1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the MapValue function, which is shared by various parts of 11 // the lib/Transforms/Utils library. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ValueMapper.h" 16 #include "llvm/Constants.h" 17 #include "llvm/Function.h" 18 #include "llvm/InlineAsm.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Metadata.h" 21 using namespace llvm; 22 23 // Out of line method to get vtable etc for class. 24 void ValueMapTypeRemapper::Anchor() {} 25 26 Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags, 27 ValueMapTypeRemapper *TypeMapper) { 28 ValueToValueMapTy::iterator I = VM.find(V); 29 30 // If the value already exists in the map, use it. 31 if (I != VM.end() && I->second) return I->second; 32 33 // Global values do not need to be seeded into the VM if they 34 // are using the identity mapping. 35 if (isa<GlobalValue>(V) || isa<MDString>(V)) 36 return VM[V] = const_cast<Value*>(V); 37 38 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 39 // Inline asm may need *type* remapping. 40 FunctionType *NewTy = IA->getFunctionType(); 41 if (TypeMapper) { 42 NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy)); 43 44 if (NewTy != IA->getFunctionType()) 45 V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), 46 IA->hasSideEffects(), IA->isAlignStack()); 47 } 48 49 return VM[V] = const_cast<Value*>(V); 50 } 51 52 53 if (const MDNode *MD = dyn_cast<MDNode>(V)) { 54 // If this is a module-level metadata and we know that nothing at the module 55 // level is changing, then use an identity mapping. 56 if (!MD->isFunctionLocal() && (Flags & RF_NoModuleLevelChanges)) 57 return VM[V] = const_cast<Value*>(V); 58 59 // Create a dummy node in case we have a metadata cycle. 60 MDNode *Dummy = MDNode::getTemporary(V->getContext(), ArrayRef<Value*>()); 61 VM[V] = Dummy; 62 63 // Check all operands to see if any need to be remapped. 64 for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) { 65 Value *OP = MD->getOperand(i); 66 if (OP == 0 || MapValue(OP, VM, Flags, TypeMapper) == OP) continue; 67 68 // Ok, at least one operand needs remapping. 69 SmallVector<Value*, 4> Elts; 70 Elts.reserve(MD->getNumOperands()); 71 for (i = 0; i != e; ++i) { 72 Value *Op = MD->getOperand(i); 73 Elts.push_back(Op ? MapValue(Op, VM, Flags, TypeMapper) : 0); 74 } 75 MDNode *NewMD = MDNode::get(V->getContext(), Elts); 76 Dummy->replaceAllUsesWith(NewMD); 77 VM[V] = NewMD; 78 MDNode::deleteTemporary(Dummy); 79 return NewMD; 80 } 81 82 VM[V] = const_cast<Value*>(V); 83 MDNode::deleteTemporary(Dummy); 84 85 // No operands needed remapping. Use an identity mapping. 86 return const_cast<Value*>(V); 87 } 88 89 // Okay, this either must be a constant (which may or may not be mappable) or 90 // is something that is not in the mapping table. 91 Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)); 92 if (C == 0) 93 return 0; 94 95 if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 96 Function *F = 97 cast<Function>(MapValue(BA->getFunction(), VM, Flags, TypeMapper)); 98 BasicBlock *BB = cast_or_null<BasicBlock>(MapValue(BA->getBasicBlock(), VM, 99 Flags, TypeMapper)); 100 return VM[V] = BlockAddress::get(F, BB ? BB : BA->getBasicBlock()); 101 } 102 103 // Otherwise, we have some other constant to remap. Start by checking to see 104 // if all operands have an identity remapping. 