Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineAddSub.cpp ----------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visit functions for add, fadd, sub, and fsub.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombine.h"
     15 #include "llvm/Analysis/InstructionSimplify.h"
     16 #include "llvm/Target/TargetData.h"
     17 #include "llvm/Support/GetElementPtrTypeIterator.h"
     18 #include "llvm/Support/PatternMatch.h"
     19 using namespace llvm;
     20 using namespace PatternMatch;
     21 
     22 /// AddOne - Add one to a ConstantInt.
     23 static Constant *AddOne(Constant *C) {
     24   return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
     25 }
     26 /// SubOne - Subtract one from a ConstantInt.
     27 static Constant *SubOne(ConstantInt *C) {
     28   return ConstantInt::get(C->getContext(), C->getValue()-1);
     29 }
     30 
     31 
     32 // dyn_castFoldableMul - If this value is a multiply that can be folded into
     33 // other computations (because it has a constant operand), return the
     34 // non-constant operand of the multiply, and set CST to point to the multiplier.
     35 // Otherwise, return null.
     36 //
     37 static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
     38   if (!V->hasOneUse() || !V->getType()->isIntegerTy())
     39     return 0;
     40 
     41   Instruction *I = dyn_cast<Instruction>(V);
     42   if (I == 0) return 0;
     43 
     44   if (I->getOpcode() == Instruction::Mul)
     45     if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
     46       return I->getOperand(0);
     47   if (I->getOpcode() == Instruction::Shl)
     48     if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
     49       // The multiplier is really 1 << CST.
     50       uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
     51       uint32_t CSTVal = CST->getLimitedValue(BitWidth);
     52       CST = ConstantInt::get(V->getType()->getContext(),
     53                              APInt(BitWidth, 1).shl(CSTVal));
     54       return I->getOperand(0);
     55     }
     56   return 0;
     57 }
     58 
     59 
     60 /// WillNotOverflowSignedAdd - Return true if we can prove that:
     61 ///    (sext (add LHS, RHS))  === (add (sext LHS), (sext RHS))
     62 /// This basically requires proving that the add in the original type would not
     63 /// overflow to change the sign bit or have a carry out.
     64 bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
     65   // There are different heuristics we can use for this.  Here are some simple
     66   // ones.
     67 
     68   // Add has the property that adding any two 2's complement numbers can only
     69   // have one carry bit which can change a sign.  As such, if LHS and RHS each
     70   // have at least two sign bits, we know that the addition of the two values
     71   // will sign extend fine.
     72   if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
     73     return true;
     74 
     75 
     76   // If one of the operands only has one non-zero bit, and if the other operand
     77   // has a known-zero bit in a more significant place than it (not including the
     78   // sign bit) the ripple may go up to and fill the zero, but won't change the
     79   // sign.  For example, (X & ~4) + 1.
     80 
     81   // TODO: Implement.
     82 
     83   return false;
     84 }
     85 
     86 Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
     87   bool Changed = SimplifyAssociativeOrCommutative(I);
     88   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
     89 
     90   if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
     91                                  I.hasNoUnsignedWrap(), TD))
     92     return ReplaceInstUsesWith(I, V);
     93 
     94   // (A*B)+(A*C) -> A*(B+C) etc
     95   if (Value *V = SimplifyUsingDistributiveLaws(I))
     96     return ReplaceInstUsesWith(I, V);
     97 
     98   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
     99     // X + (signbit) --> X ^ signbit
    100     const APInt &Val = CI->getValue();
    101     if (Val.isSignBit())
    102       return BinaryOperator::CreateXor(LHS, RHS);
    103 
    104     // See if SimplifyDemandedBits can simplify this.  This handles stuff like
    105     // (X & 254)+1 -> (X&254)|1
    106     if (SimplifyDemandedInstructionBits(I))
    107       return &I;
    108 
    109     // zext(bool) + C -> bool ? C + 1 : C
    110     if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
    111       if (ZI->getSrcTy()->isIntegerTy(1))
    112         return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
    113 
    114     Value *XorLHS = 0; ConstantInt *XorRHS = 0;
    115     if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
    116       uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
    117       const APInt &RHSVal = CI->getValue();
    118       unsigned ExtendAmt = 0;
    119       // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
    120       // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
    121       if (XorRHS->getValue() == -RHSVal) {
    122         if (RHSVal.isPowerOf2())
    123           ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
    124         else if (XorRHS->getValue().isPowerOf2())
    125           ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
    126       }
    127 
    128       if (ExtendAmt) {
    129         APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
    130         if (!MaskedValueIsZero(XorLHS, Mask))
    131           ExtendAmt = 0;
    132       }
    133 
    134       if (ExtendAmt) {
    135         Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
    136         Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext");
    137         return BinaryOperator::CreateAShr(NewShl, ShAmt);
    138       }
    139 
    140       // If this is a xor that was canonicalized from a sub, turn it back into
    141       // a sub and fuse this add with it.
