1 /* 2 ** License Applicability. Except to the extent portions of this file are 3 ** made subject to an alternative license as permitted in the SGI Free 4 ** Software License B, Version 1.1 (the "License"), the contents of this 5 ** file are subject only to the provisions of the License. You may not use 6 ** this file except in compliance with the License. You may obtain a copy 7 ** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600 8 ** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at: 9 ** 10 ** http://oss.sgi.com/projects/FreeB 11 ** 12 ** Note that, as provided in the License, the Software is distributed on an 13 ** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS 14 ** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND 15 ** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A 16 ** PARTICULAR PURPOSE, AND NON-INFRINGEMENT. 17 ** 18 ** Original Code. The Original Code is: OpenGL Sample Implementation, 19 ** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics, 20 ** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc. 21 ** Copyright in any portions created by third parties is as indicated 22 ** elsewhere herein. All Rights Reserved. 23 ** 24 ** Additional Notice Provisions: The application programming interfaces 25 ** established by SGI in conjunction with the Original Code are The 26 ** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released 27 ** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version 28 ** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X 29 ** Window System(R) (Version 1.3), released October 19, 1998. This software 30 ** was created using the OpenGL(R) version 1.2.1 Sample Implementation 31 ** published by SGI, but has not been independently verified as being 32 ** compliant with the OpenGL(R) version 1.2.1 Specification. 33 ** 34 */ 35 /* 36 ** Author: Eric Veach, July 1994. 37 ** 38 ** $Date$ $Revision$ 39 ** $Header: //depot/main/gfx/lib/glu/libtess/normal.c#5 $ 40 */ 41 42 #include "gluos.h" 43 #include "mesh.h" 44 #include "tess.h" 45 #include "normal.h" 46 #include <math.h> 47 #include <assert.h> 48 49 #define TRUE 1 50 #define FALSE 0 51 52 #define Dot(u,v) (u[0]*v[0] + u[1]*v[1] + u[2]*v[2]) 53 54 #if defined(FOR_TRITE_TEST_PROGRAM) || defined(TRUE_PROJECT) 55 static void Normalize( GLdouble v[3] ) 56 { 57 GLdouble len = v[0]*v[0] + v[1]*v[1] + v[2]*v[2]; 58 59 assert( len > 0 ); 60 len = sqrt( len ); 61 v[0] /= len; 62 v[1] /= len; 63 v[2] /= len; 64 } 65 #endif 66 67 #define ABS(x) ((x) < 0 ? -(x) : (x)) 68 69 static int LongAxis( GLdouble v[3] ) 70 { 71 int i = 0; 72 73 if( ABS(v[1]) > ABS(v[0]) ) { i = 1; } 74 if( ABS(v[2]) > ABS(v[i]) ) { i = 2; } 75 return i; 76 } 77 78 static void ComputeNormal( GLUtesselator *tess, GLdouble norm[3] ) 79 { 80 GLUvertex *v, *v1, *v2; 81 GLdouble c, tLen2, maxLen2; 82 GLdouble maxVal[3], minVal[3], d1[3], d2[3], tNorm[3]; 83 GLUvertex *maxVert[3], *minVert[3]; 84 GLUvertex *vHead = &tess->mesh->vHead; 85 int i; 86 87 maxVal[0] = maxVal[1] = maxVal[2] = -2 * GLU_TESS_MAX_COORD; 88 minVal[0] = minVal[1] = minVal[2] = 2 * GLU_TESS_MAX_COORD; 89 90 for( v = vHead->next; v != vHead; v = v->next ) { 91 for( i = 0; i < 3; ++i ) { 92 c = v->coords[i]; 93 if( c < minVal[i] ) { minVal[i] = c; minVert[i] = v; } 94 if( c > maxVal[i] ) { maxVal[i] = c; maxVert[i] = v; } 95 } 96 } 97 98 /* Find two vertices separated by at least 1/sqrt(3) of the maximum 99 * distance between any two vertices 100 */ 101 i = 0; 102 if( maxVal[1] - minVal[1] > maxVal[0] - minVal[0] ) { i = 1; } 103 if( maxVal[2] - minVal[2] > maxVal[i] - minVal[i] ) { i = 2; } 104 if( minVal[i] >= maxVal[i] ) { 105 /* All vertices are the same -- normal doesn't matter */ 106 norm[0] = 0; norm[1] = 0; norm[2] = 1; 107 return; 108 } 109 110 /* Look for a third vertex which forms the triangle with maximum area 111 * (Length of normal == twice the triangle area) 112 */ 113 maxLen2 = 0; 114 v1 = minVert[i]; 115 v2 = maxVert[i]; 116 d1[0] = v1->coords[0] - v2->coords[0]; 117 d1[1] = v1->coords[1] - v2->coords[1]; 118 d1[2] = v1->coords[2] - v2->coords[2]; 119 for( v = vHead->next; v != vHead; v = v->next ) { 120 d2[0] = v->coords[0] - v2->coords[0]; 121 d2[1] = v->coords[1] - v2->coords[1]; 122 d2[2] = v->coords[2] - v2->coords[2]; 