Home | History | Annotate | Download | only in IPO
      1 //===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass promotes "by reference" arguments to be "by value" arguments.  In
     11 // practice, this means looking for internal functions that have pointer
     12 // arguments.  If it can prove, through the use of alias analysis, that an
     13 // argument is *only* loaded, then it can pass the value into the function
     14 // instead of the address of the value.  This can cause recursive simplification
     15 // of code and lead to the elimination of allocas (especially in C++ template
     16 // code like the STL).
     17 //
     18 // This pass also handles aggregate arguments that are passed into a function,
     19 // scalarizing them if the elements of the aggregate are only loaded.  Note that
     20 // by default it refuses to scalarize aggregates which would require passing in
     21 // more than three operands to the function, because passing thousands of
     22 // operands for a large array or structure is unprofitable! This limit can be
     23 // configured or disabled, however.
     24 //
     25 // Note that this transformation could also be done for arguments that are only
     26 // stored to (returning the value instead), but does not currently.  This case
     27 // would be best handled when and if LLVM begins supporting multiple return
     28 // values from functions.
     29 //
     30 //===----------------------------------------------------------------------===//
     31 
     32 #define DEBUG_TYPE "argpromotion"
     33 #include "llvm/Transforms/IPO.h"
     34 #include "llvm/Constants.h"
     35 #include "llvm/DerivedTypes.h"
     36 #include "llvm/Module.h"
     37 #include "llvm/CallGraphSCCPass.h"
     38 #include "llvm/Instructions.h"
     39 #include "llvm/LLVMContext.h"
     40 #include "llvm/Analysis/AliasAnalysis.h"
     41 #include "llvm/Analysis/CallGraph.h"
     42 #include "llvm/Support/CallSite.h"
     43 #include "llvm/Support/CFG.h"
     44 #include "llvm/Support/Debug.h"
     45 #include "llvm/Support/raw_ostream.h"
     46 #include "llvm/ADT/DepthFirstIterator.h"
     47 #include "llvm/ADT/Statistic.h"
     48 #include "llvm/ADT/StringExtras.h"
     49 #include <set>
     50 using namespace llvm;
     51 
     52 STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted");
     53 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
     54 STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted");
     55 STATISTIC(NumArgumentsDead     , "Number of dead pointer args eliminated");
     56 
     57 namespace {
     58   /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
     59   ///
     60   struct ArgPromotion : public CallGraphSCCPass {
     61     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     62       AU.addRequired<AliasAnalysis>();
     63       CallGraphSCCPass::getAnalysisUsage(AU);
     64     }
     65 
     66     virtual bool runOnSCC(CallGraphSCC &SCC);
     67     static char ID; // Pass identification, replacement for typeid
     68     explicit ArgPromotion(unsigned maxElements = 3)
     69         : CallGraphSCCPass(ID), maxElements(maxElements) {
     70       initializeArgPromotionPass(*PassRegistry::getPassRegistry());
     71     }
     72 
     73     /// A vector used to hold the indices of a single GEP instruction
     74     typedef std::vector<uint64_t> IndicesVector;
     75 
     76   private:
     77     CallGraphNode *PromoteArguments(CallGraphNode *CGN);
     78     bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const;
     79     CallGraphNode *DoPromotion(Function *F,
     80                                SmallPtrSet<Argument*, 8> &ArgsToPromote,
     81                                SmallPtrSet<Argument*, 8> &ByValArgsToTransform);
     82     /// The maximum number of elements to expand, or 0 for unlimited.
     83     unsigned maxElements;
     84   };
     85 }
     86 
     87 char ArgPromotion::ID = 0;
     88 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
     89                 "Promote 'by reference' arguments to scalars", false, false)
     90 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
     91 INITIALIZE_AG_DEPENDENCY(CallGraph)
     92 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
     93                 "Promote 'by reference' arguments to scalars", false, false)
     94 
     95 Pass *llvm::createArgumentPromotionPass(unsigned maxElements) {
     96   return new ArgPromotion(maxElements);
     97 }
     98 
     99 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
    100   bool Changed = false, LocalChange;
    101 
    102   do {  // Iterate until we stop promoting from this SCC.
    103     LocalChange = false;
    104     // Attempt to promote arguments from all functions in this SCC.
    105     for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
    106       if (CallGraphNode *CGN = PromoteArguments(*I)) {
    107         LocalChange = true;
    108         SCC.ReplaceNode(*I, CGN);
    109       }
    110     }
    111     Changed |= LocalChange;               // Remember that we changed something.
    112   } while (LocalChange);
    113 
    114   return Changed;
    115 }
    116 
    117 /// PromoteArguments - This method checks the specified function to see if there
    118 /// are any promotable arguments and if it is safe to promote the function (for
    119 /// example, all callers are direct).  If safe to promote some arguments, it
    120 /// calls the DoPromotion method.