    142       if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
    143         IntegerType *IT = cast<IntegerType>(I.getType());
    144         APInt LHSKnownOne(IT->getBitWidth(), 0);
    145         APInt LHSKnownZero(IT->getBitWidth(), 0);
    146         ComputeMaskedBits(XorLHS, LHSKnownZero, LHSKnownOne);
    147         if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue())
    148           return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
    149                                            XorLHS);
    150       }
    151     }
    152   }
    153 
    154   if (isa<Constant>(RHS) && isa<PHINode>(LHS))
    155     if (Instruction *NV = FoldOpIntoPhi(I))
    156       return NV;
    157 
    158   if (I.getType()->isIntegerTy(1))
    159     return BinaryOperator::CreateXor(LHS, RHS);
    160 
    161   // X + X --> X << 1
    162   if (LHS == RHS) {
    163     BinaryOperator *New =
    164       BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
    165     New->setHasNoSignedWrap(I.hasNoSignedWrap());
    166     New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
    167     return New;
    168   }
    169 
    170   // -A + B  -->  B - A
    171   // -A + -B  -->  -(A + B)
    172   if (Value *LHSV = dyn_castNegVal(LHS)) {
    173     if (Value *RHSV = dyn_castNegVal(RHS)) {
    174       Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
    175       return BinaryOperator::CreateNeg(NewAdd);
    176     }
    177 
    178     return BinaryOperator::CreateSub(RHS, LHSV);
    179   }
    180 
    181   // A + -B  -->  A - B
    182   if (!isa<Constant>(RHS))
    183     if (Value *V = dyn_castNegVal(RHS))
    184       return BinaryOperator::CreateSub(LHS, V);
    185 
    186 
    187   ConstantInt *C2;
    188   if (Value *X = dyn_castFoldableMul(LHS, C2)) {
    189     if (X == RHS)   // X*C + X --> X * (C+1)
    190       return BinaryOperator::CreateMul(RHS, AddOne(C2));
    191 
    192     // X*C1 + X*C2 --> X * (C1+C2)
    193     ConstantInt *C1;
    194     if (X == dyn_castFoldableMul(RHS, C1))
    195       return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2));
    196   }
    197 
    198   // X + X*C --> X * (C+1)
    199   if (dyn_castFoldableMul(RHS, C2) == LHS)
    200     return BinaryOperator::CreateMul(LHS, AddOne(C2));
    201 
    202   // A+B --> A|B iff A and B have no bits set in common.
    203   if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
    204     APInt LHSKnownOne(IT->getBitWidth(), 0);
    205     APInt LHSKnownZero(IT->getBitWidth(), 0);
    206     ComputeMaskedBits(LHS, LHSKnownZero, LHSKnownOne);
    207     if (LHSKnownZero != 0) {
    208       APInt RHSKnownOne(IT->getBitWidth(), 0);
    209       APInt RHSKnownZero(IT->getBitWidth(), 0);
    210       ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne);
    211 
    212       // No bits in common -> bitwise or.
    213       if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
    214         return BinaryOperator::CreateOr(LHS, RHS);
    215     }
    216   }
    217 
    218   // W*X + Y*Z --> W * (X+Z)  iff W == Y
    219   {
    220     Value *W, *X, *Y, *Z;
    221     if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
    222         match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
    223       if (W != Y) {
    224         if (W == Z) {
    225           std::swap(Y, Z);
    226         } else if (Y == X) {
    227           std::swap(W, X);
    228         } else if (X == Z) {
    229           std::swap(Y, Z);
    230           std::swap(W, X);
    231         }
    232       }
    233 
    234       if (W == Y) {
    235         Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName());
    236         return BinaryOperator::CreateMul(W, NewAdd);
    237       }
    238     }
    239   }
    240 
    241   if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
    242     Value *X = 0;
    243     if (match(LHS, m_Not(m_Value(X))))    // ~X + C --> (C-1) - X
    244       return BinaryOperator::CreateSub(SubOne(CRHS), X);
    245 
    246     // (X & FF00) + xx00  -> (X+xx00) & FF00
    247     if (LHS->hasOneUse() &&
    248         match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
    249         CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
    250       // See if all bits from the first bit set in the Add RHS up are included
    251       // in the mask.  First, get the rightmost bit.
