Home | History | Annotate | Download | only in arm
      1 // Copyright 2011 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 // A Disassembler object is used to disassemble a block of code instruction by
     29 // instruction. The default implementation of the NameConverter object can be
     30 // overriden to modify register names or to do symbol lookup on addresses.
     31 //
     32 // The example below will disassemble a block of code and print it to stdout.
     33 //
     34 //   NameConverter converter;
     35 //   Disassembler d(converter);
     36 //   for (byte* pc = begin; pc < end;) {
     37 //     v8::internal::EmbeddedVector<char, 256> buffer;
     38 //     byte* prev_pc = pc;
     39 //     pc += d.InstructionDecode(buffer, pc);
     40 //     printf("%p    %08x      %s\n",
     41 //            prev_pc, *reinterpret_cast<int32_t*>(prev_pc), buffer);
     42 //   }
     43 //
     44 // The Disassembler class also has a convenience method to disassemble a block
     45 // of code into a FILE*, meaning that the above functionality could also be
     46 // achieved by just calling Disassembler::Disassemble(stdout, begin, end);
     47 
     48 
     49 #include <assert.h>
     50 #include <stdio.h>
     51 #include <stdarg.h>
     52 #include <string.h>
     53 #ifndef WIN32
     54 #include <stdint.h>
     55 #endif
     56 
     57 #include "v8.h"
     58 
     59 #if defined(V8_TARGET_ARCH_ARM)
     60 
     61 #include "constants-arm.h"
     62 #include "disasm.h"
     63 #include "macro-assembler.h"
     64 #include "platform.h"
     65 
     66 
     67 namespace v8 {
     68 namespace internal {
     69 
     70 
     71 //------------------------------------------------------------------------------
     72 
     73 // Decoder decodes and disassembles instructions into an output buffer.
     74 // It uses the converter to convert register names and call destinations into
     75 // more informative description.
     76 class Decoder {
     77  public:
     78   Decoder(const disasm::NameConverter& converter,
     79           Vector<char> out_buffer)
     80     : converter_(converter),
     81       out_buffer_(out_buffer),
     82       out_buffer_pos_(0) {
     83     out_buffer_[out_buffer_pos_] = '\0';
     84   }
     85 
     86   ~Decoder() {}
     87 
     88   // Writes one disassembled instruction into 'buffer' (0-terminated).
     89   // Returns the length of the disassembled machine instruction in bytes.
     90   int InstructionDecode(byte* instruction);
     91 
     92   static bool IsConstantPoolAt(byte* instr_ptr);
     93   static int ConstantPoolSizeAt(byte* instr_ptr);
     94 
     95  private:
     96   // Bottleneck functions to print into the out_buffer.
     97   void PrintChar(const char ch);
     98   void Print(const char* str);
     99 
    100   // Printing of common values.
    101   void PrintRegister(int reg);
    102   void PrintSRegister(int reg);
    103   void PrintDRegister(int reg);
    104   int FormatVFPRegister(Instruction* instr, const char* format);
    105   void PrintMovwMovt(Instruction* instr);
    106   int FormatVFPinstruction(Instruction* instr, const char* format);
    107   void PrintCondition(Instruction* instr);
    108   void PrintShiftRm(Instruction* instr);
    109   void PrintShiftImm(Instruction* instr);
    110   void PrintShiftSat(Instruction* instr);
    111   void PrintPU(Instruction* instr);
    112   void PrintSoftwareInterrupt(SoftwareInterruptCodes svc);
    113 
    114   // Handle formatting of instructions and their options.
    115   int FormatRegister(Instruction* instr, const char* option);
    116   int FormatOption(Instruction* instr, const char* option);
    117   void Format(Instruction* instr, const char* format);
    118   void Unknown(Instruction* instr);
    119 
    120   // Each of these functions decodes one particular instruction type, a 3-bit
    121   // field in the instruction encoding.
    122   // Types 0 and 1 are combined as they are largely the same except for the way
    123   // they interpret the shifter operand.
    124   void DecodeType01(Instruction* instr);
    125   void DecodeType2(Instruction* instr);
    126   void DecodeType3(Instruction* instr);
    127   void DecodeType4(Instruction* instr);
    128   void DecodeType5(Instruction* instr);
    129   void DecodeType6(Instruction* instr);
    130   // Type 7 includes special Debugger instructions.
    131   int DecodeType7(Instruction* instr);
    132   // For VFP support.
    133   void DecodeTypeVFP(Instruction* instr);
    134   void DecodeType6CoprocessorIns(Instruction* instr);
    135 
    136   void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr);
    137   void DecodeVCMP(Instruction* instr);
    138   void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr);
    139   void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr);
    140 
    141   const disasm::NameConverter& converter_;
    142   Vector<char> out_buffer_;
    143   int out_buffer_pos_;
    144 
    145   DISALLOW_COPY_AND_ASSIGN(Decoder);
    146 };
    147 
    148 
    149 // Support for assertions in the Decoder formatting functions.
    150 #define STRING_STARTS_WITH(string, compare_string) \
    151   (strncmp(string, compare_string, strlen(compare_string)) == 0)
    152 
    153 
    154 // Append the ch to the output buffer.
    155 void Decoder::PrintChar(const char ch) {
    156   out_buffer_[out_buffer_pos_++] = ch;
    157 }
    158 
    159 
    160 // Append the str to the output buffer.
    161 void Decoder::Print(const char* str) {
    162   char cur = *str++;
    163   while (cur != '\0' && (out_buffer_pos_ < (out_buffer_.length() - 1))) {
    164     PrintChar(cur);
    165     cur = *str++;
    166   }
    167   out_buffer_[out_buffer_pos_] = 0;
    168 }
    169 
    170 
    171 // These condition names are defined in a way to match the native disassembler
    172 // formatting. See for example the command "objdump -d <binary file>".
    173 static const char* cond_names[kNumberOfConditions] = {
    174   "eq", "ne", "cs" , "cc" , "mi" , "pl" , "vs" , "vc" ,
    175   "hi", "ls", "ge", "lt", "gt", "le", "", "invalid",
    176 };
    177 
    178 
    179 // Print the condition guarding the instruction.
    180 void Decoder::PrintCondition(Instruction* instr) {
    181   Print(cond_names[instr->ConditionValue()]);
    182 }
    183 
    184 
    185 // Print the register name according to the active name converter.
    186 void Decoder::PrintRegister(int reg) {
    187   Print(converter_.NameOfCPURegister(reg));
    188 }
    189 
    190 // Print the VFP S register name according to the active name converter.
    191 void Decoder::PrintSRegister(int reg) {
    192   Print(VFPRegisters::Name(reg, false));
    193 }
    194 
    195 // Print the  VFP D register name according to the active name converter.
    196 void Decoder::PrintDRegister(int reg) {
    197   Print(VFPRegisters::Name(reg, true));
    198 }
    199 
    200 
    201 // These shift names are defined in a way to match the native disassembler
    202 // formatting. See for example the command "objdump -d <binary file>".