105 unsigned OpNo = 0, NumOperands = C->getNumOperands(); 106 Value *Mapped = 0; 107 for (; OpNo != NumOperands; ++OpNo) { 108 Value *Op = C->getOperand(OpNo); 109 Mapped = MapValue(Op, VM, Flags, TypeMapper); 110 if (Mapped != C) break; 111 } 112 113 // See if the type mapper wants to remap the type as well. 114 Type *NewTy = C->getType(); 115 if (TypeMapper) 116 NewTy = TypeMapper->remapType(NewTy); 117 118 // If the result type and all operands match up, then just insert an identity 119 // mapping. 120 if (OpNo == NumOperands && NewTy == C->getType()) 121 return VM[V] = C; 122 123 // Okay, we need to create a new constant. We've already processed some or 124 // all of the operands, set them all up now. 125 SmallVector<Constant*, 8> Ops; 126 Ops.reserve(NumOperands); 127 for (unsigned j = 0; j != OpNo; ++j) 128 Ops.push_back(cast<Constant>(C->getOperand(j))); 129 130 // If one of the operands mismatch, push it and the other mapped operands. 131 if (OpNo != NumOperands) { 132 Ops.push_back(cast<Constant>(Mapped)); 133 134 // Map the rest of the operands that aren't processed yet. 135 for (++OpNo; OpNo != NumOperands; ++OpNo) 136 Ops.push_back(MapValue(cast<Constant>(C->getOperand(OpNo)), VM, 137 Flags, TypeMapper)); 138 } 139 140 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 141 return VM[V] = CE->getWithOperands(Ops, NewTy); 142 if (isa<ConstantArray>(C)) 143 return VM[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops); 144 if (isa<ConstantStruct>(C)) 145 return VM[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops); 146 if (isa<ConstantVector>(C)) 147 return VM[V] = ConstantVector::get(Ops); 148 // If this is a no-operand constant, it must be because the type was remapped. 149 if (isa<UndefValue>(C)) 150 return VM[V] = UndefValue::get(NewTy); 151 if (isa<ConstantAggregateZero>(C)) 152 return VM[V] = ConstantAggregateZero::get(NewTy); 153 assert(isa<ConstantPointerNull>(C)); 154 return VM[V] = ConstantPointerNull::get(cast<PointerType>(NewTy)); 155 } 156 157 /// RemapInstruction - Convert the instruction operands from referencing the 158 /// current values into those specified by VMap. 159 /// 160 void llvm::RemapInstruction(Instruction *I, ValueToValueMapTy &VMap, 161 RemapFlags Flags, ValueMapTypeRemapper *TypeMapper){ 162 // Remap operands. 163 for (User::op_iterator op = I->op_begin(), E = I->op_end(); op != E; ++op) { 164 Value *V = MapValue(*op, VMap, Flags, TypeMapper); 165 // If we aren't ignoring missing entries, assert that something happened. 166 if (V != 0) 167 *op = V; 168 else 169 assert((Flags & RF_IgnoreMissingEntries) && 170 "Referenced value not in value map!"); 171 } 172 173 // Remap phi nodes' incoming blocks. 174 if (PHINode *PN = dyn_cast<PHINode>(I)) { 175 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 176 Value *V = MapValue(PN->getIncomingBlock(i), VMap, Flags); 177 // If we aren't ignoring missing entries, assert that something happened. 178 if (V != 0) 179 PN->setIncomingBlock(i, cast<BasicBlock>(V)); 180 else 181 assert((Flags & RF_IgnoreMissingEntries) && 182 "Referenced block not in value map!"); 183 } 184 } 185 186 // Remap attached metadata. 187 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 188 I->getAllMetadata(MDs); 189 for (SmallVectorImpl<std::pair<unsigned, MDNode *> >::iterator 190 MI = MDs.begin(), ME = MDs.end(); MI != ME; ++MI) { 191 MDNode *Old = MI->second; 192 MDNode *New = MapValue(Old, VMap, Flags, TypeMapper); 193 if (New != Old) 194 I->setMetadata(MI->first, New); 195 } 196 197 // If the instruction's type is being remapped, do so now. 198 if (TypeMapper) 199 I->mutateType(TypeMapper->remapType(I->getType())); 200 } 201