    252       const APInt &AddRHSV = CRHS->getValue();
    253 
    254       // Form a mask of all bits from the lowest bit added through the top.
    255       APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
    256 
    257       // See if the and mask includes all of these bits.
    258       APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
    259 
    260       if (AddRHSHighBits == AddRHSHighBitsAnd) {
    261         // Okay, the xform is safe.  Insert the new add pronto.
    262         Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
    263         return BinaryOperator::CreateAnd(NewAdd, C2);
    264       }
    265     }
    266 
    267     // Try to fold constant add into select arguments.
    268     if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
    269       if (Instruction *R = FoldOpIntoSelect(I, SI))
    270         return R;
    271   }
    272 
    273   // add (select X 0 (sub n A)) A  -->  select X A n
    274   {
    275     SelectInst *SI = dyn_cast<SelectInst>(LHS);
    276     Value *A = RHS;
    277     if (!SI) {
    278       SI = dyn_cast<SelectInst>(RHS);
    279       A = LHS;
    280     }
    281     if (SI && SI->hasOneUse()) {
    282       Value *TV = SI->getTrueValue();
    283       Value *FV = SI->getFalseValue();
    284       Value *N;
    285 
    286       // Can we fold the add into the argument of the select?
    287       // We check both true and false select arguments for a matching subtract.
    288       if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
    289         // Fold the add into the true select value.
    290         return SelectInst::Create(SI->getCondition(), N, A);
    291 
    292       if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
    293         // Fold the add into the false select value.
    294         return SelectInst::Create(SI->getCondition(), A, N);
    295     }
    296   }
    297 
    298   // Check for (add (sext x), y), see if we can merge this into an
    299   // integer add followed by a sext.
    300   if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
    301     // (add (sext x), cst) --> (sext (add x, cst'))
    302     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
    303       Constant *CI =
    304         ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
    305       if (LHSConv->hasOneUse() &&
    306           ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
    307           WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
    308         // Insert the new, smaller add.
    309         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
    310                                               CI, "addconv");
    311         return new SExtInst(NewAdd, I.getType());
    312       }
    313     }
    314 
    315     // (add (sext x), (sext y)) --> (sext (add int x, y))
    316     if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
    317       // Only do this if x/y have the same type, if at last one of them has a
    318       // single use (so we don't increase the number of sexts), and if the
    319       // integer add will not overflow.
    320       if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
    321           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
    322           WillNotOverflowSignedAdd(LHSConv->getOperand(0),
    323                                    RHSConv->getOperand(0))) {
    324         // Insert the new integer add.
    325         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
    326                                              RHSConv->getOperand(0), "addconv");
    327         return new SExtInst(NewAdd, I.getType());
    328       }
    329     }
    330   }
    331 
    332   return Changed ? &I : 0;
    333 }
    334 
    335 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
    336   bool Changed = SimplifyAssociativeOrCommutative(I);
    337   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
    338 
    339   if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
    340     // X + 0 --> X
    341     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
    342       if (CFP->isExactlyValue(ConstantFP::getNegativeZero
    343                               (I.getType())->getValueAPF()))
    344         return ReplaceInstUsesWith(I, LHS);
    345     }
    346 
    347     if (isa<PHINode>(LHS))
    348       if (Instruction *NV = FoldOpIntoPhi(I))
    349         return NV;
    350   }
    351 
    352   // -A + B  -->  B - A
    353   // -A + -B  -->  -(A + B)
    354   if (Value *LHSV = dyn_castFNegVal(LHS))
    355     return BinaryOperator::CreateFSub(RHS, LHSV);
    356 
    357   // A + -B  -->  A - B
    358   if (!isa<Constant>(RHS))
    359     if (Value *V = dyn_castFNegVal(RHS))
    360       return BinaryOperator::CreateFSub(LHS, V);
    361 
    362   // Check for X+0.0.  Simplify it to X if we know X is not -0.0.
    363   if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
    364     if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
    365       return ReplaceInstUsesWith(I, LHS);
    366 
    367   // Check for (fadd double (sitofp x), y), see if we can merge this into an
    368   // integer add followed by a promotion.