    203 static const char* const shift_names[kNumberOfShifts] = {
    204   "lsl", "lsr", "asr", "ror"
    205 };
    206 
    207 
    208 // Print the register shift operands for the instruction. Generally used for
    209 // data processing instructions.
    210 void Decoder::PrintShiftRm(Instruction* instr) {
    211   ShiftOp shift = instr->ShiftField();
    212   int shift_index = instr->ShiftValue();
    213   int shift_amount = instr->ShiftAmountValue();
    214   int rm = instr->RmValue();
    215 
    216   PrintRegister(rm);
    217 
    218   if ((instr->RegShiftValue() == 0) && (shift == LSL) && (shift_amount == 0)) {
    219     // Special case for using rm only.
    220     return;
    221   }
    222   if (instr->RegShiftValue() == 0) {
    223     // by immediate
    224     if ((shift == ROR) && (shift_amount == 0)) {
    225       Print(", RRX");
    226       return;
    227     } else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) {
    228       shift_amount = 32;
    229     }
    230     out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    231                                     ", %s #%d",
    232                                     shift_names[shift_index],
    233                                     shift_amount);
    234   } else {
    235     // by register
    236     int rs = instr->RsValue();
    237     out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    238                                     ", %s ", shift_names[shift_index]);
    239     PrintRegister(rs);
    240   }
    241 }
    242 
    243 
    244 // Print the immediate operand for the instruction. Generally used for data
    245 // processing instructions.
    246 void Decoder::PrintShiftImm(Instruction* instr) {
    247   int rotate = instr->RotateValue() * 2;
    248   int immed8 = instr->Immed8Value();
    249   int imm = (immed8 >> rotate) | (immed8 << (32 - rotate));
    250   out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    251                                   "#%d", imm);
    252 }
    253 
    254 
    255 // Print the optional shift and immediate used by saturating instructions.
    256 void Decoder::PrintShiftSat(Instruction* instr) {
    257   int shift = instr->Bits(11, 7);
    258   if (shift > 0) {
    259     out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    260                                     ", %s #%d",
    261                                     shift_names[instr->Bit(6) * 2],
    262                                     instr->Bits(11, 7));
    263   }
    264 }
    265 
    266 
    267 // Print PU formatting to reduce complexity of FormatOption.
    268 void Decoder::PrintPU(Instruction* instr) {
    269   switch (instr->PUField()) {
    270     case da_x: {
    271       Print("da");
    272       break;
    273     }
    274     case ia_x: {
    275       Print("ia");
    276       break;
    277     }
    278     case db_x: {
    279       Print("db");
    280       break;
    281     }
    282     case ib_x: {
    283       Print("ib");
    284       break;
    285     }
    286     default: {
    287       UNREACHABLE();
    288       break;
    289     }
    290   }
    291 }
    292 
    293 
    294 // Print SoftwareInterrupt codes. Factoring this out reduces the complexity of
    295 // the FormatOption method.
    296 void Decoder::PrintSoftwareInterrupt(SoftwareInterruptCodes svc) {
    297   switch (svc) {
    298     case kCallRtRedirected:
    299       Print("call rt redirected");
    300       return;
    301     case kBreakpoint:
    302       Print("breakpoint");
    303       return;
    304     default:
    305       if (svc >= kStopCode) {
    306         out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    307                                         "%d - 0x%x",
    308                                         svc & kStopCodeMask,
    309                                         svc & kStopCodeMask);
    310       } else {
    311         out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    312                                         "%d",
    313                                         svc);
    314       }
    315       return;
    316   }
    317 }
    318 
    319 
    320 // Handle all register based formatting in this function to reduce the
    321 // complexity of FormatOption.
    322 int Decoder::FormatRegister(Instruction* instr, const char* format) {
    323   ASSERT(format[0] == 'r');
    324   if (format[1] == 'n') {  // 'rn: Rn register
    325     int reg = instr->RnValue();
    326     PrintRegister(reg);
    327     return 2;
    328   } else if (format[1] == 'd') {  // 'rd: Rd register
    329     int reg = instr->RdValue();
    330     PrintRegister(reg);
    331     return 2;
    332   } else if (format[1] == 's') {  // 'rs: Rs register
    333     int reg = instr->RsValue();
    334     PrintRegister(reg);
    335     return 2;
    336   } else if (format[1] == 'm') {  // 'rm: Rm register
    337     int reg = instr->RmValue();
    338     PrintRegister(reg);
    339     return 2;
    340   } else if (format[1] == 't') {  // 'rt: Rt register
    341     int reg = instr->RtValue();
    342     PrintRegister(reg);
    343     return 2;
    344   } else if (format[1] == 'l') {
    345     // 'rlist: register list for load and store multiple instructions
    346     ASSERT(STRING_STARTS_WITH(format, "rlist"));
    347     int rlist = instr->RlistValue();
    348     int reg = 0;
    349     Print("{");
    350     // Print register list in ascending order, by scanning the bit mask.
    351     while (rlist != 0) {
    352       if ((rlist & 1) != 0) {
    353         PrintRegister(reg);
    354         if ((rlist >> 1) != 0) {
    355           Print(", ");
    356         }
    357       }
    358       reg++;
    359       rlist >>= 1;
    360     }
    361     Print("}");
    362     return 5;
    363   }
    364   UNREACHABLE();
    365   return -1;
    366 }
    367 
    368 
    369 // Handle all VFP register based formatting in this function to reduce the
    370 // complexity of FormatOption.
    371 int Decoder::FormatVFPRegister(Instruction* instr, const char* format) {
    372   ASSERT((format[0] == 'S') || (format[0] == 'D'));
    373 
    374   VFPRegPrecision precision =
    375       format[0] == 'D' ? kDoublePrecision : kSinglePrecision;
    376 
    377   int retval = 2;
    378   int reg = -1;
    379   if (format[1] == 'n') {
    380     reg = instr->VFPNRegValue(precision);
    381   } else if (format[1] == 'm') {
    382     reg = instr->VFPMRegValue(precision);
    383   } else if (format[1] == 'd') {
    384     reg = instr->VFPDRegValue(precision);
    385     if (format[2] == '+') {
    386       int immed8 = instr->Immed8Value();
    387       if (format[0] == 'S') reg += immed8 - 1;
    388       if (format[0] == 'D') reg += (immed8 / 2 - 1);
    389     }
    390     if (format[2] == '+') retval = 3;
    391   } else {
    392     UNREACHABLE();
    393   }
    394 
    395   if (precision == kSinglePrecision) {
    396     PrintSRegister(reg);
    397   } else {
    398     PrintDRegister(reg);
    399   }
    400 
    401   return retval;
    402 }
    403 
    404 
    405 int Decoder::FormatVFPinstruction(Instruction* instr, const char* format) {
    406     Print(format);
    407     return 0;
    408 }
    409 
    410 
    411 // Print the movw or movt instruction.
