1 //===- InstCombineAddSub.cpp ----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for add, fadd, sub, and fsub. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombine.h" 15 #include "llvm/Analysis/InstructionSimplify.h" 16 #include "llvm/Target/TargetData.h" 17 #include "llvm/Support/GetElementPtrTypeIterator.h" 18 #include "llvm/Support/PatternMatch.h" 19 using namespace llvm; 20 using namespace PatternMatch; 21 22 /// AddOne - Add one to a ConstantInt. 23 static Constant *AddOne(Constant *C) { 24 return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1)); 25 } 26 /// SubOne - Subtract one from a ConstantInt. 27 static Constant *SubOne(ConstantInt *C) { 28 return ConstantInt::get(C->getContext(), C->getValue()-1); 29 } 30 31 32 // dyn_castFoldableMul - If this value is a multiply that can be folded into 33 // other computations (because it has a constant operand), return the 34 // non-constant operand of the multiply, and set CST to point to the multiplier. 35 // Otherwise, return null. 36 // 37 static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) { 38 if (!V->hasOneUse() || !V->getType()->isIntegerTy()) 39 return 0; 40 41 Instruction *I = dyn_cast<Instruction>(V); 42 if (I == 0) return 0; 43 44 if (I->getOpcode() == Instruction::Mul) 45 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) 46 return I->getOperand(0); 47 if (I->getOpcode() == Instruction::Shl) 48 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) { 49 // The multiplier is really 1 << CST. 50 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 51 uint32_t CSTVal = CST->getLimitedValue(BitWidth); 52 CST = ConstantInt::get(V->getType()->getContext(), 53 APInt(BitWidth, 1).shl(CSTVal)); 54 return I->getOperand(0); 55 } 56 return 0; 57 } 58 59 60 /// WillNotOverflowSignedAdd - Return true if we can prove that: 61 /// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS)) 62 /// This basically requires proving that the add in the original type would not 63 /// overflow to change the sign bit or have a carry out. 64 bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) { 65 // There are different heuristics we can use for this. Here are some simple 66 // ones. 67 68 // Add has the property that adding any two 2's complement numbers can only 69 // have one carry bit which can change a sign. As such, if LHS and RHS each 70 // have at least two sign bits, we know that the addition of the two values 71 // will sign extend fine. 72 if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1) 73 return true; 74 75 76 // If one of the operands only has one non-zero bit, and if the other operand 77 // has a known-zero bit in a more significant place than it (not including the 78 // sign bit) the ripple may go up to and fill the zero, but won't change the 79 // sign. For example, (X & ~4) + 1. 80 81 // TODO: Implement. 82 83 return false; 84 } 85 86 Instruction *InstCombiner::visitAdd(BinaryOperator &I) { 87 bool Changed = SimplifyAssociativeOrCommutative(I); 88 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 89 90 if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(), 91 I.hasNoUnsignedWrap(), TD)) 92 return ReplaceInstUsesWith(I, V); 93 94 // (A*B)+(A*C) -> A*(B+C) etc 95 if (Value *V = SimplifyUsingDistributiveLaws(I)) 96 return ReplaceInstUsesWith(I, V); 97 98 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 99 // X + (signbit) --> X ^ signbit 100 const APInt &Val = CI->getValue(); 101 if (Val.isSignBit()) 102 return BinaryOperator::CreateXor(LHS, RHS); 103 104 // See if SimplifyDemandedBits can simplify this. This handles stuff like 105 // (X & 254)+1 -> (X&254)|1 106 if (SimplifyDemandedInstructionBits(I)) 107 return &I; 108 109 // zext(bool) + C -> bool ? C + 1 : C 110 if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS)) 111 if (ZI->getSrcTy()->isIntegerTy(1)) 112 return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI); 113 114 Value *XorLHS = 0; ConstantInt *XorRHS = 0; 115 if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) { 116 uint32_t TySizeBits = I.getType()->getScalarSizeInBits(); 117 const APInt &RHSVal = CI->getValue(); 118 unsigned ExtendAmt = 0; 119 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext. 120 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext. 121 if (XorRHS->getValue() == -RHSVal) { 122 if (RHSVal.isPowerOf2()) 123 ExtendAmt = TySizeBits - RHSVal.logBase2() - 1; 124 else if (XorRHS->getValue().isPowerOf2()) 125 ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1; 126 } 127 128 if (ExtendAmt) { 129 APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt); 130 if (!MaskedValueIsZero(XorLHS, Mask)) 131 ExtendAmt = 0; 132 } 133 134 if (ExtendAmt) { 135 Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt); 136 Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext"); 137 return BinaryOperator::CreateAShr(NewShl, ShAmt); 138 } 139 140 // If this is a xor that was canonicalized from a sub, turn it back into 141 // a sub and fuse this add with it. 142 if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) { 143 IntegerType *IT = cast<IntegerType>(I.getType()); 144 APInt LHSKnownOne(IT->getBitWidth(), 0); 145 APInt LHSKnownZero(IT->getBitWidth(), 0); 146 ComputeMaskedBits(XorLHS, LHSKnownZero, LHSKnownOne); 147 if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue()) 148 return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI), 149 XorLHS); 150 } 151 } 152 } 153 154 if (isa<Constant>(RHS) && isa<PHINode>(LHS)) 155 if (Instruction *NV = FoldOpIntoPhi(I)) 156 return NV; 157 158 if (I.getType()->isIntegerTy(1)) 159 return BinaryOperator::CreateXor(LHS, RHS); 160 161 // X + X --> X << 1 162 if (LHS == RHS) { 163 BinaryOperator *New = 164 BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1)); 165 New->setHasNoSignedWrap(I.hasNoSignedWrap()); 166 New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 167 return New; 168 } 169 170 // -A + B --> B - A 171 // -A + -B --> -(A + B) 172 if (Value *LHSV = dyn_castNegVal(LHS)) { 173 if (Value *RHSV = dyn_castNegVal(RHS)) { 174 Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum"); 175 return BinaryOperator::CreateNeg(NewAdd); 176 } 177 178 return BinaryOperator::CreateSub(RHS, LHSV); 179 } 180 181 // A + -B --> A - B 182 if (!isa<Constant>(RHS)) 183 if (Value *V = dyn_castNegVal(RHS)) 184 return BinaryOperator::CreateSub(LHS, V); 185 186 187 ConstantInt *C2; 188 if (Value *X = dyn_castFoldableMul(LHS, C2)) { 189 if (X == RHS) // X*C + X --> X * (C+1) 190 return BinaryOperator::CreateMul(RHS, AddOne(C2)); 191 192 // X*C1 + X*C2 --> X * (C1+C2) 193 ConstantInt *C1; 194 if (X == dyn_castFoldableMul(RHS, C1)) 195 return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2)); 196 } 197 198 // X + X*C --> X * (C+1) 199 if (dyn_castFoldableMul(RHS, C2) == LHS) 200 return BinaryOperator::CreateMul(LHS, AddOne(C2)); 201 202 // A+B --> A|B iff A and B have no bits set in common. 203 if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) { 204 APInt LHSKnownOne(IT->getBitWidth(), 0); 205 APInt LHSKnownZero(IT->getBitWidth(), 0); 206 ComputeMaskedBits(LHS, LHSKnownZero, LHSKnownOne); 207 if (LHSKnownZero != 0) { 208 APInt RHSKnownOne(IT->getBitWidth(), 0); 209 APInt RHSKnownZero(IT->getBitWidth(), 0); 210 ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne); 211 212 // No bits in common -> bitwise or. 213 if ((LHSKnownZero|RHSKnownZero).isAllOnesValue()) 214 return BinaryOperator::CreateOr(LHS, RHS); 215 } 216 } 217 218 // W*X + Y*Z --> W * (X+Z) iff W == Y 219 { 220 Value *W, *X, *Y, *Z; 221 if (match(LHS, m_Mul(m_Value(W), m_Value(X))) && 222 match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) { 223 if (W != Y) { 224 if (W == Z) { 225 std::swap(Y, Z); 226 } else if (Y == X) { 227 std::swap(W, X); 228 } else if (X == Z) { 229 std::swap(Y, Z); 230 std::swap(W, X); 231 } 232 } 233 234 if (W == Y) { 235 Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName()); 236 return BinaryOperator::CreateMul(W, NewAdd); 237 } 238 } 239 } 240 241 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) { 242 Value *X = 0; 243 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X 244 return BinaryOperator::CreateSub(SubOne(CRHS), X); 245 246 // (X & FF00) + xx00 -> (X+xx00) & FF00 247 if (LHS->hasOneUse() && 248 