Home | History | Annotate | Download | only in ARM
      1 ; RUN: llc < %s -O3 -march=thumb -mcpu=cortex-a9 | FileCheck %s -check-prefix=A9
      2 
      3 ; @simple is the most basic chain of address induction variables. Chaining
      4 ; saves at least one register and avoids complex addressing and setup
      5 ; code.
      6 ;
      7 ; A9: @simple
      8 ; no expensive address computation in the preheader
      9 ; A9: lsl
     10 ; A9-NOT: lsl
     11 ; A9: %loop
     12 ; no complex address modes
     13 ; A9-NOT: lsl
     14 define i32 @simple(i32* %a, i32* %b, i32 %x) nounwind {
     15 entry:
     16   br label %loop
     17 loop:
     18   %iv = phi i32* [ %a, %entry ], [ %iv4, %loop ]
     19   %s = phi i32 [ 0, %entry ], [ %s4, %loop ]
     20   %v = load i32* %iv
     21   %iv1 = getelementptr inbounds i32* %iv, i32 %x
     22   %v1 = load i32* %iv1
     23   %iv2 = getelementptr inbounds i32* %iv1, i32 %x
     24   %v2 = load i32* %iv2
     25   %iv3 = getelementptr inbounds i32* %iv2, i32 %x
     26   %v3 = load i32* %iv3
     27   %s1 = add i32 %s, %v
     28   %s2 = add i32 %s1, %v1
     29   %s3 = add i32 %s2, %v2
     30   %s4 = add i32 %s3, %v3
     31   %iv4 = getelementptr inbounds i32* %iv3, i32 %x
     32   %cmp = icmp eq i32* %iv4, %b
     33   br i1 %cmp, label %exit, label %loop
     34 exit:
     35   ret i32 %s4
     36 }
     37 
     38 ; @user is not currently chained because the IV is live across memory ops.
     39 ;
     40 ; A9: @user
     41 ; stride multiples computed in the preheader
     42 ; A9: lsl
     43 ; A9: lsl
     44 ; A9: %loop
     45 ; complex address modes
     46 ; A9: lsl
     47 ; A9: lsl
     48 define i32 @user(i32* %a, i32* %b, i32 %x) nounwind {
     49 entry:
     50   br label %loop
     51 loop:
     52   %iv = phi i32* [ %a, %entry ], [ %iv4, %loop ]
     53   %s = phi i32 [ 0, %entry ], [ %s4, %loop ]
     54   %v = load i32* %iv
     55   %iv1 = getelementptr inbounds i32* %iv, i32 %x
     56   %v1 = load i32* %iv1
     57   %iv2 = getelementptr inbounds i32* %iv1, i32 %x
     58   %v2 = load i32* %iv2
     59   %iv3 = getelementptr inbounds i32* %iv2, i32 %x
     60   %v3 = load i32* %iv3
     61   %s1 = add i32 %s, %v
     62   %s2 = add i32 %s1, %v1
     63   %s3 = add i32 %s2, %v2
     64   %s4 = add i32 %s3, %v3
     65   %iv4 = getelementptr inbounds i32* %iv3, i32 %x
     66   store i32 %s4, i32* %iv
     67   %cmp = icmp eq i32* %iv4, %b
     68   br i1 %cmp, label %exit, label %loop
     69 exit:
     70   ret i32 %s4
     71 }
     72 
     73 ; @extrastride is a slightly more interesting case of a single
     74 ; complete chain with multiple strides. The test case IR is what LSR
     75 ; used to do, and exactly what we don't want to do. LSR's new IV
     76 ; chaining feature should now undo the damage.