    412 void Decoder::PrintMovwMovt(Instruction* instr) {
    413   int imm = instr->ImmedMovwMovtValue();
    414   int rd = instr->RdValue();
    415   PrintRegister(rd);
    416   out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    417                                   ", #%d", imm);
    418 }
    419 
    420 
    421 // FormatOption takes a formatting string and interprets it based on
    422 // the current instructions. The format string points to the first
    423 // character of the option string (the option escape has already been
    424 // consumed by the caller.)  FormatOption returns the number of
    425 // characters that were consumed from the formatting string.
    426 int Decoder::FormatOption(Instruction* instr, const char* format) {
    427   switch (format[0]) {
    428     case 'a': {  // 'a: accumulate multiplies
    429       if (instr->Bit(21) == 0) {
    430         Print("ul");
    431       } else {
    432         Print("la");
    433       }
    434       return 1;
    435     }
    436     case 'b': {  // 'b: byte loads or stores
    437       if (instr->HasB()) {
    438         Print("b");
    439       }
    440       return 1;
    441     }
    442     case 'c': {  // 'cond: conditional execution
    443       ASSERT(STRING_STARTS_WITH(format, "cond"));
    444       PrintCondition(instr);
    445       return 4;
    446     }
    447     case 'd': {  // 'd: vmov double immediate.
    448       double d = instr->DoubleImmedVmov();
    449       out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    450                                       "#%g", d);
    451       return 1;
    452     }
    453     case 'f': {  // 'f: bitfield instructions - v7 and above.
    454       uint32_t lsbit = instr->Bits(11, 7);
    455       uint32_t width = instr->Bits(20, 16) + 1;
    456       if (instr->Bit(21) == 0) {
    457         // BFC/BFI:
    458         // Bits 20-16 represent most-significant bit. Covert to width.
    459         width -= lsbit;
    460         ASSERT(width > 0);
    461       }
    462       ASSERT((width + lsbit) <= 32);
    463       out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    464                                       "#%d, #%d", lsbit, width);
    465       return 1;
    466     }
    467     case 'h': {  // 'h: halfword operation for extra loads and stores
    468       if (instr->HasH()) {
    469         Print("h");
    470       } else {
    471         Print("b");
    472       }
    473       return 1;
    474     }
    475     case 'i': {  // 'i: immediate value from adjacent bits.
    476       // Expects tokens in the form imm%02d@%02d, i.e. imm05@07, imm10@16
    477       int width = (format[3] - '0') * 10 + (format[4] - '0');
    478       int lsb   = (format[6] - '0') * 10 + (format[7] - '0');
    479 
    480       ASSERT((width >= 1) && (width <= 32));
    481       ASSERT((lsb >= 0) && (lsb <= 31));
    482       ASSERT((width + lsb) <= 32);
    483 
    484       out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    485                                       "%d",
    486                                       instr->Bits(width + lsb - 1, lsb));
    487       return 8;
    488     }
    489     case 'l': {  // 'l: branch and link
    490       if (instr->HasLink()) {
    491         Print("l");
    492       }
    493       return 1;
    494     }
    495     case 'm': {
    496       if (format[1] == 'w') {
    497         // 'mw: movt/movw instructions.
    498         PrintMovwMovt(instr);
    499         return 2;
    500       }
    501       if (format[1] == 'e') {  // 'memop: load/store instructions.
    502         ASSERT(STRING_STARTS_WITH(format, "memop"));
    503         if (instr->HasL()) {
    504           Print("ldr");
    505         } else {
    506           if ((instr->Bits(27, 25) == 0) && (instr->Bit(20) == 0) &&
    507               (instr->Bits(7, 6) == 3) && (instr->Bit(4) == 1)) {
    508             if (instr->Bit(5) == 1) {
    509               Print("strd");
    510             } else {
    511               Print("ldrd");
    512             }
    513             return 5;
    514           }
    515           Print("str");
    516         }
    517         return 5;
    518       }
    519       // 'msg: for simulator break instructions
    520       ASSERT(STRING_STARTS_WITH(format, "msg"));
    521       byte* str =
    522           reinterpret_cast<byte*>(instr->InstructionBits() & 0x0fffffff);
    523       out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    524                                       "%s", converter_.NameInCode(str));
    525       return 3;
    526     }
    527     case 'o': {
    528       if ((format[3] == '1') && (format[4] == '2')) {
    529         // 'off12: 12-bit offset for load and store instructions
    530         ASSERT(STRING_STARTS_WITH(format, "off12"));
    531         out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    532                                         "%d", instr->Offset12Value());
    533         return 5;
    534       } else if (format[3] == '0') {
    535         // 'off0to3and8to19 16-bit immediate encoded in bits 19-8 and 3-0.
    536         ASSERT(STRING_STARTS_WITH(format, "off0to3and8to19"));
    537         out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    538                                         "%d",
    539                                         (instr->Bits(19, 8) << 4) +
    540                                         instr->Bits(3, 0));
    541         return 15;
    542       }
    543       // 'off8: 8-bit offset for extra load and store instructions
    544       ASSERT(STRING_STARTS_WITH(format, "off8"));
    545       int offs8 = (instr->ImmedHValue() << 4) | instr->ImmedLValue();
    546       out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    547                                       "%d", offs8);
    548       return 4;
    549     }
    550     case 'p': {  // 'pu: P and U bits for load and store instructions
    551       ASSERT(STRING_STARTS_WITH(format, "pu"));
    552       PrintPU(instr);
    553       return 2;
    554     }
    555     case 'r': {
    556       return FormatRegister(instr, format);
    557     }
    558     case 's': {
    559       if (format[1] == 'h') {  // 'shift_op or 'shift_rm or 'shift_sat.
    560         if (format[6] == 'o') {  // 'shift_op
    561           ASSERT(STRING_STARTS_WITH(format, "shift_op"));
    562           if (instr->TypeValue() == 0) {
    563             PrintShiftRm(instr);
    564           } else {
    565             ASSERT(instr->TypeValue() == 1);
    566             PrintShiftImm(instr);
    567           }
    568           return 8;
    569         } else if (format[6] == 's') {  // 'shift_sat.
    570           ASSERT(STRING_STARTS_WITH(format, "shift_sat"));
    571           PrintShiftSat(instr);
    572           return 9;
    573         } else {  // 'shift_rm
    574           ASSERT(STRING_STARTS_WITH(format, "shift_rm"));
    575           PrintShiftRm(instr);
    576           return 8;
    577         }
    578       } else if (format[1] == 'v') {  // 'svc
    579         ASSERT(STRING_STARTS_WITH(format, "svc"));
    580         PrintSoftwareInterrupt(instr->SvcValue());
    581         return 3;
    582       } else if (format[1] == 'i') {  // 'sign: signed extra loads and stores
    583         ASSERT(STRING_STARTS_WITH(format, "sign"));
    584         if (instr->HasSign()) {
    585           Print("s");
    586         }
    587         return 4;
    588       }
    589       // 's: S field of data processing instructions
    590       if (instr->HasS()) {
    591         Print("s");
    592       }
    593       return 1;
    594     }
    595     case 't': {  // 'target: target of branch instructions
    596       ASSERT(STRING_STARTS_WITH(format, "target"));
    597       int off = (instr->SImmed24Value() << 2) + 8;
    598       out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    599                                       "%+d -> %s",
    600                                       off,
    601                                       converter_.NameOfAddress(
    602                                         reinterpret_cast<byte*>(instr) + off));
    603       return 6;
    604     }
    605     case 'u': {  // 'u: signed or unsigned multiplies
    606       // The manual gets the meaning of bit 22 backwards in the multiply
    607       // instruction overview on page A3.16.2.  The instructions that
    608       // exist in u and s variants are the following:
    609       // smull A4.1.87
    610       // umull A4.1.129
    611       // umlal A4.1.128
    612       // smlal A4.1.76
    613       // For these 0 means u and 1 means s.  As can be seen on their individual
    614       // pages.  The other 18 mul instructions have the bit set or unset in
    615       // arbitrary ways that are unrelated to the signedness of the instruction.
