Home | History | Annotate | Download | only in TableGen
      1 //===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // It contains the tablegen backend that emits the decoder functions for
     11 // targets with fixed length instruction set.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "decoder-emitter"
     16 
     17 #include "FixedLenDecoderEmitter.h"
     18 #include "CodeGenTarget.h"
     19 #include "llvm/TableGen/Record.h"
     20 #include "llvm/ADT/APInt.h"
     21 #include "llvm/ADT/StringExtras.h"
     22 #include "llvm/Support/Debug.h"
     23 #include "llvm/Support/raw_ostream.h"
     24 
     25 #include <vector>
     26 #include <map>
     27 #include <string>
     28 
     29 using namespace llvm;
     30 
     31 // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
     32 // for a bit value.
     33 //
     34 // BIT_UNFILTERED is used as the init value for a filter position.  It is used
     35 // only for filter processings.
     36 typedef enum {
     37   BIT_TRUE,      // '1'
     38   BIT_FALSE,     // '0'
     39   BIT_UNSET,     // '?'
     40   BIT_UNFILTERED // unfiltered
     41 } bit_value_t;
     42 
     43 static bool ValueSet(bit_value_t V) {
     44   return (V == BIT_TRUE || V == BIT_FALSE);
     45 }
     46 static bool ValueNotSet(bit_value_t V) {
     47   return (V == BIT_UNSET);
     48 }
     49 static int Value(bit_value_t V) {
     50   return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
     51 }
     52 static bit_value_t bitFromBits(const BitsInit &bits, unsigned index) {
     53   if (BitInit *bit = dynamic_cast<BitInit*>(bits.getBit(index)))
     54     return bit->getValue() ? BIT_TRUE : BIT_FALSE;
     55 
     56   // The bit is uninitialized.
     57   return BIT_UNSET;
     58 }
     59 // Prints the bit value for each position.
     60 static void dumpBits(raw_ostream &o, const BitsInit &bits) {
     61   unsigned index;
     62 
     63   for (index = bits.getNumBits(); index > 0; index--) {
     64     switch (bitFromBits(bits, index - 1)) {
     65     case BIT_TRUE:
     66       o << "1";
     67       break;
     68     case BIT_FALSE:
     69       o << "0";
     70       break;
     71     case BIT_UNSET:
     72       o << "_";
     73       break;
     74     default:
     75       llvm_unreachable("unexpected return value from bitFromBits");
     76     }
     77   }
     78 }
     79 
     80 static BitsInit &getBitsField(const Record &def, const char *str) {
     81   BitsInit *bits = def.getValueAsBitsInit(str);
     82   return *bits;
     83 }
     84 
     85 // Forward declaration.
     86 class FilterChooser;
     87 
     88 // Representation of the instruction to work on.
     89 typedef std::vector<bit_value_t> insn_t;
     90 
     91 /// Filter - Filter works with FilterChooser to produce the decoding tree for
     92 /// the ISA.
     93 ///
     94 /// It is useful to think of a Filter as governing the switch stmts of the
     95 /// decoding tree in a certain level.  Each case stmt delegates to an inferior
     96 /// FilterChooser to decide what further decoding logic to employ, or in another
     97 /// words, what other remaining bits to look at.  The FilterChooser eventually
     98 /// chooses a best Filter to do its job.
     99 ///
    100 /// This recursive scheme ends when the number of Opcodes assigned to the
    101 /// FilterChooser becomes 1 or if there is a conflict.  A conflict happens when
    102 /// the Filter/FilterChooser combo does not know how to distinguish among the
    103 /// Opcodes assigned.
    104 ///
    105 /// An example of a conflict is
    106 ///
    107 /// Conflict:
    108 ///                     111101000.00........00010000....
    109 ///                     111101000.00........0001........
    110 ///                     1111010...00........0001........
    111 ///                     1111010...00....................
    112 ///                     1111010.........................
    113 ///                     1111............................
    114 ///                     ................................
    115 ///     VST4q8a         111101000_00________00010000____
    116 ///     VST4q8b         111101000_00________00010000____
    117 ///
    118 /// The Debug output shows the path that the decoding tree follows to reach the
    119 /// the conclusion that there is a conflict.  VST4q8a is a vst4 to double-spaced
    120 /// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters.
    121 ///
    122 /// The encoding info in the .td files does not specify this meta information,
    123 /// which could have been used by the decoder to resolve the conflict.  The
    124 /// decoder could try to decode the even/odd register numbering and assign to
    125 /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
    126 /// version and return the Opcode since the two have the same Asm format string.
    127 class Filter {
    128 protected:
    129   const FilterChooser *Owner;// points to the FilterChooser who owns this filter
    130   unsigned StartBit; // the starting bit position
    131   unsigned NumBits; // number of bits to filter
    132   bool Mixed; // a mixed region contains both set and unset bits
    133 
    134   // Map of well-known segment value to the set of uid's with that value.
    135   std::map<uint64_t, std::vector<unsigned> > FilteredInstructions;
    136 
    137   // Set of uid's with non-constant segment values.
    138   std::vector<unsigned> VariableInstructions;
    139 
    140   // Map of well-known segment value to its delegate.
    141   std::map<unsigned, const FilterChooser*> FilterChooserMap;
    142 
    143   // Number of instructions which fall under FilteredInstructions category.
    144   unsigned NumFiltered;
    145 
    146   // Keeps track of the last opcode in the filtered bucket.
    147   unsigned LastOpcFiltered;
    148 
    149 public:
    150   unsigned getNumFiltered() const { return NumFiltered; }
    151   unsigned getSingletonOpc() const {
    152     assert(NumFiltered == 1);
    153     return LastOpcFiltered;
    154   }
    155   // Return the filter chooser for the group of instructions without constant
    156   // segment values.
    157   const FilterChooser &getVariableFC() const {
    158     assert(NumFiltered == 1);
    159     assert(FilterChooserMap.size() == 1);
    160     return *(FilterChooserMap.find((unsigned)-1)->second);
    161   }
    162 
    163   Filter(const Filter &f);
    164   Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);
    165 
    166   ~Filter();
    167 
    168   // Divides the decoding task into sub tasks and delegates them to the
    169   // inferior FilterChooser's.
    170   //
    171   // A special case arises when there's only one entry in the filtered
    172   // instructions.  In order to unambiguously decode the singleton, we need to
    173   // match the remaining undecoded encoding bits against the singleton.
    174   void recurse();
    175 
    176   // Emit code to decode instructions given a segment or segments of bits.
    177   void emit(raw_ostream &o, unsigned &Indentation) const;
    178 
    179   // Returns the number of fanout produced by the filter.  More fanout implies
    180   // the filter distinguishes more categories of instructions.
    181   unsigned usefulness() const;
    182 }; // End of class Filter
    183 
    184 // These are states of our finite state machines used in FilterChooser's
    185 // filterProcessor() which produces the filter candidates to use.
    186 typedef enum {
    187   ATTR_NONE,
    188   ATTR_FILTERED,
    189   ATTR_ALL_SET,
    190   ATTR_ALL_UNSET,
    191   ATTR_MIXED
    192 } bitAttr_t;
    193 
    194 /// FilterChooser - FilterChooser chooses the best filter among a set of Filters
    195 /// in order to perform the decoding of instructions at the current level.
    196 ///
    197 /// Decoding proceeds from the top down.  Based on the well-known encoding bits
    198 /// of instructions available, FilterChooser builds up the possible Filters that
    199 /// can further the task of decoding by distinguishing among the remaining
    200 /// candidate instructions.
    201 ///
    202 /// Once a filter has been chosen, it is called upon to divide the decoding task
    203 /// into sub-tasks and delegates them to its inferior FilterChoosers for further
    204 /// processings.
    205 ///
    206 /// It is useful to think of a Filter as governing the switch stmts of the
    207 /// decoding tree.  And each case is delegated to an inferior FilterChooser to
    208 /// decide what further remaining bits to look at.
    209 class FilterChooser {
    210 protected:
    211   friend class Filter;
    212 
    213   // Vector of codegen instructions to choose our filter.