match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) && 249 CRHS->getValue() == (CRHS->getValue() & C2->getValue())) { 250 // See if all bits from the first bit set in the Add RHS up are included 251 // in the mask. First, get the rightmost bit. 252 const APInt &AddRHSV = CRHS->getValue(); 253 254 // Form a mask of all bits from the lowest bit added through the top. 255 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1)); 256 257 // See if the and mask includes all of these bits. 258 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue()); 259 260 if (AddRHSHighBits == AddRHSHighBitsAnd) { 261 // Okay, the xform is safe. Insert the new add pronto. 262 Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName()); 263 return BinaryOperator::CreateAnd(NewAdd, C2); 264 } 265 } 266 267 // Try to fold constant add into select arguments. 268 if (SelectInst *SI = dyn_cast<SelectInst>(LHS)) 269 if (Instruction *R = FoldOpIntoSelect(I, SI)) 270 return R; 271 } 272 273 // add (select X 0 (sub n A)) A --> select X A n 274 { 275 SelectInst *SI = dyn_cast<SelectInst>(LHS); 276 Value *A = RHS; 277 if (!SI) { 278 SI = dyn_cast<SelectInst>(RHS); 279 A = LHS; 280 } 281 if (SI && SI->hasOneUse()) { 282 Value *TV = SI->getTrueValue(); 283 Value *FV = SI->getFalseValue(); 284 Value *N; 285 286 // Can we fold the add into the argument of the select? 287 // We check both true and false select arguments for a matching subtract. 288 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A)))) 289 // Fold the add into the true select value. 290 return SelectInst::Create(SI->getCondition(), N, A); 291 292 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A)))) 293 // Fold the add into the false select value. 294 return SelectInst::Create(SI->getCondition(), A, N); 295 } 296 } 297 298 // Check for (add (sext x), y), see if we can merge this into an 299 // integer add followed by a sext. 300 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) { 301 // (add (sext x), cst) --> (sext (add x, cst')) 302 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 303 Constant *CI = 304 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType()); 305 if (LHSConv->hasOneUse() && 306 ConstantExpr::getSExt(CI, I.getType()) == RHSC && 307 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) { 308 // Insert the new, smaller add. 309 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 310 CI, "addconv"); 311 return new SExtInst(NewAdd, I.getType()); 312 } 313 } 314 315 // (add (sext x), (sext y)) --> (sext (add int x, y)) 316 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) { 317 // Only do this if x/y have the same type, if at last one of them has a 318 // single use (so we don't increase the number of sexts), and if the 319 // integer add will not overflow. 320 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&& 321 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 322 WillNotOverflowSignedAdd(LHSConv->getOperand(0), 323 RHSConv->getOperand(0))) { 324 // Insert the new integer add. 325 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 326 RHSConv->getOperand(0), "addconv"); 327 return new SExtInst(NewAdd, I.getType()); 328 } 329 } 330 } 331 332 return Changed ? &I : 0; 333 } 334 335 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) { 336 bool Changed = SimplifyAssociativeOrCommutative(I); 337 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 338 339 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 340 // X + 0 --> X 341 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) { 342 if (CFP->isExactlyValue(ConstantFP::getNegativeZero 343 (I.getType())->getValueAPF())) 344 return ReplaceInstUsesWith(I, LHS); 345 } 346 347 if (isa<PHINode>(LHS)) 348 if (Instruction *NV = FoldOpIntoPhi(I)) 349 return NV; 350 } 351 352 // -A + B --> B - A 353 // -A + -B --> -(A + B) 354 if (Value *LHSV = dyn_castFNegVal(LHS)) 355 return BinaryOperator::CreateFSub(RHS, LHSV); 356 357 // A + -B --> A - B 358 if (!isa<Constant>(RHS)) 359 if (Value *V = dyn_castFNegVal(RHS)) 360 return BinaryOperator::CreateFSub(LHS, V); 361 362 // Check for X+0.0. Simplify it to X if we know X is not -0.0. 