     77 ;
     78 ; A9: extrastride:
     79 ; no spills
     80 ; A9-NOT: str
     81 ; only one stride multiple in the preheader
     82 ; A9: lsl
     83 ; A9-NOT: {{str r|lsl}}
     84 ; A9: %for.body{{$}}
     85 ; no complex address modes or reloads
     86 ; A9-NOT: {{ldr .*[sp]|lsl}}
     87 define void @extrastride(i8* nocapture %main, i32 %main_stride, i32* nocapture %res, i32 %x, i32 %y, i32 %z) nounwind {
     88 entry:
     89   %cmp8 = icmp eq i32 %z, 0
     90   br i1 %cmp8, label %for.end, label %for.body.lr.ph
     91 
     92 for.body.lr.ph:                                   ; preds = %entry
     93   %add.ptr.sum = shl i32 %main_stride, 1 ; s*2
     94   %add.ptr1.sum = add i32 %add.ptr.sum, %main_stride ; s*3
     95   %add.ptr2.sum = add i32 %x, %main_stride ; s + x
     96   %add.ptr4.sum = shl i32 %main_stride, 2 ; s*4
     97   %add.ptr3.sum = add i32 %add.ptr2.sum, %add.ptr4.sum ; total IV stride = s*5+x
     98   br label %for.body
     99 
    100 for.body:                                         ; preds = %for.body.lr.ph, %for.body
    101   %main.addr.011 = phi i8* [ %main, %for.body.lr.ph ], [ %add.ptr6, %for.body ]
    102   %i.010 = phi i32 [ 0, %for.body.lr.ph ], [ %inc, %for.body ]
    103   %res.addr.09 = phi i32* [ %res, %for.body.lr.ph ], [ %add.ptr7, %for.body ]
    104   %0 = bitcast i8* %main.addr.011 to i32*
    105   %1 = load i32* %0, align 4
    106   %add.ptr = getelementptr inbounds i8* %main.addr.011, i32 %main_stride
    107   %2 = bitcast i8* %add.ptr to i32*
    108   %3 = load i32* %2, align 4
    109   %add.ptr1 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr.sum
    110   %4 = bitcast i8* %add.ptr1 to i32*
    111   %5 = load i32* %4, align 4
    112   %add.ptr2 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr1.sum
    113   %6 = bitcast i8* %add.ptr2 to i32*
    114   %7 = load i32* %6, align 4
    115   %add.ptr3 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr4.sum
    116   %8 = bitcast i8* %add.ptr3 to i32*
    117   %9 = load i32* %8, align 4
    118   %add = add i32 %3, %1
    119   %add4 = add i32 %add, %5
    120   %add5 = add i32 %add4, %7
    121   %add6 = add i32 %add5, %9
    122   store i32 %add6, i32* %res.addr.09, align 4
    123   %add.ptr6 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr3.sum
    124   %add.ptr7 = getelementptr inbounds i32* %res.addr.09, i32 %y
    125   %inc = add i32 %i.010, 1
    126   %cmp = icmp eq i32 %inc, %z
    127   br i1 %cmp, label %for.end, label %for.body
    128 
    129 for.end:                                          ; preds = %for.body, %entry
    130   ret void
    131 }
    132 
    133 ; @foldedidx is an unrolled variant of this loop:
    134 ;  for (unsigned long i = 0; i < len; i += s) {
    135 ;    c[i] = a[i] + b[i];
    136 ;  }
    137 ; where 's' can be folded into the addressing mode.
    138 ; Consequently, we should *not* form any chains.
    139 ;
    140 ; A9: foldedidx:
    141 ; A9: ldrb.w {{r[0-9]|lr}}, [{{r[0-9]|lr}}, #3]
    142 define void @foldedidx(i8* nocapture %a, i8* nocapture %b, i8* nocapture %c) nounwind ssp {
    143 entry:
    144   br label %for.body
    145 
    146 for.body:                                         ; preds = %for.body, %entry
    147   %i.07 = phi i32 [ 0, %entry ], [ %inc.3, %for.body ]
    148   %arrayidx = getelementptr inbounds i8* %a, i32 %i.07
    149   %0 = load i8* %arrayidx, align 1
    150   %conv5 = zext i8 %0 to i32
    151   %arrayidx1 = getelementptr inbounds i8* %b, i32 %i.07
    152   %1 = load i8* %arrayidx1, align 1
    153   %conv26 = zext i8 %1 to i32