    121 ///
    122 CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
    123   Function *F = CGN->getFunction();
    124 
    125   // Make sure that it is local to this module.
    126   if (!F || !F->hasLocalLinkage()) return 0;
    127 
    128   // First check: see if there are any pointer arguments!  If not, quick exit.
    129   SmallVector<std::pair<Argument*, unsigned>, 16> PointerArgs;
    130   unsigned ArgNo = 0;
    131   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
    132        I != E; ++I, ++ArgNo)
    133     if (I->getType()->isPointerTy())
    134       PointerArgs.push_back(std::pair<Argument*, unsigned>(I, ArgNo));
    135   if (PointerArgs.empty()) return 0;
    136 
    137   // Second check: make sure that all callers are direct callers.  We can't
    138   // transform functions that have indirect callers.  Also see if the function
    139   // is self-recursive.
    140   bool isSelfRecursive = false;
    141   for (Value::use_iterator UI = F->use_begin(), E = F->use_end();
    142        UI != E; ++UI) {
    143     CallSite CS(*UI);
    144     // Must be a direct call.
    145     if (CS.getInstruction() == 0 || !CS.isCallee(UI)) return 0;
    146 
    147     if (CS.getInstruction()->getParent()->getParent() == F)
    148       isSelfRecursive = true;
    149   }
    150 
    151   // Check to see which arguments are promotable.  If an argument is promotable,
    152   // add it to ArgsToPromote.
    153   SmallPtrSet<Argument*, 8> ArgsToPromote;
    154   SmallPtrSet<Argument*, 8> ByValArgsToTransform;
    155   for (unsigned i = 0; i != PointerArgs.size(); ++i) {
    156     bool isByVal = F->paramHasAttr(PointerArgs[i].second+1, Attribute::ByVal);
    157     Argument *PtrArg = PointerArgs[i].first;
    158     Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
    159 
    160     // If this is a byval argument, and if the aggregate type is small, just
    161     // pass the elements, which is always safe.
    162     if (isByVal) {
    163       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
    164         if (maxElements > 0 && STy->getNumElements() > maxElements) {
    165           DEBUG(dbgs() << "argpromotion disable promoting argument '"
    166                 << PtrArg->getName() << "' because it would require adding more"
    167                 << " than " << maxElements << " arguments to the function.\n");
    168           continue;
    169         }
    170 
    171         // If all the elements are single-value types, we can promote it.
    172         bool AllSimple = true;
    173         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    174           if (!STy->getElementType(i)->isSingleValueType()) {
    175             AllSimple = false;
    176             break;
    177           }
    178         }
    179 
    180         // Safe to transform, don't even bother trying to "promote" it.
    181         // Passing the elements as a scalar will allow scalarrepl to hack on
    182         // the new alloca we introduce.
    183         if (AllSimple) {
    184           ByValArgsToTransform.insert(PtrArg);
    185           continue;
    186         }
    187       }
    188     }
    189 
    190     // If the argument is a recursive type and we're in a recursive
    191     // function, we could end up infinitely peeling the function argument.
    192     if (isSelfRecursive) {
    193       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
    194         bool RecursiveType = false;
    195         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    196           if (STy->getElementType(i) == PtrArg->getType()) {
    197             RecursiveType = true;
    198             break;
    199           }
    200         }
    201         if (RecursiveType)
    202           continue;
    203       }
    204     }
    205 
    206     // Otherwise, see if we can promote the pointer to its value.
    207     if (isSafeToPromoteArgument(PtrArg, isByVal))
    208       ArgsToPromote.insert(PtrArg);
    209   }
    210 
    211   // No promotable pointer arguments.
    212   if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
    213     return 0;
    214 
    215   return DoPromotion(F, ArgsToPromote, ByValArgsToTransform);
    216 }
    217 
    218 /// AllCallersPassInValidPointerForArgument - Return true if we can prove that
    219 /// all callees pass in a valid pointer for the specified function argument.
    220 static bool AllCallersPassInValidPointerForArgument(Argument *Arg) {
    221   Function *Callee = Arg->getParent();
    222 
    223   unsigned ArgNo = std::distance(Callee->arg_begin(),
    224                                  Function::arg_iterator(Arg));
    225 
    226   // Look at all call sites of the function.  At this pointer we know we only
    227   // have direct callees.
