Home | History | Annotate | Download | only in asm
      1 #!/usr/bin/env perl
      2 #
      3 # Copyright (c) 2010-2011 Intel Corp.
      4 #   Author: Vinodh.Gopal (at] intel.com
      5 #           Jim Guilford
      6 #           Erdinc.Ozturk (at] intel.com
      7 #           Maxim.Perminov (at] intel.com
      8 #
      9 # More information about algorithm used can be found at:
     10 #   http://www.cse.buffalo.edu/srds2009/escs2009_submission_Gopal.pdf
     11 #
     12 # ====================================================================
     13 # Copyright (c) 2011 The OpenSSL Project.  All rights reserved.
     14 #
     15 # Redistribution and use in source and binary forms, with or without
     16 # modification, are permitted provided that the following conditions
     17 # are met:
     18 #
     19 # 1. Redistributions of source code must retain the above copyright
     20 #    notice, this list of conditions and the following disclaimer.
     21 #
     22 # 2. Redistributions in binary form must reproduce the above copyright
     23 #    notice, this list of conditions and the following disclaimer in
     24 #    the documentation and/or other materials provided with the
     25 #    distribution.
     26 #
     27 # 3. All advertising materials mentioning features or use of this
     28 #    software must display the following acknowledgment:
     29 #    "This product includes software developed by the OpenSSL Project
     30 #    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
     31 #
     32 # 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     33 #    endorse or promote products derived from this software without
     34 #    prior written permission. For written permission, please contact
     35 #    licensing (at] OpenSSL.org.
     36 #
     37 # 5. Products derived from this software may not be called "OpenSSL"
     38 #    nor may "OpenSSL" appear in their names without prior written
     39 #    permission of the OpenSSL Project.
     40 #
     41 # 6. Redistributions of any form whatsoever must retain the following
     42 #    acknowledgment:
     43 #    "This product includes software developed by the OpenSSL Project
     44 #    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
     45 #
     46 # THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     47 # EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     48 # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     49 # PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     50 # ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     51 # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     52 # NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     53 # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     54 # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     55 # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     56 # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     57 # OF THE POSSIBILITY OF SUCH DAMAGE.
     58 # ====================================================================
     59 
     60 $flavour = shift;
     61 $output  = shift;
     62 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
     63 
     64 my $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
     65 
     66 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
     67 ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
     68 ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
     69 die "can't locate x86_64-xlate.pl";
     70 
     71 open STDOUT,"| $^X $xlate $flavour $output";
     72 
     73 use strict;
     74 my $code=".text\n\n";
     75 my $m=0;
     76 
     77 #
     78 # Define x512 macros
     79 #
     80 
     81 #MULSTEP_512_ADD	MACRO	x7, x6, x5, x4, x3, x2, x1, x0, dst, src1, src2, add_src, tmp1, tmp2
     82 #
     83 # uses rax, rdx, and args
     84 sub MULSTEP_512_ADD
     85 {
     86  my ($x, $DST, $SRC2, $ASRC, $OP, $TMP)=@_;
     87  my @X=@$x;	# make a copy
     88 $code.=<<___;
     89 	 mov	(+8*0)($SRC2), %rax
     90 	 mul	$OP			# rdx:rax = %OP * [0]
     91 	 mov	($ASRC), $X[0]
     92 	 add	%rax, $X[0]
     93 	 adc	\$0, %rdx
     94 	 mov	$X[0], $DST
     95 ___
     96 for(my $i=1;$i<8;$i++) {
     97 $code.=<<___;
     98 	 mov	%rdx, $TMP
     99 
    100 	 mov	(+8*$i)($SRC2), %rax
    101 	 mul	$OP			# rdx:rax = %OP * [$i]
    102 	 mov	(+8*$i)($ASRC), $X[$i]
    103 	 add	%rax, $X[$i]
    104 	 adc	\$0, %rdx
    105 	 add	$TMP, $X[$i]
    106 	 adc	\$0, %rdx
    107 ___
    108 }
    109 $code.=<<___;
    110 	 mov	%rdx, $X[0]
    111 ___
    112 }
    113 
    114 #MULSTEP_512	MACRO	x7, x6, x5, x4, x3, x2, x1, x0, dst, src2, src1_val, tmp
    115 #
    116 # uses rax, rdx, and args
    117 sub MULSTEP_512
    118 {
    119  my ($x, $DST, $SRC2, $OP, $TMP)=@_;
    120  my @X=@$x;	# make a copy
    121 $code.=<<___;
    122 	 mov	(+8*0)($SRC2), %rax
    123 	 mul	$OP			# rdx:rax = %OP * [0]
    124 	 add	%rax, $X[0]
    125 	 adc	\$0, %rdx
    126 	 mov	$X[0], $DST
    127 ___
    128 for(my $i=1;$i<8;$i++) {
    129 $code.=<<___;
    130 	 mov	%rdx, $TMP
    131 
    132 	 mov	(+8*$i)($SRC2), %rax
    133 	 mul	$OP			# rdx:rax = %OP * [$i]
    134 	 add	%rax, $X[$i]
    135 	 adc	\$0, %rdx
    136 	 add	$TMP, $X[$i]
    137 	 adc	\$0, %rdx
    138 ___
    139 }
    140 $code.=<<___;
    141 	 mov	%rdx, $X[0]
    142 ___
    143 }
    144 
    145 #
    146 # Swizzle Macros
    147 #
    148 
    149 # macro to copy data from flat space to swizzled table
    150 #MACRO swizzle	pDst, pSrc, tmp1, tmp2
    151 # pDst and pSrc are modified
    152 sub swizzle
    153 {
    154  my ($pDst, $pSrc, $cnt, $d0)=@_;
    155 $code.=<<___;
    156 	 mov	\$8, $cnt
    157 loop_$m:
    158 	 mov	($pSrc), $d0
    159 	 mov	$d0#w, ($pDst)
    160 	 shr	\$16, $d0
    161 	 mov	$d0#w, (+64*1)($pDst)
    162 	 shr	\$16, $d0
    163 	 mov	$d0#w, (+64*2)($pDst)
    164 	 shr	\$16, $d0
    165 	 mov	$d0#w, (+64*3)($pDst)
    166 	 lea	8($pSrc), $pSrc
    167 	 lea	64*4($pDst), $pDst
    168 	 dec	$cnt
    169 	 jnz	loop_$m
    170 ___
    171 
    172  $m++;
    173 }
    174 
    175 # macro to copy data from swizzled table to  flat space
    176 #MACRO unswizzle	pDst, pSrc, tmp*3
    177 sub unswizzle
    178 {
    179  my ($pDst, $pSrc, $cnt, $d0, $d1)=@_;
    180 $code.=<<___;
    181 	 mov	\$4, $cnt
    182 loop_$m:
    183 	 movzxw	(+64*3+256*0)($pSrc), $d0
    184 	 movzxw	(+64*3+256*1)($pSrc), $d1
    185 	 shl	\$16, $d0
    186 	 shl	\$16, $d1
    187 	 mov	(+64*2+256*0)($pSrc), $d0#w
    188 	 mov	(+64*2+256*1)($pSrc), $d1#w
    189 	 shl	\$16, $d0
    190 	 shl	\$16, $d1
    191 	 mov	(+64*1+256*0)($pSrc), $d0#w
    192 	 mov	(+64*1+256*1)($pSrc), $d1#w
    193 	 shl	\$16, $d0
    194 	 shl	\$16, $d1
    195 	 mov	(+64*0+256*0)($pSrc), $d0#w
    196 	 mov	(+64*0+256*1)($pSrc), $d1#w
    197 	 mov	$d0, (+8*0)($pDst)
    198 	 mov	$d1, (+8*1)($pDst)
    199 	 lea	256*2($pSrc), $pSrc
    200 	 lea	8*2($pDst), $pDst
    201 	 sub	\$1, $cnt
    202 	 jnz	loop_$m
    203 ___
    204 
    205  $m++;
    206 }
    207 
    208 #
    209 # Data Structures
    210 #
    211 
    212 # Reduce Data
    213 #
    214 #
    215 # Offset  Value
    216 # 0C0     Carries
    217 # 0B8     X2[10]
    218 # 0B0     X2[9]
    219 # 0A8     X2[8]
    220 # 0A0     X2[7]
    221 # 098     X2[6]
    222 # 090     X2[5]
    223 # 088     X2[4]
    224 # 080     X2[3]
    225 # 078     X2[2]
    226 # 070     X2[1]
    227 # 068     X2[0]
    228 # 060     X1[12]  P[10]
    229 # 058     X1[11]  P[9]  Z[8]
    230 # 050     X1[10]  P[8]  Z[7]
    231 # 048     X1[9]   P[7]  Z[6]
    232 # 040     X1[8]   P[6]  Z[5]
    233 # 038     X1[7]   P[5]  Z[4]
    234 # 030     X1[6]   P[4]  Z[3]
    235 # 028     X1[5]   P[3]  Z[2]
    236 # 020     X1[4]   P[2]  Z[1]
    237 # 018     X1[3]   P[1]  Z[0]
    238 # 010     X1[2]   P[0]  Y[2]
    239 # 008     X1[1]   Q[1]  Y[1]
    240 # 000     X1[0]   Q[0]  Y[0]
    241 
    242 my $X1_offset           =  0;			# 13 qwords
    243 my $X2_offset           =  $X1_offset + 13*8;			# 11 qwords
    244 my $Carries_offset      =  $X2_offset + 11*8;			# 1 qword
    245 my $Q_offset            =  0;			# 2 qwords
    246 my $P_offset            =  $Q_offset + 2*8;			# 11 qwords
    247 my $Y_offset            =  0;			# 3 qwords
    248 my $Z_offset            =  $Y_offset + 3*8;			# 9 qwords
    249 
    250 my $Red_Data_Size       =  $Carries_offset + 1*8;			# (25 qwords)
    251 
    252 #
    253 # Stack Frame
    254 #
    255 #
    256 # offset	value
    257 # ...		<old stack contents>
    258 # ...