    214   const std::vector<const CodeGenInstruction*> &AllInstructions;
    215 
    216   // Vector of uid's for this filter chooser to work on.
    217   const std::vector<unsigned> &Opcodes;
    218 
    219   // Lookup table for the operand decoding of instructions.
    220   const std::map<unsigned, std::vector<OperandInfo> > &Operands;
    221 
    222   // Vector of candidate filters.
    223   std::vector<Filter> Filters;
    224 
    225   // Array of bit values passed down from our parent.
    226   // Set to all BIT_UNFILTERED's for Parent == NULL.
    227   std::vector<bit_value_t> FilterBitValues;
    228 
    229   // Links to the FilterChooser above us in the decoding tree.
    230   const FilterChooser *Parent;
    231 
    232   // Index of the best filter from Filters.
    233   int BestIndex;
    234 
    235   // Width of instructions
    236   unsigned BitWidth;
    237 
    238   // Parent emitter
    239   const FixedLenDecoderEmitter *Emitter;
    240 
    241 public:
    242   FilterChooser(const FilterChooser &FC)
    243     : AllInstructions(FC.AllInstructions), Opcodes(FC.Opcodes),
    244       Operands(FC.Operands), Filters(FC.Filters),
    245       FilterBitValues(FC.FilterBitValues), Parent(FC.Parent),
    246       BestIndex(FC.BestIndex), BitWidth(FC.BitWidth),
    247       Emitter(FC.Emitter) { }
    248 
    249   FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
    250                 const std::vector<unsigned> &IDs,
    251                 const std::map<unsigned, std::vector<OperandInfo> > &Ops,
    252                 unsigned BW,
    253                 const FixedLenDecoderEmitter *E)
    254     : AllInstructions(Insts), Opcodes(IDs), Operands(Ops), Filters(),
    255       Parent(NULL), BestIndex(-1), BitWidth(BW), Emitter(E) {
    256     for (unsigned i = 0; i < BitWidth; ++i)
    257       FilterBitValues.push_back(BIT_UNFILTERED);
    258 
    259     doFilter();
    260   }
    261 
    262   FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
    263                 const std::vector<unsigned> &IDs,
    264                 const std::map<unsigned, std::vector<OperandInfo> > &Ops,
    265                 const std::vector<bit_value_t> &ParentFilterBitValues,
    266                 const FilterChooser &parent)
    267     : AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
    268       Filters(), FilterBitValues(ParentFilterBitValues),
    269       Parent(&parent), BestIndex(-1), BitWidth(parent.BitWidth),
    270       Emitter(parent.Emitter) {
    271     doFilter();
    272   }
    273 
    274   // The top level filter chooser has NULL as its parent.
    275   bool isTopLevel() const { return Parent == NULL; }
    276 
    277   // Emit the top level typedef and decodeInstruction() function.
    278   void emitTop(raw_ostream &o, unsigned Indentation,
    279                const std::string &Namespace) const;
    280 
    281 protected:
    282   // Populates the insn given the uid.
    283   void insnWithID(insn_t &Insn, unsigned Opcode) const {
    284     BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst");
    285 
    286     // We may have a SoftFail bitmask, which specifies a mask where an encoding
    287     // may differ from the value in "Inst" and yet still be valid, but the
    288     // disassembler should return SoftFail instead of Success.
    289     //
    290     // This is used for marking UNPREDICTABLE instructions in the ARM world.
    291     BitsInit *SFBits =
    292       AllInstructions[Opcode]->TheDef->getValueAsBitsInit("SoftFail");
    293 
    294     for (unsigned i = 0; i < BitWidth; ++i) {
    295       if (SFBits && bitFromBits(*SFBits, i) == BIT_TRUE)
    296         Insn.push_back(BIT_UNSET);
    297       else
    298         Insn.push_back(bitFromBits(Bits, i));
    299     }
    300   }
    301 
    302   // Returns the record name.
    303   const std::string &nameWithID(unsigned Opcode) const {
    304     return AllInstructions[Opcode]->TheDef->getName();
    305   }
    306 
    307   // Populates the field of the insn given the start position and the number of
    308   // consecutive bits to scan for.
    309   //
    310   // Returns false if there exists any uninitialized bit value in the range.
    311   // Returns true, otherwise.
    312   bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
    313                      unsigned NumBits) const;
    314 
    315   /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
    316   /// filter array as a series of chars.
    317   void dumpFilterArray(raw_ostream &o,
    318                        const std::vector<bit_value_t> & filter) const;
    319 
    320   /// dumpStack - dumpStack traverses the filter chooser chain and calls
    321   /// dumpFilterArray on each filter chooser up to the top level one.
    322   void dumpStack(raw_ostream &o, const char *prefix) const;
    323 
    324   Filter &bestFilter() {
    325     assert(BestIndex != -1 && "BestIndex not set");
    326     return Filters[BestIndex];
    327   }
    328 
    329   // Called from Filter::recurse() when singleton exists.  For debug purpose.
    330   void SingletonExists(unsigned Opc) const;
    331 
    332   bool PositionFiltered(unsigned i) const {
    333     return ValueSet(FilterBitValues[i]);
    334   }
    335 
    336   // Calculates the island(s) needed to decode the instruction.
    337   // This returns a lit of undecoded bits of an instructions, for example,
    338   // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
    339   // decoded bits in order to verify that the instruction matches the Opcode.
    340   unsigned getIslands(std::vector<unsigned> &StartBits,
    341                       std::vector<unsigned> &EndBits,
    342                       std::vector<uint64_t> &FieldVals,
    343                       const insn_t &Insn) const;
    344 
    345   // Emits code to check the Predicates member of an instruction are true.
    346   // Returns true if predicate matches were emitted, false otherwise.
    347   bool emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
    348                           unsigned Opc) const;
    349 
    350   void emitSoftFailCheck(raw_ostream &o, unsigned Indentation,
    351                          unsigned Opc) const;
    352 
    353   // Emits code to decode the singleton.  Return true if we have matched all the
    354   // well-known bits.
    355   bool emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
    356                             unsigned Opc) const;
    357 
    358   // Emits code to decode the singleton, and then to decode the rest.
    359   void emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
    360                             const Filter &Best) const;
    361 
    362   void emitBinaryParser(raw_ostream &o , unsigned &Indentation,
    363                         const OperandInfo &OpInfo) const;
    364 
    365   // Assign a single filter and run with it.
    366   void runSingleFilter(unsigned startBit, unsigned numBit, bool mixed);
    367 
    368   // reportRegion is a helper function for filterProcessor to mark a region as
    369   // eligible for use as a filter region.
    370   void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
    371                     bool AllowMixed);
    372 
    373   // FilterProcessor scans the well-known encoding bits of the instructions and
    374   // builds up a list of candidate filters.  It chooses the best filter and
    375   // recursively descends down the decoding tree.
    376   bool filterProcessor(bool AllowMixed, bool Greedy = true);
    377 
    378   // Decides on the best configuration of filter(s) to use in order to decode
    379   // the instructions.  A conflict of instructions may occur, in which case we
    380   // dump the conflict set to the standard error.
    381   void doFilter();
    382 
    383   // Emits code to decode our share of instructions.  Returns true if the
    384   // emitted code causes a return, which occurs if we know how to decode
    385   // the instruction at this level or the instruction is not decodeable.
    386   bool emit(raw_ostream &o, unsigned &Indentation) const;
    387 };
    388 
    389 ///////////////////////////
    390 //                       //
    391 // Filter Implementation //
    392 //                       //
    393 ///////////////////////////
    394 
    395 Filter::Filter(const Filter &f)
    396   : Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
    397     FilteredInstructions(f.FilteredInstructions),
    398     VariableInstructions(f.VariableInstructions),
    399     FilterChooserMap(f.FilterChooserMap), NumFiltered(f.NumFiltered),
    400     LastOpcFiltered(f.LastOpcFiltered) {
    401 }
    402 
    403 Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
    404                bool mixed)
    405   : Owner(&owner), StartBit(startBit), NumBits(numBits), Mixed(mixed) {
    406   assert(StartBit + NumBits - 1 < Owner->BitWidth);
    407 
    408   NumFiltered = 0;
    409   LastOpcFiltered = 0;
    410 
    411   for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
    412     insn_t Insn;
    413 
    414     // Populates the insn given the uid.
