------------------------===//
     28 
     29 #include "llvm/CodeGen/LiveVariables.h"
     30 #include "llvm/CodeGen/MachineInstr.h"
     31 #include "llvm/CodeGen/MachineRegisterInfo.h"
     32 #include "llvm/CodeGen/Passes.h"
     33 #include "llvm/Support/Debug.h"
     34 #include "llvm/Target/TargetInstrInfo.h"
     35 #include "llvm/Target/TargetMachine.h"
     36 #include "llvm/Support/ErrorHandling.h"
     37 #include "llvm/ADT/DepthFirstIterator.h"
     38 #include "llvm/ADT/SmallPtrSet.h"
     39 #include "llvm/ADT/SmallSet.h"
     40 #include "llvm/ADT/STLExtras.h"
     41 #include <algorithm>
     42 using namespace llvm;
     43 
     44 char LiveVariables::ID = 0;
     45 char &llvm::LiveVariablesID = LiveVariables::ID;
     46 INITIALIZE_PASS_BEGIN(LiveVariables, "livevars",
     47                 "Live Variable Analysis", false, false)
     48 INITIALIZE_PASS_DEPENDENCY(UnreachableMachineBlockElim)
     49 INITIALIZE_PASS_END(LiveVariables, "livevars",
     50                 "Live Variable Analysis", false, false)
     51 
     52 
     53 void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const {
     54   AU.addRequiredID(UnreachableMachineBlockElimID);
     55   AU.setPreservesAll();
     56   MachineFunctionPass::getAnalysisUsage(AU);
     57 }
     58 
     59 MachineInstr *
     60 LiveVariables::VarInfo::findKill(const MachineBasicBlock *MBB) const {
     61   for (unsigned i = 0, e = Kills.size(); i != e; ++i)
     62     if (Kills[i]->getParent() == MBB)
     63       return Kills[i];
     64   return NULL;
     65 }
     66 
     67 void LiveVariables::VarInfo::dump() const {
     68   dbgs() << "  Alive in blocks: ";
     69   for (SparseBitVector<>::iterator I = AliveBlocks.begin(),
     70            E = AliveBlocks.end(); I != E; ++I)
     71     dbgs() << *I << ", ";
     72   dbgs() << "\n  Killed by:";
     73   if (Kills.empty())
     74     dbgs() << " No instructions.\n";
     75   else {
     76     for (unsigned i = 0, e = Kills.size(); i != e; ++i)
     77       dbgs() << "\n    #" << i << ": " << *Kills[i];
     78     dbgs() << "\n";
     79   }
     80 }
     81 
     82 /// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg.
     83 LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
     84   assert(TargetRegisterInfo::isVirtualRegister(RegIdx) &&
     85          "getVarInfo: not a virtual register!");
     86   VirtRegInfo.grow(RegIdx);
     87   return VirtRegInfo[RegIdx];
     88 }
     89 
     90 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo,
     91                                             MachineBasicBlock *DefBlock,
     92                                             MachineBasicBlock *MBB,
     93                                     std::vector<MachineBasicBlock*> &WorkList) {
     94   unsigned BBNum = MBB->getNumber();
     95 
     96   // Check to see if this basic block is one of the killing blocks.  If so,
     97   // remove it.
     98   for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
     99     if (VRInfo.Kills[i]->getParent() == MBB) {
    100       VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
    101       break;
    102     }
    103 
    104   if (MBB == DefBlock) return;  // Terminate recursion
    105 
    106   if (VRInfo.AliveBlocks.test(BBNum))
    107     return;  // We already know the block is live
    108 
    109   // Mark the variable known alive in this bb
    110   VRInfo.AliveBlocks.set(BBNum);
    111 
    112   assert(MBB != &MF->front() && "Can't find reaching def for virtreg");
    113   WorkList.insert(WorkList.end(), MBB->pred_rbegin(), MBB->pred_rend());
    114 }
    115 
    116 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
    117                                             MachineBasicBlock *DefBlock,
    118                                             MachineBasicBlock *MBB) {
    119   std::vector<MachineBasicBlock*> WorkList;
    120   MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList);
    121 
    122   while (!WorkList.empty()) {
    123     MachineBasicBlock *Pred = WorkList.back();
    124     WorkList.pop_back();
    125     MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList);
    126   }
    127 }
    128 
    129 void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB,
    130                                      MachineInstr *MI) {
    131   assert(MRI->getVRegDef(reg) && "Register use before def!");
    132 
    133   unsigned BBNum = MBB->getNumber();
    134 
    135   VarInfo& VRInfo = getVarInfo(reg);
    136 
    137   // Check to see if this basic block is already a kill block.
