Home | History | Annotate | Download | only in VMCore
      1 //===- Dominators.cpp - Dominator Calculation -----------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements simple dominator construction algorithms for finding
     11 // forward dominators.  Postdominators are available in libanalysis, but are not
     12 // included in libvmcore, because it's not needed.  Forward dominators are
     13 // needed to support the Verifier pass.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "llvm/Analysis/Dominators.h"
     18 #include "llvm/Support/CFG.h"
     19 #include "llvm/Support/Compiler.h"
     20 #include "llvm/Support/Debug.h"
     21 #include "llvm/ADT/DepthFirstIterator.h"
     22 #include "llvm/ADT/SmallPtrSet.h"
     23 #include "llvm/ADT/SmallVector.h"
     24 #include "llvm/Analysis/DominatorInternals.h"
     25 #include "llvm/Assembly/Writer.h"
     26 #include "llvm/Instructions.h"
     27 #include "llvm/Support/raw_ostream.h"
     28 #include "llvm/Support/CommandLine.h"
     29 #include <algorithm>
     30 using namespace llvm;
     31 
     32 // Always verify dominfo if expensive checking is enabled.
     33 #ifdef XDEBUG
     34 static bool VerifyDomInfo = true;
     35 #else
     36 static bool VerifyDomInfo = false;
     37 #endif
     38 static cl::opt<bool,true>
     39 VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
     40                cl::desc("Verify dominator info (time consuming)"));
     41 
     42 //===----------------------------------------------------------------------===//
     43 //  DominatorTree Implementation
     44 //===----------------------------------------------------------------------===//
     45 //
     46 // Provide public access to DominatorTree information.  Implementation details
     47 // can be found in DominatorInternals.h.
     48 //
     49 //===----------------------------------------------------------------------===//
     50 
     51 TEMPLATE_INSTANTIATION(class llvm::DomTreeNodeBase<BasicBlock>);
     52 TEMPLATE_INSTANTIATION(class llvm::DominatorTreeBase<BasicBlock>);
     53 
     54 char DominatorTree::ID = 0;
     55 INITIALIZE_PASS(DominatorTree, "domtree",
     56                 "Dominator Tree Construction", true, true)
     57 
     58 bool DominatorTree::runOnFunction(Function &F) {
     59   DT->recalculate(F);
     60   return false;
     61 }
     62 
     63 void DominatorTree::verifyAnalysis() const {
     64   if (!VerifyDomInfo) return;
     65 
     66   Function &F = *getRoot()->getParent();
     67 
     68   DominatorTree OtherDT;
     69   OtherDT.getBase().recalculate(F);
     70   if (compare(OtherDT)) {
     71     errs() << "DominatorTree is not up to date!\nComputed:\n";
     72     print(errs());
     73     errs() << "\nActual:\n";
     74     OtherDT.print(errs());
     75     abort();
     76   }
     77 }
     78 
     79 void DominatorTree::print(raw_ostream &OS, const Module *) const {
     80   DT->print(OS);
     81 }
     82 
     83 // dominates - Return true if Def dominates a use in User. This performs
     84 // the special checks necessary if Def and User are in the same basic block.
     85 // Note that Def doesn't dominate a use in Def itself!
     86 bool DominatorTree::dominates(const Instruction *Def,
     87                               const Instruction *User) const {
     88   const BasicBlock *UseBB = User->getParent();
     89   const BasicBlock *DefBB = Def->getParent();
     90 
     91   // Any unreachable use is dominated, even if Def == User.
     92   if (!isReachableFromEntry(UseBB))
     93     return true;
     94 
     95   // Unreachable definitions don't dominate anything.
     96   if (!isReachableFromEntry(DefBB))
     97     return false;
     98 
     99   // An instruction doesn't dominate a use in itself.
    100   if (Def == User)
    101     return false;
    102 
    103   // The value defined by an invoke dominates an instruction only if
    104   // it dominates every instruction in UseBB.
    105   // A PHI is dominated only if the instruction dominates every possible use
    106   // in the UseBB.
    107   if (isa<InvokeInst>(Def) || isa<PHINode>(User))
    108     return dominates(Def, UseBB);
    109 
    110   if (DefBB != UseBB)
    111     return dominates(DefBB, UseBB);
    112 
    113   // Loop through the basic block until we find Def or User.
    114   BasicBlock::const_iterator I = DefBB->begin();
    115   for (; &*I != Def && &*I != User; ++I)
    116     /*empty*/;
    117 
    118   return &*I == Def;
    119 }
    120 
    121 // true if Def would dominate a use in any instruction in UseBB.
    122 // note that dominates(Def, Def->getParent()) is false.
    123 bool DominatorTree::dominates(const Instruction *Def,
    124                               const BasicBlock *UseBB) const {
    125   const BasicBlock *DefBB = Def->getParent();
    126 
    127   // Any unreachable use is dominated, even if DefBB == UseBB.
    128   if (!isReachableFromEntry(UseBB))
    129     return true;
    130 
    131   // Unreachable definitions don't dominate anything.