    415     Owner->insnWithID(Insn, Owner->Opcodes[i]);
    416 
    417     uint64_t Field;
    418     // Scans the segment for possibly well-specified encoding bits.
    419     bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
    420 
    421     if (ok) {
    422       // The encoding bits are well-known.  Lets add the uid of the
    423       // instruction into the bucket keyed off the constant field value.
    424       LastOpcFiltered = Owner->Opcodes[i];
    425       FilteredInstructions[Field].push_back(LastOpcFiltered);
    426       ++NumFiltered;
    427     } else {
    428       // Some of the encoding bit(s) are unspecified.  This contributes to
    429       // one additional member of "Variable" instructions.
    430       VariableInstructions.push_back(Owner->Opcodes[i]);
    431     }
    432   }
    433 
    434   assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
    435          && "Filter returns no instruction categories");
    436 }
    437 
    438 Filter::~Filter() {
    439   std::map<unsigned, const FilterChooser*>::iterator filterIterator;
    440   for (filterIterator = FilterChooserMap.begin();
    441        filterIterator != FilterChooserMap.end();
    442        filterIterator++) {
    443     delete filterIterator->second;
    444   }
    445 }
    446 
    447 // Divides the decoding task into sub tasks and delegates them to the
    448 // inferior FilterChooser's.
    449 //
    450 // A special case arises when there's only one entry in the filtered
    451 // instructions.  In order to unambiguously decode the singleton, we need to
    452 // match the remaining undecoded encoding bits against the singleton.
    453 void Filter::recurse() {
    454   std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator;
    455 
    456   // Starts by inheriting our parent filter chooser's filter bit values.
    457   std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues);
    458 
    459   unsigned bitIndex;
    460 
    461   if (VariableInstructions.size()) {
    462     // Conservatively marks each segment position as BIT_UNSET.
    463     for (bitIndex = 0; bitIndex < NumBits; bitIndex++)
    464       BitValueArray[StartBit + bitIndex] = BIT_UNSET;
    465 
    466     // Delegates to an inferior filter chooser for further processing on this
    467     // group of instructions whose segment values are variable.
    468     FilterChooserMap.insert(std::pair<unsigned, const FilterChooser*>(
    469                               (unsigned)-1,
    470                               new FilterChooser(Owner->AllInstructions,
    471                                                 VariableInstructions,
    472                                                 Owner->Operands,
    473                                                 BitValueArray,
    474                                                 *Owner)
    475                               ));
    476   }
    477 
    478   // No need to recurse for a singleton filtered instruction.
    479   // See also Filter::emit().
    480   if (getNumFiltered() == 1) {
    481     //Owner->SingletonExists(LastOpcFiltered);
    482     assert(FilterChooserMap.size() == 1);
    483     return;
    484   }
    485 
    486   // Otherwise, create sub choosers.
    487   for (mapIterator = FilteredInstructions.begin();
    488        mapIterator != FilteredInstructions.end();
    489        mapIterator++) {
    490 
    491     // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
    492     for (bitIndex = 0; bitIndex < NumBits; bitIndex++) {
    493       if (mapIterator->first & (1ULL << bitIndex))
    494         BitValueArray[StartBit + bitIndex] = BIT_TRUE;
    495       else
    496         BitValueArray[StartBit + bitIndex] = BIT_FALSE;
    497     }
    498 
    499     // Delegates to an inferior filter chooser for further processing on this
    500     // category of instructions.
    501     FilterChooserMap.insert(std::pair<unsigned, const FilterChooser*>(
    502                               mapIterator->first,
    503                               new FilterChooser(Owner->AllInstructions,
    504                                                 mapIterator->second,
    505                                                 Owner->Operands,
    506                                                 BitValueArray,
    507                                                 *Owner)
    508                               ));
    509   }
    510 }
    511 
    512 // Emit code to decode instructions given a segment or segments of bits.
    513 void Filter::emit(raw_ostream &o, unsigned &Indentation) const {
    514   o.indent(Indentation) << "// Check Inst{";
    515 
    516   if (NumBits > 1)
    517     o << (StartBit + NumBits - 1) << '-';
    518 
    519   o << StartBit << "} ...\n";
    520 
    521   o.indent(Indentation) << "switch (fieldFromInstruction" << Owner->BitWidth
    522                         << "(insn, " << StartBit << ", "
    523                         << NumBits << ")) {\n";
    524 
    525   std::map<unsigned, const FilterChooser*>::const_iterator filterIterator;
    526 
    527   bool DefaultCase = false;
    528   for (filterIterator = FilterChooserMap.begin();
    529        filterIterator != FilterChooserMap.end();
    530        filterIterator++) {
    531 
    532     // Field value -1 implies a non-empty set of variable instructions.
    533     // See also recurse().
    534     if (filterIterator->first == (unsigned)-1) {
    535       DefaultCase = true;
    536 
    537       o.indent(Indentation) << "default:\n";
    538       o.indent(Indentation) << "  break; // fallthrough\n";
    539 
    540       // Closing curly brace for the switch statement.
    541       // This is unconventional because we want the default processing to be
    542       // performed for the fallthrough cases as well, i.e., when the "cases"
    543       // did not prove a decoded instruction.
    544       o.indent(Indentation) << "}\n";
    545 
    546     } else
    547       o.indent(Indentation) << "case " << filterIterator->first << ":\n";
    548 
    549     // We arrive at a category of instructions with the same segment value.
    550     // Now delegate to the sub filter chooser for further decodings.
    551     // The case may fallthrough, which happens if the remaining well-known
    552     // encoding bits do not match exactly.
    553     if (!DefaultCase) { ++Indentation; ++Indentation; }
    554 
    555     filterIterator->second->emit(o, Indentation);
    556     // For top level default case, there's no need for a break statement.
    557     if (Owner->isTopLevel() && DefaultCase)
    558       break;
    559 
    560     o.indent(Indentation) << "break;\n";
    561 
    562     if (!DefaultCase) { --Indentation; --Indentation; }
    563   }
    564 
    565   // If there is no default case, we still need to supply a closing brace.
    566   if (!DefaultCase) {
    567     // Closing curly brace for the switch statement.
    568     o.indent(Indentation) << "}\n";
    569   }
    570 }
    571 
    572 // Returns the number of fanout produced by the filter.  More fanout implies
    573 // the filter distinguishes more categories of instructions.
    574 unsigned Filter::usefulness() const {
    575   if (VariableInstructions.size())
    576     return FilteredInstructions.size();
    577   else
    578     return FilteredInstructions.size() + 1;
    579 }
    580 
    581 //////////////////////////////////
    582 //                              //
    583 // Filterchooser Implementation //
    584 //                              //
    585 //////////////////////////////////
    586 
    587 // Emit the top level typedef and decodeInstruction() function.
    588 void FilterChooser::emitTop(raw_ostream &o, unsigned Indentation,
    589                             const std::string &Namespace) const {
    590   o.indent(Indentation) <<
    591     "static MCDisassembler::DecodeStatus decode" << Namespace << "Instruction"
    592     << BitWidth << "(MCInst &MI, uint" << BitWidth
    593     << "_t insn, uint64_t Address, "
    594     << "const void *Decoder, const MCSubtargetInfo &STI) {\n";
    595   o.indent(Indentation) << "  unsigned tmp = 0;\n";
    596   o.indent(Indentation) << "  (void)tmp;\n";
    597   o.indent(Indentation) << Emitter->Locals << "\n";
    598   o.indent(Indentation) << "  uint64_t Bits = STI.getFeatureBits();\n";
    599   o.indent(Indentation) << "  (void)Bits;\n";
    600 
    601   ++Indentation; ++Indentation;
    602   // Emits code to decode the instructions.