    138   if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
    139     // Yes, this register is killed in this basic block already. Increase the
    140     // live range by updating the kill instruction.
    141     VRInfo.Kills.back() = MI;
    142     return;
    143   }
    144 
    145 #ifndef NDEBUG
    146   for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
    147     assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
    148 #endif
    149 
    150   // This situation can occur:
    151   //
    152   //     ,------.
    153   //     |      |
    154   //     |      v
    155   //     |   t2 = phi ... t1 ...
    156   //     |      |
    157   //     |      v
    158   //     |   t1 = ...
    159   //     |  ... = ... t1 ...
    160   //     |      |
    161   //     `------'
    162   //
    163   // where there is a use in a PHI node that's a predecessor to the defining
    164   // block. We don't want to mark all predecessors as having the value "alive"
    165   // in this case.
    166   if (MBB == MRI->getVRegDef(reg)->getParent()) return;
    167 
    168   // Add a new kill entry for this basic block. If this virtual register is
    169   // already marked as alive in this basic block, that means it is alive in at
    170   // least one of the successor blocks, it's not a kill.
    171   if (!VRInfo.AliveBlocks.test(BBNum))
    172     VRInfo.Kills.push_back(MI);
    173 
    174   // Update all dominating blocks to mark them as "known live".
    175   for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
    176          E = MBB->pred_end(); PI != E; ++PI)
    177     MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI);
    178 }
    179 
    180 void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) {
    181   VarInfo &VRInfo = getVarInfo(Reg);
    182 
    183   if (VRInfo.AliveBlocks.empty())
    184     // If vr is not alive in any block, then defaults to dead.
    185     VRInfo.Kills.push_back(MI);
    186 }
    187 
    188 /// FindLastPartialDef - Return the last partial def of the specified register.
    189 /// Also returns the sub-registers that're defined by the instruction.
    190 MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg,
    191                                             SmallSet<unsigned,4> &PartDefRegs) {
    192   unsigned LastDefReg = 0;
    193   unsigned LastDefDist = 0;
    194   MachineInstr *LastDef = NULL;
    195   for (const uint16_t *SubRegs = TRI->getSubRegisters(Reg);
    196        unsigned SubReg = *SubRegs; ++SubRegs) {
    197     MachineInstr *Def = PhysRegDef[SubReg];
    198     if (!Def)
    199       continue;
    200     unsigned Dist = DistanceMap[Def];
    201     if (Dist > LastDefDist) {
    202       LastDefReg  = SubReg;
    203       LastDef     = Def;
    204       LastDefDist = Dist;
    205     }
    206   }
    207 
    208   if (!LastDef)
    209     return 0;
    210 
    211   PartDefRegs.insert(LastDefReg);
    212   for (unsigned i = 0, e = LastDef->getNumOperands(); i != e; ++i) {
    213     MachineOperand &MO = LastDef->getOperand(i);
    214     if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
    215       continue;
    216     unsigned DefReg = MO.getReg();
    217     if (TRI->isSubRegister(Reg, DefReg)) {
    218       PartDefRegs.insert(DefReg);
    219       for (const uint16_t *SubRegs = TRI->getSubRegisters(DefReg);
    220            unsigned SubReg = *SubRegs; ++SubRegs)
    221         PartDefRegs.insert(SubReg);
    222     }
    223   }
    224   return LastDef;
    225 }
    226 
    227 /// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add
    228 /// implicit defs to a machine instruction if there was an earlier def of its
    229 /// super-register.
    230 void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
    231   MachineInstr *LastDef = PhysRegDef[Reg];
    232   // If there was a previous use or a "full" def all is well.
    233   if (!LastDef && !PhysRegUse[Reg]) {
    234     // Otherwise, the last sub-register def implicitly defines this register.
    235     // e.g.
