Home | History | Annotate | Download | only in core
      1 
      2 /*
      3  * Copyright 2006 The Android Open Source Project
      4  *
      5  * Use of this source code is governed by a BSD-style license that can be
      6  * found in the LICENSE file.
      7  */
      8 
      9 
     10 #ifndef SkMath_DEFINED
     11 #define SkMath_DEFINED
     12 
     13 #include "SkTypes.h"
     14 
     15 //! Returns the number of leading zero bits (0...32)
     16 int SkCLZ_portable(uint32_t);
     17 
     18 /** Computes the 64bit product of a * b, and then shifts the answer down by
     19     shift bits, returning the low 32bits. shift must be [0..63]
     20     e.g. to perform a fixedmul, call SkMulShift(a, b, 16)
     21 */
     22 int32_t SkMulShift(int32_t a, int32_t b, unsigned shift);
     23 
     24 /** Computes numer1 * numer2 / denom in full 64 intermediate precision.
     25     It is an error for denom to be 0. There is no special handling if
     26     the result overflows 32bits.
     27 */
     28 int32_t SkMulDiv(int32_t numer1, int32_t numer2, int32_t denom);
     29 
     30 /** Computes (numer1 << shift) / denom in full 64 intermediate precision.
     31     It is an error for denom to be 0. There is no special handling if
     32     the result overflows 32bits.
     33 */
     34 int32_t SkDivBits(int32_t numer, int32_t denom, int shift);
     35 
     36 /** Return the integer square root of value, with a bias of bitBias
     37 */
     38 int32_t SkSqrtBits(int32_t value, int bitBias);
     39 
     40 /** Return the integer square root of n, treated as a SkFixed (16.16)
     41 */
     42 #define SkSqrt32(n)         SkSqrtBits(n, 15)
     43 
     44 /** Return the integer cube root of value, with a bias of bitBias
     45  */
     46 int32_t SkCubeRootBits(int32_t value, int bitBias);
     47 
     48 /** Returns -1 if n < 0, else returns 0
     49 */
     50 #define SkExtractSign(n)    ((int32_t)(n) >> 31)
     51 
     52 /** If sign == -1, returns -n, else sign must be 0, and returns n.
     53     Typically used in conjunction with SkExtractSign().
     54 */
     55 static inline int32_t SkApplySign(int32_t n, int32_t sign) {
     56     SkASSERT(sign == 0 || sign == -1);
     57     return (n ^ sign) - sign;
     58 }
     59 
     60 /** Return x with the sign of y */
     61 static inline int32_t SkCopySign32(int32_t x, int32_t y) {
     62     return SkApplySign(x, SkExtractSign(x ^ y));
     63 }
     64 
     65 /** Returns (value < 0 ? 0 : value) efficiently (i.e. no compares or branches)
     66 */
     67 static inline int SkClampPos(int value) {
     68     return value & ~(value >> 31);
     69 }
     70 
     71 /** Given an integer and a positive (max) integer, return the value
     72     pinned against 0 and max, inclusive.
     73     @param value    The value we want returned pinned between [0...max]
     74     @param max      The positive max value
     75     @return 0 if value < 0, max if value > max, else value
     76 */
     77 static inline int SkClampMax(int value, int max) {
     78     // ensure that max is positive
     79     SkASSERT(max >= 0);
     80     if (value < 0) {
     81         value = 0;
     82     }
     83     if (value > max) {
     84         value = max;
     85     }
     86     return value;
     87 }
     88 
     89 /** Given a positive value and a positive max, return the value
     90     pinned against max.
     91     Note: only works as long as max - value doesn't wrap around
     92     @return max if value >= max, else value
     93 */
     94 static inline unsigned SkClampUMax(unsigned value, unsigned max) {
     95 #ifdef SK_CPU_HAS_CONDITIONAL_INSTR
     96     if (value > max) {
     97         value = max;
     98     }
     99     return value;
    100 #else
    101     int diff = max - value;
    102     // clear diff if diff is positive
    103     diff &= diff >> 31;
    104 
    105     return value + diff;
    106 #endif
    107 }
    108 
    109 ///////////////////////////////////////////////////////////////////////////////
    110 
    111 #if defined(__arm__)
    112     #define SkCLZ(x)    __builtin_clz(x)
    113 #endif
    114 
    115 #ifndef SkCLZ
    116     #define SkCLZ(x)    SkCLZ_portable(x)
    117 #endif
    118 
    119 ///////////////////////////////////////////////////////////////////////////////
    120 
    121 /** Returns the smallest power-of-2 that is >= the specified value. If value
    122     is already a power of 2, then it is returned unchanged. It is undefined
    123     if value is <= 0.