    603   emit(o, Indentation);
    604 
    605   o << '\n';
    606   o.indent(Indentation) << "return " << Emitter->ReturnFail << ";\n";
    607   --Indentation; --Indentation;
    608 
    609   o.indent(Indentation) << "}\n";
    610 
    611   o << '\n';
    612 }
    613 
    614 // Populates the field of the insn given the start position and the number of
    615 // consecutive bits to scan for.
    616 //
    617 // Returns false if and on the first uninitialized bit value encountered.
    618 // Returns true, otherwise.
    619 bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
    620                                   unsigned StartBit, unsigned NumBits) const {
    621   Field = 0;
    622 
    623   for (unsigned i = 0; i < NumBits; ++i) {
    624     if (Insn[StartBit + i] == BIT_UNSET)
    625       return false;
    626 
    627     if (Insn[StartBit + i] == BIT_TRUE)
    628       Field = Field | (1ULL << i);
    629   }
    630 
    631   return true;
    632 }
    633 
    634 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
    635 /// filter array as a series of chars.
    636 void FilterChooser::dumpFilterArray(raw_ostream &o,
    637                                  const std::vector<bit_value_t> &filter) const {
    638   unsigned bitIndex;
    639 
    640   for (bitIndex = BitWidth; bitIndex > 0; bitIndex--) {
    641     switch (filter[bitIndex - 1]) {
    642     case BIT_UNFILTERED:
    643       o << ".";
    644       break;
    645     case BIT_UNSET:
    646       o << "_";
    647       break;
    648     case BIT_TRUE:
    649       o << "1";
    650       break;
    651     case BIT_FALSE:
    652       o << "0";
    653       break;
    654     }
    655   }
    656 }
    657 
    658 /// dumpStack - dumpStack traverses the filter chooser chain and calls
    659 /// dumpFilterArray on each filter chooser up to the top level one.
    660 void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) const {
    661   const FilterChooser *current = this;
    662 
    663   while (current) {
    664     o << prefix;
    665     dumpFilterArray(o, current->FilterBitValues);
    666     o << '\n';
    667     current = current->Parent;
    668   }
    669 }
    670 
    671 // Called from Filter::recurse() when singleton exists.  For debug purpose.
    672 void FilterChooser::SingletonExists(unsigned Opc) const {
    673   insn_t Insn0;
    674   insnWithID(Insn0, Opc);
    675 
    676   errs() << "Singleton exists: " << nameWithID(Opc)
    677          << " with its decoding dominating ";
    678   for (unsigned i = 0; i < Opcodes.size(); ++i) {
    679     if (Opcodes[i] == Opc) continue;
    680     errs() << nameWithID(Opcodes[i]) << ' ';
    681   }
    682   errs() << '\n';
    683 
    684   dumpStack(errs(), "\t\t");
    685   for (unsigned i = 0; i < Opcodes.size(); ++i) {
    686     const std::string &Name = nameWithID(Opcodes[i]);
    687 
    688     errs() << '\t' << Name << " ";
    689     dumpBits(errs(),
    690              getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
    691     errs() << '\n';
    692   }
    693 }
    694 
    695 // Calculates the island(s) needed to decode the instruction.
    696 // This returns a list of undecoded bits of an instructions, for example,
    697 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
    698 // decoded bits in order to verify that the instruction matches the Opcode.
    699 unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
    700                                    std::vector<unsigned> &EndBits,
    701                                    std::vector<uint64_t> &FieldVals,
    702                                    const insn_t &Insn) const {
    703   unsigned Num, BitNo;
    704   Num = BitNo = 0;
    705 
    706   uint64_t FieldVal = 0;
    707 
    708   // 0: Init
    709   // 1: Water (the bit value does not affect decoding)
    710   // 2: Island (well-known bit value needed for decoding)
    711   int State = 0;
    712   int Val = -1;
    713 
    714   for (unsigned i = 0; i < BitWidth; ++i) {
    715     Val = Value(Insn[i]);
    716     bool Filtered = PositionFiltered(i);
    717     switch (State) {
    718     default: llvm_unreachable("Unreachable code!");
    719     case 0:
    720     case 1:
    721       if (Filtered || Val == -1)
    722         State = 1; // Still in Water
    723       else {
    724         State = 2; // Into the Island
    725         BitNo = 0;
    726         StartBits.push_back(i);
    727         FieldVal = Val;
    728       }
    729       break;
    730     case 2:
    731       if (Filtered || Val == -1) {
    732         State = 1; // Into the Water
    733         EndBits.push_back(i - 1);
    734         FieldVals.push_back(FieldVal);
    735         ++Num;
    736       } else {
    737         State = 2; // Still in Island
    738         ++BitNo;
    739         FieldVal = FieldVal | Val << BitNo;
    740       }
    741       break;
    742     }
    743   }
    744   // If we are still in Island after the loop, do some housekeeping.
    745   if (State == 2) {
    746     EndBits.push_back(BitWidth - 1);
    747     FieldVals.push_back(FieldVal);
    748     ++Num;
    749   }
    750 
    751   assert(StartBits.size() == Num && EndBits.size() == Num &&
    752          FieldVals.size() == Num);
    753   return Num;
    754 }
    755 
    756 void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation,
    757                                      const OperandInfo &OpInfo) const {
    758   const std::string &Decoder = OpInfo.Decoder;
    759 
    760   if (OpInfo.numFields() == 1) {
    761     OperandInfo::const_iterator OI = OpInfo.begin();
    762     o.indent(Indentation) << "  tmp = fieldFromInstruction" << BitWidth
    763                             << "(insn, " << OI->Base << ", " << OI->Width
    764                             << ");\n";
    765   } else {
    766     o.indent(Indentation) << "  tmp = 0;\n";
    767     for (OperandInfo::const_iterator OI = OpInfo.begin(), OE = OpInfo.end();
    768          OI != OE; ++OI) {
    769       o.indent(Indentation) << "  tmp |= (fieldFromInstruction" << BitWidth
    770                             << "(insn, " << OI->Base << ", " << OI->Width
    771                             << ") << " << OI->Offset << ");\n";
    772     }
    773   }
    774 
    775   if (Decoder != "")
    776     o.indent(Indentation) << "  " << Emitter->GuardPrefix << Decoder
    777                           << "(MI, tmp, Address, Decoder)"
    778                           << Emitter->GuardPostfix << "\n";
    779   else
    780     o.indent(Indentation) << "  MI.addOperand(MCOperand::CreateImm(tmp));\n";
    781 
    782 }
    783 
    784 static void emitSinglePredicateMatch(raw_ostream &o, StringRef str,
    785                                      const std::string &PredicateNamespace) {
    786   if (str[0] == '!')
    787     o << "!(Bits & " << PredicateNamespace << "::"
    788       << str.slice(1,str.size()) << ")";
    789   else
    790     o << "(Bits & " << PredicateNamespace << "::" << str << ")";
    791 }
    792 
    793 bool FilterChooser::emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
    794                                        unsigned Opc) const {
    795   ListInit *Predicates =
    796     AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates");
    797   for (unsigned i = 0; i < Predicates->getSize(); ++i) {
    798     Record *Pred = Predicates->getElementAsRecord(i);
    799     if (!Pred->getValue("AssemblerMatcherPredicate"))
    800       continue;
    801 
    802     std::string P = Pred->getValueAsString("AssemblerCondString");
    803 
    804     if (!P.length())
    805       continue;
    806 
    807     if (i != 0)
    808       o << " && ";
    809 
    810     StringRef SR(P);
    811     std::pair<StringRef, StringRef> pairs = SR.split(',');
    812     while (pairs.second.size()) {
    813       emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
    814       o << " && ";
    815       pairs = pairs.second.split(',');
    816     }
    817     emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
    818   }
    819   return Predicates->getSize() > 0;
    820 }
    821 
    822 void FilterChooser::emitSoftFailCheck(raw_ostream &o, unsigned Indentation,
    823                                       unsigned Opc) const {
    824   BitsInit *SFBits =
    825     AllInstructions[Opc]->TheDef->getValueAsBitsInit("SoftFail");
    826   if (!SFBits) return;
    827   BitsInit *InstBits = AllInstructions[Opc]->TheDef->getValueAsBitsInit("Inst");
    828 
    829   APInt PositiveMask(BitWidth, 0ULL);
    830   APInt NegativeMask(BitWidth, 0ULL);
    831   for (unsigned i = 0; i < BitWidth; ++i) {
    832     bit_value_t B = bitFromBits(*SFBits, i);
    833     bit_value_t IB = bitFromBits(*InstBits, i);
    834 
    835     if (B != BIT_TRUE) continue;
    836 
    837     switch (IB) {
    838     case BIT_FALSE:
    839       // The bit is meant to be false, so emit a check to see if it is true.