363 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) 364 if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS)) 365 return ReplaceInstUsesWith(I, LHS); 366 367 // Check for (fadd double (sitofp x), y), see if we can merge this into an 368 // integer add followed by a promotion. 369 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) { 370 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst)) 371 // ... if the constant fits in the integer value. This is useful for things 372 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer 373 // requires a constant pool load, and generally allows the add to be better 374 // instcombined. 375 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) { 376 Constant *CI = 377 ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType()); 378 if (LHSConv->hasOneUse() && 379 ConstantExpr::getSIToFP(CI, I.getType()) == CFP && 380 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) { 381 // Insert the new integer add. 382 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 383 CI, "addconv"); 384 return new SIToFPInst(NewAdd, I.getType()); 385 } 386 } 387 388 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y)) 389 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) { 390 // Only do this if x/y have the same type, if at last one of them has a 391 // single use (so we don't increase the number of int->fp conversions), 392 // and if the integer add will not overflow. 393 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&& 394 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 395 WillNotOverflowSignedAdd(LHSConv->getOperand(0), 396 RHSConv->getOperand(0))) { 397 // Insert the new integer add. 398 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 399 RHSConv->getOperand(0),"addconv"); 400 return new SIToFPInst(NewAdd, I.getType()); 401 } 402 } 403 } 404 405 return Changed ? &I : 0; 406 } 407 408 409 /// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the 410 /// code necessary to compute the offset from the base pointer (without adding 411 /// in the base pointer). Return the result as a signed integer of intptr size. 412 Value *InstCombiner::EmitGEPOffset(User *GEP) { 413 TargetData &TD = *getTargetData(); 414 gep_type_iterator GTI = gep_type_begin(GEP); 415 Type *IntPtrTy = TD.getIntPtrType(GEP->getContext()); 416 Value *Result = Constant::getNullValue(IntPtrTy); 417 418 // If the GEP is inbounds, we know that none of the addressing operations will 419 // overflow in an unsigned sense. 420 bool isInBounds = cast<GEPOperator>(GEP)->isInBounds(); 421 422 // Build a mask for high order bits. 423 unsigned IntPtrWidth = TD.getPointerSizeInBits(); 424 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth); 425 426 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e; 427 ++i, ++GTI) { 428 Value *Op = *i; 429 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()) & PtrSizeMask; 430 if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) { 431 if (OpC->isZero()) continue; 432 433 // Handle a struct index, which adds its field offset to the pointer. 434 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 435 Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 436 437 if (Size) 438 Result = Builder->CreateAdd(Result, ConstantInt::get(IntPtrTy, Size), 439 GEP->getName()+".offs"); 440 continue; 441 } 442 443 Constant *Scale = ConstantInt::get(IntPtrTy, Size); 444 Constant *OC = 445 ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/); 446 Scale = ConstantExpr::getMul(OC, Scale, isInBounds/*NUW*/); 447 // Emit an add instruction. 448 Result = Builder->CreateAdd(Result, Scale, GEP->getName()+".offs"); 449 continue; 450 } 451 // Convert to correct type. 452 if (Op->getType() != IntPtrTy) 453 Op = Builder->CreateIntCast(Op, IntPtrTy, true, Op->getName()+".c"); 454 if (Size != 1) { 455 // We'll let instcombine(mul) convert this to a shl if possible. 456 Op = Builder->CreateMul(Op, ConstantInt::get(IntPtrTy, Size), 457 GEP->getName()+".idx", isInBounds /*NUW*/); 458 } 459 460 // Emit an add instruction. 