Home | History | Annotate | Download | only in Scalar
      1 //===-- LoopIdiomRecognize.cpp - Loop idiom recognition -------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass implements an idiom recognizer that transforms simple loops into a
     11 // non-loop form.  In cases that this kicks in, it can be a significant
     12 // performance win.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 //
     16 // TODO List:
     17 //
     18 // Future loop memory idioms to recognize:
     19 //   memcmp, memmove, strlen, etc.
     20 // Future floating point idioms to recognize in -ffast-math mode:
     21 //   fpowi
     22 // Future integer operation idioms to recognize:
     23 //   ctpop, ctlz, cttz
     24 //
     25 // Beware that isel's default lowering for ctpop is highly inefficient for
     26 // i64 and larger types when i64 is legal and the value has few bits set.  It
     27 // would be good to enhance isel to emit a loop for ctpop in this case.
     28 //
     29 // We should enhance the memset/memcpy recognition to handle multiple stores in
     30 // the loop.  This would handle things like:
     31 //   void foo(_Complex float *P)
     32 //     for (i) { __real__(*P) = 0;  __imag__(*P) = 0; }
     33 //
     34 // We should enhance this to handle negative strides through memory.
     35 // Alternatively (and perhaps better) we could rely on an earlier pass to force
     36 // forward iteration through memory, which is generally better for cache
     37 // behavior.  Negative strides *do* happen for memset/memcpy loops.
     38 //
     39 // This could recognize common matrix multiplies and dot product idioms and
     40 // replace them with calls to BLAS (if linked in??).
     41 //
     42 //===----------------------------------------------------------------------===//
     43 
     44 #define DEBUG_TYPE "loop-idiom"
     45 #include "llvm/Transforms/Scalar.h"
     46 #include "llvm/IntrinsicInst.h"
     47 #include "llvm/Module.h"
     48 #include "llvm/Analysis/AliasAnalysis.h"
     49 #include "llvm/Analysis/LoopPass.h"
     50 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     51 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     52 #include "llvm/Analysis/ValueTracking.h"
     53 #include "llvm/Target/TargetData.h"
     54 #include "llvm/Target/TargetLibraryInfo.h"
     55 #include "llvm/Transforms/Utils/Local.h"
     56 #include "llvm/Support/Debug.h"
     57 #include "llvm/Support/IRBuilder.h"
     58 #include "llvm/Support/raw_ostream.h"
     59 #include "llvm/ADT/Statistic.h"
     60 using namespace llvm;
     61 
     62 STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
     63 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
     64 
     65 namespace {
     66   class LoopIdiomRecognize : public LoopPass {
     67     Loop *CurLoop;
     68     const TargetData *TD;
     69     DominatorTree *DT;
     70     ScalarEvolution *SE;
     71     TargetLibraryInfo *TLI;
     72   public:
     73     static char ID;
     74     explicit LoopIdiomRecognize() : LoopPass(ID) {
     75       initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
     76     }
     77 
     78     bool runOnLoop(Loop *L, LPPassManager &LPM);
     79     bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
     80                         SmallVectorImpl<BasicBlock*> &ExitBlocks);
     81 
     82     bool processLoopStore(StoreInst *SI, const SCEV *BECount);
     83     bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
     84 
     85     bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
     86                                  unsigned StoreAlignment,
     87                                  Value *SplatValue, Instruction *TheStore,
     88                                  const SCEVAddRecExpr *Ev,
     89                                  const SCEV *BECount);
     90     bool processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
     91                                     const SCEVAddRecExpr *StoreEv,
     92                                     const SCEVAddRecExpr *LoadEv,
     93                                     const SCEV *BECount);
     94 
     95     /// This transformation requires natural loop information & requires that
     96     /// loop preheaders be inserted into the CFG.
     97     ///
     98     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     99       AU.addRequired<LoopInfo>();
    100       AU.addPreserved<LoopInfo>();
    101       AU.addRequiredID(LoopSimplifyID);
    102       AU.addPreservedID(LoopSimplifyID);
    103       AU.addRequiredID(LCSSAID);
    104       AU.addPreservedID(LCSSAID);
    105       AU.addRequired<AliasAnalysis>();
    106       AU.addPreserved<AliasAnalysis>();
    107       AU.addRequired<ScalarEvolution>();
    108       AU.addPreserved<ScalarEvolution>();
    109       AU.addPreserved<DominatorTree>();
    110       AU.addRequired<DominatorTree>();
    111       AU.addRequired<TargetLibraryInfo>();
    112     }
    113   };
    114 }
    115 
    116 char LoopIdiomRecognize::ID = 0;
    117 INITIALIZE_PASS_BEGIN(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
    118                       false, false)
    119 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
    120 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
    121 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
    122 INITIALIZE_PASS_DEPENDENCY(LCSSA)
    123 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
    124 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
    125 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    126 INITIALIZE_PASS_END(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
    127                     false, false)
    128 
    129 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognize(); }
    130 
    131 /// deleteDeadInstruction - Delete this instruction.  Before we do, go through
    132 /// and zero out all the operands of this instruction.  If any of them become
    133 /// dead, delete them and the computation tree that feeds them.