    840       PositiveMask.setBit(i);
    841       break;
    842     case BIT_TRUE:
    843       // The bit is meant to be true, so emit a check to see if it is false.
    844       NegativeMask.setBit(i);
    845       break;
    846     default:
    847       // The bit is not set; this must be an error!
    848       StringRef Name = AllInstructions[Opc]->TheDef->getName();
    849       errs() << "SoftFail Conflict: bit SoftFail{" << i << "} in "
    850              << Name
    851              << " is set but Inst{" << i <<"} is unset!\n"
    852              << "  - You can only mark a bit as SoftFail if it is fully defined"
    853              << " (1/0 - not '?') in Inst\n";
    854       o << "#error SoftFail Conflict, " << Name << "::SoftFail{" << i
    855         << "} set but Inst{" << i << "} undefined!\n";
    856     }
    857   }
    858 
    859   bool NeedPositiveMask = PositiveMask.getBoolValue();
    860   bool NeedNegativeMask = NegativeMask.getBoolValue();
    861 
    862   if (!NeedPositiveMask && !NeedNegativeMask)
    863     return;
    864 
    865   std::string PositiveMaskStr = PositiveMask.toString(16, /*signed=*/false);
    866   std::string NegativeMaskStr = NegativeMask.toString(16, /*signed=*/false);
    867   StringRef BitExt = "";
    868   if (BitWidth > 32)
    869     BitExt = "ULL";
    870 
    871   o.indent(Indentation) << "if (";
    872   if (NeedPositiveMask)
    873     o << "insn & 0x" << PositiveMaskStr << BitExt;
    874   if (NeedPositiveMask && NeedNegativeMask)
    875     o << " || ";
    876   if (NeedNegativeMask)
    877     o << "~insn & 0x" << NegativeMaskStr << BitExt;
    878   o << ")\n";
    879   o.indent(Indentation+2) << "S = MCDisassembler::SoftFail;\n";
    880 }
    881 
    882 // Emits code to decode the singleton.  Return true if we have matched all the
    883 // well-known bits.
    884 bool FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
    885                                          unsigned Opc) const {
    886   std::vector<unsigned> StartBits;
    887   std::vector<unsigned> EndBits;
    888   std::vector<uint64_t> FieldVals;
    889   insn_t Insn;
    890   insnWithID(Insn, Opc);
    891 
    892   // Look for islands of undecoded bits of the singleton.
    893   getIslands(StartBits, EndBits, FieldVals, Insn);
    894 
    895   unsigned Size = StartBits.size();
    896   unsigned I, NumBits;
    897 
    898   // If we have matched all the well-known bits, just issue a return.
    899   if (Size == 0) {
    900     o.indent(Indentation) << "if (";
    901     if (!emitPredicateMatch(o, Indentation, Opc))
    902       o << "1";
    903     o << ") {\n";
    904     emitSoftFailCheck(o, Indentation+2, Opc);
    905     o.indent(Indentation) << "  MI.setOpcode(" << Opc << ");\n";
    906     std::map<unsigned, std::vector<OperandInfo> >::const_iterator OpIter =
    907       Operands.find(Opc);
    908     const std::vector<OperandInfo>& InsnOperands = OpIter->second;
    909     for (std::vector<OperandInfo>::const_iterator
    910          I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) {
    911       // If a custom instruction decoder was specified, use that.
    912       if (I->numFields() == 0 && I->Decoder.size()) {
    913         o.indent(Indentation) << "  " << Emitter->GuardPrefix << I->Decoder
    914                               << "(MI, insn, Address, Decoder)"
    915                               << Emitter->GuardPostfix << "\n";
    916         break;
    917       }
    918 
    919       emitBinaryParser(o, Indentation, *I);
    920     }
    921 
    922     o.indent(Indentation) << "  return " << Emitter->ReturnOK << "; // "
    923                           << nameWithID(Opc) << '\n';
    924     o.indent(Indentation) << "}\n"; // Closing predicate block.
    925     return true;
    926   }
    927 
    928   // Otherwise, there are more decodings to be done!
    929 
    930   // Emit code to match the island(s) for the singleton.
    931   o.indent(Indentation) << "// Check ";
    932 
    933   for (I = Size; I != 0; --I) {
    934     o << "Inst{" << EndBits[I-1] << '-' << StartBits[I-1] << "} ";
    935     if (I > 1)
    936       o << " && ";
    937     else
    938       o << "for singleton decoding...\n";
    939   }
    940 
    941   o.indent(Indentation) << "if (";
    942   if (emitPredicateMatch(o, Indentation, Opc)) {
    943     o << " &&\n";
    944     o.indent(Indentation+4);
    945   }
    946 
    947   for (I = Size; I != 0; --I) {
    948     NumBits = EndBits[I-1] - StartBits[I-1] + 1;
    949     o << "fieldFromInstruction" << BitWidth << "(insn, "
    950       << StartBits[I-1] << ", " << NumBits
    951       << ") == " << FieldVals[I-1];
    952     if (I > 1)
    953       o << " && ";
    954     else
    955       o << ") {\n";
    956   }
    957   emitSoftFailCheck(o, Indentation+2, Opc);
    958   o.indent(Indentation) << "  MI.setOpcode(" << Opc << ");\n";
    959   std::map<unsigned, std::vector<OperandInfo> >::const_iterator OpIter =
    960     Operands.find(Opc);
    961   const std::vector<OperandInfo>& InsnOperands = OpIter->second;
    962   for (std::vector<OperandInfo>::const_iterator
    963        I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) {
    964     // If a custom instruction decoder was specified, use that.
    965     if (I->numFields() == 0 && I->Decoder.size()) {
    966       o.indent(Indentation) << "  " << Emitter->GuardPrefix << I->Decoder
    967                             << "(MI, insn, Address, Decoder)"
    968                             << Emitter->GuardPostfix << "\n";
    969       break;
    970     }
    971 
    972     emitBinaryParser(o, Indentation, *I);
    973   }
    974   o.indent(Indentation) << "  return " << Emitter->ReturnOK << "; // "
    975                         << nameWithID(Opc) << '\n';
    976   o.indent(Indentation) << "}\n";
    977 
    978   return false;
    979 }
    980 
    981 // Emits code to decode the singleton, and then to decode the rest.
    982 void FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
    983                                          const Filter &Best) const {
    984 
    985   unsigned Opc = Best.getSingletonOpc();
    986 
    987   emitSingletonDecoder(o, Indentation, Opc);
    988 
    989   // Emit code for the rest.
    990   o.indent(Indentation) << "else\n";
    991 
    992   Indentation += 2;
    993   Best.getVariableFC().emit(o, Indentation);
    994   Indentation -= 2;
    995 }
    996 
    997 // Assign a single filter and run with it.  Top level API client can initialize
    998 // with a single filter to start the filtering process.
    999 void FilterChooser::runSingleFilter(unsigned startBit, unsigned numBit,
   1000                                     bool mixed) {
   1001   Filters.clear();
   1002   Filter F(*this, startBit, numBit, true);
   1003   Filters.push_back(F);
   1004   BestIndex = 0; // Sole Filter instance to choose from.
   1005   bestFilter().recurse();
   1006 }
   1007 
   1008 // reportRegion is a helper function for filterProcessor to mark a region as
   1009 // eligible for use as a filter region.