    259 # 280		Garray
    260 
    261 # 278		tmp16[15]
    262 # ...		...
    263 # 200		tmp16[0]
    264 
    265 # 1F8		tmp[7]
    266 # ...		...
    267 # 1C0		tmp[0]
    268 
    269 # 1B8		GT[7]
    270 # ...		...
    271 # 180		GT[0]
    272 
    273 # 178		Reduce Data
    274 # ...		...
    275 # 0B8		Reduce Data
    276 # 0B0		reserved
    277 # 0A8		reserved
    278 # 0A0		reserved
    279 # 098		reserved
    280 # 090		reserved
    281 # 088		reduce result addr
    282 # 080		exp[8]
    283 
    284 # ...
    285 # 048		exp[1]
    286 # 040		exp[0]
    287 
    288 # 038		reserved
    289 # 030		loop_idx
    290 # 028		pg
    291 # 020		i
    292 # 018		pData	; arg 4
    293 # 010		pG	; arg 2
    294 # 008		pResult	; arg 1
    295 # 000		rsp	; stack pointer before subtract
    296 
    297 my $rsp_offset          =  0;
    298 my $pResult_offset      =  8*1 + $rsp_offset;
    299 my $pG_offset           =  8*1 + $pResult_offset;
    300 my $pData_offset        =  8*1 + $pG_offset;
    301 my $i_offset            =  8*1 + $pData_offset;
    302 my $pg_offset           =  8*1 + $i_offset;
    303 my $loop_idx_offset     =  8*1 + $pg_offset;
    304 my $reserved1_offset    =  8*1 + $loop_idx_offset;
    305 my $exp_offset          =  8*1 + $reserved1_offset;
    306 my $red_result_addr_offset=  8*9 + $exp_offset;
    307 my $reserved2_offset    =  8*1 + $red_result_addr_offset;
    308 my $Reduce_Data_offset  =  8*5 + $reserved2_offset;
    309 my $GT_offset           =  $Red_Data_Size + $Reduce_Data_offset;
    310 my $tmp_offset          =  8*8 + $GT_offset;
    311 my $tmp16_offset        =  8*8 + $tmp_offset;
    312 my $garray_offset       =  8*16 + $tmp16_offset;
    313 my $mem_size            =  8*8*32 + $garray_offset;
    314 
    315 #
    316 # Offsets within Reduce Data
    317 #
    318 #
    319 #	struct MODF_2FOLD_MONT_512_C1_DATA {
    320 #	UINT64 t[8][8];
    321 #	UINT64 m[8];
    322 #	UINT64 m1[8]; /* 2^768 % m */
    323 #	UINT64 m2[8]; /* 2^640 % m */
    324 #	UINT64 k1[2]; /* (- 1/m) % 2^128 */
    325 #	};
    326 
    327 my $T                   =  0;
    328 my $M                   =  512;			# = 8 * 8 * 8
    329 my $M1                  =  576;			# = 8 * 8 * 9 /* += 8 * 8 */
    330 my $M2                  =  640;			# = 8 * 8 * 10 /* += 8 * 8 */
    331 my $K1                  =  704;			# = 8 * 8 * 11 /* += 8 * 8 */
    332 
    333 #
    334 #   FUNCTIONS
    335 #
    336 
    337 {{{
    338 #
    339 # MULADD_128x512 : Function to multiply 128-bits (2 qwords) by 512-bits (8 qwords)
    340 #                       and add 512-bits (8 qwords)
    341 #                       to get 640 bits (10 qwords)
    342 # Input: 128-bit mul source: [rdi+8*1], rbp
    343 #        512-bit mul source: [rsi+8*n]
    344 #        512-bit add source: r15, r14, ..., r9, r8
    345 # Output: r9, r8, r15, r14, r13, r12, r11, r10, [rcx+8*1], [rcx+8*0]
    346 # Clobbers all regs except: rcx, rsi, rdi
    347 $code.=<<___;
    348 .type	MULADD_128x512,\@abi-omnipotent
    349 .align	16
    350 MULADD_128x512:
    351 ___
    352 	&MULSTEP_512([map("%r$_",(8..15))], "(+8*0)(%rcx)", "%rsi", "%rbp", "%rbx");
    353 $code.=<<___;
    354 	 mov	(+8*1)(%rdi), %rbp
    355 ___
    356 	&MULSTEP_512([map("%r$_",(9..15,8))], "(+8*1)(%rcx)", "%rsi", "%rbp", "%rbx");
    357 $code.=<<___;
    358 	 ret
    359 .size	MULADD_128x512,.-MULADD_128x512
    360 ___
    361 }}}
    362 
    363 {{{
    364 #MULADD_256x512	MACRO	pDst, pA, pB, OP, TMP, X7, X6, X5, X4, X3, X2, X1, X0
    365 #
    366 # Inputs: pDst: Destination  (768 bits, 12 qwords)
    367 #         pA:   Multiplicand (1024 bits, 16 qwords)
    368 #         pB:   Multiplicand (512 bits, 8 qwords)
    369 # Dst = Ah * B + Al
    370 # where Ah is (in qwords) A[15:12] (256 bits) and Al is A[7:0] (512 bits)
    371 # Results in X3 X2 X1 X0 X7 X6 X5 X4 Dst[3:0]
    372 # Uses registers: arguments, RAX, RDX
    373 sub MULADD_256x512
    374 {
    375  my ($pDst, $pA, $pB, $OP, $TMP, $X)=@_;
    376 $code.=<<___;
    377 	mov	(+8*12)($pA), $OP
    378 ___
    379 	&MULSTEP_512_ADD($X, "(+8*0)($pDst)", $pB, $pA, $OP, $TMP);
    380 	push(@$X,shift(@$X));
    381 
    382 $code.=<<___;
    383 	 mov	(+8*13)($pA), $OP
    384 ___
    385 	&MULSTEP_512($X, "(+8*1)($pDst)", $pB, $OP, $TMP);
    386 	push(@$X,shift(@$X));
    387 
    388 $code.=<<___;
    389 	 mov	(+8*14)($pA), $OP
    390 ___
    391 	&MULSTEP_512($X, "(+8*2)($pDst)", $pB, $OP, $TMP);
    392 	push(@$X,shift(@$X));
    393 
    394 $code.=<<___;
    395 	 mov	(+8*15)($pA), $OP
    396 ___
    397 	&MULSTEP_512($X, "(+8*3)($pDst)", $pB, $OP, $TMP);
    398 	push(@$X,shift(@$X));
    399 }
    400 
    401 #
    402 # mont_reduce(UINT64 *x,  /* 1024 bits, 16 qwords */
    403 #	       UINT64 *m,  /*  512 bits,  8 qwords */
    404 #	       MODF_2FOLD_MONT_512_C1_DATA *data,
    405 #             UINT64 *r)  /*  512 bits,  8 qwords */
    406 # Input:  x (number to be reduced): tmp16 (Implicit)
    407 #         m (modulus):              [pM]  (Implicit)
    408 #         data (reduce data):       [pData] (Implicit)
    409 # Output: r (result):		     Address in [red_res_addr]
    410 #         result also in: r9, r8, r15, r14, r13, r12, r11, r10
    411 
    412 my @X=map("%r$_",(8..15));
    413 
    414 $code.=<<___;
    415 .type	mont_reduce,\@abi-omnipotent