    228   for (Value::use_iterator UI = Callee->use_begin(), E = Callee->use_end();
    229        UI != E; ++UI) {
    230     CallSite CS(*UI);
    231     assert(CS && "Should only have direct calls!");
    232 
    233     if (!CS.getArgument(ArgNo)->isDereferenceablePointer())
    234       return false;
    235   }
    236   return true;
    237 }
    238 
    239 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
    240 /// that is greater than or equal to the size of prefix, and each of the
    241 /// elements in Prefix is the same as the corresponding elements in Longer.
    242 ///
    243 /// This means it also returns true when Prefix and Longer are equal!
    244 static bool IsPrefix(const ArgPromotion::IndicesVector &Prefix,
    245                      const ArgPromotion::IndicesVector &Longer) {
    246   if (Prefix.size() > Longer.size())
    247     return false;
    248   for (unsigned i = 0, e = Prefix.size(); i != e; ++i)
    249     if (Prefix[i] != Longer[i])
    250       return false;
    251   return true;
    252 }
    253 
    254 
    255 /// Checks if Indices, or a prefix of Indices, is in Set.
    256 static bool PrefixIn(const ArgPromotion::IndicesVector &Indices,
    257                      std::set<ArgPromotion::IndicesVector> &Set) {
    258     std::set<ArgPromotion::IndicesVector>::iterator Low;
    259     Low = Set.upper_bound(Indices);
    260     if (Low != Set.begin())
    261       Low--;
    262     // Low is now the last element smaller than or equal to Indices. This means
    263     // it points to a prefix of Indices (possibly Indices itself), if such
    264     // prefix exists.
    265     //
    266     // This load is safe if any prefix of its operands is safe to load.
    267     return Low != Set.end() && IsPrefix(*Low, Indices);
    268 }
    269 
    270 /// Mark the given indices (ToMark) as safe in the given set of indices
    271 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
    272 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
    273 /// already. Furthermore, any indices that Indices is itself a prefix of, are
    274 /// removed from Safe (since they are implicitely safe because of Indices now).
    275 static void MarkIndicesSafe(const ArgPromotion::IndicesVector &ToMark,
    276                             std::set<ArgPromotion::IndicesVector> &Safe) {
    277   std::set<ArgPromotion::IndicesVector>::iterator Low;
    278   Low = Safe.upper_bound(ToMark);
    279   // Guard against the case where Safe is empty
    280   if (Low != Safe.begin())
    281     Low--;
    282   // Low is now the last element smaller than or equal to Indices. This
    283   // means it points to a prefix of Indices (possibly Indices itself), if
    284   // such prefix exists.
    285   if (Low != Safe.end()) {
    286     if (IsPrefix(*Low, ToMark))
    287       // If there is already a prefix of these indices (or exactly these
    288       // indices) marked a safe, don't bother adding these indices
    289       return;
    290 
    291     // Increment Low, so we can use it as a "insert before" hint
    292     ++Low;
    293   }
    294   // Insert
    295   Low = Safe.insert(Low, ToMark);
    296   ++Low;
    297   // If there we're a prefix of longer index list(s), remove those
    298   std::set<ArgPromotion::IndicesVector>::iterator End = Safe.end();
    299   while (Low != End && IsPrefix(ToMark, *Low)) {
    300     std::set<ArgPromotion::IndicesVector>::iterator Remove = Low;
    301     ++Low;
    302     Safe.erase(Remove);
    303   }
    304 }
    305 
    306 /// isSafeToPromoteArgument - As you might guess from the name of this method,
    307 /// it checks to see if it is both safe and useful to promote the argument.
    308 /// This method limits promotion of aggregates to only promote up to three
    309 /// elements of the aggregate in order to avoid exploding the number of
    310 /// arguments passed in.
    311 bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, bool isByVal) const {
    312   typedef std::set<IndicesVector> GEPIndicesSet;
    313 
    314   // Quick exit for unused arguments
    315   if (Arg->use_empty())
    316     return true;
    317 
    318   // We can only promote this argument if all of the uses are loads, or are GEP
    319   // instructions (with constant indices) that are subsequently loaded.
    320   //
    321   // Promoting the argument causes it to be loaded in the caller
    322   // unconditionally. This is only safe if we can prove that either the load
    323   // would have happened in the callee anyway (ie, there is a load in the entry
    324   // block) or the pointer passed in at every call site is guaranteed to be
    325   // valid.
    326   // In the former case, invalid loads can happen, but would have happened
    327   // anyway, in the latter case, invalid loads won't happen. This prevents us
    328   // from introducing an invalid load that wouldn't have happened in the
    329   // original code.
    330   //
    331   // This set will contain all sets of indices that are loaded in the entry
    332   // block, and thus are safe to unconditionally load in the caller.