    616       // None of these 18 instructions exist in both a 'u' and an 's' variant.
    617 
    618       if (instr->Bit(22) == 0) {
    619         Print("u");
    620       } else {
    621         Print("s");
    622       }
    623       return 1;
    624     }
    625     case 'v': {
    626       return FormatVFPinstruction(instr, format);
    627     }
    628     case 'S':
    629     case 'D': {
    630       return FormatVFPRegister(instr, format);
    631     }
    632     case 'w': {  // 'w: W field of load and store instructions
    633       if (instr->HasW()) {
    634         Print("!");
    635       }
    636       return 1;
    637     }
    638     default: {
    639       UNREACHABLE();
    640       break;
    641     }
    642   }
    643   UNREACHABLE();
    644   return -1;
    645 }
    646 
    647 
    648 // Format takes a formatting string for a whole instruction and prints it into
    649 // the output buffer. All escaped options are handed to FormatOption to be
    650 // parsed further.
    651 void Decoder::Format(Instruction* instr, const char* format) {
    652   char cur = *format++;
    653   while ((cur != 0) && (out_buffer_pos_ < (out_buffer_.length() - 1))) {
    654     if (cur == '\'') {  // Single quote is used as the formatting escape.
    655       format += FormatOption(instr, format);
    656     } else {
    657       out_buffer_[out_buffer_pos_++] = cur;
    658     }
    659     cur = *format++;
    660   }
    661   out_buffer_[out_buffer_pos_]  = '\0';
    662 }
    663 
    664 
    665 // The disassembler may end up decoding data inlined in the code. We do not want
    666 // it to crash if the data does not ressemble any known instruction.
    667 #define VERIFY(condition) \
    668 if(!(condition)) {        \
    669   Unknown(instr);         \
    670   return;                 \
    671 }
    672 
    673 
    674 // For currently unimplemented decodings the disassembler calls Unknown(instr)
    675 // which will just print "unknown" of the instruction bits.
    676 void Decoder::Unknown(Instruction* instr) {
    677   Format(instr, "unknown");
    678 }
    679 
    680 
    681 void Decoder::DecodeType01(Instruction* instr) {
    682   int type = instr->TypeValue();
    683   if ((type == 0) && instr->IsSpecialType0()) {
    684     // multiply instruction or extra loads and stores
    685     if (instr->Bits(7, 4) == 9) {
    686       if (instr->Bit(24) == 0) {
    687         // multiply instructions
    688         if (instr->Bit(23) == 0) {
    689           if (instr->Bit(21) == 0) {
    690             // The MUL instruction description (A 4.1.33) refers to Rd as being
    691             // the destination for the operation, but it confusingly uses the
    692             // Rn field to encode it.
    693             Format(instr, "mul'cond's 'rn, 'rm, 'rs");
    694           } else {
    695             // The MLA instruction description (A 4.1.28) refers to the order
    696             // of registers as "Rd, Rm, Rs, Rn". But confusingly it uses the
    697             // Rn field to encode the Rd register and the Rd field to encode
    698             // the Rn register.
    699             Format(instr, "mla'cond's 'rn, 'rm, 'rs, 'rd");
    700           }
    701         } else {
    702           // The signed/long multiply instructions use the terms RdHi and RdLo
    703           // when referring to the target registers. They are mapped to the Rn
    704           // and Rd fields as follows:
    705           // RdLo == Rd field
    706           // RdHi == Rn field
    707           // The order of registers is: <RdLo>, <RdHi>, <Rm>, <Rs>
    708           Format(instr, "'um'al'cond's 'rd, 'rn, 'rm, 'rs");
    709         }
    710       } else {
    711         Unknown(instr);  // not used by V8
    712       }
    713     } else if ((instr->Bit(20) == 0) && ((instr->Bits(7, 4) & 0xd) == 0xd)) {
    714       // ldrd, strd
    715       switch (instr->PUField()) {
    716         case da_x: {
    717           if (instr->Bit(22) == 0) {
    718             Format(instr, "'memop'cond's 'rd, ['rn], -'rm");
    719           } else {
    720             Format(instr, "'memop'cond's 'rd, ['rn], #-'off8");
    721           }
    722           break;
    723         }
    724         case ia_x: {
    725           if (instr->Bit(22) == 0) {
    726             Format(instr, "'memop'cond's 'rd, ['rn], +'rm");
    727           } else {
    728             Format(instr, "'memop'cond's 'rd, ['rn], #+'off8");
    729           }
    730           break;
    731         }
    732         case db_x: {
    733           if (instr->Bit(22) == 0) {
    734             Format(instr, "'memop'cond's 'rd, ['rn, -'rm]'w");
    735           } else {
    736             Format(instr, "'memop'cond's 'rd, ['rn, #-'off8]'w");
    737           }
    738           break;
    739         }
    740         case ib_x: {
    741           if (instr->Bit(22) == 0) {
    742             Format(instr, "'memop'cond's 'rd, ['rn, +'rm]'w");
    743           } else {
    744             Format(instr, "'memop'cond's 'rd, ['rn, #+'off8]'w");
    745           }
    746           break;
    747         }
    748         default: {
    749           // The PU field is a 2-bit field.
    750           UNREACHABLE();
    751           break;
    752         }
    753       }
    754     } else {
    755       // extra load/store instructions
    756       switch (instr->PUField()) {
    757         case da_x: {
    758           if (instr->Bit(22) == 0) {
    759             Format(instr, "'memop'cond'sign'h 'rd, ['rn], -'rm");
    760           } else {
    761             Format(instr, "'memop'cond'sign'h 'rd, ['rn], #-'off8");
    762           }
    763           break;
    764         }
    765         case ia_x: {
    766           if (instr->Bit(22) == 0) {
    767             Format(instr, "'memop'cond'sign'h 'rd, ['rn], +'rm");
    768           } else {
    769             Format(instr, "'memop'cond'sign'h 'rd, ['rn], #+'off8");
    770           }
    771           break;
    772         }
    773         case db_x: {
    774           if (instr->Bit(22) == 0) {
    775             Format(instr, "'memop'cond'sign'h 'rd, ['rn, -'rm]'w");
    776           } else {
    777             Format(instr, "'memop'cond'sign'h 'rd, ['rn, #-'off8]'w");
    778           }
    779           break;
    780         }
    781         case ib_x: {
    782           if (instr->Bit(22) == 0) {
    783             Format(instr, "'memop'cond'sign'h 'rd, ['rn, +'rm]'w");
    784           } else {
    785             Format(instr, "'memop'cond'sign'h 'rd, ['rn, #+'off8]'w");
    786           }
    787           break;
    788         }
    789         default: {
    790           // The PU field is a 2-bit field.