    236     // AH =
    237     // AL = ... <imp-def EAX>, <imp-kill AH>
    238     //    = AH
    239     // ...
    240     //    = EAX
    241     // All of the sub-registers must have been defined before the use of Reg!
    242     SmallSet<unsigned, 4> PartDefRegs;
    243     MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefRegs);
    244     // If LastPartialDef is NULL, it must be using a livein register.
    245     if (LastPartialDef) {
    246       LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
    247                                                            true/*IsImp*/));
    248       PhysRegDef[Reg] = LastPartialDef;
    249       SmallSet<unsigned, 8> Processed;
    250       for (const uint16_t *SubRegs = TRI->getSubRegisters(Reg);
    251            unsigned SubReg = *SubRegs; ++SubRegs) {
    252         if (Processed.count(SubReg))
    253           continue;
    254         if (PartDefRegs.count(SubReg))
    255           continue;
    256         // This part of Reg was defined before the last partial def. It's killed
    257         // here.
    258         LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg,
    259                                                              false/*IsDef*/,
    260                                                              true/*IsImp*/));
    261         PhysRegDef[SubReg] = LastPartialDef;
    262         for (const uint16_t *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
    263           Processed.insert(*SS);
    264       }
    265     }
    266   } else if (LastDef && !PhysRegUse[Reg] &&
    267              !LastDef->findRegisterDefOperand(Reg))
    268     // Last def defines the super register, add an implicit def of reg.
    269     LastDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
    270                                                   true/*IsImp*/));
    271 
    272   // Remember this use.
    273   PhysRegUse[Reg]  = MI;
    274   for (const uint16_t *SubRegs = TRI->getSubRegisters(Reg);
    275        unsigned SubReg = *SubRegs; ++SubRegs)
    276     PhysRegUse[SubReg] =  MI;
    277 }
    278 
    279 /// FindLastRefOrPartRef - Return the last reference or partial reference of
    280 /// the specified register.
    281 MachineInstr *LiveVariables::FindLastRefOrPartRef(unsigned Reg) {
    282   MachineInstr *LastDef = PhysRegDef[Reg];
    283   MachineInstr *LastUse = PhysRegUse[Reg];
    284   if (!LastDef && !LastUse)
    285     return 0;
    286 
    287   MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
    288   unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
    289   unsigned LastPartDefDist = 0;
    290   for (const uint16_t *SubRegs = TRI->getSubRegisters(Reg);
    291        unsigned SubReg = *SubRegs; ++SubRegs) {
    292     MachineInstr *Def = PhysRegDef[SubReg];
    293     if (Def && Def != LastDef) {
    294       // There was a def of this sub-register in between. This is a partial
    295       // def, keep track of the last one.
    296       unsigned Dist = DistanceMap[Def];
    297       if (Dist > LastPartDefDist)
    298         LastPartDefDist = Dist;
    299     } else if (MachineInstr *Use = PhysRegUse[SubReg]) {
    300       unsigned Dist = DistanceMap[Use];
    301       if (Dist > LastRefOrPartRefDist) {
    302         LastRefOrPartRefDist = Dist;
    303         LastRefOrPartRef = Use;
    304       }
    305     }
    306   }
    307 
    308   return LastRefOrPartRef;
    309 }
    310 
    311 bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) {
    312   MachineInstr *LastDef = PhysRegDef[Reg];
    313   MachineInstr *LastUse = PhysRegUse[Reg];
    314   if (!LastDef && !LastUse)
    315     return false;
    316 
    317   MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
    318   unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
    319   // The whole register is used.
    320   // AL =
    321   // AH =
    322   //
    323   //    = AX
    324   //    = AL, AX<imp-use, kill>
    325   // AX =
    326   //
    327   // Or whole register is defined, but not used at all.
    328   // AX<dead> =
    329   // ...
    330   // AX =
    331   //
    332   // Or whole register is defined, but only partly used.
    333   // AX<dead> = AL<imp-def>
    334   //    = AL<kill>
    335   // AX =
    336   MachineInstr *LastPartDef = 0;
    337   unsigned LastPartDefDist = 0;
    338   SmallSet<unsigned, 8> PartUses;
    339   for (const uint16_t *SubRegs = TRI->getSubRegisters(Reg);
    340        unsigned SubReg = *SubRegs; ++SubRegs) {
    341     MachineInstr *Def = PhysRegDef[SubReg];
    342     if (Def && Def != LastDef) {
    343       // There was a def of this sub-register in between. This is a partial
    344       // def, keep track of the last one.