    154   %add = add nsw i32 %conv26, %conv5
    155   %conv3 = trunc i32 %add to i8
    156   %arrayidx4 = getelementptr inbounds i8* %c, i32 %i.07
    157   store i8 %conv3, i8* %arrayidx4, align 1
    158   %inc1 = or i32 %i.07, 1
    159   %arrayidx.1 = getelementptr inbounds i8* %a, i32 %inc1
    160   %2 = load i8* %arrayidx.1, align 1
    161   %conv5.1 = zext i8 %2 to i32
    162   %arrayidx1.1 = getelementptr inbounds i8* %b, i32 %inc1
    163   %3 = load i8* %arrayidx1.1, align 1
    164   %conv26.1 = zext i8 %3 to i32
    165   %add.1 = add nsw i32 %conv26.1, %conv5.1
    166   %conv3.1 = trunc i32 %add.1 to i8
    167   %arrayidx4.1 = getelementptr inbounds i8* %c, i32 %inc1
    168   store i8 %conv3.1, i8* %arrayidx4.1, align 1
    169   %inc.12 = or i32 %i.07, 2
    170   %arrayidx.2 = getelementptr inbounds i8* %a, i32 %inc.12
    171   %4 = load i8* %arrayidx.2, align 1
    172   %conv5.2 = zext i8 %4 to i32
    173   %arrayidx1.2 = getelementptr inbounds i8* %b, i32 %inc.12
    174   %5 = load i8* %arrayidx1.2, align 1
    175   %conv26.2 = zext i8 %5 to i32
    176   %add.2 = add nsw i32 %conv26.2, %conv5.2
    177   %conv3.2 = trunc i32 %add.2 to i8
    178   %arrayidx4.2 = getelementptr inbounds i8* %c, i32 %inc.12
    179   store i8 %conv3.2, i8* %arrayidx4.2, align 1
    180   %inc.23 = or i32 %i.07, 3
    181   %arrayidx.3 = getelementptr inbounds i8* %a, i32 %inc.23
    182   %6 = load i8* %arrayidx.3, align 1
    183   %conv5.3 = zext i8 %6 to i32
    184   %arrayidx1.3 = getelementptr inbounds i8* %b, i32 %inc.23
    185   %7 = load i8* %arrayidx1.3, align 1
    186   %conv26.3 = zext i8 %7 to i32
    187   %add.3 = add nsw i32 %conv26.3, %conv5.3
    188   %conv3.3 = trunc i32 %add.3 to i8
    189   %arrayidx4.3 = getelementptr inbounds i8* %c, i32 %inc.23
    190   store i8 %conv3.3, i8* %arrayidx4.3, align 1
    191   %inc.3 = add nsw i32 %i.07, 4
    192   %exitcond.3 = icmp eq i32 %inc.3, 400
    193   br i1 %exitcond.3, label %for.end, label %for.body
    194 
    195 for.end:                                          ; preds = %for.body
    196   ret void
    197 }
    198 
    199 ; @testNeon is an important example of the nead for ivchains.
    200 ;
    201 ; Currently we have three extra add.w's that keep the store address
    202 ; live past the next increment because ISEL is unfortunately undoing
    203 ; the store chain. ISEL also fails to convert the stores to
    204 ; post-increment addressing. However, the loads should use
    205 ; post-increment addressing, no add's or add.w's beyond the three
    206 ; mentioned. Most importantly, there should be no spills or reloads!
    207 ;
    208 ; CHECK: testNeon:
    209 ; CHECK: %.lr.ph
    210 ; CHECK-NOT: lsl.w
    211 ; CHECK-NOT: {{ldr|str|adds|add r}}
    212 ; CHECK: add.w r
    213 ; CHECK-NOT: {{ldr|str|adds|add r}}
    214 ; CHECK: add.w r
    215 ; CHECK-NOT: {{ldr|str|adds|add r}}
    216 ; CHECK: add.w r
    217 ; CHECK-NOT: {{ldr|str|adds|add r}}
    218 ; CHECK-NOT: add.w r
    219 ; CHECK: bne
    220 define hidden void @testNeon(i8* %ref_data, i32 %ref_stride, i32 %limit, <16 x i8>* nocapture %data) nounwind optsize {
    221   %1 = icmp sgt i32 %limit, 0
    222   br i1 %1, label %.lr.ph, label %45
    223 
    224 .lr.ph:                                           ; preds = %0
    225   %2 = shl nsw i32 %ref_stride, 1
    226   %3 = mul nsw i32 %ref_stride, 3
    227   %4 = shl nsw i32 %ref_stride, 2
    228   %5 = mul nsw i32 %ref_stride, 5
    229   %6 = mul nsw i32 %ref_stride, 6
    230   %7 = mul nsw i32 %ref_stride, 7