    791           UNREACHABLE();
    792           break;
    793         }
    794       }
    795       return;
    796     }
    797   } else if ((type == 0) && instr->IsMiscType0()) {
    798     if (instr->Bits(22, 21) == 1) {
    799       switch (instr->BitField(7, 4)) {
    800         case BX:
    801           Format(instr, "bx'cond 'rm");
    802           break;
    803         case BLX:
    804           Format(instr, "blx'cond 'rm");
    805           break;
    806         case BKPT:
    807           Format(instr, "bkpt 'off0to3and8to19");
    808           break;
    809         default:
    810           Unknown(instr);  // not used by V8
    811           break;
    812       }
    813     } else if (instr->Bits(22, 21) == 3) {
    814       switch (instr->BitField(7, 4)) {
    815         case CLZ:
    816           Format(instr, "clz'cond 'rd, 'rm");
    817           break;
    818         default:
    819           Unknown(instr);  // not used by V8
    820           break;
    821       }
    822     } else {
    823       Unknown(instr);  // not used by V8
    824     }
    825   } else {
    826     switch (instr->OpcodeField()) {
    827       case AND: {
    828         Format(instr, "and'cond's 'rd, 'rn, 'shift_op");
    829         break;
    830       }
    831       case EOR: {
    832         Format(instr, "eor'cond's 'rd, 'rn, 'shift_op");
    833         break;
    834       }
    835       case SUB: {
    836         Format(instr, "sub'cond's 'rd, 'rn, 'shift_op");
    837         break;
    838       }
    839       case RSB: {
    840         Format(instr, "rsb'cond's 'rd, 'rn, 'shift_op");
    841         break;
    842       }
    843       case ADD: {
    844         Format(instr, "add'cond's 'rd, 'rn, 'shift_op");
    845         break;
    846       }
    847       case ADC: {
    848         Format(instr, "adc'cond's 'rd, 'rn, 'shift_op");
    849         break;
    850       }
    851       case SBC: {
    852         Format(instr, "sbc'cond's 'rd, 'rn, 'shift_op");
    853         break;
    854       }
    855       case RSC: {
    856         Format(instr, "rsc'cond's 'rd, 'rn, 'shift_op");
    857         break;
    858       }
    859       case TST: {
    860         if (instr->HasS()) {
    861           Format(instr, "tst'cond 'rn, 'shift_op");
    862         } else {
    863           Format(instr, "movw'cond 'mw");
    864         }
    865         break;
    866       }
    867       case TEQ: {
    868         if (instr->HasS()) {
    869           Format(instr, "teq'cond 'rn, 'shift_op");
    870         } else {
    871           // Other instructions matching this pattern are handled in the
    872           // miscellaneous instructions part above.
    873           UNREACHABLE();
    874         }
    875         break;
    876       }
    877       case CMP: {
    878         if (instr->HasS()) {
    879           Format(instr, "cmp'cond 'rn, 'shift_op");
    880         } else {
    881           Format(instr, "movt'cond 'mw");
    882         }
    883         break;
    884       }
    885       case CMN: {
    886         if (instr->HasS()) {
    887           Format(instr, "cmn'cond 'rn, 'shift_op");
    888         } else {
    889           // Other instructions matching this pattern are handled in the
    890           // miscellaneous instructions part above.
    891           UNREACHABLE();
    892         }
    893         break;
    894       }
    895       case ORR: {
    896         Format(instr, "orr'cond's 'rd, 'rn, 'shift_op");
    897         break;
    898       }
    899       case MOV: {
    900         Format(instr, "mov'cond's 'rd, 'shift_op");
    901         break;
    902       }
    903       case BIC: {
    904         Format(instr, "bic'cond's 'rd, 'rn, 'shift_op");
    905         break;
    906       }
    907       case MVN: {
    908         Format(instr, "mvn'cond's 'rd, 'shift_op");
    909         break;
    910       }
    911       default: {
    912         // The Opcode field is a 4-bit field.
    913         UNREACHABLE();
    914         break;
    915       }
    916     }
    917   }
    918 }
    919 
    920 
    921 void Decoder::DecodeType2(Instruction* instr) {
    922   switch (instr->PUField()) {
    923     case da_x: {
    924       if (instr->HasW()) {
    925         Unknown(instr);  // not used in V8
    926         return;
    927       }
    928       Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12");
    929       break;
    930     }
    931     case ia_x: {
    932       if (instr->HasW()) {
    933         Unknown(instr);  // not used in V8
    934         return;
    935       }
    936       Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12");
    937       break;
    938     }
    939     case db_x: {
    940       Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w");
    941       break;
    942     }
    943     case ib_x: {
    944       Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w");
    945       break;
    946     }
    947     default: {
    948       // The PU field is a 2-bit field.
    949       UNREACHABLE();
    950       break;
    951     }
    952   }
    953 }
    954 
    955 
    956 void Decoder::DecodeType3(Instruction* instr) {
    957   switch (instr->PUField()) {
    958     case da_x: {
    959       VERIFY(!instr->HasW());
    960       Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm");
    961       break;
    962     }
    963     case ia_x: {
    964       if (instr->HasW()) {
    965         VERIFY(instr->Bits(5, 4) == 0x1);
    966         if (instr->Bit(22) == 0x1) {
    967           Format(instr, "usat 'rd, #'imm05@16, 'rm'shift_sat");
    968         } else {
    969           UNREACHABLE();  // SSAT.
    970         }
    971       } else {
    972         Format(instr, "'memop'cond'b 'rd, ['rn], +'shift_rm");
    973       }
    974       break;
    975     }
    976     case db_x: {
    977       Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w");
    978       break;
    979     }
    980     case ib_x: {
    981       if (instr->HasW() && (instr->Bits(6, 4) == 0x5)) {
    982         uint32_t widthminus1 = static_cast<uint32_t>(instr->Bits(20, 16));
    983         uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7));
    984         uint32_t msbit = widthminus1 + lsbit;
    985         if (msbit <= 31) {
    986           if (instr->Bit(22)) {
    987             Format(instr, "ubfx'cond 'rd, 'rm, 'f");
    988           } else {
    989             Format(instr, "sbfx'cond 'rd, 'rm, 'f");
    990           }
    991         } else {
    992           UNREACHABLE();
    993         }
    994       } else if (!instr->HasW() && (instr->Bits(6, 4) == 0x1)) {
    995         uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7));
    996         uint32_t msbit = static_cast<uint32_t>(instr->Bits(20, 16));
    997         if (msbit >= lsbit) {
    998           if (instr->RmValue() == 15) {
    999             Format(instr, "bfc'cond 'rd, 'f");
   1000           } else {
   1001             Format(instr, "bfi'cond 'rd, 'rm, 'f");
   1002           }
   1003         } else {
   1004           UNREACHABLE();
   1005         }
   1006       } else {
   1007         Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w");
   1008       }
   1009       break;
   1010     }
   1011     default: {
   1012       // The PU field is a 2-bit field.