   1010 void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
   1011                                  unsigned BitIndex, bool AllowMixed) {
   1012   if (RA == ATTR_MIXED && AllowMixed)
   1013     Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, true));
   1014   else if (RA == ATTR_ALL_SET && !AllowMixed)
   1015     Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, false));
   1016 }
   1017 
   1018 // FilterProcessor scans the well-known encoding bits of the instructions and
   1019 // builds up a list of candidate filters.  It chooses the best filter and
   1020 // recursively descends down the decoding tree.
   1021 bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
   1022   Filters.clear();
   1023   BestIndex = -1;
   1024   unsigned numInstructions = Opcodes.size();
   1025 
   1026   assert(numInstructions && "Filter created with no instructions");
   1027 
   1028   // No further filtering is necessary.
   1029   if (numInstructions == 1)
   1030     return true;
   1031 
   1032   // Heuristics.  See also doFilter()'s "Heuristics" comment when num of
   1033   // instructions is 3.
   1034   if (AllowMixed && !Greedy) {
   1035     assert(numInstructions == 3);
   1036 
   1037     for (unsigned i = 0; i < Opcodes.size(); ++i) {
   1038       std::vector<unsigned> StartBits;
   1039       std::vector<unsigned> EndBits;
   1040       std::vector<uint64_t> FieldVals;
   1041       insn_t Insn;
   1042 
   1043       insnWithID(Insn, Opcodes[i]);
   1044 
   1045       // Look for islands of undecoded bits of any instruction.
   1046       if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
   1047         // Found an instruction with island(s).  Now just assign a filter.
   1048         runSingleFilter(StartBits[0], EndBits[0] - StartBits[0] + 1, true);
   1049         return true;
   1050       }
   1051     }
   1052   }
   1053 
   1054   unsigned BitIndex, InsnIndex;
   1055 
   1056   // We maintain BIT_WIDTH copies of the bitAttrs automaton.
   1057   // The automaton consumes the corresponding bit from each
   1058   // instruction.
   1059   //
   1060   //   Input symbols: 0, 1, and _ (unset).
   1061   //   States:        NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
   1062   //   Initial state: NONE.
   1063   //
   1064   // (NONE) ------- [01] -> (ALL_SET)
   1065   // (NONE) ------- _ ----> (ALL_UNSET)
   1066   // (ALL_SET) ---- [01] -> (ALL_SET)
   1067   // (ALL_SET) ---- _ ----> (MIXED)
   1068   // (ALL_UNSET) -- [01] -> (MIXED)
   1069   // (ALL_UNSET) -- _ ----> (ALL_UNSET)
   1070   // (MIXED) ------ . ----> (MIXED)
   1071   // (FILTERED)---- . ----> (FILTERED)
   1072 
   1073   std::vector<bitAttr_t> bitAttrs;
   1074 
   1075   // FILTERED bit positions provide no entropy and are not worthy of pursuing.
   1076   // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
   1077   for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex)
   1078     if (FilterBitValues[BitIndex] == BIT_TRUE ||
   1079         FilterBitValues[BitIndex] == BIT_FALSE)
   1080       bitAttrs.push_back(ATTR_FILTERED);
   1081     else
   1082       bitAttrs.push_back(ATTR_NONE);
   1083 
   1084   for (InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
   1085     insn_t insn;
   1086 
   1087     insnWithID(insn, Opcodes[InsnIndex]);
   1088 
   1089     for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
   1090       switch (bitAttrs[BitIndex]) {
   1091       case ATTR_NONE:
   1092         if (insn[BitIndex] == BIT_UNSET)
   1093           bitAttrs[BitIndex] = ATTR_ALL_UNSET;
   1094         else
   1095           bitAttrs[BitIndex] = ATTR_ALL_SET;
   1096         break;
   1097       case ATTR_ALL_SET:
   1098         if (insn[BitIndex] == BIT_UNSET)
   1099           bitAttrs[BitIndex] = ATTR_MIXED;
   1100         break;
   1101       case ATTR_ALL_UNSET:
   1102         if (insn[BitIndex] != BIT_UNSET)
   1103           bitAttrs[BitIndex] = ATTR_MIXED;
   1104         break;
   1105       case ATTR_MIXED:
   1106       case ATTR_FILTERED:
   1107         break;
   1108       }
   1109     }
   1110   }
   1111 
   1112   // The regionAttr automaton consumes the bitAttrs automatons' state,
   1113   // lowest-to-highest.
   1114   //
   1115   //   Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
   1116   //   States:        NONE, ALL_SET, MIXED
   1117   //   Initial state: NONE
   1118   //
   1119   // (NONE) ----- F --> (NONE)
   1120   // (NONE) ----- S --> (ALL_SET)     ; and set region start
   1121   // (NONE) ----- U --> (NONE)
   1122   // (NONE) ----- M --> (MIXED)       ; and set region start
   1123   // (ALL_SET) -- F --> (NONE)        ; and report an ALL_SET region
   1124   // (ALL_SET) -- S --> (ALL_SET)
   1125   // (ALL_SET) -- U --> (NONE)        ; and report an ALL_SET region
   1126   // (ALL_SET) -- M --> (MIXED)       ; and report an ALL_SET region
   1127   // (MIXED) ---- F --> (NONE)        ; and report a MIXED region
   1128   // (MIXED) ---- S --> (ALL_SET)     ; and report a MIXED region
   1129   // (MIXED) ---- U --> (NONE)        ; and report a MIXED region
   1130   // (MIXED) ---- M --> (MIXED)
   1131 
   1132   bitAttr_t RA = ATTR_NONE;
   1133   unsigned StartBit = 0;
   1134 
   1135   for (BitIndex = 0; BitIndex < BitWidth; BitIndex++) {
   1136     bitAttr_t bitAttr = bitAttrs[BitIndex];
   1137 
   1138     assert(bitAttr != ATTR_NONE && "Bit without attributes");
   1139 
   1140     switch (RA) {
   1141     case ATTR_NONE:
   1142       switch (bitAttr) {
   1143       case ATTR_FILTERED:
   1144         break;
   1145       case ATTR_ALL_SET:
   1146         StartBit = BitIndex;
   1147         RA = ATTR_ALL_SET;
   1148         break;
   1149       case ATTR_ALL_UNSET:
   1150         break;
   1151       case ATTR_MIXED:
   1152         StartBit = BitIndex;
   1153         RA = ATTR_MIXED;
   1154         break;
   1155       default:
   1156         llvm_unreachable("Unexpected bitAttr!");
   1157       }
   1158       break;
   1159     case ATTR_ALL_SET:
   1160       switch (bitAttr) {
   1161       case ATTR_FILTERED:
   1162         reportRegion(RA, StartBit, BitIndex, AllowMixed);
   1163         RA = ATTR_NONE;
   1164         break;
   1165       case ATTR_ALL_SET:
   1166         break;
   1167       case ATTR_ALL_UNSET:
   1168         reportRegion(RA, StartBit, BitIndex, AllowMixed);
   1169         RA = ATTR_NONE;
   1170         break;
   1171       case ATTR_MIXED:
   1172         reportRegion(RA, StartBit, BitIndex, AllowMixed);
   1173         StartBit = BitIndex;
   1174         RA = ATTR_MIXED;
   1175         break;
   1176       default:
   1177         llvm_unreachable("Unexpected bitAttr!");
   1178       }
   1179       break;
   1180     case ATTR_MIXED:
   1181       switch (bitAttr) {
   1182       case ATTR_FILTERED:
   1183         reportRegion(RA, StartBit, BitIndex, AllowMixed);
   1184         StartBit = BitIndex;
   1185         RA = ATTR_NONE;
   1186         break;
   1187       case ATTR_ALL_SET:
   1188         reportRegion(RA, StartBit, BitIndex, AllowMixed);
   1189         StartBit = BitIndex;
   1190         RA = ATTR_ALL_SET;
   1191         break;
   1192       case ATTR_ALL_UNSET:
   1193         reportRegion(RA, StartBit, BitIndex, AllowMixed);
   1194         RA = ATTR_NONE;
   1195         break;
   1196       case ATTR_MIXED:
   1197         break;
   1198       default:
   1199         llvm_unreachable("Unexpected bitAttr!");
   1200       }
   1201       break;
   1202     case ATTR_ALL_UNSET:
   1203       llvm_unreachable("regionAttr state machine has no ATTR_UNSET state");
   1204     case ATTR_FILTERED:
   1205       llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state");
   1206     }
   1207   }
   1208 
   1209   // At the end, if we're still in ALL_SET or MIXED states, report a region
   1210   switch (RA) {
   1211   case ATTR_NONE:
   1212     break;
   1213   case ATTR_FILTERED:
   1214     break;
   1215   case ATTR_ALL_SET:
   1216     reportRegion(RA, StartBit, BitIndex, AllowMixed);
   1217     break;
   1218   case ATTR_ALL_UNSET:
   1219     break;
   1220   case ATTR_MIXED:
   1221     reportRegion(RA, StartBit, BitIndex, AllowMixed);
   1222     break;
   1223   }
   1224 
   1225   // We have finished with the filter processings.  Now it's time to choose
   1226   // the best performing filter.