    134 ///
    135 static void deleteDeadInstruction(Instruction *I, ScalarEvolution &SE) {
    136   SmallVector<Instruction*, 32> NowDeadInsts;
    137 
    138   NowDeadInsts.push_back(I);
    139 
    140   // Before we touch this instruction, remove it from SE!
    141   do {
    142     Instruction *DeadInst = NowDeadInsts.pop_back_val();
    143 
    144     // This instruction is dead, zap it, in stages.  Start by removing it from
    145     // SCEV.
    146     SE.forgetValue(DeadInst);
    147 
    148     for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
    149       Value *Op = DeadInst->getOperand(op);
    150       DeadInst->setOperand(op, 0);
    151 
    152       // If this operand just became dead, add it to the NowDeadInsts list.
    153       if (!Op->use_empty()) continue;
    154 
    155       if (Instruction *OpI = dyn_cast<Instruction>(Op))
    156         if (isInstructionTriviallyDead(OpI))
    157           NowDeadInsts.push_back(OpI);
    158     }
    159 
    160     DeadInst->eraseFromParent();
    161 
    162   } while (!NowDeadInsts.empty());
    163 }
    164 
    165 /// deleteIfDeadInstruction - If the specified value is a dead instruction,
    166 /// delete it and any recursively used instructions.
    167 static void deleteIfDeadInstruction(Value *V, ScalarEvolution &SE) {
    168   if (Instruction *I = dyn_cast<Instruction>(V))
    169     if (isInstructionTriviallyDead(I))
    170       deleteDeadInstruction(I, SE);
    171 }
    172 
    173 bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
    174   CurLoop = L;
    175 
    176   // Disable loop idiom recognition if the function's name is a common idiom.
    177   StringRef Name = L->getHeader()->getParent()->getName();
    178   if (Name == "memset" || Name == "memcpy")
    179     return false;
    180 
    181   // The trip count of the loop must be analyzable.
    182   SE = &getAnalysis<ScalarEvolution>();
    183   if (!SE->hasLoopInvariantBackedgeTakenCount(L))
    184     return false;
    185   const SCEV *BECount = SE->getBackedgeTakenCount(L);
    186   if (isa<SCEVCouldNotCompute>(BECount)) return false;
    187 
    188   // If this loop executes exactly one time, then it should be peeled, not
    189   // optimized by this pass.
    190   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
    191     if (BECst->getValue()->getValue() == 0)
    192       return false;
    193 
    194   // We require target data for now.
    195   TD = getAnalysisIfAvailable<TargetData>();
    196   if (TD == 0) return false;
    197 
    198   DT = &getAnalysis<DominatorTree>();
    199   LoopInfo &LI = getAnalysis<LoopInfo>();
    200   TLI = &getAnalysis<TargetLibraryInfo>();
    201 
    202   SmallVector<BasicBlock*, 8> ExitBlocks;
    203   CurLoop->getUniqueExitBlocks(ExitBlocks);
    204 
    205   DEBUG(dbgs() << "loop-idiom Scanning: F["
    206                << L->getHeader()->getParent()->getName()
    207                << "] Loop %" << L->getHeader()->getName() << "\n");
    208 
    209   bool MadeChange = false;
    210   // Scan all the blocks in the loop that are not in subloops.
    211   for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
    212        ++BI) {
    213     // Ignore blocks in subloops.
    214     if (LI.getLoopFor(*BI) != CurLoop)
    215       continue;
    216 
    217     MadeChange |= runOnLoopBlock(*BI, BECount, ExitBlocks);
    218   }
    219   return MadeChange;
    220 }
    221 
    222 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
    223 /// with the specified backedge count.  This block is known to be in the current
    224 /// loop and not in any subloops.