   1013       UNREACHABLE();
   1014       break;
   1015     }
   1016   }
   1017 }
   1018 
   1019 
   1020 void Decoder::DecodeType4(Instruction* instr) {
   1021   if (instr->Bit(22) != 0) {
   1022     // Privileged mode currently not supported.
   1023     Unknown(instr);
   1024   } else {
   1025     if (instr->HasL()) {
   1026       Format(instr, "ldm'cond'pu 'rn'w, 'rlist");
   1027     } else {
   1028       Format(instr, "stm'cond'pu 'rn'w, 'rlist");
   1029     }
   1030   }
   1031 }
   1032 
   1033 
   1034 void Decoder::DecodeType5(Instruction* instr) {
   1035   Format(instr, "b'l'cond 'target");
   1036 }
   1037 
   1038 
   1039 void Decoder::DecodeType6(Instruction* instr) {
   1040   DecodeType6CoprocessorIns(instr);
   1041 }
   1042 
   1043 
   1044 int Decoder::DecodeType7(Instruction* instr) {
   1045   if (instr->Bit(24) == 1) {
   1046     if (instr->SvcValue() >= kStopCode) {
   1047       Format(instr, "stop'cond 'svc");
   1048       // Also print the stop message. Its address is encoded
   1049       // in the following 4 bytes.
   1050       out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
   1051                                       "\n  %p  %08x       stop message: %s",
   1052                                       reinterpret_cast<int32_t*>(instr
   1053                                                      + Instruction::kInstrSize),
   1054                                       *reinterpret_cast<char**>(instr
   1055                                                     + Instruction::kInstrSize),
   1056                                       *reinterpret_cast<char**>(instr
   1057                                                     + Instruction::kInstrSize));
   1058       // We have decoded 2 * Instruction::kInstrSize bytes.
   1059       return 2 * Instruction::kInstrSize;
   1060     } else {
   1061       Format(instr, "svc'cond 'svc");
   1062     }
   1063   } else {
   1064     DecodeTypeVFP(instr);
   1065   }
   1066   return Instruction::kInstrSize;
   1067 }
   1068 
   1069 
   1070 // void Decoder::DecodeTypeVFP(Instruction* instr)
   1071 // vmov: Sn = Rt
   1072 // vmov: Rt = Sn
   1073 // vcvt: Dd = Sm
   1074 // vcvt: Sd = Dm
   1075 // Dd = vabs(Dm)
   1076 // Dd = vneg(Dm)
   1077 // Dd = vadd(Dn, Dm)
   1078 // Dd = vsub(Dn, Dm)
   1079 // Dd = vmul(Dn, Dm)
   1080 // Dd = vdiv(Dn, Dm)
   1081 // vcmp(Dd, Dm)
   1082 // vmrs
   1083 // vmsr
   1084 // Dd = vsqrt(Dm)
   1085 void Decoder::DecodeTypeVFP(Instruction* instr) {
   1086   VERIFY((instr->TypeValue() == 7) && (instr->Bit(24) == 0x0) );
   1087   VERIFY(instr->Bits(11, 9) == 0x5);
   1088 
   1089   if (instr->Bit(4) == 0) {
   1090     if (instr->Opc1Value() == 0x7) {
   1091       // Other data processing instructions
   1092       if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x1)) {
   1093         // vmov register to register.
   1094         if (instr->SzValue() == 0x1) {
   1095           Format(instr, "vmov.f64'cond 'Dd, 'Dm");
   1096         } else {
   1097           Format(instr, "vmov.f32'cond 'Sd, 'Sm");
   1098         }
   1099       } else if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x3)) {
   1100         // vabs
   1101         Format(instr, "vabs.f64'cond 'Dd, 'Dm");
   1102       } else if ((instr->Opc2Value() == 0x1) && (instr->Opc3Value() == 0x1)) {
   1103         // vneg
   1104         Format(instr, "vneg.f64'cond 'Dd, 'Dm");
   1105       } else if ((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3)) {
   1106         DecodeVCVTBetweenDoubleAndSingle(instr);
   1107       } else if ((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) {
   1108         DecodeVCVTBetweenFloatingPointAndInteger(instr);
   1109       } else if (((instr->Opc2Value() >> 1) == 0x6) &&
   1110                  (instr->Opc3Value() & 0x1)) {
   1111         DecodeVCVTBetweenFloatingPointAndInteger(instr);
   1112       } else if (((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) &&
   1113                  (instr->Opc3Value() & 0x1)) {
   1114         DecodeVCMP(instr);
   1115       } else if (((instr->Opc2Value() == 0x1)) && (instr->Opc3Value() == 0x3)) {
   1116         Format(instr, "vsqrt.f64'cond 'Dd, 'Dm");
   1117       } else if (instr->Opc3Value() == 0x0) {
   1118         if (instr->SzValue() == 0x1) {
   1119           Format(instr, "vmov.f64'cond 'Dd, 'd");
   1120         } else {
   1121           Unknown(instr);  // Not used by V8.
   1122         }
   1123       } else {
   1124         Unknown(instr);  // Not used by V8.
   1125       }
   1126     } else if (instr->Opc1Value() == 0x3) {
   1127       if (instr->SzValue() == 0x1) {
   1128         if (instr->Opc3Value() & 0x1) {
   1129           Format(instr, "vsub.f64'cond 'Dd, 'Dn, 'Dm");
   1130         } else {
   1131           Format(instr, "vadd.f64'cond 'Dd, 'Dn, 'Dm");
   1132         }
   1133       } else {
   1134         Unknown(instr);  // Not used by V8.
   1135       }
   1136     } else if ((instr->Opc1Value() == 0x2) && !(instr->Opc3Value() & 0x1)) {
   1137       if (instr->SzValue() == 0x1) {
   1138         Format(instr, "vmul.f64'cond 'Dd, 'Dn, 'Dm");
   1139       } else {
   1140         Unknown(instr);  // Not used by V8.
   1141       }
   1142     } else if ((instr->Opc1Value() == 0x4) && !(instr->Opc3Value() & 0x1)) {