    333   GEPIndicesSet SafeToUnconditionallyLoad;
    334 
    335   // This set contains all the sets of indices that we are planning to promote.
    336   // This makes it possible to limit the number of arguments added.
    337   GEPIndicesSet ToPromote;
    338 
    339   // If the pointer is always valid, any load with first index 0 is valid.
    340   if (isByVal || AllCallersPassInValidPointerForArgument(Arg))
    341     SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
    342 
    343   // First, iterate the entry block and mark loads of (geps of) arguments as
    344   // safe.
    345   BasicBlock *EntryBlock = Arg->getParent()->begin();
    346   // Declare this here so we can reuse it
    347   IndicesVector Indices;
    348   for (BasicBlock::iterator I = EntryBlock->begin(), E = EntryBlock->end();
    349        I != E; ++I)
    350     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    351       Value *V = LI->getPointerOperand();
    352       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
    353         V = GEP->getPointerOperand();
    354         if (V == Arg) {
    355           // This load actually loads (part of) Arg? Check the indices then.
    356           Indices.reserve(GEP->getNumIndices());
    357           for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
    358                II != IE; ++II)
    359             if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
    360               Indices.push_back(CI->getSExtValue());
    361             else
    362               // We found a non-constant GEP index for this argument? Bail out
    363               // right away, can't promote this argument at all.
    364               return false;
    365 
    366           // Indices checked out, mark them as safe
    367           MarkIndicesSafe(Indices, SafeToUnconditionallyLoad);
    368           Indices.clear();
    369         }
    370       } else if (V == Arg) {
    371         // Direct loads are equivalent to a GEP with a single 0 index.
    372         MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
    373       }
    374     }
    375 
    376   // Now, iterate all uses of the argument to see if there are any uses that are
    377   // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
    378   SmallVector<LoadInst*, 16> Loads;
    379   IndicesVector Operands;
    380   for (Value::use_iterator UI = Arg->use_begin(), E = Arg->use_end();
    381        UI != E; ++UI) {
    382     User *U = *UI;
    383     Operands.clear();
    384     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
    385       // Don't hack volatile/atomic loads
    386       if (!LI->isSimple()) return false;
    387       Loads.push_back(LI);
    388       // Direct loads are equivalent to a GEP with a zero index and then a load.
    389       Operands.push_back(0);
    390     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
    391       if (GEP->use_empty()) {
    392         // Dead GEP's cause trouble later.  Just remove them if we run into
    393         // them.
    394         getAnalysis<AliasAnalysis>().deleteValue(GEP);
    395         GEP->eraseFromParent();
    396         // TODO: This runs the above loop over and over again for dead GEPs
    397         // Couldn't we just do increment the UI iterator earlier and erase the
    398         // use?
    399         return isSafeToPromoteArgument(Arg, isByVal);
    400       }
    401 
    402       // Ensure that all of the indices are constants.
    403       for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end();
    404         i != e; ++i)
    405         if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
    406           Operands.push_back(C->getSExtValue());
    407         else
    408           return false;  // Not a constant operand GEP!
    409 
    410       // Ensure that the only users of the GEP are load instructions.
    411       for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end();
    412            UI != E; ++UI)
    413         if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
    414           // Don't hack volatile/atomic loads
    415           if (!LI->isSimple()) return false;
    416           Loads.push_back(LI);
    417         } else {
    418           // Other uses than load?
    419           return false;
    420         }
    421     } else {
    422       return false;  // Not a load or a GEP.
    423     }
    424 
    425     // Now, see if it is safe to promote this load / loads of this GEP. Loading
    426     // is safe if Operands, or a prefix of Operands, is marked as safe.
    427     if (!PrefixIn(Operands, SafeToUnconditionallyLoad))
    428       return false;
    429 
    430     // See if we are already promoting a load with these indices. If not, check
    431     // to make sure that we aren't promoting too many elements.  If so, nothing
    432     // to do.
    433     if (ToPromote.find(Operands) == ToPromote.end()) {
    434       if (maxElements > 0 && ToPromote.size() == maxElements) {
    435         DEBUG(dbgs() << "argpromotion not promoting argument '"
    436               << Arg->getName() << "' because it would require adding more "
    437               << "than " << maxElements << " arguments to the function.\n");
    438         // We limit aggregate promotion to only promoting up to a fixed number
    439         // of elements of the aggregate.
    440         return false;
    441       }
    442       ToPromote.insert(Operands);
    443     }
    444   }
    445 
    446   if (Loads.empty()) return true;  // No users, this is a dead argument.
    447 
    448   // Okay, now we know that the argument is only used by load instructions and
    449   // it is safe to unconditionally perform all of them. Use alias analysis to
    450   // check to see if the pointer is guaranteed to not be modified from entry of
    451   // the function to each of the load instructions.