    416 .align	16
    417 mont_reduce:
    418 ___
    419 
    420 my $STACK_DEPTH         =  8;
    421 	#
    422 	# X1 = Xh * M1 + Xl
    423 $code.=<<___;
    424 	 lea	(+$Reduce_Data_offset+$X1_offset+$STACK_DEPTH)(%rsp), %rdi			# pX1 (Dst) 769 bits, 13 qwords
    425 	 mov	(+$pData_offset+$STACK_DEPTH)(%rsp), %rsi			# pM1 (Bsrc) 512 bits, 8 qwords
    426 	 add	\$$M1, %rsi
    427 	 lea	(+$tmp16_offset+$STACK_DEPTH)(%rsp), %rcx			# X (Asrc) 1024 bits, 16 qwords
    428 
    429 ___
    430 
    431 	&MULADD_256x512("%rdi", "%rcx", "%rsi", "%rbp", "%rbx", \@X);	# rotates @X 4 times
    432 	# results in r11, r10, r9, r8, r15, r14, r13, r12, X1[3:0]
    433 
    434 $code.=<<___;
    435 	 xor	%rax, %rax
    436 	# X1 += xl
    437 	 add	(+8*8)(%rcx), $X[4]
    438 	 adc	(+8*9)(%rcx), $X[5]
    439 	 adc	(+8*10)(%rcx), $X[6]
    440 	 adc	(+8*11)(%rcx), $X[7]
    441 	 adc	\$0, %rax
    442 	# X1 is now rax, r11-r8, r15-r12, tmp16[3:0]
    443 
    444 	#
    445 	# check for carry ;; carry stored in rax
    446 	 mov	$X[4], (+8*8)(%rdi)			# rdi points to X1
    447 	 mov	$X[5], (+8*9)(%rdi)
    448 	 mov	$X[6], %rbp
    449 	 mov	$X[7], (+8*11)(%rdi)
    450 
    451 	 mov	%rax, (+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp)
    452 
    453 	 mov	(+8*0)(%rdi), $X[4]
    454 	 mov	(+8*1)(%rdi), $X[5]
    455 	 mov	(+8*2)(%rdi), $X[6]
    456 	 mov	(+8*3)(%rdi), $X[7]
    457 
    458 	# X1 is now stored in: X1[11], rbp, X1[9:8], r15-r8
    459 	# rdi -> X1
    460 	# rsi -> M1
    461 
    462 	#
    463 	# X2 = Xh * M2 + Xl
    464 	# do first part (X2 = Xh * M2)
    465 	 add	\$8*10, %rdi			# rdi -> pXh ; 128 bits, 2 qwords
    466 				#        Xh is actually { [rdi+8*1], rbp }
    467 	 add	\$`$M2-$M1`, %rsi			# rsi -> M2
    468 	 lea	(+$Reduce_Data_offset+$X2_offset+$STACK_DEPTH)(%rsp), %rcx			# rcx -> pX2 ; 641 bits, 11 qwords
    469 ___
    470 	unshift(@X,pop(@X));	unshift(@X,pop(@X));
    471 $code.=<<___;
    472 
    473 	 call	MULADD_128x512			# args in rcx, rdi / rbp, rsi, r15-r8
    474 	# result in r9, r8, r15, r14, r13, r12, r11, r10, X2[1:0]
    475 	 mov	(+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp), %rax
    476 
    477 	# X2 += Xl
    478 	 add	(+8*8-8*10)(%rdi), $X[6]		# (-8*10) is to adjust rdi -> Xh to Xl
    479 	 adc	(+8*9-8*10)(%rdi), $X[7]
    480 	 mov	$X[6], (+8*8)(%rcx)
    481 	 mov	$X[7], (+8*9)(%rcx)
    482 
    483 	 adc	%rax, %rax
    484 	 mov	%rax, (+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp)
    485 
    486 	 lea	(+$Reduce_Data_offset+$Q_offset+$STACK_DEPTH)(%rsp), %rdi			# rdi -> pQ ; 128 bits, 2 qwords
    487 	 add	\$`$K1-$M2`, %rsi			# rsi -> pK1 ; 128 bits, 2 qwords
    488 
    489 	# MUL_128x128t128	rdi, rcx, rsi	; Q = X2 * K1 (bottom half)
    490 	# B1:B0 = rsi[1:0] = K1[1:0]
    491 	# A1:A0 = rcx[1:0] = X2[1:0]
    492 	# Result = rdi[1],rbp = Q[1],rbp
    493 	 mov	(%rsi), %r8			# B0
    494 	 mov	(+8*1)(%rsi), %rbx			# B1
    495 
    496 	 mov	(%rcx), %rax			# A0
    497 	 mul	%r8			# B0
    498 	 mov	%rax, %rbp
    499 	 mov	%rdx, %r9
    500 
    501 	 mov	(+8*1)(%rcx), %rax			# A1
    502 	 mul	%r8			# B0
    503 	 add	%rax, %r9
    504 
    505 	 mov	(%rcx), %rax			# A0
    506 	 mul	%rbx			# B1
    507 	 add	%rax, %r9
    508 
    509 	 mov	%r9, (+8*1)(%rdi)
    510 	# end MUL_128x128t128
    511 
    512 	 sub	\$`$K1-$M`, %rsi
    513 
    514 	 mov	(%rcx), $X[6]
    515 	 mov	(+8*1)(%rcx), $X[7]			# r9:r8 = X2[1:0]
    516 
    517 	 call	MULADD_128x512			# args in rcx, rdi / rbp, rsi, r15-r8
    518 	# result in r9, r8, r15, r14, r13, r12, r11, r10, X2[1:0]
    519 
    520 	# load first half of m to rdx, rdi, rbx, rax
    521 	# moved this here for efficiency
    522 	 mov	(+8*0)(%rsi), %rax
    523 	 mov	(+8*1)(%rsi), %rbx
    524 	 mov	(+8*2)(%rsi), %rdi
    525 	 mov	(+8*3)(%rsi), %rdx
    526 
    527 	# continue with reduction
    528 	 mov	(+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp), %rbp
    529 
    530 	 add	(+8*8)(%rcx), $X[6]
    531 	 adc	(+8*9)(%rcx), $X[7]
    532 
    533 	#accumulate the final carry to rbp
    534 	 adc	%rbp, %rbp
    535 
    536 	# Add in overflow corrections: R = (X2>>128) += T[overflow]
    537 	# R = {r9, r8, r15, r14, ..., r10}
    538 	 shl	\$3, %rbp
    539 	 mov	(+$pData_offset+$STACK_DEPTH)(%rsp), %rcx			# rsi -> Data (and points to T)
    540 	 add	%rcx, %rbp			# pT ; 512 bits, 8 qwords, spread out
    541 
    542 	# rsi will be used to generate a mask after the addition
    543 	 xor	%rsi, %rsi
    544 
    545 	 add	(+8*8*0)(%rbp), $X[0]
    546 	 adc	(+8*8*1)(%rbp), $X[1]
    547 	 adc	(+8*8*2)(%rbp), $X[2]
    548 	 adc	(+8*8*3)(%rbp), $X[3]
    549 	 adc	(+8*8*4)(%rbp), $X[4]
    550 	 adc	(+8*8*5)(%rbp), $X[5]
    551 	 adc	(+8*8*6)(%rbp), $X[6]
    552 	 adc	(+8*8*7)(%rbp), $X[7]
    553 
    554 	# if there is a carry:	rsi = 0xFFFFFFFFFFFFFFFF
    555 	# if carry is clear:	rsi = 0x0000000000000000
    556 	 sbb	\$0, %rsi
    557 
    558 	# if carry is clear, subtract 0. Otherwise, subtract 256 bits of m
    559 	 and	%rsi, %rax
    560 	 and	%rsi, %rbx
    561 	 and	%rsi, %rdi
    562 	 and	%rsi, %rdx
    563 
    564 	 mov	\$1, %rbp
    565 	 sub	%rax, $X[0]
    566 	 sbb	%rbx, $X[1]
    567 	 sbb	%rdi, $X[2]
    568 	 sbb	%rdx, $X[3]
    569 
    570 	# if there is a borrow:		rbp = 0
    571 	# if there is no borrow:	rbp = 1