    225 bool LoopIdiomRecognize::runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
    226                                      SmallVectorImpl<BasicBlock*> &ExitBlocks) {
    227   // We can only promote stores in this block if they are unconditionally
    228   // executed in the loop.  For a block to be unconditionally executed, it has
    229   // to dominate all the exit blocks of the loop.  Verify this now.
    230   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
    231     if (!DT->dominates(BB, ExitBlocks[i]))
    232       return false;
    233 
    234   bool MadeChange = false;
    235   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
    236     Instruction *Inst = I++;
    237     // Look for store instructions, which may be optimized to memset/memcpy.
    238     if (StoreInst *SI = dyn_cast<StoreInst>(Inst))  {
    239       WeakVH InstPtr(I);
    240       if (!processLoopStore(SI, BECount)) continue;
    241       MadeChange = true;
    242 
    243       // If processing the store invalidated our iterator, start over from the
    244       // top of the block.
    245       if (InstPtr == 0)
    246         I = BB->begin();
    247       continue;
    248     }
    249 
    250     // Look for memset instructions, which may be optimized to a larger memset.
    251     if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst))  {
    252       WeakVH InstPtr(I);
    253       if (!processLoopMemSet(MSI, BECount)) continue;
    254       MadeChange = true;
    255 
    256       // If processing the memset invalidated our iterator, start over from the
    257       // top of the block.
    258       if (InstPtr == 0)
    259         I = BB->begin();
    260       continue;
    261     }
    262   }
    263 
    264   return MadeChange;
    265 }
    266 
    267 
    268 /// processLoopStore - See if this store can be promoted to a memset or memcpy.
    269 bool LoopIdiomRecognize::processLoopStore(StoreInst *SI, const SCEV *BECount) {
    270   if (!SI->isSimple()) return false;
    271 
    272   Value *StoredVal = SI->getValueOperand();
    273   Value *StorePtr = SI->getPointerOperand();
    274 
    275   // Reject stores that are so large that they overflow an unsigned.
    276   uint64_t SizeInBits = TD->getTypeSizeInBits(StoredVal->getType());
    277   if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
    278     return false;
    279 
    280   // See if the pointer expression is an AddRec like {base,+,1} on the current
    281   // loop, which indicates a strided store.  If we have something else, it's a
    282   // random store we can't handle.
    283   const SCEVAddRecExpr *StoreEv =
    284     dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
    285   if (StoreEv == 0 || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
    286     return false;
    287 
    288   // Check to see if the stride matches the size of the store.  If so, then we
    289   // know that every byte is touched in the loop.
    290   unsigned StoreSize = (unsigned)SizeInBits >> 3;
    291   const SCEVConstant *Stride = dyn_cast<SCEVConstant>(StoreEv->getOperand(1));
    292 
    293   if (Stride == 0 || StoreSize != Stride->getValue()->getValue()) {
    294     // TODO: Could also handle negative stride here someday, that will require
    295     // the validity check in mayLoopAccessLocation to be updated though.
    296     // Enable this to print exact negative strides.
    297     if (0 && Stride && StoreSize == -Stride->getValue()->getValue()) {
    298       dbgs() << "NEGATIVE STRIDE: " << *SI << "\n";
    299       dbgs() << "BB: " << *SI->getParent();
    300     }
    301 
    302     return false;
    303   }
    304 
    305   // See if we can optimize just this store in isolation.
    306   if (processLoopStridedStore(StorePtr, StoreSize, SI->getAlignment(),
    307                               StoredVal, SI, StoreEv, BECount))
    308     return true;
    309 
    310   // If the stored value is a strided load in the same loop with the same stride
    311   // this this may be transformable into a memcpy.  This kicks in for stuff like
    312   //   for (i) A[i] = B[i];
    313   if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
    314     const SCEVAddRecExpr *LoadEv =
    315       dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getOperand(0)));
    316     if (LoadEv && LoadEv->getLoop() == CurLoop && LoadEv->isAffine() &&
    317         StoreEv->getOperand(1) == LoadEv->getOperand(1) && LI->isSimple())
    318       if (processLoopStoreOfLoopLoad(SI, StoreSize, StoreEv, LoadEv, BECount))
    319         return true;
    320   }
    321   //errs() << "UNHANDLED strided store: " << *StoreEv << " - " << *SI << "\n";
    322 
    323   return false;
    324 }
    325 
    326 /// processLoopMemSet - See if this memset can be promoted to a large memset.
    327 bool LoopIdiomRecognize::
    328 processLoopMemSet(MemSetInst *MSI, const SCEV *BECount) {
    329   // We can only handle non-volatile memsets with a constant size.