    452 
    453   // Because there could be several/many load instructions, remember which
    454   // blocks we know to be transparent to the load.
    455   SmallPtrSet<BasicBlock*, 16> TranspBlocks;
    456 
    457   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
    458 
    459   for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
    460     // Check to see if the load is invalidated from the start of the block to
    461     // the load itself.
    462     LoadInst *Load = Loads[i];
    463     BasicBlock *BB = Load->getParent();
    464 
    465     AliasAnalysis::Location Loc = AA.getLocation(Load);
    466     if (AA.canInstructionRangeModify(BB->front(), *Load, Loc))
    467       return false;  // Pointer is invalidated!
    468 
    469     // Now check every path from the entry block to the load for transparency.
    470     // To do this, we perform a depth first search on the inverse CFG from the
    471     // loading block.
    472     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    473       BasicBlock *P = *PI;
    474       for (idf_ext_iterator<BasicBlock*, SmallPtrSet<BasicBlock*, 16> >
    475              I = idf_ext_begin(P, TranspBlocks),
    476              E = idf_ext_end(P, TranspBlocks); I != E; ++I)
    477         if (AA.canBasicBlockModify(**I, Loc))
    478           return false;
    479     }
    480   }
    481 
    482   // If the path from the entry of the function to each load is free of
    483   // instructions that potentially invalidate the load, we can make the
    484   // transformation!
    485   return true;
    486 }
    487 
    488 /// DoPromotion - This method actually performs the promotion of the specified
    489 /// arguments, and returns the new function.  At this point, we know that it's
    490 /// safe to do so.
    491 CallGraphNode *ArgPromotion::DoPromotion(Function *F,
    492                                SmallPtrSet<Argument*, 8> &ArgsToPromote,
    493                               SmallPtrSet<Argument*, 8> &ByValArgsToTransform) {
    494 
    495   // Start by computing a new prototype for the function, which is the same as
    496   // the old function, but has modified arguments.
    497   FunctionType *FTy = F->getFunctionType();
    498   std::vector<Type*> Params;
    499 
    500   typedef std::set<IndicesVector> ScalarizeTable;
    501 
    502   // ScalarizedElements - If we are promoting a pointer that has elements
    503   // accessed out of it, keep track of which elements are accessed so that we
    504   // can add one argument for each.
    505   //
    506   // Arguments that are directly loaded will have a zero element value here, to
    507   // handle cases where there are both a direct load and GEP accesses.
    508   //
    509   std::map<Argument*, ScalarizeTable> ScalarizedElements;
    510 
    511   // OriginalLoads - Keep track of a representative load instruction from the
    512   // original function so that we can tell the alias analysis implementation
    513   // what the new GEP/Load instructions we are inserting look like.
    514   std::map<IndicesVector, LoadInst*> OriginalLoads;
    515 
    516   // Attributes - Keep track of the parameter attributes for the arguments
    517   // that we are *not* promoting. For the ones that we do promote, the parameter
    518   // attributes are lost
    519   SmallVector<AttributeWithIndex, 8> AttributesVec;
    520   const AttrListPtr &PAL = F->getAttributes();
    521 
    522   // Add any return attributes.
    523   if (Attributes attrs = PAL.getRetAttributes())
    524     AttributesVec.push_back(AttributeWithIndex::get(0, attrs));
    525 
    526   // First, determine the new argument list
    527   unsigned ArgIndex = 1;
    528   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
    529        ++I, ++ArgIndex) {
    530     if (ByValArgsToTransform.count(I)) {
    531       // Simple byval argument? Just add all the struct element types.
    532       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
    533       StructType *STy = cast<StructType>(AgTy);
    534       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
    535         Params.push_back(STy->getElementType(i));
    536       ++NumByValArgsPromoted;
    537     } else if (!ArgsToPromote.count(I)) {
    538       // Unchanged argument
    539       Params.push_back(I->getType());
    540       if (Attributes attrs = PAL.getParamAttributes(ArgIndex))
    541         AttributesVec.push_back(AttributeWithIndex::get(Params.size(), attrs));
    542     } else if (I->use_empty()) {
    543       // Dead argument (which are always marked as promotable)
    544       ++NumArgumentsDead;
    545     } else {
    546       // Okay, this is being promoted. This means that the only uses are loads
    547       // or GEPs which are only used by loads
    548 
    549       // In this table, we will track which indices are loaded from the argument
    550       // (where direct loads are tracked as no indices).
