1 ; RUN: llc < %s -O3 -march=thumb -mcpu=cortex-a9 | FileCheck %s -check-prefix=A9 2 3 ; @simple is the most basic chain of address induction variables. Chaining 4 ; saves at least one register and avoids complex addressing and setup 5 ; code. 6 ; 7 ; A9: @simple 8 ; no expensive address computation in the preheader 9 ; A9: lsl 10 ; A9-NOT: lsl 11 ; A9: %loop 12 ; no complex address modes 13 ; A9-NOT: lsl 14 define i32 @simple(i32* %a, i32* %b, i32 %x) nounwind { 15 entry: 16 br label %loop 17 loop: 18 %iv = phi i32* [ %a, %entry ], [ %iv4, %loop ] 19 %s = phi i32 [ 0, %entry ], [ %s4, %loop ] 20 %v = load i32* %iv 21 %iv1 = getelementptr inbounds i32* %iv, i32 %x 22 %v1 = load i32* %iv1 23 %iv2 = getelementptr inbounds i32* %iv1, i32 %x 24 %v2 = load i32* %iv2 25 %iv3 = getelementptr inbounds i32* %iv2, i32 %x 26 %v3 = load i32* %iv3 27 %s1 = add i32 %s, %v 28 %s2 = add i32 %s1, %v1 29 %s3 = add i32 %s2, %v2 30 %s4 = add i32 %s3, %v3 31 %iv4 = getelementptr inbounds i32* %iv3, i32 %x 32 %cmp = icmp eq i32* %iv4, %b 33 br i1 %cmp, label %exit, label %loop 34 exit: 35 ret i32 %s4 36 } 37 38 ; @user is not currently chained because the IV is live across memory ops. 39 ; 40 ; A9: @user 41 ; stride multiples computed in the preheader 42 ; A9: lsl 43 ; A9: lsl 44 ; A9: %loop 45 ; complex address modes 46 ; A9: lsl 47 ; A9: lsl 48 define i32 @user(i32* %a, i32* %b, i32 %x) nounwind { 49 entry: 50 br label %loop 51 loop: 52 %iv = phi i32* [ %a, %entry ], [ %iv4, %loop ] 53 %s = phi i32 [ 0, %entry ], [ %s4, %loop ] 54 %v = load i32* %iv 55 %iv1 = getelementptr inbounds i32* %iv, i32 %x 56 %v1 = load i32* %iv1 57 %iv2 = getelementptr inbounds i32* %iv1, i32 %x 58 %v2 = load i32* %iv2 59 %iv3 = getelementptr inbounds i32* %iv2, i32 %x 60 %v3 = load i32* %iv3 61 %s1 = add i32 %s, %v 62 %s2 = add i32 %s1, %v1 63 %s3 = add i32 %s2, %v2 64 %s4 = add i32 %s3, %v3 65 %iv4 = getelementptr inbounds i32* %iv3, i32 %x 66 store i32 %s4, i32* %iv 67 %cmp = icmp eq i32* %iv4, %b 68 br i1 %cmp, label %exit, label %loop 69 exit: 70 ret i32 %s4 71 } 72 73 ; @extrastride is a slightly more interesting case of a single 74 ; complete chain with multiple strides. The test case IR is what LSR 75 ; used to do, and exactly what we don't want to do. LSR's new IV 76 ; chaining feature should now undo the damage. 77 ; 78 ; A9: extrastride: 79 ; no spills 80 ; A9-NOT: str 81 ; only one stride multiple in the preheader 82 ; A9: lsl 83 ; A9-NOT: {{str r|lsl}} 84 ; A9: %for.body{{$}} 85 ; no complex address modes or reloads 86 ; A9-NOT: {{ldr .