    345       unsigned Dist = DistanceMap[Def];
    346       if (Dist > LastPartDefDist) {
    347         LastPartDefDist = Dist;
    348         LastPartDef = Def;
    349       }
    350       continue;
    351     }
    352     if (MachineInstr *Use = PhysRegUse[SubReg]) {
    353       PartUses.insert(SubReg);
    354       for (const uint16_t *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
    355         PartUses.insert(*SS);
    356       unsigned Dist = DistanceMap[Use];
    357       if (Dist > LastRefOrPartRefDist) {
    358         LastRefOrPartRefDist = Dist;
    359         LastRefOrPartRef = Use;
    360       }
    361     }
    362   }
    363 
    364   if (!PhysRegUse[Reg]) {
    365     // Partial uses. Mark register def dead and add implicit def of
    366     // sub-registers which are used.
    367     // EAX<dead>  = op  AL<imp-def>
    368     // That is, EAX def is dead but AL def extends pass it.
    369     PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true);
    370     for (const uint16_t *SubRegs = TRI->getSubRegisters(Reg);
    371          unsigned SubReg = *SubRegs; ++SubRegs) {
    372       if (!PartUses.count(SubReg))
    373         continue;
    374       bool NeedDef = true;
    375       if (PhysRegDef[Reg] == PhysRegDef[SubReg]) {
    376         MachineOperand *MO = PhysRegDef[Reg]->findRegisterDefOperand(SubReg);
    377         if (MO) {
    378           NeedDef = false;
    379           assert(!MO->isDead());
    380         }
    381       }
    382       if (NeedDef)
    383         PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg,
    384                                                  true/*IsDef*/, true/*IsImp*/));
    385       MachineInstr *LastSubRef = FindLastRefOrPartRef(SubReg);
    386       if (LastSubRef)
    387         LastSubRef->addRegisterKilled(SubReg, TRI, true);
    388       else {
    389         LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true);
    390         PhysRegUse[SubReg] = LastRefOrPartRef;
    391         for (const uint16_t *SSRegs = TRI->getSubRegisters(SubReg);
    392              unsigned SSReg = *SSRegs; ++SSRegs)
    393           PhysRegUse[SSReg] = LastRefOrPartRef;
    394       }
    395       for (const uint16_t *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
    396         PartUses.erase(*SS);
    397     }
    398   } else if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI) {
    399     if (LastPartDef)
    400       // The last partial def kills the register.
    401       LastPartDef->addOperand(MachineOperand::CreateReg(Reg, false/*IsDef*/,
    402                                                 true/*IsImp*/, true/*IsKill*/));
    403     else {
    404       MachineOperand *MO =
    405         LastRefOrPartRef->findRegisterDefOperand(Reg, false, TRI);
    406       bool NeedEC = MO->isEarlyClobber() && MO->getReg() != Reg;
    407       // If the last reference is the last def, then it's not used at all.
    408       // That is, unless we are currently processing the last reference itself.
    409       LastRefOrPartRef->addRegisterDead(Reg, TRI, true);
    410       if (NeedEC) {
    411         // If we are adding a subreg def and the superreg def is marked early
    412         // clobber, add an early clobber marker to the subreg def.
    413         MO = LastRefOrPartRef->findRegisterDefOperand(Reg);
    414         if (MO)
    415           MO->setIsEarlyClobber();
    416       }
    417     }
    418   } else
    419     LastRefOrPartRef->addRegisterKilled(Reg, TRI, true);
    420   return true;
    421 }
    422 
    423 void LiveVariables::HandleRegMask(const MachineOperand &MO) {
    424   // Call HandlePhysRegKill() for all live registers clobbered by Mask.
    425   // Clobbered registers are always dead, sp there is no need to use
    426   // HandlePhysRegDef().
    427   for (unsigned Reg = 1, NumRegs = TRI->getNumRegs(); Reg != NumRegs; ++Reg) {
    428     // Skip dead regs.
    429     if (!PhysRegDef[Reg] && !PhysRegUse[Reg])
    430       continue;
    431     // Skip mask-preserved regs.