    572 	# this is used to save the borrows in between the first half and the 2nd half of the subtraction of m
    573 	 sbb	\$0, %rbp
    574 
    575 	#load second half of m to rdx, rdi, rbx, rax
    576 
    577 	 add	\$$M, %rcx
    578 	 mov	(+8*4)(%rcx), %rax
    579 	 mov	(+8*5)(%rcx), %rbx
    580 	 mov	(+8*6)(%rcx), %rdi
    581 	 mov	(+8*7)(%rcx), %rdx
    582 
    583 	# use the rsi mask as before
    584 	# if carry is clear, subtract 0. Otherwise, subtract 256 bits of m
    585 	 and	%rsi, %rax
    586 	 and	%rsi, %rbx
    587 	 and	%rsi, %rdi
    588 	 and	%rsi, %rdx
    589 
    590 	# if rbp = 0, there was a borrow before, it is moved to the carry flag
    591 	# if rbp = 1, there was not a borrow before, carry flag is cleared
    592 	 sub	\$1, %rbp
    593 
    594 	 sbb	%rax, $X[4]
    595 	 sbb	%rbx, $X[5]
    596 	 sbb	%rdi, $X[6]
    597 	 sbb	%rdx, $X[7]
    598 
    599 	# write R back to memory
    600 
    601 	 mov	(+$red_result_addr_offset+$STACK_DEPTH)(%rsp), %rsi
    602 	 mov	$X[0], (+8*0)(%rsi)
    603 	 mov	$X[1], (+8*1)(%rsi)
    604 	 mov	$X[2], (+8*2)(%rsi)
    605 	 mov	$X[3], (+8*3)(%rsi)
    606 	 mov	$X[4], (+8*4)(%rsi)
    607 	 mov	$X[5], (+8*5)(%rsi)
    608 	 mov	$X[6], (+8*6)(%rsi)
    609 	 mov	$X[7], (+8*7)(%rsi)
    610 
    611 	 ret
    612 .size	mont_reduce,.-mont_reduce
    613 ___
    614 }}}
    615 
    616 {{{
    617 #MUL_512x512	MACRO	pDst, pA, pB, x7, x6, x5, x4, x3, x2, x1, x0, tmp*2
    618 #
    619 # Inputs: pDst: Destination  (1024 bits, 16 qwords)
    620 #         pA:   Multiplicand (512 bits, 8 qwords)
    621 #         pB:   Multiplicand (512 bits, 8 qwords)
    622 # Uses registers rax, rdx, args
    623 #   B operand in [pB] and also in x7...x0
    624 sub MUL_512x512
    625 {
    626  my ($pDst, $pA, $pB, $x, $OP, $TMP, $pDst_o)=@_;
    627  my ($pDst,  $pDst_o) = ($pDst =~ m/([^+]*)\+?(.*)?/);
    628  my @X=@$x;	# make a copy
    629 
    630 $code.=<<___;
    631 	 mov	(+8*0)($pA), $OP
    632 
    633 	 mov	$X[0], %rax
    634 	 mul	$OP			# rdx:rax = %OP * [0]
    635 	 mov	%rax, (+$pDst_o+8*0)($pDst)
    636 	 mov	%rdx, $X[0]
    637 ___
    638 for(my $i=1;$i<8;$i++) {
    639 $code.=<<___;
    640 	 mov	$X[$i], %rax
    641 	 mul	$OP			# rdx:rax = %OP * [$i]
    642 	 add	%rax, $X[$i-1]
    643 	 adc	\$0, %rdx
    644 	 mov	%rdx, $X[$i]
    645 ___
    646 }
    647 
    648 for(my $i=1;$i<8;$i++) {
    649 $code.=<<___;
    650 	 mov	(+8*$i)($pA), $OP
    651 ___
    652 
    653 	&MULSTEP_512(\@X, "(+$pDst_o+8*$i)($pDst)", $pB, $OP, $TMP);
    654 	push(@X,shift(@X));
    655 }
    656 
    657 $code.=<<___;
    658 	 mov	$X[0], (+$pDst_o+8*8)($pDst)
    659 	 mov	$X[1], (+$pDst_o+8*9)($pDst)
    660 	 mov	$X[2], (+$pDst_o+8*10)($pDst)
    661 	 mov	$X[3], (+$pDst_o+8*11)($pDst)
    662 	 mov	$X[4], (+$pDst_o+8*12)($pDst)
    663 	 mov	$X[5], (+$pDst_o+8*13)($pDst)
    664 	 mov	$X[6], (+$pDst_o+8*14)($pDst)
    665 	 mov	$X[7], (+$pDst_o+8*15)($pDst)
    666 ___
    667 }
    668 
    669 #
    670 # mont_mul_a3b : subroutine to compute (Src1 * Src2) % M (all 512-bits)
    671 # Input:  src1: Address of source 1: rdi
    672 #         src2: Address of source 2: rsi
    673 # Output: dst:  Address of destination: [red_res_addr]
    674 #    src2 and result also in: r9, r8, r15, r14, r13, r12, r11, r10
    675 # Temp:   Clobbers [tmp16], all registers
    676 $code.=<<___;
    677 .type	mont_mul_a3b,\@abi-omnipotent
    678 .align	16
    679 mont_mul_a3b:
    680 	#
    681 	# multiply tmp = src1 * src2
    682 	# For multiply: dst = rcx, src1 = rdi, src2 = rsi
    683 	# stack depth is extra 8 from call
    684 ___
    685 	&MUL_512x512("%rsp+$tmp16_offset+8", "%rdi", "%rsi", [map("%r$_",(10..15,8..9))], "%rbp", "%rbx");
    686 $code.=<<___;
    687 	#
    688 	# Dst = tmp % m
    689 	# Call reduce(tmp, m, data, dst)
    690 
    691 	# tail recursion optimization: jmp to mont_reduce and return from there
    692 	 jmp	mont_reduce
    693 	# call	mont_reduce
    694 	# ret
    695 .size	mont_mul_a3b,.-mont_mul_a3b
    696 ___
    697 }}}
    698 
    699 {{{
    700 #SQR_512 MACRO pDest, pA, x7, x6, x5, x4, x3, x2, x1, x0, tmp*4
    701 #
    702 # Input in memory [pA] and also in x7...x0
    703 # Uses all argument registers plus rax and rdx
    704 #
    705 # This version computes all of the off-diagonal terms into memory,
    706 # and then it adds in the diagonal terms
    707 
    708 sub SQR_512
    709 {
    710  my ($pDst, $pA, $x, $A, $tmp, $x7, $x6, $pDst_o)=@_;
    711  my ($pDst,  $pDst_o) = ($pDst =~ m/([^+]*)\+?(.*)?/);
    712  my @X=@$x;	# make a copy
    713 $code.=<<___;
    714 	# ------------------
    715 	# first pass 01...07
    716 	# ------------------
    717 	 mov	$X[0], $A
    718 
    719 	 mov	$X[1],%rax
    720 	 mul	$A
    721 	 mov	%rax, (+$pDst_o+8*1)($pDst)
    722 ___
    723 for(my $i=2;$i<8;$i++) {
    724 $code.=<<___;
    725 	 mov	%rdx, $X[$i-2]
    726 	 mov	$X[$i],%rax
    727 	 mul	$A
    728 	 add	%rax, $X[$i-2]
    729 	 adc	\$0, %rdx
    730 ___
    731 }
    732 $code.=<<___;
    733 	 mov	%rdx, $x7
    734 
    735 	 mov	$X[0], (+$pDst_o+8*2)($pDst)
    736 
    737 	# ------------------
    738 	# second pass 12...17
    739 	# ------------------
    740 
    741 	 mov	(+8*1)($pA), $A
    742 
    743 	 mov	(+8*2)($pA),%rax
    744 	 mul	$A