    330   if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) return false;
    331 
    332   // If we're not allowed to hack on memset, we fail.
    333   if (!TLI->has(LibFunc::memset))
    334     return false;
    335 
    336   Value *Pointer = MSI->getDest();
    337 
    338   // See if the pointer expression is an AddRec like {base,+,1} on the current
    339   // loop, which indicates a strided store.  If we have something else, it's a
    340   // random store we can't handle.
    341   const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
    342   if (Ev == 0 || Ev->getLoop() != CurLoop || !Ev->isAffine())
    343     return false;
    344 
    345   // Reject memsets that are so large that they overflow an unsigned.
    346   uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
    347   if ((SizeInBytes >> 32) != 0)
    348     return false;
    349 
    350   // Check to see if the stride matches the size of the memset.  If so, then we
    351   // know that every byte is touched in the loop.
    352   const SCEVConstant *Stride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
    353 
    354   // TODO: Could also handle negative stride here someday, that will require the
    355   // validity check in mayLoopAccessLocation to be updated though.
    356   if (Stride == 0 || MSI->getLength() != Stride->getValue())
    357     return false;
    358 
    359   return processLoopStridedStore(Pointer, (unsigned)SizeInBytes,
    360                                  MSI->getAlignment(), MSI->getValue(),
    361                                  MSI, Ev, BECount);
    362 }
    363 
    364 
    365 /// mayLoopAccessLocation - Return true if the specified loop might access the
    366 /// specified pointer location, which is a loop-strided access.  The 'Access'
    367 /// argument specifies what the verboten forms of access are (read or write).
    368 static bool mayLoopAccessLocation(Value *Ptr,AliasAnalysis::ModRefResult Access,
    369                                   Loop *L, const SCEV *BECount,
    370                                   unsigned StoreSize, AliasAnalysis &AA,
    371                                   Instruction *IgnoredStore) {
    372   // Get the location that may be stored across the loop.  Since the access is
    373   // strided positively through memory, we say that the modified location starts
    374   // at the pointer and has infinite size.
    375   uint64_t AccessSize = AliasAnalysis::UnknownSize;
    376 
    377   // If the loop iterates a fixed number of times, we can refine the access size
    378   // to be exactly the size of the memset, which is (BECount+1)*StoreSize
    379   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
    380     AccessSize = (BECst->getValue()->getZExtValue()+1)*StoreSize;
    381 
    382   // TODO: For this to be really effective, we have to dive into the pointer
    383   // operand in the store.  Store to &A[i] of 100 will always return may alias
    384   // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
    385   // which will then no-alias a store to &A[100].
    386   AliasAnalysis::Location StoreLoc(Ptr, AccessSize);
    387 
    388   for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
    389        ++BI)
    390     for (BasicBlock::iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I)
    391       if (&*I != IgnoredStore &&
    392           (AA.getModRefInfo(I, StoreLoc) & Access))
    393         return true;
    394 
    395   return false;
    396 }
    397 
    398 /// getMemSetPatternValue - If a strided store of the specified value is safe to
    399 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
    400 /// be passed in.  Otherwise, return null.
    401 ///
    402 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
    403 /// just replicate their input array and then pass on to memset_pattern16.
    404 static Constant *getMemSetPatternValue(Value *V, const TargetData &TD) {
    405   // If the value isn't a constant, we can't promote it to being in a constant
    406   // array.  We could theoretically do a store to an alloca or something, but
    407   // that doesn't seem worthwhile.
    408   Constant *C = dyn_cast<Constant>(V);
    409   if (C == 0) return 0;
    410 
    411   // Only handle simple values that are a power of two bytes in size.
    412   uint64_t Size = TD.getTypeSizeInBits(V->getType());
    413   if (Size == 0 || (Size & 7) || (Size & (Size-1)))
    414     return 0;
    415 
    416   // Don't care enough about darwin/ppc to implement this.
    417   if (TD.isBigEndian())
    418     return 0;
    419 
    420   // Convert to size in bytes.
    421   Size /= 8;
    422 
    423   // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
    424   // if the top and bottom are the same (e.g. for vectors and large integers).
    425   if (Size > 16) return 0;
    426 
    427   // If the constant is exactly 16 bytes, just use it.
    428   if (Size == 16) return C;
    429 
    430   // Otherwise, we'll use an array of the constants.