    432     if (!MO.clobbersPhysReg(Reg))
    433       continue;
    434     // Kill the largest clobbered super-register.
    435     // This avoids needless implicit operands.
    436     unsigned Super = Reg;
    437     for (const uint16_t *SR = TRI->getSuperRegisters(Reg); *SR; ++SR)
    438       if ((PhysRegDef[*SR] || PhysRegUse[*SR]) && MO.clobbersPhysReg(*SR))
    439         Super = *SR;
    440     HandlePhysRegKill(Super, 0);
    441   }
    442 }
    443 
    444 void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI,
    445                                      SmallVector<unsigned, 4> &Defs) {
    446   // What parts of the register are previously defined?
    447   SmallSet<unsigned, 32> Live;
    448   if (PhysRegDef[Reg] || PhysRegUse[Reg]) {
    449     Live.insert(Reg);
    450     for (const uint16_t *SS = TRI->getSubRegisters(Reg); *SS; ++SS)
    451       Live.insert(*SS);
    452   } else {
    453     for (const uint16_t *SubRegs = TRI->getSubRegisters(Reg);
    454          unsigned SubReg = *SubRegs; ++SubRegs) {
    455       // If a register isn't itself defined, but all parts that make up of it
    456       // are defined, then consider it also defined.
    457       // e.g.
    458       // AL =
    459       // AH =
    460       //    = AX
    461       if (Live.count(SubReg))
    462         continue;
    463       if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) {
    464         Live.insert(SubReg);
    465         for (const uint16_t *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
    466           Live.insert(*SS);
    467       }
    468     }
    469   }
    470 
    471   // Start from the largest piece, find the last time any part of the register
    472   // is referenced.
    473   HandlePhysRegKill(Reg, MI);
    474   // Only some of the sub-registers are used.
    475   for (const uint16_t *SubRegs = TRI->getSubRegisters(Reg);
    476        unsigned SubReg = *SubRegs; ++SubRegs) {
    477     if (!Live.count(SubReg))
    478       // Skip if this sub-register isn't defined.
    479       continue;
    480     HandlePhysRegKill(SubReg, MI);
    481   }
    482 
    483   if (MI)
    484     Defs.push_back(Reg);  // Remember this def.
    485 }
    486 
    487 void LiveVariables::UpdatePhysRegDefs(MachineInstr *MI,
    488                                       SmallVector<unsigned, 4> &Defs) {
    489   while (!Defs.empty()) {
    490     unsigned Reg = Defs.back();
    491     Defs.pop_back();
    492     PhysRegDef[Reg]  = MI;
    493     PhysRegUse[Reg]  = NULL;
    494     for (const uint16_t *SubRegs = TRI->getSubRegisters(Reg);
    495          unsigned SubReg = *SubRegs; ++SubRegs) {
    496       PhysRegDef[SubReg]  = MI;
    497       PhysRegUse[SubReg]  = NULL;
    498     }
    499   }
    500 }
    501 
    502 bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
    503   MF = &mf;
    504   MRI = &mf.getRegInfo();
    505   TRI = MF->getTarget().getRegisterInfo();
    506 
    507   ReservedRegisters = TRI->getReservedRegs(mf);
    508 
    509   unsigned NumRegs = TRI->getNumRegs();
    510   PhysRegDef  = new MachineInstr*[NumRegs];
    511   PhysRegUse  = new MachineInstr*[NumRegs];
    512   PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()];
    513   std::fill(PhysRegDef,  PhysRegDef  + NumRegs, (MachineInstr*)0);
    514   std::fill(PhysRegUse,  PhysRegUse  + NumRegs, (MachineInstr*)0);
    515   PHIJoins.clear();
    516 
    517   // FIXME: LiveIntervals will be updated to remove its dependence on
    518   // LiveVariables to improve compilation time and eliminate bizarre pass
    519   // dependencies. Until then, we can't change much in -O0.
    520   if (!MRI->isSSA())
    521     report_fatal_error("regalloc=... not currently supported with -O0");
    522 
    523   analyzePHINodes(mf);
    524 
    525   // Calculate live variable information in depth first order on the CFG of the
    526   // function.  This guarantees that we will see the definition of a virtual
    527   // register before its uses due to dominance properties of SSA (except for PHI
    528   // nodes, which are treated as a special case).