    745 	 add	%rax, $X[1]
    746 	 adc	\$0, %rdx
    747 	 mov	$X[1], (+$pDst_o+8*3)($pDst)
    748 
    749 	 mov	%rdx, $X[0]
    750 	 mov	(+8*3)($pA),%rax
    751 	 mul	$A
    752 	 add	%rax, $X[2]
    753 	 adc	\$0, %rdx
    754 	 add	$X[0], $X[2]
    755 	 adc	\$0, %rdx
    756 	 mov	$X[2], (+$pDst_o+8*4)($pDst)
    757 
    758 	 mov	%rdx, $X[0]
    759 	 mov	(+8*4)($pA),%rax
    760 	 mul	$A
    761 	 add	%rax, $X[3]
    762 	 adc	\$0, %rdx
    763 	 add	$X[0], $X[3]
    764 	 adc	\$0, %rdx
    765 
    766 	 mov	%rdx, $X[0]
    767 	 mov	(+8*5)($pA),%rax
    768 	 mul	$A
    769 	 add	%rax, $X[4]
    770 	 adc	\$0, %rdx
    771 	 add	$X[0], $X[4]
    772 	 adc	\$0, %rdx
    773 
    774 	 mov	%rdx, $X[0]
    775 	 mov	$X[6],%rax
    776 	 mul	$A
    777 	 add	%rax, $X[5]
    778 	 adc	\$0, %rdx
    779 	 add	$X[0], $X[5]
    780 	 adc	\$0, %rdx
    781 
    782 	 mov	%rdx, $X[0]
    783 	 mov	$X[7],%rax
    784 	 mul	$A
    785 	 add	%rax, $x7
    786 	 adc	\$0, %rdx
    787 	 add	$X[0], $x7
    788 	 adc	\$0, %rdx
    789 
    790 	 mov	%rdx, $X[1]
    791 
    792 	# ------------------
    793 	# third pass 23...27
    794 	# ------------------
    795 	 mov	(+8*2)($pA), $A
    796 
    797 	 mov	(+8*3)($pA),%rax
    798 	 mul	$A
    799 	 add	%rax, $X[3]
    800 	 adc	\$0, %rdx
    801 	 mov	$X[3], (+$pDst_o+8*5)($pDst)
    802 
    803 	 mov	%rdx, $X[0]
    804 	 mov	(+8*4)($pA),%rax
    805 	 mul	$A
    806 	 add	%rax, $X[4]
    807 	 adc	\$0, %rdx
    808 	 add	$X[0], $X[4]
    809 	 adc	\$0, %rdx
    810 	 mov	$X[4], (+$pDst_o+8*6)($pDst)
    811 
    812 	 mov	%rdx, $X[0]
    813 	 mov	(+8*5)($pA),%rax
    814 	 mul	$A
    815 	 add	%rax, $X[5]
    816 	 adc	\$0, %rdx
    817 	 add	$X[0], $X[5]
    818 	 adc	\$0, %rdx
    819 
    820 	 mov	%rdx, $X[0]
    821 	 mov	$X[6],%rax
    822 	 mul	$A
    823 	 add	%rax, $x7
    824 	 adc	\$0, %rdx
    825 	 add	$X[0], $x7
    826 	 adc	\$0, %rdx
    827 
    828 	 mov	%rdx, $X[0]
    829 	 mov	$X[7],%rax
    830 	 mul	$A
    831 	 add	%rax, $X[1]
    832 	 adc	\$0, %rdx
    833 	 add	$X[0], $X[1]
    834 	 adc	\$0, %rdx
    835 
    836 	 mov	%rdx, $X[2]
    837 
    838 	# ------------------
    839 	# fourth pass 34...37
    840 	# ------------------
    841 
    842 	 mov	(+8*3)($pA), $A
    843 
    844 	 mov	(+8*4)($pA),%rax
    845 	 mul	$A
    846 	 add	%rax, $X[5]
    847 	 adc	\$0, %rdx
    848 	 mov	$X[5], (+$pDst_o+8*7)($pDst)
    849 
    850 	 mov	%rdx, $X[0]
    851 	 mov	(+8*5)($pA),%rax
    852 	 mul	$A
    853 	 add	%rax, $x7
    854 	 adc	\$0, %rdx
    855 	 add	$X[0], $x7
    856 	 adc	\$0, %rdx
    857 	 mov	$x7, (+$pDst_o+8*8)($pDst)
    858 
    859 	 mov	%rdx, $X[0]
    860 	 mov	$X[6],%rax
    861 	 mul	$A
    862 	 add	%rax, $X[1]
    863 	 adc	\$0, %rdx
    864 	 add	$X[0], $X[1]
    865 	 adc	\$0, %rdx
    866 
    867 	 mov	%rdx, $X[0]
    868 	 mov	$X[7],%rax
    869 	 mul	$A
    870 	 add	%rax, $X[2]
    871 	 adc	\$0, %rdx
    872 	 add	$X[0], $X[2]
    873 	 adc	\$0, %rdx
    874 
    875 	 mov	%rdx, $X[5]
    876 
    877 	# ------------------
    878 	# fifth pass 45...47
    879 	# ------------------
    880 	 mov	(+8*4)($pA), $A
    881 
    882 	 mov	(+8*5)($pA),%rax
    883 	 mul	$A
    884 	 add	%rax, $X[1]
    885 	 adc	\$0, %rdx
    886 	 mov	$X[1], (+$pDst_o+8*9)($pDst)
    887 
    888 	 mov	%rdx, $X[0]
    889 	 mov	$X[6],%rax
    890 	 mul	$A
    891 	 add	%rax, $X[2]
    892 	 adc	\$0, %rdx
    893 	 add	$X[0], $X[2]
    894 	 adc	\$0, %rdx
    895 	 mov	$X[2], (+$pDst_o+8*10)($pDst)
    896 
    897 	 mov	%rdx, $X[0]
    898 	 mov	$X[7],%rax
    899 	 mul	$A
    900 	 add	%rax, $X[5]
    901 	 adc	\$0, %rdx
    902 	 add	$X[0], $X[5]
    903 	 adc	\$0, %rdx
    904 
    905 	 mov	%rdx, $X[1]
    906 
    907 	# ------------------
    908 	# sixth pass 56...57
    909 	# ------------------
    910 	 mov	(+8*5)($pA), $A
    911 
    912 	 mov	$X[6],%rax
    913 	 mul	$A
    914 	 add	%rax, $X[5]
    915 	 adc	\$0, %rdx
    916 	 mov	$X[5], (+$pDst_o+8*11)($pDst)
    917 
    918 	 mov	%rdx, $X[0]
    919 	 mov	$X[7],%rax
    920 	 mul	$A
    921 	 add	%rax, $X[1]
    922 	 adc	\$0, %rdx
    923 	 add	$X[0], $X[1]
    924 	 adc	\$0, %rdx
    925 	 mov	$X[1], (+$pDst_o+8*12)($pDst)
    926 
    927 	 mov	%rdx, $X[2]
    928 
    929 	# ------------------
    930 	# seventh pass 67
    931 	# ------------------
    932 	 mov	$X[6], $A
    933 
    934 	 mov	$X[7],%rax
    935 	 mul	$A
    936 	 add	%rax, $X[2]
    937 	 adc	\$0, %rdx
    938 	 mov	$X[2], (+$pDst_o+8*13)($pDst)
    939 
    940 	 mov	%rdx, (+$pDst_o+8*14)($pDst)
    941 
    942 	# start finalize (add	in squares, and double off-terms)
    943 	 mov	(+$pDst_o+8*1)($pDst), $X[0]
    944 	 mov	(+$pDst_o+8*2)($pDst), $X[1]
    945 	 mov	(+$pDst_o+8*3)($pDst), $X[2]
    946 	 mov	(+$pDst_o+8*4)($pDst), $X[3]
    947 	 mov	(+$pDst_o+8*5)($pDst), $X[4]
    948 	 mov	(+$pDst_o+8*6)($pDst), $X[5]
    949 
    950 	 mov	(+8*3)($pA), %rax
    951 	 mul	%rax
    952 	 mov	%rax, $x6
    953 	 mov	%rdx, $X[6]
    954 
    955 	 add	$X[0], $X[0]
    956 	 adc	$X[1], $X[1]
    957 	 adc	$X[2], $X[2]
    958 	 adc	$X[3], $X[3]
    959 	 adc	$X[4], $X[4]
    960 	 adc	$X[5], $X[5]
    961 	 adc	\$0, $X[6]
    962 
    963 	 mov	(+8*0)($pA), %rax
    964 	 mul	%rax
    965 	 mov	%rax, (+$pDst_o+8*0)($pDst)
    966 	 mov	%rdx, $A
    967 