    369   if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
    370     // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
    371     // ... if the constant fits in the integer value.  This is useful for things
    372     // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
    373     // requires a constant pool load, and generally allows the add to be better
    374     // instcombined.
    375     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
    376       Constant *CI =
    377       ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
    378       if (LHSConv->hasOneUse() &&
    379           ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
    380           WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
    381         // Insert the new integer add.
    382         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
    383                                               CI, "addconv");
    384         return new SIToFPInst(NewAdd, I.getType());
    385       }
    386     }
    387 
    388     // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
    389     if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
    390       // Only do this if x/y have the same type, if at last one of them has a
    391       // single use (so we don't increase the number of int->fp conversions),
    392       // and if the integer add will not overflow.
    393       if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
    394           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
    395           WillNotOverflowSignedAdd(LHSConv->getOperand(0),
    396                                    RHSConv->getOperand(0))) {
    397         // Insert the new integer add.
    398         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
    399                                               RHSConv->getOperand(0),"addconv");
    400         return new SIToFPInst(NewAdd, I.getType());
    401       }
    402     }
    403   }
    404 
    405   return Changed ? &I : 0;
    406 }
    407 
    408 
    409 /// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
    410 /// code necessary to compute the offset from the base pointer (without adding
    411 /// in the base pointer).  Return the result as a signed integer of intptr size.
    412 Value *InstCombiner::EmitGEPOffset(User *GEP) {
    413   TargetData &TD = *getTargetData();
    414   gep_type_iterator GTI = gep_type_begin(GEP);
    415   Type *IntPtrTy = TD.getIntPtrType(GEP->getContext());
    416   Value *Result = Constant::getNullValue(IntPtrTy);
    417 
    418   // If the GEP is inbounds, we know that none of the addressing operations will
    419   // overflow in an unsigned sense.
    420   bool isInBounds = cast<GEPOperator>(GEP)->isInBounds();
    421 
    422   // Build a mask for high order bits.
    423   unsigned IntPtrWidth = TD.getPointerSizeInBits();
    424   uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
    425 
    426   for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
    427        ++i, ++GTI) {
    428     Value *Op = *i;
    429     uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()) & PtrSizeMask;
    430     if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
    431       if (OpC->isZero()) continue;
    432 
    433       // Handle a struct index, which adds its field offset to the pointer.
    434       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    435         Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
    436 
    437         if (Size)
    438           Result = Builder->CreateAdd(Result, ConstantInt::get(IntPtrTy, Size),
    439                                       GEP->getName()+".offs");
    440         continue;
    441       }
    442 
    443       Constant *Scale = ConstantInt::get(IntPtrTy, Size);
    444       Constant *OC =
    445               ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
    446       Scale = ConstantExpr::getMul(OC, Scale, isInBounds/*NUW*/);
    447       // Emit an add instruction.
    448       Result = Builder->CreateAdd(Result, Scale, GEP->getName()+".offs");
    449       continue;
    450     }
    451     // Convert to correct type.
    452     if (Op->getType() != IntPtrTy)
    453       Op = Builder->CreateIntCast(Op, IntPtrTy, true, Op->getName()+".c");
    454     if (Size != 1) {
    455       // We'll let instcombine(mul) convert this to a shl if possible.
    456       Op = Builder->CreateMul(Op, ConstantInt::get(IntPtrTy, Size),
    457                               GEP->getName()+".idx", isInBounds /*NUW*/);
    458     }
    459 
    460     // Emit an add instruction.
    461     Result = Builder->CreateAdd(Op, Result, GEP->getName()+".offs");
    462   }
    463   return Result;
    464 }
    465 
    466 
    467 
    468 
    469 /// Optimize pointer differences into the same array into a size.  Consider:
    470 ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
    471 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
    472 ///
    473 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
    474                                                Type *Ty) {
    475   assert(TD && "Must have target data info for this");
    476 
    477   // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
    478   // this.
    479   bool Swapped = false;
    480   GEPOperator *GEP1 = 0, *GEP2 = 0;
    481 
    482   // For now we require one side to be the base pointer "A" or a constant
    483   // GEP derived from it.
    484   if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
    485     // (gep X, ...) - X
    486     if (LHSGEP->getOperand(0) == RHS) {
    487       GEP1 = LHSGEP;
    488       Swapped = false;
    489     } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
    490       // (gep X, ...) - (gep X, ...)