    529   MachineBasicBlock *Entry = MF->begin();
    530   SmallPtrSet<MachineBasicBlock*,16> Visited;
    531 
    532   for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
    533          DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
    534        DFI != E; ++DFI) {
    535     MachineBasicBlock *MBB = *DFI;
    536 
    537     // Mark live-in registers as live-in.
    538     SmallVector<unsigned, 4> Defs;
    539     for (MachineBasicBlock::livein_iterator II = MBB->livein_begin(),
    540            EE = MBB->livein_end(); II != EE; ++II) {
    541       assert(TargetRegisterInfo::isPhysicalRegister(*II) &&
    542              "Cannot have a live-in virtual register!");
    543       HandlePhysRegDef(*II, 0, Defs);
    544     }
    545 
    546     // Loop over all of the instructions, processing them.
    547     DistanceMap.clear();
    548     unsigned Dist = 0;
    549     for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
    550          I != E; ++I) {
    551       MachineInstr *MI = I;
    552       if (MI->isDebugValue())
    553         continue;
    554       DistanceMap.insert(std::make_pair(MI, Dist++));
    555 
    556       // Process all of the operands of the instruction...
    557       unsigned NumOperandsToProcess = MI->getNumOperands();
    558 
    559       // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
    560       // of the uses.  They will be handled in other basic blocks.
    561       if (MI->isPHI())
    562         NumOperandsToProcess = 1;
    563 
    564       // Clear kill and dead markers. LV will recompute them.
    565       SmallVector<unsigned, 4> UseRegs;
    566       SmallVector<unsigned, 4> DefRegs;
    567       SmallVector<unsigned, 1> RegMasks;
    568       for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
    569         MachineOperand &MO = MI->getOperand(i);
    570         if (MO.isRegMask()) {
    571           RegMasks.push_back(i);
    572           continue;
    573         }
    574         if (!MO.isReg() || MO.getReg() == 0)
    575           continue;
    576         unsigned MOReg = MO.getReg();
    577         if (MO.isUse()) {
    578           MO.setIsKill(false);
    579           UseRegs.push_back(MOReg);
    580         } else /*MO.isDef()*/ {
    581           MO.setIsDead(false);
    582           DefRegs.push_back(MOReg);
    583         }
    584       }
    585 
    586       // Process all uses.
    587       for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) {
    588         unsigned MOReg = UseRegs[i];
    589         if (TargetRegisterInfo::isVirtualRegister(MOReg))
    590           HandleVirtRegUse(MOReg, MBB, MI);
    591         else if (!ReservedRegisters[MOReg])
    592           HandlePhysRegUse(MOReg, MI);
    593       }
    594 
    595       // Process all masked registers. (Call clobbers).
    596       for (unsigned i = 0, e = RegMasks.size(); i != e; ++i)
    597         HandleRegMask(MI->getOperand(RegMasks[i]));
    598 
    599       // Process all defs.
    600       for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) {
    601         unsigned MOReg = DefRegs[i];
    602         if (TargetRegisterInfo::isVirtualRegister(MOReg))
    603           HandleVirtRegDef(MOReg, MI);
    604         else if (!ReservedRegisters[MOReg])
    605           HandlePhysRegDef(MOReg, MI, Defs);
    606       }
    607       UpdatePhysRegDefs(MI, Defs);
    608     }
    609 
    610     // Handle any virtual assignments from PHI nodes which might be at the
    611     // bottom of this basic block.  We check all of our successor blocks to see
    612     // if they have PHI nodes, and if so, we simulate an assignment at the end
    613     // of the current block.
    614     if (!PHIVarInfo[MBB->getNumber()].empty()) {
    615       SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()];
    616 
    617       for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(),
    618              E = VarInfoVec.end(); I != E; ++I)
    619         // Mark it alive only in the block we are representing.
    620         MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(),
    621                                 MBB);
    622     }
    623 
    624     // Finally, if the last instruction in the block is a return, make sure to
    625     // mark it as using all of the live-out values in the function.
    626     // Things marked both call and return are tail calls; do not do this for
    627     // them.  The tail callee need not take the same registers as input
    628     // that it produces as output, and there are dependencies for its input
    629     // registers elsewhere.