*[sp]|lsl}} 87 define void @extrastride(i8* nocapture %main, i32 %main_stride, i32* nocapture %res, i32 %x, i32 %y, i32 %z) nounwind { 88 entry: 89 %cmp8 = icmp eq i32 %z, 0 90 br i1 %cmp8, label %for.end, label %for.body.lr.ph 91 92 for.body.lr.ph: ; preds = %entry 93 %add.ptr.sum = shl i32 %main_stride, 1 ; s*2 94 %add.ptr1.sum = add i32 %add.ptr.sum, %main_stride ; s*3 95 %add.ptr2.sum = add i32 %x, %main_stride ; s + x 96 %add.ptr4.sum = shl i32 %main_stride, 2 ; s*4 97 %add.ptr3.sum = add i32 %add.ptr2.sum, %add.ptr4.sum ; total IV stride = s*5+x 98 br label %for.body 99 100 for.body: ; preds = %for.body.lr.ph, %for.body 101 %main.addr.011 = phi i8* [ %main, %for.body.lr.ph ], [ %add.ptr6, %for.body ] 102 %i.010 = phi i32 [ 0, %for.body.lr.ph ], [ %inc, %for.body ] 103 %res.addr.09 = phi i32* [ %res, %for.body.lr.ph ], [ %add.ptr7, %for.body ] 104 %0 = bitcast i8* %main.addr.011 to i32* 105 %1 = load i32* %0, align 4 106 %add.ptr = getelementptr inbounds i8* %main.addr.011, i32 %main_stride 107 %2 = bitcast i8* %add.ptr to i32* 108 %3 = load i32* %2, align 4 109 %add.ptr1 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr.sum 110 %4 = bitcast i8* %add.ptr1 to i32* 111 %5 = load i32* %4, align 4 112 %add.ptr2 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr1.sum 113 %6 = bitcast i8* %add.ptr2 to i32* 114 %7 = load i32* %6, align 4 115 %add.ptr3 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr4.sum 116 %8 = bitcast i8* %add.ptr3 to i32* 117 %9 = load i32* %8, align 4 118 %add = add i32 %3, %1 119 %add4 = add i32 %add, %5 120 %add5 = add i32 %add4, %7 121 %add6 = add i32 %add5, %9 122 store i32 %add6, i32* %res.addr.09, align 4 123 %add.ptr6 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr3.sum 124 %add.ptr7 = getelementptr inbounds i32* %res.addr.09, i32 %y 125 %inc = add i32 %i.010, 1 126 %cmp = icmp eq i32 %inc, %z 127 br i1 %cmp, label %for.end, label %for.body 128 129 for.end: ; preds = %for.body, %entry 130 ret void 131 } 132 133 ; @foldedidx is an unrolled variant of this loop: 134 ; for (unsigned long i = 0; i < len; i += s) { 135 ; c[i] = a[i] + b[i]; 136 ; } 137 ; where 's' can be folded into the addressing mode. 138 ; Consequently, we should *not* form any chains. 139 ; 140 ; A9: foldedidx: 141 ; A9: ldrb.w {{r[0-9]|lr}}, [{{r[0-9]|lr}}, #3] 142 define void @foldedidx(i8* nocapture %a, i8* nocapture %b, i8* nocapture %c) nounwind ssp { 143 entry: 144 br label %for.body 145 146 for.body: ; preds = %for.body, %entry 147 %i.07 = phi i32 [ 0, %entry ], [ %inc.3, %for.body ] 148 %arrayidx = getelementptr inbounds i8* %a, i32 %i.07 149 %0 = load i8* %arrayidx, align 1 150 %conv5 = zext i8 %0 to i32 151 %arrayidx1 = getelementptr inbounds i8* %b, i32 %i.07 152 %1 = load i8* %arrayidx1, align 1 153 %conv26 = zext i8 %1 to i32 154 %add = add nsw i32 %conv26, %conv5 155 %conv3 = trunc i32 %add to i8 156 %arrayidx4 = getelementptr inbounds i8* %c, i32 %i.07 157 store i8 %conv3, i8* %arrayidx4, align 1 158 %inc1 = or i32 %i.07, 1 159 %arrayidx.1 = getelementptr inbounds i8* %a, i32 %inc1 160 %2 = load i8* %arrayidx.1, align 1 161 %conv5.1 = zext i8 %2 to i32 162 %arrayidx1.1 = getelementptr inbounds i8* %b, i32 %inc1 163 %3 = load i8* %arrayidx1.1, align 1 