    551       ScalarizeTable &ArgIndices = ScalarizedElements[I];
    552       for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
    553            ++UI) {
    554         Instruction *User = cast<Instruction>(*UI);
    555         assert(isa<LoadInst>(User) || isa<GetElementPtrInst>(User));
    556         IndicesVector Indices;
    557         Indices.reserve(User->getNumOperands() - 1);
    558         // Since loads will only have a single operand, and GEPs only a single
    559         // non-index operand, this will record direct loads without any indices,
    560         // and gep+loads with the GEP indices.
    561         for (User::op_iterator II = User->op_begin() + 1, IE = User->op_end();
    562              II != IE; ++II)
    563           Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
    564         // GEPs with a single 0 index can be merged with direct loads
    565         if (Indices.size() == 1 && Indices.front() == 0)
    566           Indices.clear();
    567         ArgIndices.insert(Indices);
    568         LoadInst *OrigLoad;
    569         if (LoadInst *L = dyn_cast<LoadInst>(User))
    570           OrigLoad = L;
    571         else
    572           // Take any load, we will use it only to update Alias Analysis
    573           OrigLoad = cast<LoadInst>(User->use_back());
    574         OriginalLoads[Indices] = OrigLoad;
    575       }
    576 
    577       // Add a parameter to the function for each element passed in.
    578       for (ScalarizeTable::iterator SI = ArgIndices.begin(),
    579              E = ArgIndices.end(); SI != E; ++SI) {
    580         // not allowed to dereference ->begin() if size() is 0
    581         Params.push_back(GetElementPtrInst::getIndexedType(I->getType(), *SI));
    582         assert(Params.back());
    583       }
    584 
    585       if (ArgIndices.size() == 1 && ArgIndices.begin()->empty())
    586         ++NumArgumentsPromoted;
    587       else
    588         ++NumAggregatesPromoted;
    589     }
    590   }
    591 
    592   // Add any function attributes.
    593   if (Attributes attrs = PAL.getFnAttributes())
    594     AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
    595 
    596   Type *RetTy = FTy->getReturnType();
    597 
    598   // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
    599   // have zero fixed arguments.
    600   bool ExtraArgHack = false;
    601   if (Params.empty() && FTy->isVarArg()) {
    602     ExtraArgHack = true;
    603     Params.push_back(Type::getInt32Ty(F->getContext()));
    604   }
    605 
    606   // Construct the new function type using the new arguments.
    607   FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
    608 
    609   // Create the new function body and insert it into the module.
    610   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
    611   NF->copyAttributesFrom(F);
    612 
    613 
    614   DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
    615         << "From: " << *F);
    616 
    617   // Recompute the parameter attributes list based on the new arguments for
    618   // the function.
    619   NF->setAttributes(AttrListPtr::get(AttributesVec.begin(),
    620                                      AttributesVec.end()));
    621   AttributesVec.clear();
    622 
    623   F->getParent()->getFunctionList().insert(F, NF);
    624   NF->takeName(F);
    625 
    626   // Get the alias analysis information that we need to update to reflect our
    627   // changes.
    628   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
    629 
    630   // Get the callgraph information that we need to update to reflect our
    631   // changes.
    632   CallGraph &CG = getAnalysis<CallGraph>();
    633 
    634   // Get a new callgraph node for NF.
    635   CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF);
    636 
    637   // Loop over all of the callers of the function, transforming the call sites
    638   // to pass in the loaded pointers.
    639   //
    640   SmallVector<Value*, 16> Args;
    641   while (!F->use_empty()) {
    642     CallSite CS(F->use_back());
    643     assert(CS.getCalledFunction() == F);
    644     Instruction *Call = CS.getInstruction();
    645     const AttrListPtr &CallPAL = CS.getAttributes();
    646 
    647     // Add any return attributes.
    648     if (Attributes attrs = CallPAL.getRetAttributes())
    649       AttributesVec.push_back(AttributeWithIndex::get(0, attrs));
    650 
    651     // Loop over the operands, inserting GEP and loads in the caller as
    652     // appropriate.
    653     CallSite::arg_iterator AI = CS.arg_begin();
    654     ArgIndex = 1;
    655     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
    656          I != E; ++I, ++AI, ++ArgIndex)
    657       if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
    658         Args.push_back(*AI);          // Unmodified argument
    659 
    660         if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
    661           AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
    662 
    663       } else if (ByValArgsToTransform.count(I)) {
    664         // Emit a GEP and load for each element of the struct.
    665         Type *AgTy = cast<PointerType>(I->getType())->getElementType();
    666         StructType *STy = cast<StructType>(AgTy);
    667         Value *Idxs[2] = {
    668               ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
    669         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    670           Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
    671           Value *Idx = GetElementPtrInst::Create(*AI, Idxs,
    672                                                  (*AI)->getName()+"."+utostr(i),
    673                                                  Call);
    674           // TODO: Tell AA about the new values?