   1227   BestIndex = 0;
   1228   bool AllUseless = true;
   1229   unsigned BestScore = 0;
   1230 
   1231   for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
   1232     unsigned Usefulness = Filters[i].usefulness();
   1233 
   1234     if (Usefulness)
   1235       AllUseless = false;
   1236 
   1237     if (Usefulness > BestScore) {
   1238       BestIndex = i;
   1239       BestScore = Usefulness;
   1240     }
   1241   }
   1242 
   1243   if (!AllUseless)
   1244     bestFilter().recurse();
   1245 
   1246   return !AllUseless;
   1247 } // end of FilterChooser::filterProcessor(bool)
   1248 
   1249 // Decides on the best configuration of filter(s) to use in order to decode
   1250 // the instructions.  A conflict of instructions may occur, in which case we
   1251 // dump the conflict set to the standard error.
   1252 void FilterChooser::doFilter() {
   1253   unsigned Num = Opcodes.size();
   1254   assert(Num && "FilterChooser created with no instructions");
   1255 
   1256   // Try regions of consecutive known bit values first.
   1257   if (filterProcessor(false))
   1258     return;
   1259 
   1260   // Then regions of mixed bits (both known and unitialized bit values allowed).
   1261   if (filterProcessor(true))
   1262     return;
   1263 
   1264   // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
   1265   // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
   1266   // well-known encoding pattern.  In such case, we backtrack and scan for the
   1267   // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
   1268   if (Num == 3 && filterProcessor(true, false))
   1269     return;
   1270 
   1271   // If we come to here, the instruction decoding has failed.
   1272   // Set the BestIndex to -1 to indicate so.
   1273   BestIndex = -1;
   1274 }
   1275 
   1276 // Emits code to decode our share of instructions.  Returns true if the
   1277 // emitted code causes a return, which occurs if we know how to decode
   1278 // the instruction at this level or the instruction is not decodeable.
   1279 bool FilterChooser::emit(raw_ostream &o, unsigned &Indentation) const {
   1280   if (Opcodes.size() == 1)
   1281     // There is only one instruction in the set, which is great!
   1282     // Call emitSingletonDecoder() to see whether there are any remaining
   1283     // encodings bits.
   1284     return emitSingletonDecoder(o, Indentation, Opcodes[0]);
   1285 
   1286   // Choose the best filter to do the decodings!
   1287   if (BestIndex != -1) {
   1288     const Filter &Best = Filters[BestIndex];
   1289     if (Best.getNumFiltered() == 1)
   1290       emitSingletonDecoder(o, Indentation, Best);
   1291     else
   1292       Best.emit(o, Indentation);
   1293     return false;
   1294   }
   1295 
   1296   // We don't know how to decode these instructions!  Return 0 and dump the
   1297   // conflict set!
   1298   o.indent(Indentation) << "return 0;" << " // Conflict set: ";
   1299   for (int i = 0, N = Opcodes.size(); i < N; ++i) {
   1300     o << nameWithID(Opcodes[i]);
   1301     if (i < (N - 1))
   1302       o << ", ";
   1303     else
   1304       o << '\n';
   1305   }
   1306 
   1307   // Print out useful conflict information for postmortem analysis.
   1308   errs() << "Decoding Conflict:\n";
   1309 
   1310   dumpStack(errs(), "\t\t");
   1311 
   1312   for (unsigned i = 0; i < Opcodes.size(); ++i) {
   1313     const std::string &Name = nameWithID(Opcodes[i]);
   1314 
   1315     errs() << '\t' << Name << " ";
   1316     dumpBits(errs(),
   1317              getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
   1318     errs() << '\n';
   1319   }
   1320 
   1321   return true;
   1322 }
   1323 
   1324 static bool populateInstruction(const CodeGenInstruction &CGI, unsigned Opc,
   1325                        std::map<unsigned, std::vector<OperandInfo> > &Operands){
   1326   const Record &Def = *CGI.TheDef;
   1327   // If all the bit positions are not specified; do not decode this instruction.
   1328   // We are bound to fail!  For proper disassembly, the well-known encoding bits
   1329   // of the instruction must be fully specified.
   1330   //
   1331   // This also removes pseudo instructions from considerations of disassembly,
   1332   // which is a better design and less fragile than the name matchings.
   1333   // Ignore "asm parser only" instructions.
   1334   if (Def.getValueAsBit("isAsmParserOnly") ||
   1335       Def.getValueAsBit("isCodeGenOnly"))
   1336     return false;
   1337 
   1338   BitsInit &Bits = getBitsField(Def, "Inst");
   1339   if (Bits.allInComplete()) return false;
   1340 
   1341   std::vector<OperandInfo> InsnOperands;
   1342 
   1343   // If the instruction has specified a custom decoding hook, use that instead
   1344   // of trying to auto-generate the decoder.
   1345   std::string InstDecoder = Def.getValueAsString("DecoderMethod");
   1346   if (InstDecoder != "") {
   1347     InsnOperands.push_back(OperandInfo(InstDecoder));
   1348     Operands[Opc] = InsnOperands;
   1349     return true;
   1350   }
   1351 
   1352   // Generate a description of the operand of the instruction that we know
   1353   // how to decode automatically.
   1354   // FIXME: We'll need to have a way to manually override this as needed.
   1355 
   1356   // Gather the outputs/inputs of the instruction, so we can find their
   1357   // positions in the encoding.  This assumes for now that they appear in the
   1358   // MCInst in the order that they're listed.
   1359   std::vector<std::pair<Init*, std::string> > InOutOperands;
   1360   DagInit *Out  = Def.getValueAsDag("OutOperandList");
   1361   DagInit *In  = Def.getValueAsDag("InOperandList");
   1362   for (unsigned i = 0; i < Out->getNumArgs(); ++i)
   1363     InOutOperands.push_back(std::make_pair(Out->getArg(i), Out->getArgName(i)));
   1364   for (unsigned i = 0; i < In->getNumArgs(); ++i)
   1365     InOutOperands.push_back(std::make_pair(In->getArg(i), In->getArgName(i)));
   1366 
   1367   // Search for tied operands, so that we can correctly instantiate
   1368   // operands that are not explicitly represented in the encoding.
   1369   std::map<std::string, std::string> TiedNames;
   1370   for (unsigned i = 0; i < CGI.Operands.size(); ++i) {
   1371     int tiedTo = CGI.Operands[i].getTiedRegister();
   1372     if (tiedTo != -1) {
   1373       TiedNames[InOutOperands[i].second] = InOutOperands[tiedTo].second;
   1374       TiedNames[InOutOperands[tiedTo].second] = InOutOperands[i].second;
   1375     }
   1376   }
   1377 
   1378   // For each operand, see if we can figure out where it is encoded.
   1379   for (std::vector<std::pair<Init*, std::string> >::const_iterator
   1380        NI = InOutOperands.begin(), NE = InOutOperands.end(); NI != NE; ++NI) {
   1381     std::string Decoder = "";
   1382 
   1383     // At this point, we can locate the field, but we need to know how to
   1384     // interpret it.  As a first step, require the target to provide callbacks
   1385     // for decoding register classes.