    431   unsigned ArraySize = 16/Size;
    432   ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
    433   return ConstantArray::get(AT, std::vector<Constant*>(ArraySize, C));
    434 }
    435 
    436 
    437 /// processLoopStridedStore - We see a strided store of some value.  If we can
    438 /// transform this into a memset or memset_pattern in the loop preheader, do so.
    439 bool LoopIdiomRecognize::
    440 processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
    441                         unsigned StoreAlignment, Value *StoredVal,
    442                         Instruction *TheStore, const SCEVAddRecExpr *Ev,
    443                         const SCEV *BECount) {
    444 
    445   // If the stored value is a byte-wise value (like i32 -1), then it may be
    446   // turned into a memset of i8 -1, assuming that all the consecutive bytes
    447   // are stored.  A store of i32 0x01020304 can never be turned into a memset,
    448   // but it can be turned into memset_pattern if the target supports it.
    449   Value *SplatValue = isBytewiseValue(StoredVal);
    450   Constant *PatternValue = 0;
    451 
    452   // If we're allowed to form a memset, and the stored value would be acceptable
    453   // for memset, use it.
    454   if (SplatValue && TLI->has(LibFunc::memset) &&
    455       // Verify that the stored value is loop invariant.  If not, we can't
    456       // promote the memset.
    457       CurLoop->isLoopInvariant(SplatValue)) {
    458     // Keep and use SplatValue.
    459     PatternValue = 0;
    460   } else if (TLI->has(LibFunc::memset_pattern16) &&
    461              (PatternValue = getMemSetPatternValue(StoredVal, *TD))) {
    462     // It looks like we can use PatternValue!
    463     SplatValue = 0;
    464   } else {
    465     // Otherwise, this isn't an idiom we can transform.  For example, we can't
    466     // do anything with a 3-byte store.
    467     return false;
    468   }
    469 
    470   // The trip count of the loop and the base pointer of the addrec SCEV is
    471   // guaranteed to be loop invariant, which means that it should dominate the
    472   // header.  This allows us to insert code for it in the preheader.
    473   BasicBlock *Preheader = CurLoop->getLoopPreheader();
    474   IRBuilder<> Builder(Preheader->getTerminator());
    475   SCEVExpander Expander(*SE, "loop-idiom");
    476 
    477   // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
    478   // this into a memset in the loop preheader now if we want.  However, this
    479   // would be unsafe to do if there is anything else in the loop that may read
    480   // or write to the aliased location.  Check for any overlap by generating the
    481   // base pointer and checking the region.
    482   unsigned AddrSpace = cast<PointerType>(DestPtr->getType())->getAddressSpace();
    483   Value *BasePtr =
    484     Expander.expandCodeFor(Ev->getStart(), Builder.getInt8PtrTy(AddrSpace),
    485                            Preheader->getTerminator());
    486 
    487 
    488   if (mayLoopAccessLocation(BasePtr, AliasAnalysis::ModRef,
    489                             CurLoop, BECount,
    490                             StoreSize, getAnalysis<AliasAnalysis>(), TheStore)){
    491     Expander.clear();
    492     // If we generated new code for the base pointer, clean up.
    493     deleteIfDeadInstruction(BasePtr, *SE);
    494     return false;
    495   }
    496 
    497   // Okay, everything looks good, insert the memset.
    498 
    499   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
    500   // pointer size if it isn't already.
    501   Type *IntPtr = TD->getIntPtrType(DestPtr->getContext());
    502   BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
    503 
    504   const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1),
    505                                          SCEV::FlagNUW);
    506   if (StoreSize != 1)
    507     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
    508                                SCEV::FlagNUW);
    509 
    510   Value *NumBytes =
    511     Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
    512 
    513   CallInst *NewCall;
    514   if (SplatValue)
    515     NewCall = Builder.CreateMemSet(BasePtr, SplatValue,NumBytes,StoreAlignment);
    516   else {
    517     Module *M = TheStore->getParent()->getParent()->getParent();
    518     Value *MSP = M->getOrInsertFunction("memset_pattern16",
    519                                         Builder.getVoidTy(),
    520                                         Builder.getInt8PtrTy(),
    521                                         Builder.getInt8PtrTy(), IntPtr,
    522                                         (void*)0);
    523 
    524     // Otherwise we should form a memset_pattern16.  PatternValue is known to be
    525     // an constant array of 16-bytes.  Plop the value into a mergable global.