    968 	 mov	(+8*1)($pA), %rax
    969 	 mul	%rax
    970 
    971 	 add	$A, $X[0]
    972 	 adc	%rax, $X[1]
    973 	 adc	\$0, %rdx
    974 
    975 	 mov	%rdx, $A
    976 	 mov	$X[0], (+$pDst_o+8*1)($pDst)
    977 	 mov	$X[1], (+$pDst_o+8*2)($pDst)
    978 
    979 	 mov	(+8*2)($pA), %rax
    980 	 mul	%rax
    981 
    982 	 add	$A, $X[2]
    983 	 adc	%rax, $X[3]
    984 	 adc	\$0, %rdx
    985 
    986 	 mov	%rdx, $A
    987 
    988 	 mov	$X[2], (+$pDst_o+8*3)($pDst)
    989 	 mov	$X[3], (+$pDst_o+8*4)($pDst)
    990 
    991 	 xor	$tmp, $tmp
    992 	 add	$A, $X[4]
    993 	 adc	$x6, $X[5]
    994 	 adc	\$0, $tmp
    995 
    996 	 mov	$X[4], (+$pDst_o+8*5)($pDst)
    997 	 mov	$X[5], (+$pDst_o+8*6)($pDst)
    998 
    999 	# %%tmp has 0/1 in column 7
   1000 	# %%A6 has a full value in column 7
   1001 
   1002 	 mov	(+$pDst_o+8*7)($pDst), $X[0]
   1003 	 mov	(+$pDst_o+8*8)($pDst), $X[1]
   1004 	 mov	(+$pDst_o+8*9)($pDst), $X[2]
   1005 	 mov	(+$pDst_o+8*10)($pDst), $X[3]
   1006 	 mov	(+$pDst_o+8*11)($pDst), $X[4]
   1007 	 mov	(+$pDst_o+8*12)($pDst), $X[5]
   1008 	 mov	(+$pDst_o+8*13)($pDst), $x6
   1009 	 mov	(+$pDst_o+8*14)($pDst), $x7
   1010 
   1011 	 mov	$X[7], %rax
   1012 	 mul	%rax
   1013 	 mov	%rax, $X[7]
   1014 	 mov	%rdx, $A
   1015 
   1016 	 add	$X[0], $X[0]
   1017 	 adc	$X[1], $X[1]
   1018 	 adc	$X[2], $X[2]
   1019 	 adc	$X[3], $X[3]
   1020 	 adc	$X[4], $X[4]
   1021 	 adc	$X[5], $X[5]
   1022 	 adc	$x6, $x6
   1023 	 adc	$x7, $x7
   1024 	 adc	\$0, $A
   1025 
   1026 	 add	$tmp, $X[0]
   1027 
   1028 	 mov	(+8*4)($pA), %rax
   1029 	 mul	%rax
   1030 
   1031 	 add	$X[6], $X[0]
   1032 	 adc	%rax, $X[1]
   1033 	 adc	\$0, %rdx
   1034 
   1035 	 mov	%rdx, $tmp
   1036 
   1037 	 mov	$X[0], (+$pDst_o+8*7)($pDst)
   1038 	 mov	$X[1], (+$pDst_o+8*8)($pDst)
   1039 
   1040 	 mov	(+8*5)($pA), %rax
   1041 	 mul	%rax
   1042 
   1043 	 add	$tmp, $X[2]
   1044 	 adc	%rax, $X[3]
   1045 	 adc	\$0, %rdx
   1046 
   1047 	 mov	%rdx, $tmp
   1048 
   1049 	 mov	$X[2], (+$pDst_o+8*9)($pDst)
   1050 	 mov	$X[3], (+$pDst_o+8*10)($pDst)
   1051 
   1052 	 mov	(+8*6)($pA), %rax
   1053 	 mul	%rax
   1054 
   1055 	 add	$tmp, $X[4]
   1056 	 adc	%rax, $X[5]
   1057 	 adc	\$0, %rdx
   1058 
   1059 	 mov	$X[4], (+$pDst_o+8*11)($pDst)
   1060 	 mov	$X[5], (+$pDst_o+8*12)($pDst)
   1061 
   1062 	 add	%rdx, $x6
   1063 	 adc	$X[7], $x7
   1064 	 adc	\$0, $A
   1065 
   1066 	 mov	$x6, (+$pDst_o+8*13)($pDst)
   1067 	 mov	$x7, (+$pDst_o+8*14)($pDst)
   1068 	 mov	$A, (+$pDst_o+8*15)($pDst)
   1069 ___
   1070 }
   1071 
   1072 #
   1073 # sqr_reduce: subroutine to compute Result = reduce(Result * Result)
   1074 #
   1075 # input and result also in: r9, r8, r15, r14, r13, r12, r11, r10
   1076 #
   1077 $code.=<<___;
   1078 .type	sqr_reduce,\@abi-omnipotent
   1079 .align	16
   1080 sqr_reduce:
   1081 	 mov	(+$pResult_offset+8)(%rsp), %rcx
   1082 ___
   1083 	&SQR_512("%rsp+$tmp16_offset+8", "%rcx", [map("%r$_",(10..15,8..9))], "%rbx", "%rbp", "%rsi", "%rdi");
   1084 $code.=<<___;
   1085 	# tail recursion optimization: jmp to mont_reduce and return from there
   1086 	 jmp	mont_reduce
   1087 	# call	mont_reduce
   1088 	# ret
   1089 .size	sqr_reduce,.-sqr_reduce
   1090 ___
   1091 }}}
   1092 
   1093 #
   1094 # MAIN FUNCTION
   1095 #
   1096 
   1097 #mod_exp_512(UINT64 *result, /* 512 bits, 8 qwords */
   1098 #           UINT64 *g,   /* 512 bits, 8 qwords */
   1099 #           UINT64 *exp, /* 512 bits, 8 qwords */
   1100 #           struct mod_ctx_512 *data)
   1101 
   1102 # window size = 5
   1103 # table size = 2^5 = 32
   1104 #table_entries	equ	32
   1105 #table_size	equ	table_entries * 8
   1106 $code.=<<___;
   1107 .globl	mod_exp_512
   1108 .type	mod_exp_512,\@function,4
   1109 mod_exp_512:
   1110 	 push	%rbp
   1111 	 push	%rbx
   1112 	 push	%r12
   1113 	 push	%r13
   1114 	 push	%r14
   1115 	 push	%r15
   1116 
   1117 	# adjust stack down and then align it with cache boundary
   1118 	 mov	%rsp, %r8
   1119 	 sub	\$$mem_size, %rsp
   1120 	 and	\$-64, %rsp
   1121 
   1122 	# store previous stack pointer and arguments
   1123 	 mov	%r8, (+$rsp_offset)(%rsp)
   1124 	 mov	%rdi, (+$pResult_offset)(%rsp)
   1125 	 mov	%rsi, (+$pG_offset)(%rsp)
   1126 	 mov	%rcx, (+$pData_offset)(%rsp)
   1127 .Lbody:
   1128 	# transform g into montgomery space
   1129 	# GT = reduce(g * C2) = reduce(g * (2^256))
   1130 	# reduce expects to have the input in [tmp16]
   1131 	 pxor	%xmm4, %xmm4
   1132 	 movdqu	(+16*0)(%rsi), %xmm0
   1133 	 movdqu	(+16*1)(%rsi), %xmm1
   1134 	 movdqu	(+16*2)(%rsi), %xmm2
   1135 	 movdqu	(+16*3)(%rsi), %xmm3
   1136 	 movdqa	%xmm4, (+$tmp16_offset+16*0)(%rsp)
   1137 	 movdqa	%xmm4, (+$tmp16_offset+16*1)(%rsp)
   1138 	 movdqa	%xmm4, (+$tmp16_offset+16*6)(%rsp)
   1139 	 movdqa	%xmm4, (+$tmp16_offset+16*7)(%rsp)
   1140 	 movdqa	%xmm0, (+$tmp16_offset+16*2)(%rsp)
   1141 	 movdqa	%xmm1, (+$tmp16_offset+16*3)(%rsp)
   1142 	 movdqa	%xmm2, (+$tmp16_offset+16*4)(%rsp)
   1143 	 movdqa	%xmm3, (+$tmp16_offset+16*5)(%rsp)
   1144 
   1145 	# load pExp before rdx gets blown away
   1146 	 movdqu	(+16*0)(%rdx), %xmm0
   1147 	 movdqu	(+16*1)(%rdx), %xmm1
   1148 	 movdqu	(+16*2)(%rdx), %xmm2
   1149 	 movdqu	(+16*3)(%rdx), %xmm3
   1150 
   1151 	 lea	(+$GT_offset)(%rsp), %rbx
   1152 	 mov	%rbx, (+$red_result_addr_offset)(%rsp)