    132   if (!isReachableFromEntry(DefBB))
    133     return false;
    134 
    135   if (DefBB == UseBB)
    136     return false;
    137 
    138   const InvokeInst *II = dyn_cast<InvokeInst>(Def);
    139   if (!II)
    140     return dominates(DefBB, UseBB);
    141 
    142   // Invoke results are only usable in the normal destination, not in the
    143   // exceptional destination.
    144   BasicBlock *NormalDest = II->getNormalDest();
    145   if (!dominates(NormalDest, UseBB))
    146     return false;
    147 
    148   // Simple case: if the normal destination has a single predecessor, the
    149   // fact that it dominates the use block implies that we also do.
    150   if (NormalDest->getSinglePredecessor())
    151     return true;
    152 
    153   // The normal edge from the invoke is critical. Conceptually, what we would
    154   // like to do is split it and check if the new block dominates the use.
    155   // With X being the new block, the graph would look like:
    156   //
    157   //        DefBB
    158   //          /\      .  .
    159   //         /  \     .  .
    160   //        /    \    .  .
    161   //       /      \   |  |
    162   //      A        X  B  C
    163   //      |         \ | /
    164   //      .          \|/
    165   //      .      NormalDest
    166   //      .
    167   //
    168   // Given the definition of dominance, NormalDest is dominated by X iff X
    169   // dominates all of NormalDest's predecessors (X, B, C in the example). X
    170   // trivially dominates itself, so we only have to find if it dominates the
    171   // other predecessors. Since the only way out of X is via NormalDest, X can
    172   // only properly dominate a node if NormalDest dominates that node too.
    173   for (pred_iterator PI = pred_begin(NormalDest),
    174          E = pred_end(NormalDest); PI != E; ++PI) {
    175     const BasicBlock *BB = *PI;
    176     if (BB == DefBB)
    177       continue;
    178 
    179     if (!DT->isReachableFromEntry(BB))
    180       continue;
    181 
    182     if (!dominates(NormalDest, BB))
    183       return false;
    184   }
    185   return true;
    186 }
    187 
    188 bool DominatorTree::dominates(const Instruction *Def,
    189                               const Use &U) const {
    190   Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
    191 
    192   // Instructions do not dominate non-instructions.
    193   if (!UserInst)
    194     return false;
    195 
    196   const BasicBlock *DefBB = Def->getParent();
    197 
    198   // Determine the block in which the use happens. PHI nodes use
    199   // their operands on edges; simulate this by thinking of the use
    200   // happening at the end of the predecessor block.
    201   const BasicBlock *UseBB;
    202   if (PHINode *PN = dyn_cast<PHINode>(UserInst))
    203     UseBB = PN->getIncomingBlock(U);
    204   else
    205     UseBB = UserInst->getParent();
    206 
    207   // Any unreachable use is dominated, even if Def == User.
    208   if (!isReachableFromEntry(UseBB))
    209     return true;
    210 
    211   // Unreachable definitions don't dominate anything.
    212   if (!isReachableFromEntry(DefBB))
    213     return false;
    214 
    215   // Invoke instructions define their return values on the edges
    216   // to their normal successors, so we have to handle them specially.
    217   // Among other things, this means they don't dominate anything in
    218   // their own block, except possibly a phi, so we don't need to
    219   // walk the block in any case.
    220   if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
    221     // A PHI in the normal successor using the invoke's return value is
    222     // dominated by the invoke's return value.
    223     if (isa<PHINode>(UserInst) &&
    224         UserInst->getParent() == II->getNormalDest() &&
    225         cast<PHINode>(UserInst)->getIncomingBlock(U) == DefBB)
    226       return true;
    227 
    228     // Otherwise use the instruction-dominates-block query, which
    229     // handles the crazy case of an invoke with a critical edge
    230     // properly.
    231     return dominates(Def, UseBB);
    232   }
    233 
    234   // If the def and use are in different blocks, do a simple CFG dominator
    235   // tree query.
    236   if (DefBB != UseBB)
    237     return dominates(DefBB, UseBB);
    238 
    239   // Ok, def and use are in the same block. If the def is an invoke, it
    240   // doesn't dominate anything in the block. If it's a PHI, it dominates
    241   // everything in the block.
    242   if (isa<PHINode>(UserInst))
    243     return true;
    244 
    245   // Otherwise, just loop through the basic block until we find Def or User.
    246   BasicBlock::const_iterator I = DefBB->begin();
    247   for (; &*I != Def && &*I != UserInst; ++I)
    248     /*empty*/;
    249 
    250   return &*I != UserInst;
    251 }
    252 
    253 bool DominatorTree::isReachableFromEntry(const Use &U) const {
    254   Instruction *I = dyn_cast<Instruction>(U.getUser());
    255 
    256   // ConstantExprs aren't really reachable from the entry block, but they
    257   // don't need to be treated like unreachable code either.
    258   if (!I) return true;
    259 
    260   // PHI nodes use their operands on their incoming edges.
    261   if (PHINode *PN = dyn_cast<PHINode>(I))
    262     return isReachableFromEntry(PN->getIncomingBlock(U));
    263 
    264   // Everything else uses their operands in their own block.
    265   return isReachableFromEntry(I->getParent());
    266 }
    267