   1143       if (instr->SzValue() == 0x1) {
   1144         Format(instr, "vdiv.f64'cond 'Dd, 'Dn, 'Dm");
   1145       } else {
   1146         Unknown(instr);  // Not used by V8.
   1147       }
   1148     } else {
   1149       Unknown(instr);  // Not used by V8.
   1150     }
   1151   } else {
   1152     if ((instr->VCValue() == 0x0) &&
   1153         (instr->VAValue() == 0x0)) {
   1154       DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(instr);
   1155     } else if ((instr->VCValue() == 0x0) &&
   1156                (instr->VAValue() == 0x7) &&
   1157                (instr->Bits(19, 16) == 0x1)) {
   1158       if (instr->VLValue() == 0) {
   1159         if (instr->Bits(15, 12) == 0xF) {
   1160           Format(instr, "vmsr'cond FPSCR, APSR");
   1161         } else {
   1162           Format(instr, "vmsr'cond FPSCR, 'rt");
   1163         }
   1164       } else {
   1165         if (instr->Bits(15, 12) == 0xF) {
   1166           Format(instr, "vmrs'cond APSR, FPSCR");
   1167         } else {
   1168           Format(instr, "vmrs'cond 'rt, FPSCR");
   1169         }
   1170       }
   1171     }
   1172   }
   1173 }
   1174 
   1175 
   1176 void Decoder::DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(
   1177     Instruction* instr) {
   1178   VERIFY((instr->Bit(4) == 1) && (instr->VCValue() == 0x0) &&
   1179          (instr->VAValue() == 0x0));
   1180 
   1181   bool to_arm_register = (instr->VLValue() == 0x1);
   1182 
   1183   if (to_arm_register) {
   1184     Format(instr, "vmov'cond 'rt, 'Sn");
   1185   } else {
   1186     Format(instr, "vmov'cond 'Sn, 'rt");
   1187   }
   1188 }
   1189 
   1190 
   1191 void Decoder::DecodeVCMP(Instruction* instr) {
   1192   VERIFY((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7));
   1193   VERIFY(((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) &&
   1194          (instr->Opc3Value() & 0x1));
   1195 
   1196   // Comparison.
   1197   bool dp_operation = (instr->SzValue() == 1);
   1198   bool raise_exception_for_qnan = (instr->Bit(7) == 0x1);
   1199 
   1200   if (dp_operation && !raise_exception_for_qnan) {
   1201     if (instr->Opc2Value() == 0x4) {
   1202       Format(instr, "vcmp.f64'cond 'Dd, 'Dm");
   1203     } else if (instr->Opc2Value() == 0x5) {
   1204       Format(instr, "vcmp.f64'cond 'Dd, #0.0");
   1205     } else {
   1206       Unknown(instr);  // invalid
   1207     }
   1208   } else {
   1209     Unknown(instr);  // Not used by V8.
   1210   }
   1211 }
   1212 
   1213 
   1214 void Decoder::DecodeVCVTBetweenDoubleAndSingle(Instruction* instr) {
   1215   VERIFY((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7));
   1216   VERIFY((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3));
   1217 
   1218   bool double_to_single = (instr->SzValue() == 1);
   1219 
   1220   if (double_to_single) {
   1221     Format(instr, "vcvt.f32.f64'cond 'Sd, 'Dm");
   1222   } else {
   1223     Format(instr, "vcvt.f64.f32'cond 'Dd, 'Sm");
   1224   }
   1225 }
   1226 
   1227 
   1228 void Decoder::DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr) {
   1229   VERIFY((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7));
   1230   VERIFY(((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) ||
   1231          (((instr->Opc2Value() >> 1) == 0x6) && (instr->Opc3Value() & 0x1)));
   1232 
   1233   bool to_integer = (instr->Bit(18) == 1);
   1234   bool dp_operation = (instr->SzValue() == 1);
   1235   if (to_integer) {
   1236     bool unsigned_integer = (instr->Bit(16) == 0);
   1237 
   1238     if (dp_operation) {
   1239       if (unsigned_integer) {
   1240         Format(instr, "vcvt.u32.f64'cond 'Sd, 'Dm");
   1241       } else {
   1242         Format(instr, "vcvt.s32.f64'cond 'Sd, 'Dm");
   1243       }
   1244     } else {
   1245       if (unsigned_integer) {
   1246         Format(instr, "vcvt.u32.f32'cond 'Sd, 'Sm");
   1247       } else {
   1248         Format(instr, "vcvt.s32.f32'cond 'Sd, 'Sm");
   1249       }
   1250     }
   1251   } else {
   1252     bool unsigned_integer = (instr->Bit(7) == 0);
   1253 
   1254     if (dp_operation) {
   1255       if (unsigned_integer) {
   1256         Format(instr, "vcvt.f64.u32'cond 'Dd, 'Sm");
   1257       } else {
   1258         Format(instr, "vcvt.f64.s32'cond 'Dd, 'Sm");
   1259       }
   1260     } else {
   1261       if (unsigned_integer) {
   1262         Format(instr, "vcvt.f32.u32'cond 'Sd, 'Sm");
   1263       } else {
   1264         Format(instr, "vcvt.f32.s32'cond 'Sd, 'Sm");
   1265       }
   1266     }
   1267   }
   1268 }
   1269 
   1270 
   1271 // Decode Type 6 coprocessor instructions.
   1272 // Dm = vmov(Rt, Rt2)
   1273 // <Rt, Rt2> = vmov(Dm)
   1274 // Ddst = MEM(Rbase + 4*offset).
   1275 // MEM(Rbase + 4*offset) = Dsrc.
   1276 void Decoder::DecodeType6CoprocessorIns(Instruction* instr) {
   1277   VERIFY(instr->TypeValue() == 6);
   1278 
   1279   if (instr->CoprocessorValue() == 0xA) {
   1280     switch (instr->OpcodeValue()) {
   1281       case 0x8:
   1282       case 0xA:
   1283         if (instr->HasL()) {
   1284           Format(instr, "vldr'cond 'Sd, ['rn - 4*'imm08@00]");
   1285         } else {
   1286           Format(instr, "vstr'cond 'Sd, ['rn - 4*'imm08@00]");
   1287         }
   1288         break;
   1289       case 0xC:
   1290       case 0xE:
   1291         if (instr->HasL()) {
   1292           Format(instr, "vldr'cond 'Sd, ['rn + 4*'imm08@00]");
   1293         } else {
   1294           Format(instr, "vstr'cond 'Sd, ['rn + 4*'imm08@00]");
   1295         }
   1296         break;
   1297       case 0x4:
   1298       case 0x5:
   1299       case 0x6:
   1300       case 0x7:
   1301       case 0x9:
   1302       case 0xB: {
   1303         bool to_vfp_register = (instr->VLValue() == 0x1);
   1304         if (to_vfp_register) {
   1305           Format(instr, "vldm'cond'pu 'rn'w, {'Sd-'Sd+}");
   1306         } else {
   1307           Format(instr, "vstm'cond'pu 'rn'w, {'Sd-'Sd+}");
   1308         }
   1309         break;
   1310       }
   1311       default:
   1312         Unknown(instr);  // Not used by V8.
   1313     }
   1314   } else if (instr->CoprocessorValue() == 0xB) {
   1315     switch (instr->OpcodeValue()) {
   1316       case 0x2:
   1317         // Load and store double to two GP registers
   1318         if (instr->Bits(7, 4) != 0x1) {
   1319           Unknown(instr);  // Not used by V8.
   1320         } else if (instr->HasL()) {
   1321           Format(instr, "vmov'cond 'rt, 'rn, 'Dm");
   1322         } else {
   1323           Format(instr, "vmov'cond 'Dm, 'rt, 'rn");
   1324         }
   1325         break;
   1326       case 0x8:
   1327         if (instr->HasL()) {
   1328           Format(instr, "vldr'cond 'Dd, ['rn - 4*'imm08@00]");
   1329         } else {
   1330           Format(instr, "vstr'cond 'Dd, ['rn - 4*'imm08@00]");
   1331         }
   1332         break;
   1333       case 0xC:
   1334         if (instr->HasL()) {
   1335           Format(instr, "vldr'cond 'Dd, ['rn + 4*'imm08@00]");
   1336         } else {
   1337           Format(instr, "vstr'cond 'Dd, ['rn + 4*'imm08@00]");
   1338         }
   1339         break;
   1340       case 0x4:
   1341       case 0x5:
   1342       case 0x9: {
   1343         bool to_vfp_register = (instr->VLValue() == 0x1);
   1344         if (to_vfp_register) {
   1345           Format(instr, "vldm'cond'pu 'rn'w, {'Dd-'Dd+}");
   1346         } else {
   1347           Format(instr, "vstm'cond'pu 'rn'w, {'Dd-'Dd+}");
   1348         }
   1349         break;
   1350       }
   1351       default:
   1352         Unknown(instr);  // Not used by V8.
   1353     }
   1354   } else {
   1355     Unknown(instr);  // Not used by V8.
   1356   }
   1357 }
   1358 
   1359 #undef VERIFIY
   1360 
   1361 bool Decoder::IsConstantPoolAt(byte* instr_ptr) {
   1362   int instruction_bits = *(reinterpret_cast<int*>(instr_ptr));
   1363   return (instruction_bits & kConstantPoolMarkerMask) == kConstantPoolMarker;
   1364 }
   1365 
   1366 
   1367 int Decoder::ConstantPoolSizeAt(byte* instr_ptr) {
   1368   if (IsConstantPoolAt(instr_ptr)) {
   1369     int instruction_bits = *(reinterpret_cast<int*>(instr_ptr));
   1370     return instruction_bits & kConstantPoolLengthMask;
   1371   } else {
   1372     return -1;
   1373   }
   1374 }
   1375 
   1376 
   1377 // Disassemble the instruction at *instr_ptr into the output buffer.
   1378 int Decoder::InstructionDecode(byte* instr_ptr) {
   1379   Instruction* instr = Instruction::At(instr_ptr);
   1380   // Print raw instruction bytes.
   1381   out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
   1382                                   "%08x       ",
   1383                                   instr->InstructionBits());
   1384   if (instr->ConditionField() == kSpecialCondition) {
   1385     Unknown(instr);
   1386     return Instruction::kInstrSize;
   1387   }
   1388   int instruction_bits = *(reinterpret_cast<int*>(instr_ptr));
   1389   if ((instruction_bits & kConstantPoolMarkerMask) == kConstantPoolMarker) {
   1390     out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
   1391                                     "constant pool begin (length %d)",
   1392                                     instruction_bits &
   1393                                     kConstantPoolLengthMask);
   1394     return Instruction::kInstrSize;
   1395   }
   1396   switch (instr->TypeValue()) {
   1397     case 0:
   1398     case 1: {
   1399       DecodeType01(instr);
   1400       break;
   1401     }
   1402     case 2: {
   1403       DecodeType2(instr);
   1404       break;
   1405     }
   1406     case 3: {
   1407       DecodeType3(instr);
   1408       break;
   1409     }
   1410     case 4: {
   1411       DecodeType4(instr);
   1412       break;
   1413     }
   1414     case 5: {
   1415       DecodeType5(instr);
   1416       break;
   1417     }
   1418     case 6: {
   1419       DecodeType6(instr);
   1420       break;
   1421     }
   1422     case 7: {
   1423       return DecodeType7(instr);
   1424     }
   1425     default: {
   1426       // The type field is 3-bits in the ARM encoding.
   1427       UNREACHABLE();
   1428       break;
   1429     }
   1430   }
   1431   return Instruction::kInstrSize;
   1432 }
   1433 
   1434 
   1435 } }  // namespace v8::internal
   1436 
   1437 
   1438 
   1439 //------------------------------------------------------------------------------
   1440 
   1441 namespace disasm {
   1442 
   1443 
   1444 const char* NameConverter::NameOfAddress(byte* addr) const {
   1445   v8::internal::OS::SNPrintF(tmp_buffer_, "%p", addr);
   1446   return tmp_buffer_.start();
   1447 }
   1448 
   1449 
   1450 const char* NameConverter::NameOfConstant(byte* addr) const {
   1451   return NameOfAddress(addr);
   1452 }
   1453 
   1454 
   1455 const char* NameConverter::NameOfCPURegister(int reg) const {
   1456   return v8::internal::Registers::Name(reg);
   1457 }
   1458 
   1459 
   1460 const char* NameConverter::NameOfByteCPURegister(int reg) const {
   1461   UNREACHABLE();  // ARM does not have the concept of a byte register
   1462   return "nobytereg";
   1463 }
   1464 
   1465 
   1466 const char* NameConverter::NameOfXMMRegister(int reg) const {
   1467   UNREACHABLE();  // ARM does not have any XMM registers
   1468   return "noxmmreg";
   1469 }
   1470 
   1471 
   1472 const char* NameConverter::NameInCode(byte* addr) const {
   1473   // The default name converter is called for unknown code. So we will not try
   1474   // to access any memory.
   1475   return "";
   1476 }
   1477 
   1478 
   1479 //------------------------------------------------------------------------------
   1480 
   1481 Disassembler::Disassembler(const NameConverter& converter)
   1482     : converter_(converter) {}
   1483 
   1484 
   1485 Disassembler::~Disassembler() {}
   1486 
   1487 
   1488 int Disassembler::InstructionDecode(v8::internal::Vector<char> buffer,
   1489                                     byte* instruction) {
   1490   v8::internal::Decoder d(converter_, buffer);
   1491   return d.InstructionDecode(instruction);
   1492 }
   1493 
   1494 
   1495 int Disassembler::ConstantPoolSizeAt(byte* instruction) {
   1496   return v8::internal::Decoder::ConstantPoolSizeAt(instruction);
   1497 }
   1498 
   1499 
   1500 void Disassembler::Disassemble(FILE* f, byte* begin, byte* end) {
   1501   NameConverter converter;
   1502   Disassembler d(converter);
   1503   for (byte* pc = begin; pc < end;) {
   1504     v8::internal::EmbeddedVector<char, 128> buffer;
   1505     buffer[0] = '\0';
   1506     byte* prev_pc = pc;
   1507     pc += d.InstructionDecode(buffer, pc);
   1508     fprintf(f, "%p    %08x      %s\n",
   1509             prev_pc, *reinterpret_cast<int32_t*>(prev_pc), buffer.start());
   1510   }
   1511 }
   1512 
   1513 
   1514 }  // namespace disasm
   1515 
   1516 #endif  // V8_TARGET_ARCH_ARM
   1517