1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities. It does not define any 11 // actual pass or policy, but provides a single function to perform loop 12 // unrolling. 13 // 14 // The process of unrolling can produce extraneous basic blocks linked with 15 // unconditional branches. This will be corrected in the future. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #define DEBUG_TYPE "loop-unroll" 20 #include "llvm/Transforms/Utils/UnrollLoop.h" 21 #include "llvm/BasicBlock.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LoopIterator.h" 25 #include "llvm/Analysis/LoopPass.h" 26 #include "llvm/Analysis/ScalarEvolution.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 30 #include "llvm/Transforms/Utils/Cloning.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 33 using namespace llvm; 34 35 // TODO: Should these be here or in LoopUnroll? 36 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 37 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 38 39 /// RemapInstruction - Convert the instruction operands from referencing the 40 /// current values into those specified by VMap. 41 static inline void RemapInstruction(Instruction *I, 42 ValueToValueMapTy &VMap) { 43 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { 44 Value *Op = I->getOperand(op); 45 ValueToValueMapTy::iterator It = VMap.find(Op); 46 if (It != VMap.end()) 47 I->setOperand(op, It->second); 48 } 49 50 if (PHINode *PN = dyn_cast<PHINode>(I)) { 51 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 52 ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i)); 53 if (It != VMap.end()) 54 PN->setIncomingBlock(i, cast<BasicBlock>(It->second)); 55 } 56 } 57 } 58 59 /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it 60 /// only has one predecessor, and that predecessor only has one successor. 61 /// The LoopInfo Analysis that is passed will be kept consistent. 62 /// Returns the new combined block. 63 static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI, 64 LPPassManager *LPM) { 65 // Merge basic blocks into their predecessor if there is only one distinct 66 // pred, and if there is only one distinct successor of the predecessor, and 67 // if there are no PHI nodes. 68 BasicBlock *OnlyPred = BB->getSinglePredecessor(); 69 if (!OnlyPred) return 0; 70 71 if (OnlyPred->getTerminator()->getNumSuccessors() != 1) 72 return 0; 73 74 DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred); 75 76 // Resolve any PHI nodes at the start of the block. They are all 77 // guaranteed to have exactly one entry if they exist, unless there are 78 // multiple duplicate (but guaranteed to be equal) entries for the 79 // incoming edges. This occurs when there are multiple edges from 80 // OnlyPred to OnlySucc. 81 FoldSingleEntryPHINodes(BB); 82 83 // Delete the unconditional branch from the predecessor... 84 OnlyPred->getInstList().pop_back(); 85 86 // Make all PHI nodes that referred to BB now refer to Pred as their 87 // source... 88 BB->replaceAllUsesWith(OnlyPred); 89 90 // Move all definitions in the successor to the predecessor... 91 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); 92 93 std::string OldName = BB->getName(); 94 95 // Erase basic block from the function... 96 97 // ScalarEvolution holds references to loop exit blocks. 98 if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>()) { 99 if (Loop *L = LI->getLoopFor(BB)) 100 SE->forgetLoop(L); 101 } 102 LI->removeBlock(BB); 103 BB->eraseFromParent(); 104 105 // Inherit predecessor's name if it exists... 106 if (!OldName.empty() && !OnlyPred->hasName()) 107 OnlyPred->setName(OldName); 108 109 return OnlyPred; 110 } 111 112 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true 113 /// if unrolling was successful, or false if the loop was unmodified. Unrolling 114 /// can only fail when the loop's latch block is not terminated by a conditional 115 /// branch instruction. However, if the trip count (and multiple) are not known, 116 /// loop unrolling will mostly produce more code that is no faster. 117 /// 118 /// TripCount is generally defined as the number of times the loop header 119 /// executes. UnrollLoop relaxes the definition to permit early exits: here 120 /// TripCount is the iteration on which control exits LatchBlock if no early 121 /// exits were taken. Note that UnrollLoop assumes that the loop counter test 122 /// terminates LatchBlock in order to remove unnecesssary instances of the 123 /// test. In other words, control may exit the loop prior to TripCount 124 /// iterations via an early branch, but control may not exit the loop from the 125 /// LatchBlock's terminator prior to TripCount iterations. 126 /// 127 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 128 /// execute without exiting the loop. 129 /// 130 /// The LoopInfo Analysis that is passed will be kept consistent. 131 /// 132 /// If a LoopPassManager is passed in, and the loop is fully removed, it will be 133 /// removed from the LoopPassManager as well. LPM can also be NULL. 134 /// 135 /// This utility preserves LoopInfo. If DominatorTree or ScalarEvolution are 136 /// available it must also preserve those analyses. 137 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, 138 bool AllowRuntime, unsigned TripMultiple, 139 LoopInfo *LI, LPPassManager *LPM) { 140 BasicBlock *Preheader = L->getLoopPreheader(); 141 if (!Preheader) { 142 DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 143 return false; 144 } 145 146 BasicBlock *LatchBlock = L->getLoopLatch(); 147 if (!LatchBlock) { 148 DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 149 return false; 150 } 151 152 // Loops with indirectbr cannot be cloned. 