164 %conv26.1 = zext i8 %3 to i32 165 %add.1 = add nsw i32 %conv26.1, %conv5.1 166 %conv3.1 = trunc i32 %add.1 to i8 167 %arrayidx4.1 = getelementptr inbounds i8* %c, i32 %inc1 168 store i8 %conv3.1, i8* %arrayidx4.1, align 1 169 %inc.12 = or i32 %i.07, 2 170 %arrayidx.2 = getelementptr inbounds i8* %a, i32 %inc.12 171 %4 = load i8* %arrayidx.2, align 1 172 %conv5.2 = zext i8 %4 to i32 173 %arrayidx1.2 = getelementptr inbounds i8* %b, i32 %inc.12 174 %5 = load i8* %arrayidx1.2, align 1 175 %conv26.2 = zext i8 %5 to i32 176 %add.2 = add nsw i32 %conv26.2, %conv5.2 177 %conv3.2 = trunc i32 %add.2 to i8 178 %arrayidx4.2 = getelementptr inbounds i8* %c, i32 %inc.12 179 store i8 %conv3.2, i8* %arrayidx4.2, align 1 180 %inc.23 = or i32 %i.07, 3 181 %arrayidx.3 = getelementptr inbounds i8* %a, i32 %inc.23 182 %6 = load i8* %arrayidx.3, align 1 183 %conv5.3 = zext i8 %6 to i32 184 %arrayidx1.3 = getelementptr inbounds i8* %b, i32 %inc.23 185 %7 = load i8* %arrayidx1.3, align 1 186 %conv26.3 = zext i8 %7 to i32 187 %add.3 = add nsw i32 %conv26.3, %conv5.3 188 %conv3.3 = trunc i32 %add.3 to i8 189 %arrayidx4.3 = getelementptr inbounds i8* %c, i32 %inc.23 190 store i8 %conv3.3, i8* %arrayidx4.3, align 1 191 %inc.3 = add nsw i32 %i.07, 4 192 %exitcond.3 = icmp eq i32 %inc.3, 400 193 br i1 %exitcond.3, label %for.end, label %for.body 194 195 for.end: ; preds = %for.body 196 ret void 197 } 198 199 ; @testNeon is an important example of the nead for ivchains. 200 ; 201 ; Currently we have three extra add.w's that keep the store address 202 ; live past the next increment because ISEL is unfortunately undoing 203 ; the store chain. ISEL also fails to convert the stores to 204 ; post-increment addressing. However, the loads should use 205 ; post-increment addressing, no add's or add.w's beyond the three 206 ; mentioned. Most importantly, there should be no spills or reloads! 207 ; 208 ; CHECK: testNeon: 209 ; CHECK: %.lr.ph 210 ; CHECK-NOT: lsl.w 211 ; CHECK-NOT: {{ldr|str|adds|add r}} 212 ; CHECK: add.w r 213 ; CHECK-NOT: {{ldr|str|adds|add r}} 214 ; CHECK: add.w r 215 ; CHECK-NOT: {{ldr|str|adds|add r}} 216 ; CHECK: add.w r 217 ; CHECK-NOT: {{ldr|str|adds|add r}} 218 ; CHECK-NOT: add.w r 219 ; CHECK: bne 220 define hidden void @testNeon(i8* %ref_data, i32 %ref_stride, i32 %limit, <16 x i8>* nocapture %data) nounwind optsize { 221 %1 = icmp sgt i32 %limit, 0 222 br i1 %1, label %.lr.ph, label %45 223 224 .lr.ph: ; preds = %0 225 %2 = shl nsw i32 %ref_stride, 1 226 %3 = mul nsw i32 %ref_stride, 3 227 %4 = shl nsw i32 %ref_stride, 2 228 %5 = mul nsw i32 %ref_stride, 5 229 %6 = mul nsw i32 %ref_stride, 6 230 %7 = mul nsw i32 %ref_stride, 7 231 %8 = shl nsw i32 %ref_stride, 3 232 %9 = sub i32 0, %8 233 %10 = mul i32 %limit, -64 234 br label %11 235 236 ; <label>:11 ; preds = %11, %.lr.ph 237 %.05 = phi i8* [ %ref_data, %.lr.ph ], [ %42, %11 ] 238 %counter.04 = phi