    231   %8 = shl nsw i32 %ref_stride, 3
    232   %9 = sub i32 0, %8
    233   %10 = mul i32 %limit, -64
    234   br label %11
    235 
    236 ; <label>:11                                      ; preds = %11, %.lr.ph
    237   %.05 = phi i8* [ %ref_data, %.lr.ph ], [ %42, %11 ]
    238   %counter.04 = phi i32 [ 0, %.lr.ph ], [ %44, %11 ]
    239   %result.03 = phi <16 x i8> [ zeroinitializer, %.lr.ph ], [ %41, %11 ]
    240   %.012 = phi <16 x i8>* [ %data, %.lr.ph ], [ %43, %11 ]
    241   %12 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %.05, i32 1) nounwind
    242   %13 = getelementptr inbounds i8* %.05, i32 %ref_stride
    243   %14 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %13, i32 1) nounwind
    244   %15 = shufflevector <1 x i64> %12, <1 x i64> %14, <2 x i32> <i32 0, i32 1>
    245   %16 = bitcast <2 x i64> %15 to <16 x i8>
    246   %17 = getelementptr inbounds <16 x i8>* %.012, i32 1
    247   store <16 x i8> %16, <16 x i8>* %.012, align 4
    248   %18 = getelementptr inbounds i8* %.05, i32 %2
    249   %19 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %18, i32 1) nounwind
    250   %20 = getelementptr inbounds i8* %.05, i32 %3
    251   %21 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %20, i32 1) nounwind
    252   %22 = shufflevector <1 x i64> %19, <1 x i64> %21, <2 x i32> <i32 0, i32 1>
    253   %23 = bitcast <2 x i64> %22 to <16 x i8>
    254   %24 = getelementptr inbounds <16 x i8>* %.012, i32 2
    255   store <16 x i8> %23, <16 x i8>* %17, align 4
    256   %25 = getelementptr inbounds i8* %.05, i32 %4
    257   %26 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %25, i32 1) nounwind
    258   %27 = getelementptr inbounds i8* %.05, i32 %5
    259   %28 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %27, i32 1) nounwind
    260   %29 = shufflevector <1 x i64> %26, <1 x i64> %28, <2 x i32> <i32 0, i32 1>
    261   %30 = bitcast <2 x i64> %29 to <16 x i8>
    262   %31 = getelementptr inbounds <16 x i8>* %.012, i32 3
    263   store <16 x i8> %30, <16 x i8>* %24, align 4
    264   %32 = getelementptr inbounds i8* %.05, i32 %6
    265   %33 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %32, i32 1) nounwind
    266   %34 = getelementptr inbounds i8* %.05, i32 %7
    267   %35 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %34, i32 1) nounwind
    268   %36 = shufflevector <1 x i64> %33, <1 x i64> %35, <2 x i32> <i32 0, i32 1>
    269   %37 = bitcast <2 x i64> %36 to <16 x i8>
    270   store <16 x i8> %37, <16 x i8>* %31, align 4
    271   %38 = add <16 x i8> %16, %23
    272   %39 = add <16 x i8> %38, %30
    273   %40 = add <16 x i8> %39, %37
    274   %41 = add <16 x i8> %result.03, %40
    275   %42 = getelementptr i8* %.05, i32 %9
    276   %43 = getelementptr inbounds <16 x i8>* %.012, i32 -64
    277   %44 = add nsw i32 %counter.04, 1
    278   %exitcond = icmp eq i32 %44, %limit
    279   br i1 %exitcond, label %._crit_edge, label %11
    280 
    281 ._crit_edge:                                      ; preds = %11
    282   %scevgep = getelementptr <16 x i8>* %data, i32 %10
    283   br label %45
    284 
    285 ; <label>:45                                      ; preds = %._crit_edge, %0
    286   %result.0.lcssa = phi <16 x i8> [ %41, %._crit_edge ], [ zeroinitializer, %0 ]
    287   %.01.lcssa = phi <16 x i8>* [ %scevgep, %._crit_edge ], [ %data, %0 ]
    288   store <16 x i8> %result.0.lcssa, <16 x i8>* %.01.lcssa, align 4
    289   ret void
    290 }
    291 
    292 declare <1 x i64> @llvm.arm.neon.vld1.v1i64(i8*, i32) nounwind readonly
    293