   1153 	 call	mont_reduce
   1154 
   1155 	# Initialize tmp = C
   1156 	 lea	(+$tmp_offset)(%rsp), %rcx
   1157 	 xor	%rax, %rax
   1158 	 mov	%rax, (+8*0)(%rcx)
   1159 	 mov	%rax, (+8*1)(%rcx)
   1160 	 mov	%rax, (+8*3)(%rcx)
   1161 	 mov	%rax, (+8*4)(%rcx)
   1162 	 mov	%rax, (+8*5)(%rcx)
   1163 	 mov	%rax, (+8*6)(%rcx)
   1164 	 mov	%rax, (+8*7)(%rcx)
   1165 	 mov	%rax, (+$exp_offset+8*8)(%rsp)
   1166 	 movq	\$1, (+8*2)(%rcx)
   1167 
   1168 	 lea	(+$garray_offset)(%rsp), %rbp
   1169 	 mov	%rcx, %rsi			# pTmp
   1170 	 mov	%rbp, %rdi			# Garray[][0]
   1171 ___
   1172 
   1173 	&swizzle("%rdi", "%rcx", "%rax", "%rbx");
   1174 
   1175 	# for (rax = 31; rax != 0; rax--) {
   1176 	#     tmp = reduce(tmp * G)
   1177 	#     swizzle(pg, tmp);
   1178 	#     pg += 2; }
   1179 $code.=<<___;
   1180 	 mov	\$31, %rax
   1181 	 mov	%rax, (+$i_offset)(%rsp)
   1182 	 mov	%rbp, (+$pg_offset)(%rsp)
   1183 	# rsi -> pTmp
   1184 	 mov	%rsi, (+$red_result_addr_offset)(%rsp)
   1185 	 mov	(+8*0)(%rsi), %r10
   1186 	 mov	(+8*1)(%rsi), %r11
   1187 	 mov	(+8*2)(%rsi), %r12
   1188 	 mov	(+8*3)(%rsi), %r13
   1189 	 mov	(+8*4)(%rsi), %r14
   1190 	 mov	(+8*5)(%rsi), %r15
   1191 	 mov	(+8*6)(%rsi), %r8
   1192 	 mov	(+8*7)(%rsi), %r9
   1193 init_loop:
   1194 	 lea	(+$GT_offset)(%rsp), %rdi
   1195 	 call	mont_mul_a3b
   1196 	 lea	(+$tmp_offset)(%rsp), %rsi
   1197 	 mov	(+$pg_offset)(%rsp), %rbp
   1198 	 add	\$2, %rbp
   1199 	 mov	%rbp, (+$pg_offset)(%rsp)
   1200 	 mov	%rsi, %rcx			# rcx = rsi = addr of tmp
   1201 ___
   1202 
   1203 	&swizzle("%rbp", "%rcx", "%rax", "%rbx");
   1204 $code.=<<___;
   1205 	 mov	(+$i_offset)(%rsp), %rax
   1206 	 sub	\$1, %rax
   1207 	 mov	%rax, (+$i_offset)(%rsp)
   1208 	 jne	init_loop
   1209 
   1210 	#
   1211 	# Copy exponent onto stack
   1212 	 movdqa	%xmm0, (+$exp_offset+16*0)(%rsp)
   1213 	 movdqa	%xmm1, (+$exp_offset+16*1)(%rsp)
   1214 	 movdqa	%xmm2, (+$exp_offset+16*2)(%rsp)
   1215 	 movdqa	%xmm3, (+$exp_offset+16*3)(%rsp)
   1216 
   1217 
   1218 	#
   1219 	# Do exponentiation
   1220 	# Initialize result to G[exp{511:507}]
   1221 	 mov	(+$exp_offset+62)(%rsp), %eax
   1222 	 mov	%rax, %rdx
   1223 	 shr	\$11, %rax
   1224 	 and	\$0x07FF, %edx
   1225 	 mov	%edx, (+$exp_offset+62)(%rsp)
   1226 	 lea	(+$garray_offset)(%rsp,%rax,2), %rsi
   1227 	 mov	(+$pResult_offset)(%rsp), %rdx
   1228 ___
   1229 
   1230 	&unswizzle("%rdx", "%rsi", "%rbp", "%rbx", "%rax");
   1231 
   1232 	#
   1233 	# Loop variables
   1234 	# rcx = [loop_idx] = index: 510-5 to 0 by 5
   1235 $code.=<<___;
   1236 	 movq	\$505, (+$loop_idx_offset)(%rsp)
   1237 
   1238 	 mov	(+$pResult_offset)(%rsp), %rcx
   1239 	 mov	%rcx, (+$red_result_addr_offset)(%rsp)
   1240 	 mov	(+8*0)(%rcx), %r10
   1241 	 mov	(+8*1)(%rcx), %r11
   1242 	 mov	(+8*2)(%rcx), %r12
   1243 	 mov	(+8*3)(%rcx), %r13
   1244 	 mov	(+8*4)(%rcx), %r14
   1245 	 mov	(+8*5)(%rcx), %r15
   1246 	 mov	(+8*6)(%rcx), %r8
   1247 	 mov	(+8*7)(%rcx), %r9
   1248 	 jmp	sqr_2
   1249 
   1250 main_loop_a3b:
   1251 	 call	sqr_reduce
   1252 	 call	sqr_reduce
   1253 	 call	sqr_reduce
   1254 sqr_2:
   1255 	 call	sqr_reduce
   1256 	 call	sqr_reduce
   1257 
   1258 	#
   1259 	# Do multiply, first look up proper value in Garray
   1260 	 mov	(+$loop_idx_offset)(%rsp), %rcx			# bit index
   1261 	 mov	%rcx, %rax
   1262 	 shr	\$4, %rax			# rax is word pointer
   1263 	 mov	(+$exp_offset)(%rsp,%rax,2), %edx
   1264 	 and	\$15, %rcx
   1265 	 shrq	%cl, %rdx
   1266 	 and	\$0x1F, %rdx
   1267 
   1268 	 lea	(+$garray_offset)(%rsp,%rdx,2), %rsi
   1269 	 lea	(+$tmp_offset)(%rsp), %rdx
   1270 	 mov	%rdx, %rdi
   1271 ___
   1272 
   1273 	&unswizzle("%rdx", "%rsi", "%rbp", "%rbx", "%rax");
   1274 	# rdi = tmp = pG
   1275 
   1276 	#
   1277 	# Call mod_mul_a1(pDst,  pSrc1, pSrc2, pM, pData)
   1278 	#                 result result pG     M   Data
   1279 $code.=<<___;
   1280 	 mov	(+$pResult_offset)(%rsp), %rsi
   1281 	 call	mont_mul_a3b
   1282 
   1283 	#
   1284 	# finish loop
   1285 	 mov	(+$loop_idx_offset)(%rsp), %rcx
   1286 	 sub	\$5, %rcx
   1287 	 mov	%rcx, (+$loop_idx_offset)(%rsp)
   1288 	 jge	main_loop_a3b
   1289 
   1290 	#
   1291 
   1292 end_main_loop_a3b:
   1293 	# transform result out of Montgomery space
   1294 	# result = reduce(result)
   1295 	 mov	(+$pResult_offset)(%rsp), %rdx
   1296 	 pxor	%xmm4, %xmm4
   1297 	 movdqu	(+16*0)(%rdx), %xmm0
   1298 	 movdqu	(+16*1)(%rdx), %xmm1
   1299 	 movdqu	(+16*2)(%rdx), %xmm2
   1300 	 movdqu	(+16*3)(%rdx), %xmm3
   1301 	 movdqa	%xmm4, (+$tmp16_offset+16*4)(%rsp)
   1302 	 movdqa	%xmm4, (+$tmp16_offset+16*5)(%rsp)
   1303 	 movdqa	%xmm4, (+$tmp16_offset+16*6)(%rsp)
   1304 	 movdqa	%xmm4, (+$tmp16_offset+16*7)(%rsp)
   1305 	 movdqa	%xmm0, (+$tmp16_offset+16*0)(%rsp)
   1306 	 movdqa	%xmm1, (+$tmp16_offset+16*1)(%rsp)
   1307 	 movdqa	%xmm2, (+$tmp16_offset+16*2)(%rsp)
   1308 	 movdqa	%xmm3, (+$tmp16_offset+16*3)(%rsp)
   1309 	 call	mont_reduce
   1310 
   1311 	# If result > m, subract m
   1312 	# load result into r15:r8
   1313 	 mov	(+$pResult_offset)(%rsp), %rax
   1314 	 mov	(+8*0)(%rax), %r8
   1315 	 mov	(+8*1)(%rax), %r9
   1316 	 mov	(+8*2)(%rax), %r10
   1317 	 mov	(+8*3)(%rax), %r11
   1318 	 mov	(+8*4)(%rax), %r12
   1319 	 mov	(+8*5)(%rax), %r13
   1320 	 mov	(+8*6)(%rax), %r14
   1321 	 mov	(+8*7)(%rax), %r15
