Home | History | Annotate | Download | only in libtess
      1 /*
      2 ** License Applicability. Except to the extent portions of this file are
      3 ** made subject to an alternative license as permitted in the SGI Free
      4 ** Software License B, Version 1.1 (the "License"), the contents of this
      5 ** file are subject only to the provisions of the License. You may not use
      6 ** this file except in compliance with the License. You may obtain a copy
      7 ** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
      8 ** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
      9 **
     10 ** http://oss.sgi.com/projects/FreeB
     11 **
     12 ** Note that, as provided in the License, the Software is distributed on an
     13 ** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
     14 ** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
     15 ** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
     16 ** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
     17 **
     18 ** Original Code. The Original Code is: OpenGL Sample Implementation,
     19 ** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
     20 ** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
     21 ** Copyright in any portions created by third parties is as indicated
     22 ** elsewhere herein. All Rights Reserved.
     23 **
     24 ** Additional Notice Provisions: The application programming interfaces
     25 ** established by SGI in conjunction with the Original Code are The
     26 ** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
     27 ** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
     28 ** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
     29 ** Window System(R) (Version 1.3), released October 19, 1998. This software
     30 ** was created using the OpenGL(R) version 1.2.1 Sample Implementation
     31 ** published by SGI, but has not been independently verified as being
     32 ** compliant with the OpenGL(R) version 1.2.1 Specification.
     33 **
     34 */
     35 /*
     36 ** Author: Eric Veach, July 1994.
     37 **
     38 ** $Date$ $Revision$
     39 ** $Header: //depot/main/gfx/lib/glu/libtess/normal.c#5 $
     40 */
     41 
     42 #include "gluos.h"
     43 #include "mesh.h"
     44 #include "tess.h"
     45 #include "normal.h"
     46 #include <math.h>
     47 #include <assert.h>
     48 
     49 #define TRUE 1
     50 #define FALSE 0
     51 
     52 #define Dot(u,v)	(u[0]*v[0] + u[1]*v[1] + u[2]*v[2])
     53 
     54 #if defined(FOR_TRITE_TEST_PROGRAM) || defined(TRUE_PROJECT)
     55 static void Normalize( GLdouble v[3] )
     56 {
     57   GLdouble len = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
     58 
     59   assert( len > 0 );
     60   len = sqrt( len );
     61   v[0] /= len;
     62   v[1] /= len;
     63   v[2] /= len;
     64 }
     65 #endif
     66 
     67 #define ABS(x)	((x) < 0 ? -(x) : (x))
     68 
     69 static int LongAxis( GLdouble v[3] )
     70 {
     71   int i = 0;
     72 
     73   if( ABS(v[1]) > ABS(v[0]) ) { i = 1; }
     74   if( ABS(v[2]) > ABS(v[i]) ) { i = 2; }
     75   return i;
     76 }
     77 
     78 static void ComputeNormal( GLUtesselator *tess, GLdouble norm[3] )
     79 {
     80   GLUvertex *v, *v1, *v2;
     81   GLdouble c, tLen2, maxLen2;
     82   GLdouble maxVal[3], minVal[3], d1[3], d2[3], tNorm[3];
     83   GLUvertex *maxVert[3], *minVert[3];
     84   GLUvertex *vHead = &tess->mesh->vHead;
     85   int i;
     86 
     87   maxVal[0] = maxVal[1] = maxVal[2] = -2 * GLU_TESS_MAX_COORD;
     88   minVal[0] = minVal[1] = minVal[2] = 2 * GLU_TESS_MAX_COORD;
     89 
     90   for( v = vHead->next; v != vHead; v = v->next ) {
     91     for( i = 0; i < 3; ++i ) {
     92       c = v->coords[i];
     93       if( c < minVal[i] ) { minVal[i] = c; minVert[i] = v; }
     94       if( c > maxVal[i] ) { maxVal[i] = c; maxVert[i] = v; }
     95     }
     96   }
     97 
     98   /* Find two vertices separated by at least 1/sqrt(3) of the maximum
     99    * distance between any two vertices
    100    */
    101   i = 0;
    102   if( maxVal[1] - minVal[1] > maxVal[0] - minVal[0] ) { i = 1; }
    103   if( maxVal[2] - minVal[2] > maxVal[i] - minVal[i] ) { i = 2; }
    104   if( minVal[i] >= maxVal[i] ) {
    105     /* All vertices are the same -- normal doesn't matter */
    106     norm[0] = 0; norm[1] = 0; norm[2] = 1;
    107     return;
    108   }
    109 
    110   /* Look for a third vertex which forms the triangle with maximum area
    111    * (Length of normal == twice the triangle area)
    112    */
    113   maxLen2 = 0;
    114   v1 = minVert[i];
    115   v2 = maxVert[i];
    116   d1[0] = v1->coords[0] - v2->coords[0];
    117   d1[1] = v1->coords[1] - v2->coords[1];
    118   d1[2] = v1->coords[2] - v2->coords[2];
    119   for( v = vHead->next; v != vHead; v = v->next ) {
    120     d2[0] = v->coords[0] - v2->coords[0];
    121     d2[1] = v->coords[1] - v2->coords[1];
    122     d2[2] = v->coords[2] - v2->coords[2];
    123     tNorm[0] = d1[1]*d2[2] - d1[2]*d2[1];
    124     tNorm[1] = d1[2]*d2[0] - d1[0]*d2[2];
    125     tNorm[2] = d1[0]*d2[1] - d1[1]*d2[0];
    126     tLen2 = tNorm[0]*tNorm[0] + tNorm[1]*tNorm[1] + tNorm[2]*tNorm[2];
    127     if( tLen2 > maxLen2 ) {
    128       maxLen2 = tLen2;
    129       norm[0] = tNorm[0];
    130       norm[1] = tNorm[1];
    131       norm[2] = tNorm[2];
    132     }
    133   }
    134 
    135   if( maxLen2 <= 0 ) {
    136     /* All points lie on a single line -- any decent normal will do */
    137     norm[0] = norm[1] = norm[2] = 0;
    138     norm[LongAxis(d1)] = 1;
    139   }
    140 }
    141 
    142 
    143 static void CheckOrientation( GLUtesselator *tess )
    144 {
    145   GLdouble area;
    146   GLUface *f, *fHead = &tess->mesh->fHead;
    147   GLUvertex *v, *vHead = &tess->mesh->vHead;
    148   GLUhalfEdge *e;
    149 
    150   /* When we compute the normal automatically, we choose the orientation
    151    * so that the the sum of the signed areas of all contours is non-negative.