461 Result = Builder->CreateAdd(Op, Result, GEP->getName()+".offs"); 462 } 463 return Result; 464 } 465 466 467 468 469 /// Optimize pointer differences into the same array into a size. Consider: 470 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer 471 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract. 472 /// 473 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS, 474 Type *Ty) { 475 assert(TD && "Must have target data info for this"); 476 477 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize 478 // this. 479 bool Swapped = false; 480 GEPOperator *GEP1 = 0, *GEP2 = 0; 481 482 // For now we require one side to be the base pointer "A" or a constant 483 // GEP derived from it. 484 if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 485 // (gep X, ...) - X 486 if (LHSGEP->getOperand(0) == RHS) { 487 GEP1 = LHSGEP; 488 Swapped = false; 489 } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 490 // (gep X, ...) - (gep X, ...) 491 if (LHSGEP->getOperand(0)->stripPointerCasts() == 492 RHSGEP->getOperand(0)->stripPointerCasts()) { 493 GEP2 = RHSGEP; 494 GEP1 = LHSGEP; 495 Swapped = false; 496 } 497 } 498 } 499 500 if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 501 // X - (gep X, ...) 502 if (RHSGEP->getOperand(0) == LHS) { 503 GEP1 = RHSGEP; 504 Swapped = true; 505 } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 506 // (gep X, ...) - (gep X, ...) 507 if (RHSGEP->getOperand(0)->stripPointerCasts() == 508 LHSGEP->getOperand(0)->stripPointerCasts()) { 509 GEP2 = LHSGEP; 510 GEP1 = RHSGEP; 511 Swapped = true; 512 } 513 } 514 } 515 516 // Avoid duplicating the arithmetic if GEP2 has non-constant indices and 517 // multiple users. 518 if (GEP1 == 0 || 519 (GEP2 != 0 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse())) 520 return 0; 521 522 // Emit the offset of the GEP and an intptr_t. 523 Value *Result = EmitGEPOffset(GEP1); 524 525 // If we had a constant expression GEP on the other side offsetting the 526 // pointer, subtract it from the offset we have. 527 if (GEP2) { 528 Value *Offset = EmitGEPOffset(GEP2); 529 Result = Builder->CreateSub(Result, Offset); 530 } 531 532 // If we have p - gep(p, ...) then we have to negate the result. 533 if (Swapped) 534 Result = Builder->CreateNeg(Result, "diff.neg"); 535 536 return Builder->CreateIntCast(Result, Ty, true); 537 } 538 539 540 Instruction *InstCombiner::visitSub(BinaryOperator &I) { 541 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 542 543 if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(), 544 I.hasNoUnsignedWrap(), TD)) 545 return ReplaceInstUsesWith(I, V); 546 547 // (A*B)-(A*C) -> A*(B-C) etc 548 if (Value *V = SimplifyUsingDistributiveLaws(I)) 549 return ReplaceInstUsesWith(I, V); 550 551 // If this is a 'B = x-(-A)', change to B = x+A. This preserves NSW/NUW. 552 if (Value *V = dyn_castNegVal(Op1)) { 553 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V); 554 Res->setHasNoSignedWrap(I.hasNoSignedWrap()); 555 Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 556 return Res; 557 } 558 559 if (I.getType()->isIntegerTy(1)) 560 return BinaryOperator::CreateXor(Op0, Op1); 561 562 // Replace (-1 - A) with (~A). 563 if (match(Op0, m_AllOnes())) 564 return BinaryOperator::CreateNot(Op1); 565 566 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) { 567 // C - ~X == X + (1+C) 568 Value *X = 0; 569 if (match(Op1, m_Not(m_Value(X)))) 570 return BinaryOperator::CreateAdd(X, AddOne(C)); 571 572 // -(X >>u 31) -> (X >>s 31) 573 // -(X >>s 31) -> (X >>u 31) 574 if (C->isZero()) { 575 Value *X; ConstantInt *CI; 576 if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) && 577 // Verify we are shifting out everything but the sign bit. 578 CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1) 579 return BinaryOperator::CreateAShr(X, CI); 580 581 if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) && 582 // Verify we are shifting out everything but the sign bit. 583 CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1) 584 return BinaryOperator::CreateLShr(X, CI); 585 } 586 587 // Try to fold constant sub into select arguments. 