    630     if (!MBB->empty() && MBB->back().isReturn()
    631         && !MBB->back().isCall()) {
    632       MachineInstr *Ret = &MBB->back();
    633 
    634       for (MachineRegisterInfo::liveout_iterator
    635            I = MF->getRegInfo().liveout_begin(),
    636            E = MF->getRegInfo().liveout_end(); I != E; ++I) {
    637         assert(TargetRegisterInfo::isPhysicalRegister(*I) &&
    638                "Cannot have a live-out virtual register!");
    639         HandlePhysRegUse(*I, Ret);
    640 
    641         // Add live-out registers as implicit uses.
    642         if (!Ret->readsRegister(*I))
    643           Ret->addOperand(MachineOperand::CreateReg(*I, false, true));
    644       }
    645     }
    646 
    647     // MachineCSE may CSE instructions which write to non-allocatable physical
    648     // registers across MBBs. Remember if any reserved register is liveout.
    649     SmallSet<unsigned, 4> LiveOuts;
    650     for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
    651            SE = MBB->succ_end(); SI != SE; ++SI) {
    652       MachineBasicBlock *SuccMBB = *SI;
    653       if (SuccMBB->isLandingPad())
    654         continue;
    655       for (MachineBasicBlock::livein_iterator LI = SuccMBB->livein_begin(),
    656              LE = SuccMBB->livein_end(); LI != LE; ++LI) {
    657         unsigned LReg = *LI;
    658         if (!TRI->isInAllocatableClass(LReg))
    659           // Ignore other live-ins, e.g. those that are live into landing pads.
    660           LiveOuts.insert(LReg);
    661       }
    662     }
    663 
    664     // Loop over PhysRegDef / PhysRegUse, killing any registers that are
    665     // available at the end of the basic block.
    666     for (unsigned i = 0; i != NumRegs; ++i)
    667       if ((PhysRegDef[i] || PhysRegUse[i]) && !LiveOuts.count(i))
    668         HandlePhysRegDef(i, 0, Defs);
    669 
    670     std::fill(PhysRegDef,  PhysRegDef  + NumRegs, (MachineInstr*)0);
    671     std::fill(PhysRegUse,  PhysRegUse  + NumRegs, (MachineInstr*)0);
    672   }
    673 
    674   // Convert and transfer the dead / killed information we have gathered into
    675   // VirtRegInfo onto MI's.
    676   for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) {
    677     const unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    678     for (unsigned j = 0, e2 = VirtRegInfo[Reg].Kills.size(); j != e2; ++j)
    679       if (VirtRegInfo[Reg].Kills[j] == MRI->getVRegDef(Reg))
    680         VirtRegInfo[Reg].Kills[j]->addRegisterDead(Reg, TRI);
    681       else
    682         VirtRegInfo[Reg].Kills[j]->addRegisterKilled(Reg, TRI);
    683   }
    684 
    685   // Check to make sure there are no unreachable blocks in the MC CFG for the
    686   // function.  If so, it is due to a bug in the instruction selector or some
    687   // other part of the code generator if this happens.
    688 #ifndef NDEBUG
    689   for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i)
    690     assert(Visited.count(&*i) != 0 && "unreachable basic block found");
    691 #endif
    692 
    693   delete[] PhysRegDef;
    694   delete[] PhysRegUse;
    695   delete[] PHIVarInfo;
    696 
    697   return false;
    698 }
    699 
    700 /// replaceKillInstruction - Update register kill info by replacing a kill
    701 /// instruction with a new one.
    702 void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI,
    703                                            MachineInstr *NewMI) {
    704   VarInfo &VI = getVarInfo(Reg);
    705   std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI);
    706 }
    707 
    708 /// removeVirtualRegistersKilled - Remove all killed info for the specified
    709 /// instruction.
    710 void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) {
    711   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    712     MachineOperand &MO = MI->getOperand(i);
    713     if (MO.isReg() && MO.isKill()) {
    714       MO.setIsKill(false);
    715       unsigned Reg = MO.getReg();
    716       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
    717         bool removed = getVarInfo(Reg).removeKill(MI);
    718         assert(removed && "kill not in register's VarInfo?");
    719         (void)removed;
    720       }
    721     }
    722   }
    723 }
    724 
    725 /// analyzePHINodes - Gather information about the PHI nodes in here. In
    726 /// particular, we want to map the variable information of a virtual register
    727 /// which is used in a PHI node. We map that to the BB the vreg is coming from.