    526     GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
    527                                             GlobalValue::InternalLinkage,
    528                                             PatternValue, ".memset_pattern");
    529     GV->setUnnamedAddr(true); // Ok to merge these.
    530     GV->setAlignment(16);
    531     Value *PatternPtr = ConstantExpr::getBitCast(GV, Builder.getInt8PtrTy());
    532     NewCall = Builder.CreateCall3(MSP, BasePtr, PatternPtr, NumBytes);
    533   }
    534 
    535   DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
    536                << "    from store to: " << *Ev << " at: " << *TheStore << "\n");
    537   NewCall->setDebugLoc(TheStore->getDebugLoc());
    538 
    539   // Okay, the memset has been formed.  Zap the original store and anything that
    540   // feeds into it.
    541   deleteDeadInstruction(TheStore, *SE);
    542   ++NumMemSet;
    543   return true;
    544 }
    545 
    546 /// processLoopStoreOfLoopLoad - We see a strided store whose value is a
    547 /// same-strided load.
    548 bool LoopIdiomRecognize::
    549 processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
    550                            const SCEVAddRecExpr *StoreEv,
    551                            const SCEVAddRecExpr *LoadEv,
    552                            const SCEV *BECount) {
    553   // If we're not allowed to form memcpy, we fail.
    554   if (!TLI->has(LibFunc::memcpy))
    555     return false;
    556 
    557   LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
    558 
    559   // The trip count of the loop and the base pointer of the addrec SCEV is
    560   // guaranteed to be loop invariant, which means that it should dominate the
    561   // header.  This allows us to insert code for it in the preheader.
    562   BasicBlock *Preheader = CurLoop->getLoopPreheader();
    563   IRBuilder<> Builder(Preheader->getTerminator());
    564   SCEVExpander Expander(*SE, "loop-idiom");
    565 
    566   // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
    567   // this into a memcpy in the loop preheader now if we want.  However, this
    568   // would be unsafe to do if there is anything else in the loop that may read
    569   // or write the memory region we're storing to.  This includes the load that
    570   // feeds the stores.  Check for an alias by generating the base address and
    571   // checking everything.
    572   Value *StoreBasePtr =
    573     Expander.expandCodeFor(StoreEv->getStart(),
    574                            Builder.getInt8PtrTy(SI->getPointerAddressSpace()),
    575                            Preheader->getTerminator());
    576 
    577   if (mayLoopAccessLocation(StoreBasePtr, AliasAnalysis::ModRef,
    578                             CurLoop, BECount, StoreSize,
    579                             getAnalysis<AliasAnalysis>(), SI)) {
    580     Expander.clear();
    581     // If we generated new code for the base pointer, clean up.
    582     deleteIfDeadInstruction(StoreBasePtr, *SE);
    583     return false;
    584   }
    585 
    586   // For a memcpy, we have to make sure that the input array is not being
    587   // mutated by the loop.
    588   Value *LoadBasePtr =
    589     Expander.expandCodeFor(LoadEv->getStart(),
    590                            Builder.getInt8PtrTy(LI->getPointerAddressSpace()),
    591                            Preheader->getTerminator());
    592 
    593   if (mayLoopAccessLocation(LoadBasePtr, AliasAnalysis::Mod, CurLoop, BECount,
    594                             StoreSize, getAnalysis<AliasAnalysis>(), SI)) {
    595     Expander.clear();
    596     // If we generated new code for the base pointer, clean up.
    597     deleteIfDeadInstruction(LoadBasePtr, *SE);
    598     deleteIfDeadInstruction(StoreBasePtr, *SE);
    599     return false;
    600   }
    601 
    602   // Okay, everything is safe, we can transform this!
    603 
    604 
    605   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
    606   // pointer size if it isn't already.
    607   Type *IntPtr = TD->getIntPtrType(SI->getContext());
    608   BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
    609 
    610   const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1),
    611                                          SCEV::FlagNUW);
    612   if (StoreSize != 1)
    613     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
    614                                SCEV::FlagNUW);
    615 
    616   Value *NumBytes =
    617     Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
    618 
    619   CallInst *NewCall =
    620     Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes,
    621                          std::min(SI->getAlignment(), LI->getAlignment()));
    622   NewCall->setDebugLoc(SI->getDebugLoc());
    623 
    624   DEBUG(dbgs() << "  Formed memcpy: " << *NewCall << "\n"
    625                << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
    626                << "    from store ptr=" << *StoreEv << " at: " << *SI << "\n");
    627 
    628 
    629   // Okay, the memset has been formed.  Zap the original store and anything that
    630   // feeds into it.
    631   deleteDeadInstruction(SI, *SE);
    632   ++NumMemCpy;
    633   return true;
    634 }
    635