123 tNorm[0] = d1[1]*d2[2] - d1[2]*d2[1]; 124 tNorm[1] = d1[2]*d2[0] - d1[0]*d2[2]; 125 tNorm[2] = d1[0]*d2[1] - d1[1]*d2[0]; 126 tLen2 = tNorm[0]*tNorm[0] + tNorm[1]*tNorm[1] + tNorm[2]*tNorm[2]; 127 if( tLen2 > maxLen2 ) { 128 maxLen2 = tLen2; 129 norm[0] = tNorm[0]; 130 norm[1] = tNorm[1]; 131 norm[2] = tNorm[2]; 132 } 133 } 134 135 if( maxLen2 <= 0 ) { 136 /* All points lie on a single line -- any decent normal will do */ 137 norm[0] = norm[1] = norm[2] = 0; 138 norm[LongAxis(d1)] = 1; 139 } 140 } 141 142 143 static void CheckOrientation( GLUtesselator *tess ) 144 { 145 GLdouble area; 146 GLUface *f, *fHead = &tess->mesh->fHead; 147 GLUvertex *v, *vHead = &tess->mesh->vHead; 148 GLUhalfEdge *e; 149 150 /* When we compute the normal automatically, we choose the orientation 151 * so that the the sum of the signed areas of all contours is non-negative. 152 */ 153 area = 0; 154 for( f = fHead->next; f != fHead; f = f->next ) { 155 e = f->anEdge; 156 if( e->winding <= 0 ) continue; 157 do { 158 area += (e->Org->s - e->Dst->s) * (e->Org->t + e->Dst->t); 159 e = e->Lnext; 160 } while( e != f->anEdge ); 161 } 162 if( area < 0 ) { 163 /* Reverse the orientation by flipping all the t-coordinates */ 164 for( v = vHead->next; v != vHead; v = v->next ) { 165 v->t = - v->t; 166 } 167 tess->tUnit[0] = - tess->tUnit[0]; 168 tess->tUnit[1] = - tess->tUnit[1]; 169 tess->tUnit[2] = - tess->tUnit[2]; 170 } 171 } 172 173 #ifdef FOR_TRITE_TEST_PROGRAM 174 #include <stdlib.h> 175 extern int RandomSweep; 176 #define S_UNIT_X (RandomSweep ? (2*drand48()-1) : 1.0) 177 #define S_UNIT_Y (RandomSweep ? (2*drand48()-1) : 0.0) 178 #else 179 #if defined(SLANTED_SWEEP) 180 /* The "feature merging" is not intended to be complete. There are 181 * special cases where edges are nearly parallel to the sweep line 182 * which are not implemented. The algorithm should still behave 183 * robustly (ie. produce a reasonable tesselation) in the presence 184 * of such edges, however it may miss features which could have been 185 * merged. We could minimize this effect by choosing the sweep line 186 * direction to be something unusual (ie. not parallel to one of the 187 * coordinate axes). 188 */ 189 #define S_UNIT_X 0.50941539564955385 /* Pre-normalized */ 190 #define S_UNIT_Y 0.86052074622010633 191 #else 192 #define S_UNIT_X 1.0 193 #define S_UNIT_Y 0.0 194 #endif 195 #endif 196 197 /* Determine the polygon normal and project vertices onto the plane 198 * of the polygon. 199 */ 200 void __gl_projectPolygon( GLUtesselator *tess ) 201 { 202 GLUvertex *v, *vHead = &tess->mesh->vHead; 203 GLdouble norm[3]; 204 GLdouble *sUnit, *tUnit; 205 int i, computedNormal = FALSE; 206 207 norm[0] = tess->normal[0]; 208 norm[1] = tess->normal[1]; 209 norm[2] = tess->normal[2]; 210 if( norm[0] == 0 && norm[1] == 0 && norm[2] == 0 ) { 211 ComputeNormal( tess, norm ); 212 computedNormal = TRUE; 213 } 214 sUnit = tess->sUnit; 215 tUnit = tess->tUnit; 216 i = LongAxis( norm ); 217 218 #if defined(FOR_TRITE_TEST_PROGRAM) || defined(TRUE_PROJECT) 219 /* Choose the initial sUnit vector to be approximately perpendicular 220 * to the normal. 221 */ 222 Normalize( norm ); 223 224 sUnit[i] = 0; 225 sUnit[(i+1)%3] = S_UNIT_X; 226 sUnit[(i+2)%3] = S_UNIT_Y; 227 228 /* Now make it exactly perpendicular */ 229 w = Dot( sUnit, norm ); 230 sUnit[0] -= w * norm[0]; 231 sUnit[1] -= w * norm[1]; 232 sUnit[2] -= w * norm[2]; 233 Normalize( sUnit ); 234 235 /* Choose tUnit so that (sUnit,tUnit,norm) form a right-handed frame */ 236 tUnit[0] = norm[1]*sUnit[2] - norm[2]*sUnit[1]; 237 tUnit[1] = norm[2]*sUnit[0] - norm[0]*sUnit[2]; 238 tUnit[2] = norm[0]*sUnit[1] - norm[1]*sUnit[0]; 239 Normalize( tUnit ); 240 #else 241 /* Project perpendicular to a coordinate axis -- better numerically */ 242 sUnit[i] = 0; 243 sUnit[(i+1)%3] = S_UNIT_X; 244 sUnit[(i+2)%3] = S_UNIT_Y; 245 246 tUnit[i] = 0; 247 tUnit[(i+1)%3] = (norm[i] > 0) ? -S_UNIT_Y : S_UNIT_Y; 248 tUnit[(i+2)%3] = (norm[i] > 0) ? S_UNIT_X : -S_UNIT_X; 249 #endif 250 251 /* Project the vertices onto the sweep plane */ 252 for( v = vHead->next; v != vHead; v = v->next ) { 253 v->s = Dot( v->coords, sUnit ); 254 v->t = Dot( v->coords, tUnit ); 255 } 256 if( computedNormal ) { 257 CheckOrientation( tess ); 258 } 259 } 260