    491       if (LHSGEP->getOperand(0)->stripPointerCasts() ==
    492             RHSGEP->getOperand(0)->stripPointerCasts()) {
    493         GEP2 = RHSGEP;
    494         GEP1 = LHSGEP;
    495         Swapped = false;
    496       }
    497     }
    498   }
    499 
    500   if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
    501     // X - (gep X, ...)
    502     if (RHSGEP->getOperand(0) == LHS) {
    503       GEP1 = RHSGEP;
    504       Swapped = true;
    505     } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
    506       // (gep X, ...) - (gep X, ...)
    507       if (RHSGEP->getOperand(0)->stripPointerCasts() ==
    508             LHSGEP->getOperand(0)->stripPointerCasts()) {
    509         GEP2 = LHSGEP;
    510         GEP1 = RHSGEP;
    511         Swapped = true;
    512       }
    513     }
    514   }
    515 
    516   // Avoid duplicating the arithmetic if GEP2 has non-constant indices and
    517   // multiple users.
    518   if (GEP1 == 0 ||
    519       (GEP2 != 0 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse()))
    520     return 0;
    521 
    522   // Emit the offset of the GEP and an intptr_t.
    523   Value *Result = EmitGEPOffset(GEP1);
    524 
    525   // If we had a constant expression GEP on the other side offsetting the
    526   // pointer, subtract it from the offset we have.
    527   if (GEP2) {
    528     Value *Offset = EmitGEPOffset(GEP2);
    529     Result = Builder->CreateSub(Result, Offset);
    530   }
    531 
    532   // If we have p - gep(p, ...)  then we have to negate the result.
    533   if (Swapped)
    534     Result = Builder->CreateNeg(Result, "diff.neg");
    535 
    536   return Builder->CreateIntCast(Result, Ty, true);
    537 }
    538 
    539 
    540 Instruction *InstCombiner::visitSub(BinaryOperator &I) {
    541   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    542 
    543   if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(),
    544                                  I.hasNoUnsignedWrap(), TD))
    545     return ReplaceInstUsesWith(I, V);
    546 
    547   // (A*B)-(A*C) -> A*(B-C) etc
    548   if (Value *V = SimplifyUsingDistributiveLaws(I))
    549     return ReplaceInstUsesWith(I, V);
    550 
    551   // If this is a 'B = x-(-A)', change to B = x+A.  This preserves NSW/NUW.
    552   if (Value *V = dyn_castNegVal(Op1)) {
    553     BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
    554     Res->setHasNoSignedWrap(I.hasNoSignedWrap());
    555     Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
    556     return Res;
    557   }
    558 
    559   if (I.getType()->isIntegerTy(1))
    560     return BinaryOperator::CreateXor(Op0, Op1);
    561 
    562   // Replace (-1 - A) with (~A).
    563   if (match(Op0, m_AllOnes()))
    564     return BinaryOperator::CreateNot(Op1);
    565 
    566   if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
    567     // C - ~X == X + (1+C)
    568     Value *X = 0;
    569     if (match(Op1, m_Not(m_Value(X))))
    570       return BinaryOperator::CreateAdd(X, AddOne(C));
    571 
    572     // -(X >>u 31) -> (X >>s 31)
    573     // -(X >>s 31) -> (X >>u 31)
    574     if (C->isZero()) {
    575       Value *X; ConstantInt *CI;
    576       if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) &&
    577           // Verify we are shifting out everything but the sign bit.
    578           CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
    579         return BinaryOperator::CreateAShr(X, CI);
    580 
    581       if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) &&
    582           // Verify we are shifting out everything but the sign bit.
    583           CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
    584         return BinaryOperator::CreateLShr(X, CI);
    585     }
    586 
    587     // Try to fold constant sub into select arguments.