   1386     // FIXME: This need to be extended to handle instructions with custom
   1387     // decoder methods, and operands with (simple) MIOperandInfo's.
   1388     TypedInit *TI = dynamic_cast<TypedInit*>(NI->first);
   1389     RecordRecTy *Type = dynamic_cast<RecordRecTy*>(TI->getType());
   1390     Record *TypeRecord = Type->getRecord();
   1391     bool isReg = false;
   1392     if (TypeRecord->isSubClassOf("RegisterOperand"))
   1393       TypeRecord = TypeRecord->getValueAsDef("RegClass");
   1394     if (TypeRecord->isSubClassOf("RegisterClass")) {
   1395       Decoder = "Decode" + TypeRecord->getName() + "RegisterClass";
   1396       isReg = true;
   1397     }
   1398 
   1399     RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
   1400     StringInit *String = DecoderString ?
   1401       dynamic_cast<StringInit*>(DecoderString->getValue()) : 0;
   1402     if (!isReg && String && String->getValue() != "")
   1403       Decoder = String->getValue();
   1404 
   1405     OperandInfo OpInfo(Decoder);
   1406     unsigned Base = ~0U;
   1407     unsigned Width = 0;
   1408     unsigned Offset = 0;
   1409 
   1410     for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) {
   1411       VarInit *Var = 0;
   1412       VarBitInit *BI = dynamic_cast<VarBitInit*>(Bits.getBit(bi));
   1413       if (BI)
   1414         Var = dynamic_cast<VarInit*>(BI->getVariable());
   1415       else
   1416         Var = dynamic_cast<VarInit*>(Bits.getBit(bi));
   1417 
   1418       if (!Var) {
   1419         if (Base != ~0U) {
   1420           OpInfo.addField(Base, Width, Offset);
   1421           Base = ~0U;
   1422           Width = 0;
   1423           Offset = 0;
   1424         }
   1425         continue;
   1426       }
   1427 
   1428       if (Var->getName() != NI->second &&
   1429           Var->getName() != TiedNames[NI->second]) {
   1430         if (Base != ~0U) {
   1431           OpInfo.addField(Base, Width, Offset);
   1432           Base = ~0U;
   1433           Width = 0;
   1434           Offset = 0;
   1435         }
   1436         continue;
   1437       }
   1438 
   1439       if (Base == ~0U) {
   1440         Base = bi;
   1441         Width = 1;
   1442         Offset = BI ? BI->getBitNum() : 0;
   1443       } else if (BI && BI->getBitNum() != Offset + Width) {
   1444         OpInfo.addField(Base, Width, Offset);
   1445         Base = bi;
   1446         Width = 1;
   1447         Offset = BI->getBitNum();
   1448       } else {
   1449         ++Width;
   1450       }
   1451     }
   1452 
   1453     if (Base != ~0U)
   1454       OpInfo.addField(Base, Width, Offset);
   1455 
   1456     if (OpInfo.numFields() > 0)
   1457       InsnOperands.push_back(OpInfo);
   1458   }
   1459 
   1460   Operands[Opc] = InsnOperands;
   1461 
   1462 
   1463 #if 0
   1464   DEBUG({
   1465       // Dumps the instruction encoding bits.
   1466       dumpBits(errs(), Bits);
   1467 
   1468       errs() << '\n';
   1469 
   1470       // Dumps the list of operand info.
   1471       for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
   1472         const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
   1473         const std::string &OperandName = Info.Name;
   1474         const Record &OperandDef = *Info.Rec;
   1475 
   1476         errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
   1477       }
   1478     });
   1479 #endif
   1480 
   1481   return true;
   1482 }
   1483 
   1484 static void emitHelper(llvm::raw_ostream &o, unsigned BitWidth) {
   1485   unsigned Indentation = 0;
   1486   std::string WidthStr = "uint" + utostr(BitWidth) + "_t";
   1487 
   1488   o << '\n';
   1489 
   1490   o.indent(Indentation) << "static " << WidthStr <<
   1491     " fieldFromInstruction" << BitWidth <<
   1492     "(" << WidthStr <<" insn, unsigned startBit, unsigned numBits)\n";
   1493 
   1494   o.indent(Indentation) << "{\n";
   1495 
   1496   ++Indentation; ++Indentation;
   1497   o.indent(Indentation) << "assert(startBit + numBits <= " << BitWidth
   1498                         << " && \"Instruction field out of bounds!\");\n";
   1499   o << '\n';
   1500   o.indent(Indentation) << WidthStr << " fieldMask;\n";
   1501   o << '\n';
   1502   o.indent(Indentation) << "if (numBits == " << BitWidth << ")\n";
   1503 
   1504   ++Indentation; ++Indentation;
   1505   o.indent(Indentation) << "fieldMask = (" << WidthStr << ")-1;\n";
   1506   --Indentation; --Indentation;
   1507 
   1508   o.indent(Indentation) << "else\n";
   1509 
   1510   ++Indentation; ++Indentation;
   1511   o.indent(Indentation) << "fieldMask = ((1 << numBits) - 1) << startBit;\n";
   1512   --Indentation; --Indentation;
   1513 
   1514   o << '\n';
   1515   o.indent(Indentation) << "return (insn & fieldMask) >> startBit;\n";
   1516   --Indentation; --Indentation;
   1517 
   1518   o.indent(Indentation) << "}\n";
   1519 
   1520   o << '\n';
   1521 }
   1522 
   1523 // Emits disassembler code for instruction decoding.
   1524 void FixedLenDecoderEmitter::run(raw_ostream &o) {
   1525   o << "#include \"llvm/MC/MCInst.h\"\n";
   1526   o << "#include \"llvm/Support/DataTypes.h\"\n";
   1527   o << "#include <assert.h>\n";
   1528   o << '\n';
   1529   o << "namespace llvm {\n\n";
   1530 
   1531   // Parameterize the decoders based on namespace and instruction width.
   1532   const std::vector<const CodeGenInstruction*> &NumberedInstructions =
   1533     Target.getInstructionsByEnumValue();
   1534   std::map<std::pair<std::string, unsigned>,
   1535            std::vector<unsigned> > OpcMap;
   1536   std::map<unsigned, std::vector<OperandInfo> > Operands;
   1537 
   1538   for (unsigned i = 0; i < NumberedInstructions.size(); ++i) {
   1539     const CodeGenInstruction *Inst = NumberedInstructions[i];
   1540     const Record *Def = Inst->TheDef;
   1541     unsigned Size = Def->getValueAsInt("Size");
   1542     if (Def->getValueAsString("Namespace") == "TargetOpcode" ||
   1543         Def->getValueAsBit("isPseudo") ||
   1544         Def->getValueAsBit("isAsmParserOnly") ||
   1545         Def->getValueAsBit("isCodeGenOnly"))
   1546       continue;
   1547 
   1548     std::string DecoderNamespace = Def->getValueAsString("DecoderNamespace");
   1549 
   1550     if (Size) {
   1551       if (populateInstruction(*Inst, i, Operands)) {
   1552         OpcMap[std::make_pair(DecoderNamespace, Size)].push_back(i);
   1553       }
   1554     }
   1555   }
   1556 
   1557   std::set<unsigned> Sizes;
   1558   for (std::map<std::pair<std::string, unsigned>,
   1559                 std::vector<unsigned> >::const_iterator
   1560        I = OpcMap.begin(), E = OpcMap.end(); I != E; ++I) {
   1561     // If we haven't visited this instruction width before, emit the
   1562     // helper method to extract fields.
   1563     if (!Sizes.count(I->first.second)) {
   1564       emitHelper(o, 8*I->first.second);
   1565       Sizes.insert(I->first.second);
   1566     }
   1567 
   1568     // Emit the decoder for this namespace+width combination.
   1569     FilterChooser FC(NumberedInstructions, I->second, Operands,
   1570                      8*I->first.second, this);
   1571     FC.emitTop(o, 0, I->first.first);
   1572   }
   1573 
   1574   o << "\n} // End llvm namespace \n";
   1575 }
   1576