    675           Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call));
    676         }
    677       } else if (!I->use_empty()) {
    678         // Non-dead argument: insert GEPs and loads as appropriate.
    679         ScalarizeTable &ArgIndices = ScalarizedElements[I];
    680         // Store the Value* version of the indices in here, but declare it now
    681         // for reuse.
    682         std::vector<Value*> Ops;
    683         for (ScalarizeTable::iterator SI = ArgIndices.begin(),
    684                E = ArgIndices.end(); SI != E; ++SI) {
    685           Value *V = *AI;
    686           LoadInst *OrigLoad = OriginalLoads[*SI];
    687           if (!SI->empty()) {
    688             Ops.reserve(SI->size());
    689             Type *ElTy = V->getType();
    690             for (IndicesVector::const_iterator II = SI->begin(),
    691                  IE = SI->end(); II != IE; ++II) {
    692               // Use i32 to index structs, and i64 for others (pointers/arrays).
    693               // This satisfies GEP constraints.
    694               Type *IdxTy = (ElTy->isStructTy() ?
    695                     Type::getInt32Ty(F->getContext()) :
    696                     Type::getInt64Ty(F->getContext()));
    697               Ops.push_back(ConstantInt::get(IdxTy, *II));
    698               // Keep track of the type we're currently indexing.
    699               ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(*II);
    700             }
    701             // And create a GEP to extract those indices.
    702             V = GetElementPtrInst::Create(V, Ops, V->getName()+".idx", Call);
    703             Ops.clear();
    704             AA.copyValue(OrigLoad->getOperand(0), V);
    705           }
    706           // Since we're replacing a load make sure we take the alignment
    707           // of the previous load.
    708           LoadInst *newLoad = new LoadInst(V, V->getName()+".val", Call);
    709           newLoad->setAlignment(OrigLoad->getAlignment());
    710           // Transfer the TBAA info too.
    711           newLoad->setMetadata(LLVMContext::MD_tbaa,
    712                                OrigLoad->getMetadata(LLVMContext::MD_tbaa));
    713           Args.push_back(newLoad);
    714           AA.copyValue(OrigLoad, Args.back());
    715         }
    716       }
    717 
    718     if (ExtraArgHack)
    719       Args.push_back(Constant::getNullValue(Type::getInt32Ty(F->getContext())));
    720 
    721     // Push any varargs arguments on the list.
    722     for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
    723       Args.push_back(*AI);
    724       if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
    725         AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
    726     }
    727 
    728     // Add any function attributes.
    729     if (Attributes attrs = CallPAL.getFnAttributes())
    730       AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
    731 
    732     Instruction *New;
    733     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
    734       New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
    735                                Args, "", Call);
    736       cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
    737       cast<InvokeInst>(New)->setAttributes(AttrListPtr::get(AttributesVec.begin(),
    738                                                           AttributesVec.end()));
    739     } else {
    740       New = CallInst::Create(NF, Args, "", Call);
    741       cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
    742       cast<CallInst>(New)->setAttributes(AttrListPtr::get(AttributesVec.begin(),
    743                                                         AttributesVec.end()));
    744       if (cast<CallInst>(Call)->isTailCall())
    745         cast<CallInst>(New)->setTailCall();
    746     }
    747     Args.clear();
    748     AttributesVec.clear();
    749 
    750     // Update the alias analysis implementation to know that we are replacing
    751     // the old call with a new one.
    752     AA.replaceWithNewValue(Call, New);
    753 
    754     // Update the callgraph to know that the callsite has been transformed.
    755     CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()];
    756     CalleeNode->replaceCallEdge(Call, New, NF_CGN);
    757 
    758     if (!Call->use_empty()) {
    759       Call->replaceAllUsesWith(New);
    760       New->takeName(Call);
    761     }
    762 
    763     // Finally, remove the old call from the program, reducing the use-count of
    764     // F.
    765     Call->eraseFromParent();
    766   }
    767 
    768   // Since we have now created the new function, splice the body of the old
    769   // function right into the new function, leaving the old rotting hulk of the
    770   // function empty.
    771   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
    772 
    773   // Loop over the argument list, transferring uses of the old arguments over to
    774   // the new arguments, also transferring over the names as well.
    775   //
    776   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
    777        I2 = NF->arg_begin(); I != E; ++I) {
    778     if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
    779       // If this is an unmodified argument, move the name and users over to the
    780       // new version.