588 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 589 if (Instruction *R = FoldOpIntoSelect(I, SI)) 590 return R; 591 592 // C - zext(bool) -> bool ? C - 1 : C 593 if (ZExtInst *ZI = dyn_cast<ZExtInst>(Op1)) 594 if (ZI->getSrcTy()->isIntegerTy(1)) 595 return SelectInst::Create(ZI->getOperand(0), SubOne(C), C); 596 597 // C-(X+C2) --> (C-C2)-X 598 ConstantInt *C2; 599 if (match(Op1, m_Add(m_Value(X), m_ConstantInt(C2)))) 600 return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X); 601 602 if (SimplifyDemandedInstructionBits(I)) 603 return &I; 604 } 605 606 607 { Value *Y; 608 // X-(X+Y) == -Y X-(Y+X) == -Y 609 if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) || 610 match(Op1, m_Add(m_Value(Y), m_Specific(Op0)))) 611 return BinaryOperator::CreateNeg(Y); 612 613 // (X-Y)-X == -Y 614 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y)))) 615 return BinaryOperator::CreateNeg(Y); 616 } 617 618 if (Op1->hasOneUse()) { 619 Value *X = 0, *Y = 0, *Z = 0; 620 Constant *C = 0; 621 ConstantInt *CI = 0; 622 623 // (X - (Y - Z)) --> (X + (Z - Y)). 624 if (match(Op1, m_Sub(m_Value(Y), m_Value(Z)))) 625 return BinaryOperator::CreateAdd(Op0, 626 Builder->CreateSub(Z, Y, Op1->getName())); 627 628 // (X - (X & Y)) --> (X & ~Y) 629 // 630 if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) || 631 match(Op1, m_And(m_Specific(Op0), m_Value(Y)))) 632 return BinaryOperator::CreateAnd(Op0, 633 Builder->CreateNot(Y, Y->getName() + ".not")); 634 635 // 0 - (X sdiv C) -> (X sdiv -C) 636 if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && 637 match(Op0, m_Zero())) 638 return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C)); 639 640 // 0 - (X << Y) -> (-X << Y) when X is freely negatable. 641 if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero())) 642 if (Value *XNeg = dyn_castNegVal(X)) 643 return BinaryOperator::CreateShl(XNeg, Y); 644 645 // X - X*C --> X * (1-C) 646 if (match(Op1, m_Mul(m_Specific(Op0), m_ConstantInt(CI)))) { 647 Constant *CP1 = ConstantExpr::getSub(ConstantInt::get(I.getType(),1), CI); 648 return BinaryOperator::CreateMul(Op0, CP1); 649 } 650 651 // X - X<<C --> X * (1-(1<<C)) 652 if (match(Op1, m_Shl(m_Specific(Op0), m_ConstantInt(CI)))) { 653 Constant *One = ConstantInt::get(I.getType(), 1); 654 C = ConstantExpr::getSub(One, ConstantExpr::getShl(One, CI)); 655 return BinaryOperator::CreateMul(Op0, C); 656 } 657 658 // X - A*-B -> X + A*B 659 // X - -A*B -> X + A*B 660 Value *A, *B; 661 if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) || 662 match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B)))) 663 return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B)); 664 665 // X - A*CI -> X + A*-CI 666 // X - CI*A -> X + A*-CI 667 if (match(Op1, m_Mul(m_Value(A), m_ConstantInt(CI))) || 668 match(Op1, m_Mul(m_ConstantInt(CI), m_Value(A)))) { 669 Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI)); 670 return BinaryOperator::CreateAdd(Op0, NewMul); 671 } 672 } 673 674 ConstantInt *C1; 675 if (Value *X = dyn_castFoldableMul(Op0, C1)) { 676 if (X == Op1) // X*C - X --> X * (C-1) 677 return BinaryOperator::CreateMul(Op1, SubOne(C1)); 678 679 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2) 680 if (X == dyn_castFoldableMul(Op1, C2)) 681 return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2)); 682 } 683 684 // Optimize pointer differences into the same array into a size. Consider: 685 // &A[10] - &A[0]: we should compile this to "10". 686 if (TD) { 687 Value *LHSOp, *RHSOp; 688 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) && 689 match(Op1, m_PtrToInt(m_Value(RHSOp)))) 690 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) 691 return ReplaceInstUsesWith(I, Res); 692 693 // trunc(p)-trunc(q) -> trunc(p-q) 694 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) && 695 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) 696 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) 697 return ReplaceInstUsesWith(I, Res); 698 } 699 700 return 0; 701 } 702 703 Instruction *InstCombiner::visitFSub(BinaryOperator &I) { 704 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 705 706 // If this is a 'B = x-(-A)', change to B = x+A... 707 if (Value *V = dyn_castFNegVal(Op1)) 708 return BinaryOperator::CreateFAdd(Op0, V); 709 710 return 0; 711 } 712