i32 [ 0, %.lr.ph ], [ %44, %11 ] 239 %result.03 = phi <16 x i8> [ zeroinitializer, %.lr.ph ], [ %41, %11 ] 240 %.012 = phi <16 x i8>* [ %data, %.lr.ph ], [ %43, %11 ] 241 %12 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %.05, i32 1) nounwind 242 %13 = getelementptr inbounds i8* %.05, i32 %ref_stride 243 %14 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %13, i32 1) nounwind 244 %15 = shufflevector <1 x i64> %12, <1 x i64> %14, <2 x i32> <i32 0, i32 1> 245 %16 = bitcast <2 x i64> %15 to <16 x i8> 246 %17 = getelementptr inbounds <16 x i8>* %.012, i32 1 247 store <16 x i8> %16, <16 x i8>* %.012, align 4 248 %18 = getelementptr inbounds i8* %.05, i32 %2 249 %19 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %18, i32 1) nounwind 250 %20 = getelementptr inbounds i8* %.05, i32 %3 251 %21 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %20, i32 1) nounwind 252 %22 = shufflevector <1 x i64> %19, <1 x i64> %21, <2 x i32> <i32 0, i32 1> 253 %23 = bitcast <2 x i64> %22 to <16 x i8> 254 %24 = getelementptr inbounds <16 x i8>* %.012, i32 2 255 store <16 x i8> %23, <16 x i8>* %17, align 4 256 %25 = getelementptr inbounds i8* %.05, i32 %4 257 %26 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %25, i32 1) nounwind 258 %27 = getelementptr inbounds i8* %.05, i32 %5 259 %28 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %27, i32 1) nounwind 260 %29 = shufflevector <1 x i64> %26, <1 x i64> %28, <2 x i32> <i32 0, i32 1> 261 %30 = bitcast <2 x i64> %29 to <16 x i8> 262 %31 = getelementptr inbounds <16 x i8>* %.012, i32 3 263 store <16 x i8> %30, <16 x i8>* %24, align 4 264 %32 = getelementptr inbounds i8* %.05, i32 %6 265 %33 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %32, i32 1) nounwind 266 %34 = getelementptr inbounds i8* %.05, i32 %7 267 %35 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %34, i32 1) nounwind 268 %36 = shufflevector <1 x i64> %33, <1 x i64> %35, <2 x i32> <i32 0, i32 1> 269 %37 = bitcast <2 x i64> %36 to <16 x i8> 270 store <16 x i8> %37, <16 x i8>* %31, align 4 271 %38 = add <16 x i8> %16, %23 272 %39 = add <16 x i8> %38, %30 273 %40 = add <16 x i8> %39, %37 274 %41 = add <16 x i8> %result.03, %40 275 %42 = getelementptr i8* %.05, i32 %9 276 %43 = getelementptr inbounds <16 x i8>* %.012, i32 -64 277 %44 = add nsw i32 %counter.04, 1 278 %exitcond = icmp eq i32 %44, %limit 279 br i1 %exitcond, label %._crit_edge, label %11 280 281 ._crit_edge: ; preds = %11 282 %scevgep = getelementptr <16 x i8>* %data, i32 %10 283 br label %45 284 285 ; <label>:45 ; preds = %._crit_edge, %0 286 %result.0.lcssa = phi <16 x i8> [ %41, %._crit_edge ], [ zeroinitializer, %0 ] 287 %.01.lcssa = phi <16 x i8>* [ %scevgep, %._crit_edge ], [ %data, %0 ] 288 store <16 x i8> %result.0.lcssa, <16 x i8>* %.01.lcssa, align 4 289 ret void 290 } 291 292 declare <1 x i64> @llvm.arm.neon.vld1.v1i64(i8*, i32) nounwind readonly 293