    781       I->replaceAllUsesWith(I2);
    782       I2->takeName(I);
    783       AA.replaceWithNewValue(I, I2);
    784       ++I2;
    785       continue;
    786     }
    787 
    788     if (ByValArgsToTransform.count(I)) {
    789       // In the callee, we create an alloca, and store each of the new incoming
    790       // arguments into the alloca.
    791       Instruction *InsertPt = NF->begin()->begin();
    792 
    793       // Just add all the struct element types.
    794       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
    795       Value *TheAlloca = new AllocaInst(AgTy, 0, "", InsertPt);
    796       StructType *STy = cast<StructType>(AgTy);
    797       Value *Idxs[2] = {
    798             ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
    799 
    800       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    801         Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
    802         Value *Idx =
    803           GetElementPtrInst::Create(TheAlloca, Idxs,
    804                                     TheAlloca->getName()+"."+Twine(i),
    805                                     InsertPt);
    806         I2->setName(I->getName()+"."+Twine(i));
    807         new StoreInst(I2++, Idx, InsertPt);
    808       }
    809 
    810       // Anything that used the arg should now use the alloca.
    811       I->replaceAllUsesWith(TheAlloca);
    812       TheAlloca->takeName(I);
    813       AA.replaceWithNewValue(I, TheAlloca);
    814       continue;
    815     }
    816 
    817     if (I->use_empty()) {
    818       AA.deleteValue(I);
    819       continue;
    820     }
    821 
    822     // Otherwise, if we promoted this argument, then all users are load
    823     // instructions (or GEPs with only load users), and all loads should be
    824     // using the new argument that we added.
    825     ScalarizeTable &ArgIndices = ScalarizedElements[I];
    826 
    827     while (!I->use_empty()) {
    828       if (LoadInst *LI = dyn_cast<LoadInst>(I->use_back())) {
    829         assert(ArgIndices.begin()->empty() &&
    830                "Load element should sort to front!");
    831         I2->setName(I->getName()+".val");
    832         LI->replaceAllUsesWith(I2);
    833         AA.replaceWithNewValue(LI, I2);
    834         LI->eraseFromParent();
    835         DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
    836               << "' in function '" << F->getName() << "'\n");
    837       } else {
    838         GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back());
    839         IndicesVector Operands;
    840         Operands.reserve(GEP->getNumIndices());
    841         for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
    842              II != IE; ++II)
    843           Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
    844 
    845         // GEPs with a single 0 index can be merged with direct loads
    846         if (Operands.size() == 1 && Operands.front() == 0)
    847           Operands.clear();
    848 
    849         Function::arg_iterator TheArg = I2;
    850         for (ScalarizeTable::iterator It = ArgIndices.begin();
    851              *It != Operands; ++It, ++TheArg) {
    852           assert(It != ArgIndices.end() && "GEP not handled??");
    853         }
    854 
    855         std::string NewName = I->getName();
    856         for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    857             NewName += "." + utostr(Operands[i]);
    858         }
    859         NewName += ".val";
    860         TheArg->setName(NewName);
    861 
    862         DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
    863               << "' of function '" << NF->getName() << "'\n");
    864 
    865         // All of the uses must be load instructions.  Replace them all with
    866         // the argument specified by ArgNo.
    867         while (!GEP->use_empty()) {
    868           LoadInst *L = cast<LoadInst>(GEP->use_back());
    869           L->replaceAllUsesWith(TheArg);
    870           AA.replaceWithNewValue(L, TheArg);
    871           L->eraseFromParent();
    872         }
    873         AA.deleteValue(GEP);
    874         GEP->eraseFromParent();
    875       }
    876     }
    877 
    878     // Increment I2 past all of the arguments added for this promoted pointer.
    879     for (unsigned i = 0, e = ArgIndices.size(); i != e; ++i)
    880       ++I2;
    881   }
    882 
    883   // Notify the alias analysis implementation that we inserted a new argument.
    884   if (ExtraArgHack)
    885     AA.copyValue(Constant::getNullValue(Type::getInt32Ty(F->getContext())),
    886                  NF->arg_begin());
    887 
    888 
    889   // Tell the alias analysis that the old function is about to disappear.
    890   AA.replaceWithNewValue(F, NF);
    891 
    892 
    893   NF_CGN->stealCalledFunctionsFrom(CG[F]);
    894 
    895   // Now that the old function is dead, delete it.  If there is a dangling
    896   // reference to the CallgraphNode, just leave the dead function around for
    897   // someone else to nuke.
    898   CallGraphNode *CGN = CG[F];
    899   if (CGN->getNumReferences() == 0)
    900     delete CG.removeFunctionFromModule(CGN);
    901   else
    902     F->setLinkage(Function::ExternalLinkage);
    903 
    904   return NF_CGN;
    905 }
    906