    152    */
    153   area = 0;
    154   for( f = fHead->next; f != fHead; f = f->next ) {
    155     e = f->anEdge;
    156     if( e->winding <= 0 ) continue;
    157     do {
    158       area += (e->Org->s - e->Dst->s) * (e->Org->t + e->Dst->t);
    159       e = e->Lnext;
    160     } while( e != f->anEdge );
    161   }
    162   if( area < 0 ) {
    163     /* Reverse the orientation by flipping all the t-coordinates */
    164     for( v = vHead->next; v != vHead; v = v->next ) {
    165       v->t = - v->t;
    166     }
    167     tess->tUnit[0] = - tess->tUnit[0];
    168     tess->tUnit[1] = - tess->tUnit[1];
    169     tess->tUnit[2] = - tess->tUnit[2];
    170   }
    171 }
    172 
    173 #ifdef FOR_TRITE_TEST_PROGRAM
    174 #include <stdlib.h>
    175 extern int RandomSweep;
    176 #define S_UNIT_X	(RandomSweep ? (2*drand48()-1) : 1.0)
    177 #define S_UNIT_Y	(RandomSweep ? (2*drand48()-1) : 0.0)
    178 #else
    179 #if defined(SLANTED_SWEEP)
    180 /* The "feature merging" is not intended to be complete.  There are
    181  * special cases where edges are nearly parallel to the sweep line
    182  * which are not implemented.  The algorithm should still behave
    183  * robustly (ie. produce a reasonable tesselation) in the presence
    184  * of such edges, however it may miss features which could have been
    185  * merged.  We could minimize this effect by choosing the sweep line
    186  * direction to be something unusual (ie. not parallel to one of the
    187  * coordinate axes).
    188  */
    189 #define S_UNIT_X	0.50941539564955385	/* Pre-normalized */
    190 #define S_UNIT_Y	0.86052074622010633
    191 #else
    192 #define S_UNIT_X	1.0
    193 #define S_UNIT_Y	0.0
    194 #endif
    195 #endif
    196 
    197 /* Determine the polygon normal and project vertices onto the plane
    198  * of the polygon.
    199  */
    200 void __gl_projectPolygon( GLUtesselator *tess )
    201 {
    202   GLUvertex *v, *vHead = &tess->mesh->vHead;
    203   GLdouble norm[3];
    204   GLdouble *sUnit, *tUnit;
    205   int i, computedNormal = FALSE;
    206 
    207   norm[0] = tess->normal[0];
    208   norm[1] = tess->normal[1];
    209   norm[2] = tess->normal[2];
    210   if( norm[0] == 0 && norm[1] == 0 && norm[2] == 0 ) {
    211     ComputeNormal( tess, norm );
    212     computedNormal = TRUE;
    213   }
    214   sUnit = tess->sUnit;
    215   tUnit = tess->tUnit;
    216   i = LongAxis( norm );
    217 
    218 #if defined(FOR_TRITE_TEST_PROGRAM) || defined(TRUE_PROJECT)
    219   /* Choose the initial sUnit vector to be approximately perpendicular
    220    * to the normal.
    221    */
    222   Normalize( norm );
    223 
    224   sUnit[i] = 0;
    225   sUnit[(i+1)%3] = S_UNIT_X;
    226   sUnit[(i+2)%3] = S_UNIT_Y;
    227 
    228   /* Now make it exactly perpendicular */
    229   w = Dot( sUnit, norm );
    230   sUnit[0] -= w * norm[0];
    231   sUnit[1] -= w * norm[1];
    232   sUnit[2] -= w * norm[2];
    233   Normalize( sUnit );
    234 
    235   /* Choose tUnit so that (sUnit,tUnit,norm) form a right-handed frame */
    236   tUnit[0] = norm[1]*sUnit[2] - norm[2]*sUnit[1];
    237   tUnit[1] = norm[2]*sUnit[0] - norm[0]*sUnit[2];
    238   tUnit[2] = norm[0]*sUnit[1] - norm[1]*sUnit[0];
    239   Normalize( tUnit );
    240 #else
    241   /* Project perpendicular to a coordinate axis -- better numerically */
    242   sUnit[i] = 0;
    243   sUnit[(i+1)%3] = S_UNIT_X;
    244   sUnit[(i+2)%3] = S_UNIT_Y;
    245 
    246   tUnit[i] = 0;
    247   tUnit[(i+1)%3] = (norm[i] > 0) ? -S_UNIT_Y : S_UNIT_Y;
    248   tUnit[(i+2)%3] = (norm[i] > 0) ? S_UNIT_X : -S_UNIT_X;
    249 #endif
    250 
    251   /* Project the vertices onto the sweep plane */
    252   for( v = vHead->next; v != vHead; v = v->next ) {
    253     v->s = Dot( v->coords, sUnit );
    254     v->t = Dot( v->coords, tUnit );
    255   }
    256   if( computedNormal ) {
    257     CheckOrientation( tess );
    258   }
    259 }
    260