    728 ///
    729 void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
    730   for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
    731        I != E; ++I)
    732     for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
    733          BBI != BBE && BBI->isPHI(); ++BBI)
    734       for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
    735         PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()]
    736           .push_back(BBI->getOperand(i).getReg());
    737 }
    738 
    739 bool LiveVariables::VarInfo::isLiveIn(const MachineBasicBlock &MBB,
    740                                       unsigned Reg,
    741                                       MachineRegisterInfo &MRI) {
    742   unsigned Num = MBB.getNumber();
    743 
    744   // Reg is live-through.
    745   if (AliveBlocks.test(Num))
    746     return true;
    747 
    748   // Registers defined in MBB cannot be live in.
    749   const MachineInstr *Def = MRI.getVRegDef(Reg);
    750   if (Def && Def->getParent() == &MBB)
    751     return false;
    752 
    753  // Reg was not defined in MBB, was it killed here?
    754   return findKill(&MBB);
    755 }
    756 
    757 bool LiveVariables::isLiveOut(unsigned Reg, const MachineBasicBlock &MBB) {
    758   LiveVariables::VarInfo &VI = getVarInfo(Reg);
    759 
    760   // Loop over all of the successors of the basic block, checking to see if
    761   // the value is either live in the block, or if it is killed in the block.
    762   SmallVector<MachineBasicBlock*, 8> OpSuccBlocks;
    763   for (MachineBasicBlock::const_succ_iterator SI = MBB.succ_begin(),
    764          E = MBB.succ_end(); SI != E; ++SI) {
    765     MachineBasicBlock *SuccMBB = *SI;
    766 
    767     // Is it alive in this successor?
    768     unsigned SuccIdx = SuccMBB->getNumber();
    769     if (VI.AliveBlocks.test(SuccIdx))
    770       return true;
    771     OpSuccBlocks.push_back(SuccMBB);
    772   }
    773 
    774   // Check to see if this value is live because there is a use in a successor
    775   // that kills it.
    776   switch (OpSuccBlocks.size()) {
    777   case 1: {
    778     MachineBasicBlock *SuccMBB = OpSuccBlocks[0];
    779     for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
    780       if (VI.Kills[i]->getParent() == SuccMBB)
    781         return true;
    782     break;
    783   }
    784   case 2: {
    785     MachineBasicBlock *SuccMBB1 = OpSuccBlocks[0], *SuccMBB2 = OpSuccBlocks[1];
    786     for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
    787       if (VI.Kills[i]->getParent() == SuccMBB1 ||
    788           VI.Kills[i]->getParent() == SuccMBB2)
    789         return true;
    790     break;
    791   }
    792   default:
    793     std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
    794     for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
    795       if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
    796                              VI.Kills[i]->getParent()))
    797         return true;
    798   }
    799   return false;
    800 }
    801 
    802 /// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All
    803 /// variables that are live out of DomBB will be marked as passing live through
    804 /// BB.
    805 void LiveVariables::addNewBlock(MachineBasicBlock *BB,
    806                                 MachineBasicBlock *DomBB,
    807                                 MachineBasicBlock *SuccBB) {
    808   const unsigned NumNew = BB->getNumber();
    809 
    810   // All registers used by PHI nodes in SuccBB must be live through BB.
    811   for (MachineBasicBlock::iterator BBI = SuccBB->begin(),
    812          BBE = SuccBB->end(); BBI != BBE && BBI->isPHI(); ++BBI)
    813     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
    814       if (BBI->getOperand(i+1).getMBB() == BB)
    815         getVarInfo(BBI->getOperand(i).getReg()).AliveBlocks.set(NumNew);
    816 
    817   // Update info for all live variables
    818   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    819     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    820     VarInfo &VI = getVarInfo(Reg);
    821     if (!VI.AliveBlocks.test(NumNew) && VI.isLiveIn(*SuccBB, Reg, *MRI))
    822       VI.AliveBlocks.set(NumNew);
    823   }
    824 }
    825