153 if (!L->isSafeToClone()) { 154 DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 155 return false; 156 } 157 158 BasicBlock *Header = L->getHeader(); 159 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 160 161 if (!BI || BI->isUnconditional()) { 162 // The loop-rotate pass can be helpful to avoid this in many cases. 163 DEBUG(dbgs() << 164 " Can't unroll; loop not terminated by a conditional branch.\n"); 165 return false; 166 } 167 168 if (Header->hasAddressTaken()) { 169 // The loop-rotate pass can be helpful to avoid this in many cases. 170 DEBUG(dbgs() << 171 " Won't unroll loop: address of header block is taken.\n"); 172 return false; 173 } 174 175 if (TripCount != 0) 176 DEBUG(dbgs() << " Trip Count = " << TripCount << "\n"); 177 if (TripMultiple != 1) 178 DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n"); 179 180 // Effectively "DCE" unrolled iterations that are beyond the tripcount 181 // and will never be executed. 182 if (TripCount != 0 && Count > TripCount) 183 Count = TripCount; 184 185 // Don't enter the unroll code if there is nothing to do. This way we don't 186 // need to support "partial unrolling by 1". 187 if (TripCount == 0 && Count < 2) 188 return false; 189 190 assert(Count > 0); 191 assert(TripMultiple > 0); 192 assert(TripCount == 0 || TripCount % TripMultiple == 0); 193 194 // Are we eliminating the loop control altogether? 195 bool CompletelyUnroll = Count == TripCount; 196 197 // We assume a run-time trip count if the compiler cannot 198 // figure out the loop trip count and the unroll-runtime 199 // flag is specified. 200 bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime); 201 202 if (RuntimeTripCount && !UnrollRuntimeLoopProlog(L, Count, LI, LPM)) 203 return false; 204 205 // Notify ScalarEvolution that the loop will be substantially changed, 206 // if not outright eliminated. 207 ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>(); 208 if (SE) 209 SE->forgetLoop(L); 210 211 // If we know the trip count, we know the multiple... 212 unsigned BreakoutTrip = 0; 213 if (TripCount != 0) { 214 BreakoutTrip = TripCount % Count; 215 TripMultiple = 0; 216 } else { 217 // Figure out what multiple to use. 218 BreakoutTrip = TripMultiple = 219 (unsigned)GreatestCommonDivisor64(Count, TripMultiple); 220 } 221 222 if (CompletelyUnroll) { 223 DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 224 << " with trip count " << TripCount << "!\n"); 225 } else { 226 DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() 227 << " by " << Count); 228 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { 229 DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 230 } else if (TripMultiple != 1) { 231 DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); 232 } else if (RuntimeTripCount) { 233 DEBUG(dbgs() << " with run-time trip count"); 234 } 235 DEBUG(dbgs() << "!\n"); 236 } 237 238 std::vector<BasicBlock*> LoopBlocks = L->getBlocks(); 239 240 bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); 241 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); 242 243 // For the first iteration of the loop, we should use the precloned values for 244 // PHI nodes. Insert associations now. 245 ValueToValueMapTy LastValueMap; 246 std::vector<PHINode*> OrigPHINode; 247 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 248 OrigPHINode.push_back(cast<PHINode>(I)); 249 } 250 251 std::vector<BasicBlock*> Headers; 252 std::vector<BasicBlock*> Latches; 253 Headers.push_back(Header); 254 Latches.push_back(LatchBlock); 255 256 // The current on-the-fly SSA update requires blocks to be processed in 257 // reverse postorder so that LastValueMap contains the correct value at each 258 // exit. 259 LoopBlocksDFS DFS(L); 260 DFS.perform(LI); 261 262 // Stash the DFS iterators before adding blocks to the loop. 263 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 264 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 265 266 for (unsigned It = 1; It != Count; ++It) { 267 std::vector<BasicBlock*> NewBlocks; 268 269 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 270 ValueToValueMapTy VMap; 271 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 272 Header->getParent()->getBasicBlockList().push_back(New); 273 274 // Loop over all of the PHI nodes in the block, changing them to use the 275 // incoming values from the previous block. 276 if (*BB == Header) 277 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { 278 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]); 279 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 280 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 281 if (It > 1 && L->contains(InValI)) 282 InVal = LastValueMap[InValI]; 283 VMap[OrigPHINode[i]] = InVal; 284 New->getInstList().erase(NewPHI); 285 } 286 287 // Update our running map of newest clones 288 LastValueMap[*BB] = New; 289 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 290 VI != VE; ++VI) 291 LastValueMap[VI->first] = VI->second; 292 293 L->addBasicBlockToLoop(New, LI->getBase()); 294 295 // Add phi entries for newly created values to all exit blocks. 