   1322 
   1323 	# subtract m
   1324 	 mov	(+$pData_offset)(%rsp), %rbx
   1325 	 add	\$$M, %rbx
   1326 
   1327 	 sub	(+8*0)(%rbx), %r8
   1328 	 sbb	(+8*1)(%rbx), %r9
   1329 	 sbb	(+8*2)(%rbx), %r10
   1330 	 sbb	(+8*3)(%rbx), %r11
   1331 	 sbb	(+8*4)(%rbx), %r12
   1332 	 sbb	(+8*5)(%rbx), %r13
   1333 	 sbb	(+8*6)(%rbx), %r14
   1334 	 sbb	(+8*7)(%rbx), %r15
   1335 
   1336 	# if Carry is clear, replace result with difference
   1337 	 mov	(+8*0)(%rax), %rsi
   1338 	 mov	(+8*1)(%rax), %rdi
   1339 	 mov	(+8*2)(%rax), %rcx
   1340 	 mov	(+8*3)(%rax), %rdx
   1341 	 cmovnc	%r8, %rsi
   1342 	 cmovnc	%r9, %rdi
   1343 	 cmovnc	%r10, %rcx
   1344 	 cmovnc	%r11, %rdx
   1345 	 mov	%rsi, (+8*0)(%rax)
   1346 	 mov	%rdi, (+8*1)(%rax)
   1347 	 mov	%rcx, (+8*2)(%rax)
   1348 	 mov	%rdx, (+8*3)(%rax)
   1349 
   1350 	 mov	(+8*4)(%rax), %rsi
   1351 	 mov	(+8*5)(%rax), %rdi
   1352 	 mov	(+8*6)(%rax), %rcx
   1353 	 mov	(+8*7)(%rax), %rdx
   1354 	 cmovnc	%r12, %rsi
   1355 	 cmovnc	%r13, %rdi
   1356 	 cmovnc	%r14, %rcx
   1357 	 cmovnc	%r15, %rdx
   1358 	 mov	%rsi, (+8*4)(%rax)
   1359 	 mov	%rdi, (+8*5)(%rax)
   1360 	 mov	%rcx, (+8*6)(%rax)
   1361 	 mov	%rdx, (+8*7)(%rax)
   1362 
   1363 	 mov	(+$rsp_offset)(%rsp), %rsi
   1364 	 mov	0(%rsi),%r15
   1365 	 mov	8(%rsi),%r14
   1366 	 mov	16(%rsi),%r13
   1367 	 mov	24(%rsi),%r12
   1368 	 mov	32(%rsi),%rbx
   1369 	 mov	40(%rsi),%rbp
   1370 	 lea	48(%rsi),%rsp
   1371 .Lepilogue:
   1372 	 ret
   1373 .size mod_exp_512, . - mod_exp_512
   1374 ___
   1375 
   1376 if ($win64) {
   1377 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
   1378 #		CONTEXT *context,DISPATCHER_CONTEXT *disp)
   1379 my $rec="%rcx";
   1380 my $frame="%rdx";
   1381 my $context="%r8";
   1382 my $disp="%r9";
   1383 
   1384 $code.=<<___;
   1385 .extern	__imp_RtlVirtualUnwind
   1386 .type	mod_exp_512_se_handler,\@abi-omnipotent
   1387 .align	16
   1388 mod_exp_512_se_handler:
   1389 	push	%rsi
   1390 	push	%rdi
   1391 	push	%rbx
   1392 	push	%rbp
   1393 	push	%r12
   1394 	push	%r13
   1395 	push	%r14
   1396 	push	%r15
   1397 	pushfq
   1398 	sub	\$64,%rsp
   1399 
   1400 	mov	120($context),%rax	# pull context->Rax
   1401 	mov	248($context),%rbx	# pull context->Rip
   1402 
   1403 	lea	.Lbody(%rip),%r10
   1404 	cmp	%r10,%rbx		# context->Rip<prologue label
   1405 	jb	.Lin_prologue
   1406 
   1407 	mov	152($context),%rax	# pull context->Rsp
   1408 
   1409 	lea	.Lepilogue(%rip),%r10
   1410 	cmp	%r10,%rbx		# context->Rip>=epilogue label
   1411 	jae	.Lin_prologue
   1412 
   1413 	mov	$rsp_offset(%rax),%rax	# pull saved Rsp
   1414 
   1415 	mov	32(%rax),%rbx
   1416 	mov	40(%rax),%rbp
   1417 	mov	24(%rax),%r12
   1418 	mov	16(%rax),%r13
   1419 	mov	8(%rax),%r14
   1420 	mov	0(%rax),%r15
   1421 	lea	48(%rax),%rax
   1422 	mov	%rbx,144($context)	# restore context->Rbx
   1423 	mov	%rbp,160($context)	# restore context->Rbp
   1424 	mov	%r12,216($context)	# restore context->R12
   1425 	mov	%r13,224($context)	# restore context->R13
   1426 	mov	%r14,232($context)	# restore context->R14
   1427 	mov	%r15,240($context)	# restore context->R15
   1428 
   1429 .Lin_prologue:
   1430 	mov	8(%rax),%rdi
   1431 	mov	16(%rax),%rsi
   1432 	mov	%rax,152($context)	# restore context->Rsp
   1433 	mov	%rsi,168($context)	# restore context->Rsi
   1434 	mov	%rdi,176($context)	# restore context->Rdi
   1435 
   1436 	mov	40($disp),%rdi		# disp->ContextRecord
   1437 	mov	$context,%rsi		# context
   1438 	mov	\$154,%ecx		# sizeof(CONTEXT)
   1439 	.long	0xa548f3fc		# cld; rep movsq
   1440 
   1441 	mov	$disp,%rsi
   1442 	xor	%rcx,%rcx		# arg1, UNW_FLAG_NHANDLER
   1443 	mov	8(%rsi),%rdx		# arg2, disp->ImageBase
   1444 	mov	0(%rsi),%r8		# arg3, disp->ControlPc
   1445 	mov	16(%rsi),%r9		# arg4, disp->FunctionEntry
   1446 	mov	40(%rsi),%r10		# disp->ContextRecord
   1447 	lea	56(%rsi),%r11		# &disp->HandlerData
   1448 	lea	24(%rsi),%r12		# &disp->EstablisherFrame
   1449 	mov	%r10,32(%rsp)		# arg5
   1450 	mov	%r11,40(%rsp)		# arg6
   1451 	mov	%r12,48(%rsp)		# arg7
   1452 	mov	%rcx,56(%rsp)		# arg8, (NULL)
   1453 	call	*__imp_RtlVirtualUnwind(%rip)
   1454 
   1455 	mov	\$1,%eax		# ExceptionContinueSearch
   1456 	add	\$64,%rsp
   1457 	popfq
   1458 	pop	%r15
   1459 	pop	%r14
   1460 	pop	%r13
   1461 	pop	%r12
   1462 	pop	%rbp
   1463 	pop	%rbx
   1464 	pop	%rdi
   1465 	pop	%rsi
   1466 	ret
   1467 .size	mod_exp_512_se_handler,.-mod_exp_512_se_handler
   1468 
   1469 .section	.pdata
   1470 .align	4
   1471 	.rva	.LSEH_begin_mod_exp_512
   1472 	.rva	.LSEH_end_mod_exp_512
   1473 	.rva	.LSEH_info_mod_exp_512
   1474 
   1475 .section	.xdata
   1476 .align	8
   1477 .LSEH_info_mod_exp_512:
   1478 	.byte	9,0,0,0
   1479 	.rva	mod_exp_512_se_handler
   1480 ___
   1481 }
   1482 
   1483 sub reg_part {
   1484 my ($reg,$conv)=@_;
   1485     if ($reg =~ /%r[0-9]+/)	{ $reg .= $conv; }
   1486     elsif ($conv eq "b")	{ $reg =~ s/%[er]([^x]+)x?/%$1l/;	}
   1487     elsif ($conv eq "w")	{ $reg =~ s/%[er](.+)/%$1/;		}
   1488     elsif ($conv eq "d")	{ $reg =~ s/%[er](.+)/%e$1/;		}
   1489     return $reg;
   1490 }
   1491 
   1492 $code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem;
   1493 $code =~ s/\`([^\`]*)\`/eval $1/gem;
   1494 $code =~ s/(\(\+[^)]+\))/eval $1/gem;
   1495 print $code;
   1496 close STDOUT;
   1497