    124 */
    125 static inline int SkNextPow2(int value) {
    126     SkASSERT(value > 0);
    127     return 1 << (32 - SkCLZ(value - 1));
    128 }
    129 
    130 /** Returns the log2 of the specified value, were that value to be rounded up
    131     to the next power of 2. It is undefined to pass 0. Examples:
    132          SkNextLog2(1) -> 0
    133          SkNextLog2(2) -> 1
    134          SkNextLog2(3) -> 2
    135          SkNextLog2(4) -> 2
    136          SkNextLog2(5) -> 3
    137 */
    138 static inline int SkNextLog2(uint32_t value) {
    139     SkASSERT(value != 0);
    140     return 32 - SkCLZ(value - 1);
    141 }
    142 
    143 /** Returns true if value is a power of 2. Does not explicitly check for
    144     value <= 0.
    145  */
    146 static inline bool SkIsPow2(int value) {
    147     return (value & (value - 1)) == 0;
    148 }
    149 
    150 ///////////////////////////////////////////////////////////////////////////////
    151 
    152 /** SkMulS16(a, b) multiplies a * b, but requires that a and b are both int16_t.
    153     With this requirement, we can generate faster instructions on some
    154     architectures.
    155 */
    156 #if defined(__arm__) \
    157   && !defined(__thumb__) \
    158   && !defined(__ARM_ARCH_4T__) \
    159   && !defined(__ARM_ARCH_5T__)
    160     static inline int32_t SkMulS16(S16CPU x, S16CPU y) {
    161         SkASSERT((int16_t)x == x);
    162         SkASSERT((int16_t)y == y);
    163         int32_t product;
    164         asm("smulbb %0, %1, %2 \n"
    165             : "=r"(product)
    166             : "r"(x), "r"(y)
    167             );
    168         return product;
    169     }
    170 #else
    171     #ifdef SK_DEBUG
    172         static inline int32_t SkMulS16(S16CPU x, S16CPU y) {
    173             SkASSERT((int16_t)x == x);
    174             SkASSERT((int16_t)y == y);
    175             return x * y;
    176         }
    177     #else
    178         #define SkMulS16(x, y)  ((x) * (y))
    179     #endif
    180 #endif
    181 
    182 /** Return a*b/255, truncating away any fractional bits. Only valid if both
    183     a and b are 0..255
    184 */
    185 static inline U8CPU SkMulDiv255Trunc(U8CPU a, U8CPU b) {
    186     SkASSERT((uint8_t)a == a);
    187     SkASSERT((uint8_t)b == b);
    188     unsigned prod = SkMulS16(a, b) + 1;
    189     return (prod + (prod >> 8)) >> 8;
    190 }
    191 
    192 /** Return a*b/255, rounding any fractional bits. Only valid if both
    193     a and b are 0..255
    194  */
    195 static inline U8CPU SkMulDiv255Round(U8CPU a, U8CPU b) {
    196     SkASSERT((uint8_t)a == a);
    197     SkASSERT((uint8_t)b == b);
    198     unsigned prod = SkMulS16(a, b) + 128;
    199     return (prod + (prod >> 8)) >> 8;
    200 }
    201 
    202 /** Return (a*b)/255, taking the ceiling of any fractional bits. Only valid if
    203     both a and b are 0..255. The expected result equals (a * b + 254) / 255.
    204  */
    205 static inline U8CPU SkMulDiv255Ceiling(U8CPU a, U8CPU b) {
    206     SkASSERT((uint8_t)a == a);
    207     SkASSERT((uint8_t)b == b);
    208     unsigned prod = SkMulS16(a, b) + 255;
    209     return (prod + (prod >> 8)) >> 8;
    210 }
    211 
    212 /** Return a*b/((1 << shift) - 1), rounding any fractional bits.
    213     Only valid if a and b are unsigned and <= 32767 and shift is > 0 and <= 8
    214 */
    215 static inline unsigned SkMul16ShiftRound(unsigned a, unsigned b, int shift) {
    216     SkASSERT(a <= 32767);
    217     SkASSERT(b <= 32767);
    218     SkASSERT(shift > 0 && shift <= 8);
    219     unsigned prod = SkMulS16(a, b) + (1 << (shift - 1));
    220     return (prod + (prod >> shift)) >> shift;
    221 }
    222 
    223 /** Just the rounding step in SkDiv255Round: round(value / 255)
    224  */
    225 static inline unsigned SkDiv255Round(unsigned prod) {
    226     prod += 128;
    227     return (prod + (prod >> 8)) >> 8;
    228 }
    229 
    230 #endif
    231 
    232