296 for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB); 297 SI != SE; ++SI) { 298 if (L->contains(*SI)) 299 continue; 300 for (BasicBlock::iterator BBI = (*SI)->begin(); 301 PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) { 302 Value *Incoming = phi->getIncomingValueForBlock(*BB); 303 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 304 if (It != LastValueMap.end()) 305 Incoming = It->second; 306 phi->addIncoming(Incoming, New); 307 } 308 } 309 // Keep track of new headers and latches as we create them, so that 310 // we can insert the proper branches later. 311 if (*BB == Header) 312 Headers.push_back(New); 313 if (*BB == LatchBlock) 314 Latches.push_back(New); 315 316 NewBlocks.push_back(New); 317 } 318 319 // Remap all instructions in the most recent iteration 320 for (unsigned i = 0; i < NewBlocks.size(); ++i) 321 for (BasicBlock::iterator I = NewBlocks[i]->begin(), 322 E = NewBlocks[i]->end(); I != E; ++I) 323 ::RemapInstruction(I, LastValueMap); 324 } 325 326 // Loop over the PHI nodes in the original block, setting incoming values. 327 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { 328 PHINode *PN = OrigPHINode[i]; 329 if (CompletelyUnroll) { 330 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 331 Header->getInstList().erase(PN); 332 } 333 else if (Count > 1) { 334 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 335 // If this value was defined in the loop, take the value defined by the 336 // last iteration of the loop. 337 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 338 if (L->contains(InValI)) 339 InVal = LastValueMap[InVal]; 340 } 341 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 342 PN->addIncoming(InVal, Latches.back()); 343 } 344 } 345 346 // Now that all the basic blocks for the unrolled iterations are in place, 347 // set up the branches to connect them. 348 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 349 // The original branch was replicated in each unrolled iteration. 350 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 351 352 // The branch destination. 353 unsigned j = (i + 1) % e; 354 BasicBlock *Dest = Headers[j]; 355 bool NeedConditional = true; 356 357 if (RuntimeTripCount && j != 0) { 358 NeedConditional = false; 359 } 360 361 // For a complete unroll, make the last iteration end with a branch 362 // to the exit block. 363 if (CompletelyUnroll && j == 0) { 364 Dest = LoopExit; 365 NeedConditional = false; 366 } 367 368 // If we know the trip count or a multiple of it, we can safely use an 369 // unconditional branch for some iterations. 370 if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { 371 NeedConditional = false; 372 } 373 374 if (NeedConditional) { 375 // Update the conditional branch's successor for the following 376 // iteration. 377 Term->setSuccessor(!ContinueOnTrue, Dest); 378 } else { 379 // Remove phi operands at this loop exit 380 if (Dest != LoopExit) { 381 BasicBlock *BB = Latches[i]; 382 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); 383 SI != SE; ++SI) { 384 if (*SI == Headers[i]) 385 continue; 386 for (BasicBlock::iterator BBI = (*SI)->begin(); 387 PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) { 388 Phi->removeIncomingValue(BB, false); 389 } 390 } 391 } 392 // Replace the conditional branch with an unconditional one. 393 BranchInst::Create(Dest, Term); 394 Term->eraseFromParent(); 395 } 396 } 397 398 // Merge adjacent basic blocks, if possible. 399 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 400 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 401 if (Term->isUnconditional()) { 402 BasicBlock *Dest = Term->getSuccessor(0); 403 if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, LPM)) 404 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 405 } 406 } 407 408 // FIXME: Reconstruct dom info, because it is not preserved properly. 409 // Incrementally updating domtree after loop unrolling would be easy. 410 if (DominatorTree *DT = LPM->getAnalysisIfAvailable<DominatorTree>()) 411 DT->runOnFunction(*L->getHeader()->getParent()); 412 413 // Simplify any new induction variables in the partially unrolled loop. 414 if (SE && !CompletelyUnroll) { 415 SmallVector<WeakVH, 16> DeadInsts; 416 simplifyLoopIVs(L, SE, LPM, DeadInsts); 417 418 // Aggressively clean up dead instructions that simplifyLoopIVs already 419 // identified. Any remaining should be cleaned up below. 420 while (!DeadInsts.empty()) 421 if (Instruction *Inst = 422 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 423 RecursivelyDeleteTriviallyDeadInstructions(Inst); 424 } 425 426 // At this point, the code is well formed. We now do a quick sweep over the 427 // inserted code, doing constant propagation and dead code elimination as we 428 // go. 429 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks(); 430 for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(), 431 BBE = NewLoopBlocks.end(); BB != BBE; ++BB) 432 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) { 433 Instruction *Inst = I++; 434 435 if (isInstructionTriviallyDead(Inst)) 436 (*BB)->getInstList().erase(Inst); 437 else if (Value *V = SimplifyInstruction(Inst)) 438 if (LI->replacementPreservesLCSSAForm(Inst, V)) { 439 Inst->replaceAllUsesWith(V); 440 (*BB)->getInstList().erase(Inst); 441 } 442 } 443 444 NumCompletelyUnrolled += CompletelyUnroll; 445 ++NumUnrolled; 446 // Remove the loop from the LoopPassManager if it's completely removed. 447 if (CompletelyUnroll && LPM != NULL) 448 LPM->deleteLoopFromQueue(L); 449 450 return true; 451 } 452