    588     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
    589       if (Instruction *R = FoldOpIntoSelect(I, SI))
    590         return R;
    591 
    592     // C - zext(bool) -> bool ? C - 1 : C
    593     if (ZExtInst *ZI = dyn_cast<ZExtInst>(Op1))
    594       if (ZI->getSrcTy()->isIntegerTy(1))
    595         return SelectInst::Create(ZI->getOperand(0), SubOne(C), C);
    596 
    597     // C-(X+C2) --> (C-C2)-X
    598     ConstantInt *C2;
    599     if (match(Op1, m_Add(m_Value(X), m_ConstantInt(C2))))
    600       return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
    601 
    602     if (SimplifyDemandedInstructionBits(I))
    603       return &I;
    604   }
    605 
    606 
    607   { Value *Y;
    608     // X-(X+Y) == -Y    X-(Y+X) == -Y
    609     if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) ||
    610         match(Op1, m_Add(m_Value(Y), m_Specific(Op0))))
    611       return BinaryOperator::CreateNeg(Y);
    612 
    613     // (X-Y)-X == -Y
    614     if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
    615       return BinaryOperator::CreateNeg(Y);
    616   }
    617 
    618   if (Op1->hasOneUse()) {
    619     Value *X = 0, *Y = 0, *Z = 0;
    620     Constant *C = 0;
    621     ConstantInt *CI = 0;
    622 
    623     // (X - (Y - Z))  -->  (X + (Z - Y)).
    624     if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
    625       return BinaryOperator::CreateAdd(Op0,
    626                                       Builder->CreateSub(Z, Y, Op1->getName()));
    627 
    628     // (X - (X & Y))   -->   (X & ~Y)
    629     //
    630     if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) ||
    631         match(Op1, m_And(m_Specific(Op0), m_Value(Y))))
    632       return BinaryOperator::CreateAnd(Op0,
    633                                   Builder->CreateNot(Y, Y->getName() + ".not"));
    634 
    635     // 0 - (X sdiv C)  -> (X sdiv -C)
    636     if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) &&
    637         match(Op0, m_Zero()))
    638       return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
    639 
    640     // 0 - (X << Y)  -> (-X << Y)   when X is freely negatable.
    641     if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
    642       if (Value *XNeg = dyn_castNegVal(X))
    643         return BinaryOperator::CreateShl(XNeg, Y);
    644 
    645     // X - X*C --> X * (1-C)
    646     if (match(Op1, m_Mul(m_Specific(Op0), m_ConstantInt(CI)))) {
    647       Constant *CP1 = ConstantExpr::getSub(ConstantInt::get(I.getType(),1), CI);
    648       return BinaryOperator::CreateMul(Op0, CP1);
    649     }
    650 
    651     // X - X<<C --> X * (1-(1<<C))
    652     if (match(Op1, m_Shl(m_Specific(Op0), m_ConstantInt(CI)))) {
    653       Constant *One = ConstantInt::get(I.getType(), 1);
    654       C = ConstantExpr::getSub(One, ConstantExpr::getShl(One, CI));
    655       return BinaryOperator::CreateMul(Op0, C);
    656     }
    657 
    658     // X - A*-B -> X + A*B
    659     // X - -A*B -> X + A*B
    660     Value *A, *B;
    661     if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) ||
    662         match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B))))
    663       return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B));
    664 
    665     // X - A*CI -> X + A*-CI
    666     // X - CI*A -> X + A*-CI
    667     if (match(Op1, m_Mul(m_Value(A), m_ConstantInt(CI))) ||
    668         match(Op1, m_Mul(m_ConstantInt(CI), m_Value(A)))) {
    669       Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI));
    670       return BinaryOperator::CreateAdd(Op0, NewMul);
    671     }
    672   }
    673 
    674   ConstantInt *C1;
    675   if (Value *X = dyn_castFoldableMul(Op0, C1)) {
    676     if (X == Op1)  // X*C - X --> X * (C-1)
    677       return BinaryOperator::CreateMul(Op1, SubOne(C1));
    678 
    679     ConstantInt *C2;   // X*C1 - X*C2 -> X * (C1-C2)
    680     if (X == dyn_castFoldableMul(Op1, C2))
    681       return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2));
    682   }
    683 
    684   // Optimize pointer differences into the same array into a size.  Consider:
    685   //  &A[10] - &A[0]: we should compile this to "10".
    686   if (TD) {
    687     Value *LHSOp, *RHSOp;
    688     if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
    689         match(Op1, m_PtrToInt(m_Value(RHSOp))))
    690       if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
    691         return ReplaceInstUsesWith(I, Res);
    692 
    693     // trunc(p)-trunc(q) -> trunc(p-q)
    694     if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
    695         match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
    696       if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
    697         return ReplaceInstUsesWith(I, Res);
    698   }
    699 
    700   return 0;
    701 }
    702 
    703 Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
    704   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    705 
    706   // If this is a 'B = x-(-A)', change to B = x+A...
    707   if (Value *V = dyn_castFNegVal(Op1))
    708     return BinaryOperator::CreateFAdd(Op0, V);
    709 
    710   return 0;
    711 }
    712